1
|
Maimó-Barceló A, Martín-Saiz L, Barceló-Nicolau M, Salivo S, Pérez-Romero K, Rodriguez RM, Martín J, Martínez MA, García M, Amengual I, Ginard D, Fernández JA, Barceló-Coblijn G. Lipid signature associated with chronic colon inflammation reveals a dysregulation in colonocyte differentiation process. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159528. [PMID: 38936507 DOI: 10.1016/j.bbalip.2024.159528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Inflammatory Bowel Disease (IBD) comprises a heterogeneous group of chronic inflammatory conditions of the gastrointestinal tract that include ulcerative colitis (UC) and Crohn's disease. Although the etiology is not well understood, IBD is characterized by a loss of the normal epithelium homeostasis that disrupts the intestinal barrier of these patients. Previous work by our group demonstrated that epithelial homeostasis along the colonic crypts involves a tight regulation of lipid profiles. To evaluate whether lipidomic profiles conveyed the functional alterations observed in the colonic epithelium of IBD, we performed matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) analyses of endoscopic biopsies from inflamed and non-inflamed segments obtained from UC patients. Our results indicated that lipid profiling of epithelial cells discriminated between healthy and UC patients. We also demonstrated that epithelial cells of the inflamed mucosa were characterized by a decrease in mono- and di-unsaturated fatty acid-containing phospholipids and higher levels of arachidonic acid-containing species, suggesting an alteration of the lipid gradients occurring concomitantly to the epithelial differentiation. This result was reinforced by the immunofluorescence analysis of EPHB2 and HPGD, markers of epithelial cell differentiation, sustaining that altered lipid profiles were at least partially due to a faulty differentiation process. Overall, our results showed that lipid profiling by MALDI-MSI faithfully conveys molecular and functional alterations associated with the inflamed epithelium, providing the foundation for a novel molecular characterization of UC patients.
Collapse
Affiliation(s)
- Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Lucía Martín-Saiz
- Dept. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Bilbao, Spain
| | - Maria Barceló-Nicolau
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Simona Salivo
- Shimadzu/Kratos Analytical, Trafford Wharf Road, Manchester M17 1GP, United Kingdom
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Ramon M Rodriguez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Javier Martín
- Engineering School of Bilbao, Dept. of Computer Languages and Systems, University of the Basque Country (UPV/EHU), Rafael Moreno "Pitxitxi", 48013 Bilbao, Spain
| | - Marco A Martínez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Pathological Anatomy Unit, Hospital Universitari Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Marcelo García
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Gastroenterology Unit, Hospital Universitari Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Isabel Amengual
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Pathological Anatomy Unit, Hospital Universitari Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - Daniel Ginard
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Gastroenterology Unit, Hospital Universitari Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain
| | - José A Fernández
- Dept. of Physical Chemistry, Fac. of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Bilbao, Spain
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa), Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain; Research Unit, University Hospital Son Espases, Ctra. Valldemossa 79, E-07120 Palma, Balearic Islands, Spain.
| |
Collapse
|
2
|
Short SP, Brown RE, Chen Z, Pilat JM, McElligott BA, Meenderink LM, Bickart AC, Blunt KM, Jacobse J, Wang J, Simmons AJ, Xu Y, Yang Y, Parang B, Choksi YA, Goettel JA, Lau KS, Hiebert SW, Williams CS. MTGR1 is required to maintain small intestinal stem cell populations. Cell Death Differ 2024; 31:1170-1183. [PMID: 39048708 PMCID: PMC11369156 DOI: 10.1038/s41418-024-01346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Undifferentiated intestinal stem cells (ISCs) are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis where they differentiate into specialized cell types. Coordinated execution of complex transcriptional programs is necessary to allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss specifically in ISC biology. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic and functional analyses revealed deficiencies in Mtgr1-null ISCs, including deregulated ISC-associated transcriptional programs. Ex vivo, intestinal organoids established from Mtgr1-null mice were unable to survive and expand due to aberrant differentiation and loss of stem and proliferative cells. Together, these results indicate that the role of MTGR1 in intestinal differentiation is likely stem cell intrinsic and identify a novel role for MTGR1 in maintaining ISC function.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | | | - Leslie M Meenderink
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
| | - Alexander C Bickart
