1
|
Wang H, Li Y, Wu N, Lv C, Wang Y. P4HB regulates the TGFβ/SMAD3 signaling pathway through PRMT1 to participate in high glucose-induced epithelial-mesenchymal transition and fibrosis of renal tubular epithelial cells. BMC Nephrol 2024; 25:297. [PMID: 39251943 PMCID: PMC11385120 DOI: 10.1186/s12882-024-03733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes mellitus, and Prolyl 4-Hydroxylase Subunit Beta (P4HB) expression is increased in high glucose (HG)-induced renal tubular epithelial cells (TECs). But it's role in HG-induced TECs remains to be elucidated. METHODS The HK-2 cells were induced using HG and transfected with SiRNA-P4HB. DCFH-DA staining was utilized for the detection of cellular levels of ROS. WB and immunofluorescence were utilized to detect the expression of P4HB, epithelial-mesenchymal transition (EMT), fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. Online databases were utilized for predicting the interaction target of P4HB, and immunoprecipitation (IP) experiments were employed to validate the binding of P4HB with the target. SiRNA and overexpression vectors of target gene were used to verify the mechanism of action of P4HB. RESULTS HG induced an increase in the expression of P4HB and TGFβ, p-SMAD3, and ROS in HK-2 cells. Furthermore, HG downregulated the expression of E-cadherin and upregulated the expression of N-cadherin, Vimentin, α-SMA, Fibronectin, Collagen IV, SNAIL, and SLUG in HK-2 cells. Interfering with P4HB significantly reversed the expression of these proteins. Database predictions and IP experiments showed that P4HB interacts with PRMT1, and the expression of PRMT1 was increased in HG-induced HK-2 cells. Interfering with PRMT1 inhibited the changes in expression of EMT and fibrosis related proteins induced by HG. However, overexpression of PRMT1 weakened the regulatory effect of P4HB interference on the EMT, fibrosis, and TGFβ/SMAD3-related proteins in HK-2 cells. CONCLUSION P4HB regulated the TGFβ/SMAD3 signaling pathway through PRMT1 and thus participates in HG-induced EMT and fibrosis in HK-2 cells.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of nephrology, China-Japan Friendship Hospital, chaoyang District, 100029, Beijing, China
| | - Yang Li
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Na Wu
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Chunmei Lv
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China
| | - Yishu Wang
- Comprehensive Internal Medicine Department, Beijing Xiaotangshan Hospital, Xiaotangshan Town, Changping District, 102211, Beijing, China.
| |
Collapse
|
2
|
Adewale AT, Sharma S, Mouawad JE, Nguyen XX, Bradshaw AD, Feghali-Bostwick C. IGF-II regulates lysyl oxidase propeptide and mediates its effects in part via basic helix-loop-helix E40. Matrix Biol 2024; 132:24-33. [PMID: 38852924 PMCID: PMC11329355 DOI: 10.1016/j.matbio.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Pulmonary fibrosis (PF) is a clinically severe and commonly fatal complication of Systemic Sclerosis (SSc). Our group has previously reported profibrotic roles for Insulin-like Growth Factor II (IGF-II) and Lysyl Oxidase (LOX) in SSc-PF. We sought to identify downstream regulatory mediators of IGF-II. In the present work, we show that SSc lung tissues have higher baseline levels of the total (N-glycosylated/unglycosylated) LOX-Propeptide (LOX-PP) than control lung tissues. LOX-PP-mediated changes were consistent with the extracellular matrix (ECM) deregulation implicated in SSc-PF progression. Furthermore, Tolloid-like 1 (TLL1) and Bone Morphogenetic Protein 1 (BMP1), enzymes that can cleave ProLOX to release LOX-PP, were increased in SSc lung fibrosis and the bleomycin (BLM)-induced murine lung fibrosis model, respectively. In addition, IGF-II regulated the levels of ProLOX, active LOX, LOX-PP, BMP1, and isoforms of TLL1. The Class E Basic Helix-Loop-Helix protein 40 (BHLHE40) transcription factor localized to the nucleus in response to IGF-II. BHLHE40 silencing downregulated TLL1 isoforms and LOX-PP, and restored features of ECM deregulation triggered by IGF-II. Our findings indicate that IGF-II, BHLHE40, and LOX-PP may serve as targets of therapeutic intervention to halt SSc-PF progression.
