1
|
Ulrich ND, Vargo A, Ma Q, Shen YC, Bazzano D, Hannum DF, Gurczynski SJ, Moore BB, Schon S, Lieberman R, Shikanov A, Marsh EE, Fazleabas A, Li JZ, Hammoud SS. Cellular heterogeneity and dynamics of the human uterus in healthy premenopausal women. Proc Natl Acad Sci U S A 2024; 121:e2404775121. [PMID: 39471215 DOI: 10.1073/pnas.2404775121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/19/2024] [Indexed: 11/01/2024] Open
Abstract
The human uterus is a complex and dynamic organ whose lining grows, remodels, and regenerates every menstrual cycle or upon tissue damage. Here, we applied single-cell RNA sequencing to profile more the 50,000 uterine cells from both the endometrium and myometrium of five healthy premenopausal individuals, and jointly analyzed the data with a previously published dataset from 15 subjects. The resulting normal uterus cell atlas contains more than 167K cells, representing the lymphatic endothelium, blood endothelium, stromal, ciliated epithelium, unciliated epithelium, and immune cell populations. Focused analyses within each major cell type and comparisons with subtype labels from prior studies allowed us to document supporting evidence, resolve naming conflicts, and propose a consensus annotation system of 39 subtypes. We release their gene expression centroids, differentially expressed genes, and messenger Ribonucleic Acid (mRNA) patterns of literature-based markers as a shared community resource. We identify multiple potential progenitor cells: compartment-wide progenitors for each major cell type and potential cross-lineage multipotent stromal progenitors that may replenish the epithelial, stromal, and endothelial compartments. Furthermore, many cell types and subtypes exhibit shifts in cell number and transcriptomes across different phases of the menstrual cycle. Finally, comparisons between premenopausal, postpartum, and postmenopausal samples revealed substantial alterations in tissue composition, particularly in the proportions of stromal, endothelial, and immune cells. The cell taxonomy and molecular markers we report here are expected to inform studies of both basic biology of uterine function and its disorders.
Collapse
Affiliation(s)
- Nicole D Ulrich
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| | - Alex Vargo
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Qianyi Ma
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Yu-Chi Shen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - Dominic Bazzano
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
| | - D Ford Hannum
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Stephen J Gurczynski
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| | - Samantha Schon
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| | - Richard Lieberman
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Ariella Shikanov
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Erica E Marsh
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI 49503
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109
| | - Saher Sue Hammoud
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109
- Department of Urology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Liao Z, Tang S, Nozawa K, Shimada K, Ikawa M, Monsivais D, Matzuk M. Affinity-tagged SMAD1 and SMAD5 mouse lines reveal transcriptional reprogramming mechanisms during early pregnancy. eLife 2024; 12:RP91434. [PMID: 38536963 PMCID: PMC10972565 DOI: 10.7554/elife.91434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Graduate Program of Genetics and Genomics, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka UniversityOsakaJapan
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| | - Martin Matzuk
- Department of Pathology & Immunology, Baylor College of MedicineHoustonUnited States
- Graduate Program of Genetics and Genomics, Baylor College of MedicineHoustonUnited States
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
- Center for Drug Discovery, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
3
|
Shastak Y, Pelletier W. Pet Wellness and Vitamin A: A Narrative Overview. Animals (Basel) 2024; 14:1000. [PMID: 38612239 PMCID: PMC11010875 DOI: 10.3390/ani14071000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The health of companion animals, particularly dogs and cats, is significantly influenced by nutrition, with vitamins playing a crucial role. Vitamin A, in particular, is indispensable, with diverse roles ranging from vision to immune modulation and reproduction. Despite its importance, the metabolism and dietary requirements of vitamin A in companion animals remain complex and not fully understood. This review provides a comprehensive overview of the historical perspective, the digestion, the metabolism, the physiological roles, the deficiency, the excess, and the interactions with other micronutrients of vitamin A in companion animals. Additionally, it highlights future research directions and gaps in our understanding. Insights into the metabolism of vitamin A in companion animals, personalized nutrition strategies based on genetic variability, longitudinal studies tracking the status of vitamin A, and investigations into its immunomodulatory effects are crucial for optimizing pet health and wellness. Furthermore, understanding the stability and bioavailability of vitamin A in pet food formulations is essential for ensuring the provision of adequate micronutrients. Overall, this review underscores the importance of vitamin A in companion animal nutrition and the need for further research to enhance our understanding and to optimize dietary recommendations for pet health and well-being.