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Koral M Blunt
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Justin Jacobse
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jing Wang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Yilin Yang
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Bobak Parang
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Yash A Choksi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA
| | - Jeremy A Goettel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S Lau
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Scott W Hiebert
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care System, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Kim D, Ha SK, Gonzalez FJ. CBFA2T3 Is PPARA Sensitive and Attenuates Fasting-Induced Lipid Accumulation in Mouse Liver. Cells 2024; 13:831. [PMID: 38786053 PMCID: PMC11119203 DOI: 10.3390/cells13100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARA) is a ligand-activated transcription factor that is a key mediator of lipid metabolism and metabolic stress in the liver. Accumulating evidence shows that PPARA regulates the expression of various protein coding and non-coding genes that modulate metabolic stress in the liver. CBFA2/RUNX1 partner transcriptional co-repressor 3 (CBFA2T3) is a DNA-binding transcription factor that belongs to the myeloid translocation gene family. Many studies have shown that CBFA2T3 is associated with acute myeloid leukemia. Especially, CBFA2T3-GLIS2 fusion is a chimeric oncogene associated with a poor survival rate in pediatric acute megakaryocytic leukemia. A previous study identified that PPARA activation promoted Cbfa2t3 induction in liver and that Cbfa2t3 may have a modulatory role in metabolic stress. However, the effect of CBFA2T3 gene expression on metabolic stress is not understood. In this study, the PPARA ligand WY14643 activated Cbfa2t3 expression in mouse liver. Glucose tolerance test and insulin tolerance test data showed that insulin resistance is increased in Cbfa2t3-/- mice compared to Cbfa2t3+/+ mice. Hepatic CBFA2T3 modulates heat shock protein family A member 1b and carbonic anhydrase 5a expression. Histology analysis revealed lipid droplet and lipid accumulation in the liver of fasting Cbfa2t3-/- mice but not Cbfa2t3+/+ mice. The expression of lipid accumulation-related genes, such as Cd36, Cidea, and Fabp1, was increased in the liver of fasting Cbfa2t3-/- mice. Especially, basal expression levels of Cidea mRNA were elevated in the liver of Cbfa2t3-/- mice compared to Cbfa2t3+/+ mice. Much higher induction of Cidea mRNA was seen in the liver of Cbfa2t3-/- mice after WY14643 administration. These results indicate that hepatic CBFA2T3 is a PPARA-sensitive gene that may modulate metabolic stress in mouse liver.
Collapse
Affiliation(s)
- Donghwan Kim
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Sang Keun Ha
- Division of Functional Food Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea;
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Frank J. Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
4
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
5
|
Liu XS, Liu ZY, Zeng DB, Hu J, Chen XL, Gu JL, Gao Y, Pei ZJ. Functional enrichment analysis reveals the involvement of DARS2 in multiple biological pathways and its potential as a therapeutic target in esophageal carcinoma. Aging (Albany NY) 2024; 16:3934-3954. [PMID: 38382106 PMCID: PMC10929822 DOI: 10.18632/aging.205569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
OBJECTIVE The enzyme Aspartyl tRNA synthetase 2 (DARS2) is a crucial enzyme in the mitochondrial tRNA synthesis pathway, playing a critical role in maintaining normal mitochondrial function and protein synthesis. However, the role of DARS2 in ESCA is unclear. MATERIALS AND METHODS Transcriptional data of pan-cancer and ESCA were downloaded from UCSC XENA, TCGA, and GEO databases to analyze the differential expression of DARS2 between tumor samples and normal samples, and its correlation with clinicopathological features of ESCA patients. R was used for GO, KEGG, and GSEA functional enrichment analysis of DARS2 co-expression and to analyze the connection of DARS2 with glycolysis and m6A-related genes. In vitro experiments were performed to assess the effects of interfering with DARS2 expression on ESCA cells. TarBase v.8, mirDIP, miRTarBase, ENCORI, and miRNet databases were used to analyze and construct a ceRNA network containing DARS2. RESULTS DARS2 was overexpressed in various types of tumors. In vitro experiments confirmed that interfering with DARS2 expression significantly affected the proliferation, migration, apoptosis, cell cycle, and glycolysis of ESCA cells. DARS2 may be involved in multiple biological pathways related to tumor development. Furthermore, correlation and differential analysis revealed that DARS2 may regulate ESCA m6A modification through its interaction with METTL3 and YTHDF1. A ceRNA network containing DARS2, DLEU2/has-miR-30a-5p/DARS2, was successfully predicted and constructed. CONCLUSIONS Our findings reveal the upregulation of DARS2 in ESCA and its association with clinical features, glycolysis pathway, m6A modification, and ceRNA network. These discoveries provide valuable insights into the molecular mechanisms underlying ESCA.