Collapse
Affiliation(s)
- Adegboyega Timothy Adewale
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Shailza Sharma
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| | - Joe E Mouawad
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Xinh-Xinh Nguyen
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Amy D Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston 29425, 96 Jonathan Lucas Street, MSC637, SC, USA.
| |
Collapse
|
3
|
Huang WC, Chuang CF, Huang YT, Chung IC, Chen ML, Chuang TY, Yang XL, Chou YY, Liu CH, Chen NY, Chen CJ, Yuan TT. Monoclonal enolase-1 blocking antibody ameliorates pulmonary inflammation and fibrosis. Respir Res 2023; 24:280. [PMID: 37964270 PMCID: PMC10647181 DOI: 10.1186/s12931-023-02583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/27/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic fatal disease with limited therapeutic options. The infiltration of monocytes and fibroblasts into the injured lungs is implicated in IPF. Enolase-1 (ENO1) is a cytosolic glycolytic enzyme which could translocate onto the cell surface and act as a plasminogen receptor to facilitate cell migration via plasmin activation. Our proprietary ENO1 antibody, HL217, was screened for its specific binding to ENO1 and significant inhibition of cell migration and plasmin activation (patent: US9382331B2). METHODS In this study, effects of HL217 were evaluated in vivo and in vitro for treating lung fibrosis. RESULTS Elevated ENO1 expression was found in fibrotic lungs in human and in bleomycin-treated mice. In the mouse model, HL217 reduced bleomycin-induced lung fibrosis, inflammation, body weight loss, lung weight gain, TGF-β upregulation in bronchial alveolar lavage fluid (BALF), and collagen deposition in lung. Moreover, HL217 reduced the migration of peripheral blood mononuclear cells (PBMC) and the recruitment of myeloid cells into the lungs. In vitro, HL217 significantly reduced cell-associated plasmin activation and cytokines secretion from primary human PBMC and endothelial cells. In primary human lung fibroblasts, HL217 also reduced cell migration and collagen secretion. CONCLUSIONS These findings suggest multi-faceted roles of cell surface ENO1 and a potential therapeutic approach for pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nai-Yu Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chun-Jen Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ta-Tung Yuan
- HuniLife Biotechnology Inc, Taipei, Taiwan.
- Department of Research and Development, HuniLife Biotechnology Inc, Rm. 1, 6F., No. 308, Sec. 1, Neihu Rd., Neihu Dist, 114, Taipei City, Taiwan.