Collapse
Affiliation(s)
- Yauheni Shastak
- Nutrition & Health Division, BASF SE, 67063 Ludwigshafen am Rhein, Germany
| | | |
Collapse
|
4
|
Diao H, Xiao S, Zhou T, Martin TE, Watford WT, Ye X. Attenuated retinoic acid signaling is among the early responses in mouse uterus approaching embryo attachment. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2024; 8:61-65. [PMID: 38404366 PMCID: PMC10885870 DOI: 10.1097/rd9.0000000000000090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 02/27/2024] Open
Abstract
The uterus is transiently receptive for embryo implantation. It remains to be understood why the uterus does not reject a semi-allogeneic embryo (to the biological mother) or an allogeneic embryo (to a surrogate) for implantation. To gain insights, we examined uterine early response genes approaching embryo attachment on day 3 post coitum (D3) at 22 hours when blue dye reaction, an indication of embryo attachment, had not manifested in mice. C57BL/6 pseudo-pregnant (control) and pregnant mouse uteri were collected on D3 at 22 hours for microarray analysis. The self-assembling-manifold (SAM) algorithm identified 21,858 unique probesets. Principal component analysis indicated a clear separation between the pseudo-pregnant and pregnant groups. There were 106 upregulated and five downregulated protein-coding genes in the pregnant uterus with fold change (fc) >1.5 and q value <5%. Gene ontology (GO) analysis of the 106 upregulated genes revealed 38 significant GO biological process (GOBP) terms (P <0.05), and 32 (84%) of them were associated with immune responses, with a dominant natural killer (NK) cell activation signature. Among the top eight upregulated protein-coding genes, Cyp26a1 inactivates retinoic acid (RA) while Lrat promotes vitamin A storage, both of which are expected to attenuate RA bioavailability; Atp6v0d2 and Gjb2 play roles in ion transport and transmembrane transport; Gzmb, Gzmc, and Il2rb are involved in immune responses; and Tdo2 is important for kynurenine pathway. Most of these genes or their related pathways have functions in immune regulations. RA signaling has been implicated in immune tolerance and immune homeostasis, and uterine NK cells have been implicated in immunotolerance at the maternal-fetal interface in the placenta. The mechanisms of immune responses approaching embryo attachment remain to be elucidated. The coordinated effects of the early response genes may hold the keys to the question of why the uterus does not reject an implanting embryo.
Collapse
Affiliation(s)
- Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Taylor E. Martin
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| | - Wendy T. Watford
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Liao Z, Tang S, Jiang P, Geng T, Cope DI, Dunn TN, Guner J, Radilla LA, Guan X, Monsivais D. Impaired bone morphogenetic protein (BMP) signaling pathways disrupt decidualization in endometriosis. Commun Biol 2024; 7:227. [PMID: 38402336 PMCID: PMC10894266 DOI: 10.1038/s42003-024-05898-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor β (TGFβ) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFβ signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFβ family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings reveal dysfunction of BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peixin Jiang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dominique I Cope
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy N Dunn
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Reproductive Endocrinology & Infertility, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joie Guner
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, 90033, USA
| | - Linda Alpuing Radilla
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Liao Z, Tang S, Nozawa K, Shimada K, Ikawa M, Monsivais D, Matzuk MM. Affinity-tagged SMAD1 and SMAD5 mouse lines reveal transcriptional reprogramming mechanisms during early pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.25.559321. [PMID: 38106095 PMCID: PMC10723262 DOI: 10.1101/2023.09.25.559321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kaori Nozawa
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Keisuke Shimada
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Osaka, 565-0871, Japan