| |
Collapse
|
4
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Liu Z, Zhang X, Wang Y, Tai Y, Yao X, Midgley AC. Emergent Peptides of the Antifibrotic Arsenal: Taking Aim at Myofibroblast Promoting Pathways. Biomolecules 2023; 13:1179. [PMID: 37627244 PMCID: PMC10452577 DOI: 10.3390/biom13081179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Myofibroblasts are the principal effector cells driving fibrosis, and their accumulation in tissues is a fundamental feature of fibrosis. Essential pathways have been identified as being central to promoting myofibroblast differentiation, revealing multiple targets for intervention. Compared with large proteins and antibodies, peptide-based therapies have transpired to serve as biocompatible and cost-effective solutions to exert biomimicry, agonistic, and antagonistic activities with a high degree of targeting specificity and selectivity. In this review, we summarize emergent antifibrotic peptides and their utilization for the targeted prevention of myofibroblasts. We then highlight recent studies on peptide inhibitors of upstream pathogenic processes that drive the formation of profibrotic cell phenotypes. We also briefly discuss peptides from non-mammalian origins that show promise as antifibrotic therapeutics. Finally, we discuss the future perspectives of peptide design and development in targeting myofibroblasts to mitigate fibrosis.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xinyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yanrong Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yifan Tai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xiaolin Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
| | - Adam C. Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Pi Z, Liu J, Xiao Y, He X, Zhu R, Tang R, Qiu X, Zhan Y, Zeng Z, Shi Y, Xiao R. ATRA ameliorates fibrosis by suppressing the pro-fibrotic molecule Fra2/AP-1 in systemic sclerosis. Int Immunopharmacol 2023; 121:110420. [PMID: 37331293 DOI: 10.1016/j.intimp.2023.110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to irreversible fibrosis of the skin and the internal organs. The etiology of SSc is complex, its pathophysiology is poorly understood, and clinical therapeutic options are restricted. Thus, research into medications and targets for treating fibrosis is essential and urgent. Fos-related antigen 2 (Fra2) is a transcription factor that is a member of the activator protein-1 family. Fra2 transgenic mice were shown to have spontaneous fibrosis. All-trans retinoic acid (ATRA) is a vitamin A intermediate metabolite and ligand for the retinoic acid receptor (RAR), which possesses anti-inflammatory and anti-proliferative properties. Recent research has demonstrated that ATRA also has an anti-fibrotic effect. However, the exact mechanism is not fully understood. Interestingly, we identified potential binding sites for the transcription factor RARα to the promoter region of the FRA2 gene through JASPAR and PROMO databases. In this study, the pro-fibrotic effect of Fra2 in SSc is confirmed. SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc animals exhibit increased levels of Fra2. Inhibition of Fra2 expression in SSc dermal fibroblasts with Fra2 siRNA markedly decreased collagen I expression. ATRA reduced the expressions of Fra2, collagen I, and α-smooth muscle actin(α-SMA) in SSc dermal fibroblasts and bleomycin-induced fibrotic tissues of SSc mice. In addition, chromatin immunoprecipitation and dual-luciferase assays demonstrated that retinoic acid receptor RARα binds to the FRA2 promoter and modulates its transcriptional activity. ATRA decreases collagen I expression both in vivo and in vitro via the reduction of Fra2 expression. This work establishes the rationale for expanding the use of ATRA in the treatment of SSc and indicates that Fra2 can be used as an anti-fibrotic target.
Collapse
Affiliation(s)
- Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.; Department of Medical Genetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yangfan Xiao
- Clinical Nursing Teaching and Research Section, Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xinglan He
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ruixuan Zhu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Rui Tang
- Department of Rheumatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yi Zhan
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China..
| | - Yaqian Shi
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China..
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China..
| |
Collapse
|
7
|
Li Y, Guo L. The versatile role of Serpina3c in physiological and pathological processes: a review of recent studies. Front Endocrinol (Lausanne) 2023; 14:1189007. [PMID: 37288300 PMCID: PMC10242157 DOI: 10.3389/fendo.2023.1189007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Murine Serpina3c belongs to the family of serine protease inhibitors (Serpins), clade "A" and its human homologue is SerpinA3. Serpina3c is involved in some physiological processes, including insulin secretion and adipogenesis. In the pathophysiological process, the deletion of Serpina3c leads to more severe metabolic disorders, such as aggravated non-alcoholic fatty liver disease (NAFLD), insulin resistance and obesity. In addition, Serpina3c can improve atherosclerosis and regulate cardiac remodeling after myocardial infarction. Many of these processes are directly or indirectly mediated by its inhibition of serine protease activity. Although its function has not been fully revealed, recent studies have shown its potential research value. Here, we aimed to summarize recent studies to provide a clearer view of the biological roles and the underlying mechanisms of Serpina3c.