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Martin M. Matzuk
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Haller M, Yin Y, Haller G, Li T, Li Q, Lamb LE, Ma L. Streamlined identification of clinically and functionally relevant genetic regulators of lower-tract urogenital development. Proc Natl Acad Sci U S A 2024; 121:e2309466121. [PMID: 38300866 PMCID: PMC10861909 DOI: 10.1073/pnas.2309466121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Congenital anomalies of the lower genitourinary (LGU) tract are frequently comorbid due to genetically linked developmental pathways, and are among the most common yet most socially stigmatized congenital phenotypes. Genes involved in sexual differentiation are prime candidates for developmental anomalies of multiple LGU organs, but insufficient prospective screening tools have prevented the rapid identification of causative genes. Androgen signaling is among the most influential modulators of LGU development. The present study uses SpDamID technology in vivo to generate a comprehensive map of the pathways actively regulated by the androgen receptor (AR) in the genitalia in the presence of the p300 coactivator, identifying wingless/integrated (WNT) signaling as a highly enriched AR-regulated pathway in the genitalia. Transcription factor (TF) hits were then assayed for sexually dimorphic expression at two critical time points and also cross-referenced to a database of clinically relevant copy number variations to identify 252 TFs exhibiting copy variation in patients with LGU phenotypes. A subset of 54 TFs was identified for which LGU phenotypes are statistically overrepresented as a proportion of total observed phenotypes. The 252 TF hitlist was then subjected to a functional screen to identify hits whose silencing affects genital mesenchymal growth rates. Overlap of these datasets results in a refined list of 133 TFs of both functional and clinical relevance to LGU development, 31 of which are top priority candidates, including the well-documented renal progenitor regulator, Sall1. Loss of Sall1 was examined in vivo and confirmed to be a powerful regulator of LGU development.
Collapse
Affiliation(s)
- Meade Haller
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Gabe Haller
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO63110
| | - Tian Li
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Qiufang Li
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Laura E. Lamb
- Department of Urology, William Beaumont School of Medicine, Oakland University, Rochester, MI48309
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
8
|
Diniz WJS, Afonso J, Kertz NC, Dyce PW, Banerjee P. Mapping Expression Quantitative Trait Loci Targeting Candidate Genes for Pregnancy in Beef Cows. Biomolecules 2024; 14:150. [PMID: 38397387 PMCID: PMC10886872 DOI: 10.3390/biom14020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Despite collective efforts to understand the complex regulation of reproductive traits, no causative genes and/or mutations have been reported yet. By integrating genomics and transcriptomics data, potential regulatory mechanisms may be unveiled, providing opportunities to dissect the genetic factors governing fertility. Herein, we identified regulatory variants from RNA-Seq data associated with gene expression regulation in the uterine luminal epithelial cells of beef cows. We identified 4676 cis and 7682 trans eQTLs (expression quantitative trait loci) affecting the expression of 1120 and 2503 genes, respectively (FDR < 0.05). These variants affected the expression of transcription factor coding genes (71 cis and 193 trans eQTLs) and genes previously reported as differentially expressed between pregnant and nonpregnant cows. Functional over-representation analysis highlighted pathways related to metabolism, immune response, and hormone signaling (estrogen and GnRH) affected by eQTL-regulated genes (p-value ≤ 0.01). Furthermore, eQTLs were enriched in QTL regions for 13 reproduction-related traits from the CattleQTLdb (FDR ≤ 0.05). Our study provides novel insights into the genetic basis of reproductive processes in cattle. The underlying causal mechanisms modulating the expression of uterine genes warrant further investigation.