Collapse
Affiliation(s)
| | - Liang Guo
- School of Exercise and Health and Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
8
|
Mouawad JE, Sharma S, Renaud L, Pilewski JM, Nadig SN, Feghali-Bostwick C. Reduced Cathepsin L expression and secretion into the extracellular milieu contribute to lung fibrosis in systemic sclerosis. Rheumatology (Oxford) 2023; 62:1306-1316. [PMID: 35900152 PMCID: PMC10167927 DOI: 10.1093/rheumatology/keac411] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Lung fibrosis is the leading cause of death in SSc, with no cure currently available. Antifibrotic Endostatin (ES) production does not reach therapeutic levels in SSc patients, suggesting a deficit in its release from Collagen XVIII by the main cleavage enzyme, Cathepsin L (CTSL). Thus, elucidating a potential deficit in CTSL expression and activity unravels an underlying molecular cause for SSc-driven lung fibrosis. METHODS Fibrosis was induced experimentally using TGF-β in vitro, in primary human lung fibroblasts (pLFs), and ex vivo, in human lung tissues. ES and CTSL expression was quantified using ELISA, RT-qPCR, immunoblotting or immunofluorescence. Recombinant NC1-FLAG peptide was used to assess CTSL cleavage activity. CTSL expression was also compared between SSc vs normal (NL)-derived pLFs and lung tissues. RESULTS ES levels were significantly reduced in media conditioned by TGF-β-induced pLFs. TGF-β-stimulated pLFs significantly reduced expression and secretion of CTSL into the extracellular matrix (ECM). CTSL was also sequestered in its inactive form into extracellular vesicles, further reducing its availability in the ECM. Media conditioned by TGF-β-induced pLFs showed reduced cleavage of NC1-Flag and reduced release of the antifibrotic ES fragment. SSc-derived pLFs and lung tissues expressed significantly lower levels of CTSL compared with NL. CONCLUSIONS Our findings identify CTSL as a protein protective against lung fibrosis via its activation of antifibrotic ES, and whose expression in SSc pLFs and lung tissues is suppressed. Identifying strategies to boost CTSL endogenous levels in SSc patients could serve as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Joe E Mouawad
- Division of Rheumatology & Immunology, Department of Medicine
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC
| | - Shailza Sharma
- Division of Rheumatology & Immunology, Department of Medicine
| | - Ludivine Renaud
- Division of Rheumatology & Immunology, Department of Medicine
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Satish N Nadig
- Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | |
Collapse
|
9
|
The Molecular Mechanisms of Systemic Sclerosis-Associated Lung Fibrosis. Int J Mol Sci 2023; 24:ijms24032963. [PMID: 36769282 PMCID: PMC9917655 DOI: 10.3390/ijms24032963] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Systemic sclerosis (SSc), also known as scleroderma, is an autoimmune disorder that affects the connective tissues and has the highest mortality rate among the rheumatic diseases. One of the hallmarks of SSc is fibrosis, which may develop systemically, affecting the skin and virtually any visceral organ in the body. Fibrosis of the lungs leads to interstitial lung disease (ILD), which is currently the leading cause of death in SSc. The identification of effective treatments to stop or reverse lung fibrosis has been the main challenge in reducing SSc mortality and improving patient outcomes and quality of life. Thus, understanding the molecular mechanisms, altered pathways, and their potential interactions in SSc lung fibrosis is key to developing potential therapies. In this review, we discuss the diverse molecular mechanisms involved in SSc-related lung fibrosis to provide insights into the altered homeostasis state inherent to this fatal disease complication.
Collapse
|
10
|
Mlakar L, Garrett SM, Watanabe T, Sanderson M, Nishimoto T, Heywood J, Helke KL, Pilewski JM, Herzog EL, Feghali-Bostwick C. Ameliorating Fibrosis in Murine and Human Tissues with END55, an Endostatin-Derived Fusion Protein Made in Plants. Biomedicines 2022; 10:2861. [PMID: 36359382 PMCID: PMC9687961 DOI: 10.3390/biomedicines10112861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Organ fibrosis, particularly of the lungs, causes significant morbidity and mortality. Effective treatments are needed to reduce the health burden. A fragment of the carboxyl-terminal end of collagen XVIII/endostatin reduces skin and lung fibrosis. This fragment was modified to facilitate its production in plants, which resulted in the recombinant fusion protein, END55. We found that expression of END55 had significant anti-fibrotic effects on the treatment and prevention of skin and lung fibrosis in a bleomycin mouse model. We validated these effects in a second mouse model of pulmonary fibrosis involving inducible, lung-targeted expression of transforming growth factor β1. END55 also exerted anti-fibrotic effects in human lung and skin tissues maintained in organ culture in which fibrosis was experimentally induced. The anti-fibrotic effect of END55 was mediated by a decrease in the expression of extracellular matrix genes and an increase in the levels of matrix-degrading enzymes. Finally, END55 reduced fibrosis in the lungs of patients with systemic sclerosis (SSc) and idiopathic pulmonary fibrosis (IPF) who underwent lung transplantation due to the severity of their lung disease, displaying efficacy in human tissues directly relevant to human disease. These findings demonstrate that END55 is an effective anti-fibrotic therapy in different organs.
Collapse
Affiliation(s)
- Logan Mlakar
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sara M. Garrett
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tomoya Watanabe
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Matthew Sanderson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tetsuya Nishimoto
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jonathan Heywood
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kristi L. Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Joseph M. Pilewski
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erica L. Herzog
- Yale ILD Center of Excellence, Department of Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| | - Carol Feghali-Bostwick
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
11
|
Ji JJ, Qian LL, Zhu Y, Jiang Y, Guo JQ, Wu Y, Yang ZW, Yao YY, Ma GS. Kallistatin/Serpina3c inhibits cardiac fibrosis after myocardial infarction by regulating glycolysis via Nr4a1 activation. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166441. [PMID: 35577178 DOI: 10.1016/j.bbadis.2022.166441] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fibrotic remodeling is an essential aspect of heart failure. Human kallistatin (KS, mouse Serpina3c homologs) inhibits fibrosis after myocardial infarction (MI) but the specific underlying mechanism is unknown. METHODS A total of 40 heart failure patients (HFPs) were enrolled and their plasma KS was measured using ELISA. Serpina3c-/- and C57BL/6 mice were used to construct the MI model. TGF-β1 or a hypoxic condition was established to interfere with the functioning of cardiac fibroblasts (CFs). RNA-seq was performed to assess the effect of Serpina3c on the transcriptome. FINDINGS The levels of KS were used as a predictor of readmission among the HFPs. Serpina3c expression decreased in MI hearts and CFs. Serpina3c-/- led to the aggravation of MI fibrosis, and increased the proliferation of CFs. The overexpression of Serpina3c in CFs had the opposite effect. Glycolysis-related genes were significantly increased in Serpina3c-/- group by RNA-seq. Enolase (ENO1), which is a key enzyme in glycolysis, increased most significantly. Inhibition of ENO1 could antagonize the promotion of Serpina3c-/- on the proliferation of CFs. Co-IP was performed to verify the interaction between Serpina3c and Nr4a1. Serpina3c-/- inhibited the acetylation of Nr4a1 and increased the degradation of Nr4a1. Activation of Nr4a1 could negatively regulate the expression of ENO1 and inhibited the proliferation of Serpina3c-/- CFs in Serpina3c-/- MI mice. INTERPRETATION Serpina3c inhibits the transcriptional activation of ENO1 by regulating the acetylation of Nr4a1, thereby reducing the fibrosis after MI by inhibiting glycolysis. Serpina3c is a potential target for prevention and treatment of heart failure after MI.
Collapse
Affiliation(s)
- Jing-Jing Ji
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Ling-Lin Qian
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yu Jiang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Jia-Qi Guo
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Ya Wu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Zi-Wei Yang
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China.
| | - Gen-Shan Ma
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, Jiangsu 210009, China.
| |
Collapse
|