Collapse
Affiliation(s)
- Wellison J. S. Diniz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| | - Juliana Afonso
- Embrapa Pecuária Sudeste, Rodovia Washington Luiz, Km 234, s/n, Fazenda Canchim, São Carlos 13560-970, SP, Brazil;
| | - Nicholas C. Kertz
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| | - Paul W. Dyce
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| | - Priyanka Banerjee
- Department of Animal Sciences, Auburn University, Auburn, AL 36849, USA; (N.C.K.); (P.W.D.); (P.B.)
| |
Collapse
|
9
|
Monsivais D, Liao Z, Tang S, Jiang P, Geng T, Cope D, Dunn T, Guner J, Radilla LA, Guan X. Impaired bone morphogenetic protein (BMP) signaling pathways disrupt decidualization in endometriosis. RESEARCH SQUARE 2023:rs.3.rs-3471243. [PMID: 37986901 PMCID: PMC10659538 DOI: 10.21203/rs.3.rs-3471243/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Endometriosis is linked to increased infertility and pregnancy complications due to defective endometrial decidualization. We hypothesized that identification of altered signaling pathways during decidualization could identify the underlying cause of infertility and pregnancy complications. Our study reveals that transforming growth factor β (TGFβ) pathways are impaired in the endometrium of individuals with endometriosis, leading to defective decidualization. Through detailed transcriptomic analyses, we discovered abnormalities in TGFβ signaling pathways and key regulators, such as SMAD4, in the endometrium of affected individuals. We also observed compromised activity of bone morphogenetic proteins (BMP), a subset of the TGFβ family, that control endometrial receptivity. Using 3-dimensional models of endometrial stromal and epithelial assembloids, we showed that exogenous BMP2 improved decidual marker expression in individuals with endometriosis. Our findings unveil a previously unidentified dysfunction in BMP/SMAD signaling in the endometrium of individuals with endometriosis, explaining decidualization defects and subsequent pregnancy complications in these individuals.
Collapse
|
10
|
Zhao H, Wang Y, Xu H, Liu M, Xu X, Zhu S, Liu Z, Cai H, Wang Y, Lu J, Yang X, Kong S, Bao H, Wang H, Deng W. Stromal cells-specific retinoic acid determines parturition timing at single-cell and spatial-temporal resolution. iScience 2023; 26:107796. [PMID: 37720083 PMCID: PMC10502414 DOI: 10.1016/j.isci.2023.107796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
The underlying mechanisms governing parturition remain largely elusive due to limited knowledge of parturition preparation and initiation. Accumulated evidences indicate that maternal decidua plays a critical role in parturition initiation. To comprehensively decrypt the cell heterogeneity in decidua approaching parturition, we investigate the roles of various cell types in mouse decidua process and reveal previously unappreciated insights in parturition initiation utilizing single-cell RNA sequencing (scRNA-seq). We enumerate the cell types in decidua and identity five different stromal cells populations and one decidualized stromal cells. Furthermore, our study unravels that stromal cells prepare for parturition by regulating local retinol acid (RA) synthesis. RA supplement decreases expression of extracellular matrix-related genes in vitro and accelerates the timing of parturition in vivo. Collectively, the discovery of contribution of stromal cells in parturition expands current knowledge about parturition and opens up avenues for the intervention of preterm birth (PTB).
Collapse
Affiliation(s)
- Hui Zhao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yang Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hui Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xinmei Xu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sijing Zhu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Zhao Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Han Cai
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yinan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoqing Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Nantong University, Xisi Road, Nantong, Jiangsu, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wenbo Deng
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
11
|
Zhang L, Li Q, Su Y, Zhang X, Qu J, Liao D, Zou Q, Zou H, Liu X, Li C, He J. Proteomic profiling analysis of human endometrium in women with unexplained recurrent spontaneous abortion. J Proteomics 2023; 288:104996. [PMID: 37657719 DOI: 10.1016/j.jprot.2023.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Unexplained recurrent spontaneous abortion (URSA) seriously affects female reproductive health, causing a great burden to patients both physically and mentally. Endometrial decidualization plays an important role in pregnancy, and impaired decidualization is an essential cause of URSA, but the cause of the damage is still poorly understood. This study aimed to reveal the pathogenesis of URSA by analyzing the differential protein expression profiles in the decidual tissue of patients with recurrent abortion compared to those with normal pregnancy. Morphological analysis revealed abnormal decidualization of endometrial tissue in patients with URSA. Quantitative proteomics analysis showed that a total of 146 differentially expressed proteins were identified between the two groups, among which 95 proteins were downregulated and 51 proteins were upregulated. Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that the protein expression profile and signaling pathways of endometrium in patients with URSA changed significantly, and cytoskeleton remodeling and morphological transformation disorders were associated with abortion induced by incomplete decidualization. Meanwhile, transcription factors analysis showed that the 3 most affected families were zf-C2H2, MYB and HMG. Therefore, our study may provide a basis for searching for potential markers of decidualization injury. SIGNIFICANCE: At present, there are still about 50% of RSA patients with unknown causes, which brings great difficulties and blindness to clinical diagnosis and treatment.The limited proteomic studies on URSA further contribute to the lack of understanding in this field. However, in this study, the focus was on proteomic profiling analysis of the human endometrium in URSA patients compared to normal women. The findings revealed that cytoskeletal remodeling disorder is a significant contributor to the failure of decidualization in URSA patients. This insight highlights the potential role of cytoskeleton-related proteins in the pathogenesis of URSA, providing valuable information for further research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qian Li
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yan Su
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xinyuan Zhang
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jialin Qu
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Dan Liao
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qin Zou
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Hua Zou
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Xiaoli Liu
- Department of Family Planning, Chongqing Health Center for Women and Children, Chongqing, PR China.
| | - Chunli Li
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, PR China; Department of Clinical Laboratory, Women and Children's Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Junlin He
- School of Public Health, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
12
|
Liao Z, Tang S, Jiang P, Geng T, Cope DI, Dunn TN, Guner J, Radilla LA, Guan X, Monsivais D. Impaired bone morphogenetic protein signaling pathways disrupt decidualization in endometriosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558268. [PMID: 37790548 PMCID: PMC10542516 DOI: 10.1101/2023.09.21.558268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
It is hypothesized that impaired endometrial decidualization contributes to decreased fertility in individuals with endometriosis. To identify the molecular defects that underpin defective decidualization in endometriosis, we subjected endometrial stromal cells from individuals with or without endometriosis to time course in vitro decidualization with estradiol, progesterone, and 8-bromo-cyclic-AMP (EPC) for 2, 4, 6, or 8 days. Transcriptomic profiling identified differences in key pathways between the two groups, including defective bone morphogenetic protein (BMP)/SMAD4 signaling (ID2, ID3, FST), oxidate stress response (NFE2L2, ALOX15, SLC40A1), and retinoic acid signaling pathways (RARRES, RARB, ALDH1B1). Genome-wide binding analyses identified an altered genomic distribution of SMAD4 and H3K27Ac in the decidualized stromal cells from individuals without endometriosis relative to those with endometriosis, with target genes enriched in pathways related to signaling by transforming growth factor β (TGFβ), neurotrophic tyrosine kinase receptors (NTRK), and nerve growth factor (NGF)-stimulated transcription. We found that direct SMAD1/5/4 target genes control FOXO, PI3K/AKT, and progesterone-mediated signaling in decidualizing cells and that BMP2 supplementation in endometriosis patient-derived assembloids elevated the expression of decidualization markers. In summary, transcriptomic and genome-wide binding analyses of patient-derived endometrial cells and assembloids identified that a functional BMP/SMAD1/5/4 signaling program is crucial for engaging decidualization.
Collapse
Affiliation(s)
- Zian Liao
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Graduate Program of Genetics and Genomics, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peixin Jiang
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ting Geng
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dominique I. Cope
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Timothy N. Dunn
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Reproductive Endocrinology & Infertility, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joie Guner
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, University of Southern California, Los Angeles, CA, 90033, USA
| | - Linda Alpuing Radilla
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoming Guan
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
13
|
Role of EZH2 in Uterine Gland Development. Int J Mol Sci 2022; 23:ijms232415665. [PMID: 36555314 PMCID: PMC9779349 DOI: 10.3390/ijms232415665] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a core component of polycomb repressive complex 2 that plays a vital role in transcriptional repression of gene expression. Conditional ablation of EZH2 using progesterone receptor (Pgr)-Cre in the mouse uterus has uncovered its roles in regulating uterine epithelial cell growth and stratification, suppressing decidual myofibroblast activation, and maintaining normal female fertility. However, it is unclear whether EZH2 plays a role in the development of uterine glands, which are required for pregnancy success. Herein, we created mice with conditional deletion of Ezh2 using anti-Mullerian hormone receptor type 2 (Amhr2)-Cre recombinase that is expressed in mesenchyme-derived cells of the female reproductive tract. Strikingly, these mice showed marked defects in uterine adenogenesis. Unlike Ezh2 Pgr-Cre conditional knockout mice, deletion of Ezh2 using Amhr2-Cre did not lead to the differentiation of basal-like cells in the uterus. The deficient uterine adenogenesis was accompanied by impaired uterine function and pregnancy loss. Transcriptomic profiling using next generation sequencing revealed dysregulation of genes associated with signaling pathways that play fundamental roles in development and disease. In summary, this study has identified an unrecognized role of EZH2 in uterine gland development, a postnatal event critical for pregnancy success and female fertility.
Collapse
|
14
|
Huang C, Zhang Q, Ni T, Zhou T, Lv C, Li Y, Yan J, Chen ZJ. Deficiency of RARα Suppresses Decidualization via Downregulating CEBPB Transcription in Women With Recurrent Implantation Failure. Front Endocrinol (Lausanne) 2022; 13:753416. [PMID: 35663305 PMCID: PMC9161677 DOI: 10.3389/fendo.2022.753416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recurrent implantation failure (RIF) is a disease associated with endometrial receptivity dysfunction. Retinoic acid receptor alpha (RARα) is an important protein in many biological processes, such as differentiation and development. However, the exact underlying mechanism whereby RARα affects RIF remains unknown. This study investigated RARα expression and its contribution in the mid-luteal phase endometria of patients with RIF. Methods The expression levels of RARα and CCAAT/enhancer-binding protein (C/EBP) β in the endometria of the RIF and normal group were investigated using western blotting and immunohistochemistry. In in vitro experiments, immortal telomerase-transformed human endometrial stromal cells (T-HESCs) were incubated with medroxyprogesterone-17-acetate (MPA) and cyclic adenosine monophosphate (cAMP) for 4 days to induce decidualization. The expression levels of the decidualization markers prolactin (PRL) and insulin-like growth factor-binding protein-1 (IGFBP-1) were determined using quantitative polymerase chain reaction. RARα was knocked down using a small interfering RNA, and C/EBPβ was overexpressed from an adenoviral vector. The transcriptional regulation of CEBPB by RARα was determined by chromatin immunoprecipitation (ChIP) assay and luciferase assays. Results We found that the expression levels of RARα decreased in the mid-luteal endometria of RIF patients. After 4 days of decidualization induction in vitro, RARα knockdown impaired the decidualization of T-HESCs and downregulated the expression of C/EBPβ. The restoration of C/EBPβ expression rescued the RARα knockdown-induced suppression of T-HESC decidualization. In ChIP analysis of lysates from decidualized T-HESCs, the CEBPB promoter region was enriched in chromatin fragments pulled down using an anti-RARα antibody. However, the relationship between CEBPB transcription and RARα expression levels was only observed when the decidualization of T-HESCs was induced by the addition of cAMP and MPA. To identify the binding site of RARα/retinoid X receptor α, we performed luciferase assays. Mutation of the predicted binding site in CEBPB (-2,009/-1,781) decreased the transcriptional activity of the reporter. To confirm this mechanism, the expression levels of C/EBPβ in the mid-luteal endometria of RIF patients were determined and found to decrease with decreased RARα expression levels. Conclusion A deficiency of RARα expression in the mid-luteal endometrium inhibits decidualization due to the downregulation of CEBPB transcription. This is a potential mechanism contributing to RIF.
Collapse
Affiliation(s)
- Caiyi Huang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai Jiao Tong University, Shanghai, China
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Qian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Tianxiang Ni
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Tingting Zhou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Chunzi Lv
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Yan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai Jiao Tong University, Shanghai, China
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| |
Collapse
|