Collapse
Affiliation(s)
- Xu-Sheng Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zi-Yue Liu
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Dao-Bing Zeng
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jian Hu
- Department of Critical Care Medicine, Danjiangkou First Hospital, Danjiangkou 420381, Hubei, China
| | - Xuan-Long Chen
- Department of Medical Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Jiao-Long Gu
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yan Gao
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| |
Collapse
|
6
|
Williams C, Brown R, Zhao Y, Wang J, Chen Z, Blunt K, Pilat J, Parang B, Choksi Y, Lau K, Hiebert S, Short S, Jacobse J, Xu Y, Yang Y, Goettel J. MTGR1 is required to maintain small intestinal stem cell populations. RESEARCH SQUARE 2023:rs.3.rs-3315071. [PMID: 37790452 PMCID: PMC10543309 DOI: 10.21203/rs.3.rs-3315071/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Undifferentiated intestinal stem cells (ISCs), particularly those marked by Lgr5, are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis, where they differentiate into a variety of specialized cell types. This process requires coordinated execution of complex transcriptional programs, which allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Thus, disrupting these programs may negatively impact homeostasis and response to injury. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss on ISC biology and differentiation programs. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic analyses revealed MTGR1 loss may instead promote stem cell differentiation into transit-amplifying cells at the expense of cycling ISC populations. Furthermore, ex vivo intestinal organoids established from Mtgr1 null were found nearly completely unable to survive and expand, likely due to aberrant ISC differentiation, suggesting that Mtgr1 null ISCs were functionally deficient as compared to WT ISCs. Together, these results identify a novel role for MTGR1 in ISC function and suggest that MTGR1 is required to maintain the undifferentiated state.
Collapse
Affiliation(s)
| | | | | | - Jing Wang
- Vanderbilt University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang X, Luo X, Wang Z, Wang Y, Zhao J, Bian L. Identification of cancer stemness and M2 macrophage-associated biomarkers in lung adenocarcinoma. Heliyon 2023; 9:e19114. [PMID: 37662825 PMCID: PMC10472008 DOI: 10.1016/j.heliyon.2023.e19114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Objective Cancer stemness and M2 macrophages are intimately linked to the prognosis of lung adenocarcinoma (LUAD). For this reason, this investigation sought to identify the key genes relevant to cancer stemness and M2 macrophages, explore the relationship between these genes and clinical characteristics, and determine the potential mechanism. Methods LUAD transcriptomic data was analyzed from The Cancer Genome Atlas (TCGA) as well as the Gene Expression Omnibus databases. Differential expression analysis was performed to discern abnormally expressed genes between LUAD and control samples in TCGA cohort. The Cell type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was applied to determine varyingly infiltrated immune cells in LUAD compared with the control samples in TCGA cohort. Weighted correlation network analysis (WGCNA) was performed to identify genes associated with mRNA expression-based stemness index (mRNAsi) and M2 macrophages. Least absolute shrinkage and selection operator (LASSO), RandomForest (RF) and support vector machine-recursive feature elimination (SVM-RFE) machine learning methods were conducted to detect gene signatures. Global survival evaluation (Kaplan-Meier curve) was applied to investigate the relationship between gene signatures and the survival time of LUAD patients. Receiver operating characteristic (ROC) curves were produced to define biomarkers relevant to diagnosis. Gene Set Enrichment Analysis (GSEA) was performed to probe the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to diagnostic biomarkers. The public single-cell dataset of LUAD (GSE123902) was used to investigate the expression differences of diagnostic biomarkers in various cell types in LUAD. Real-time quantitative PCR (qRT-PCR) was performed to confirm key genes in lung adenocarcinoma cells. Results A total of 5,410 differentialy expressed genes (DEGs) as well as 15 differentially infiltrated immune cells were identified between LUAD and control sepcimens in TCGA cohort. Thirty-seven DEGs were associated with both M2 macrophages and mRNAsi according to the WGCNA analysis. Sixteen common gene signatures were obtained using three diverse algorithms. CBFA2T3, DENND3 and FCAMR were correlated to overall and disease-free survival of LUAD patients. ROC curves revealed that CBFA2T3 and DENND3 expression accurately classified LUAD and control samples. The results of single cell related analysis showed that two diagnostic biomarkers expressions were differed between the different tissue sources in M2-like macrophages. QRT-PCR demonstrated the mRNA expressions of CBFA2T3 and DENND3 were upregulated in lung adenocarcinoma cells A549 and H2122. Conclusion Our study identified CBFA2T3 and DENND3 as key genes associated with mRNAsi and M2 macrophages in LUAD and investigated the potential molecular mechanisms underlying this relationship.
Collapse
Affiliation(s)
| | | | - ZhiYuan Wang
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - YangHao Wang
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhao
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Bian
- The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
8
|
Pilat JM, Brown RE, Chen Z, Berle NJ, Othon AP, Washington MK, Anant SA, Kurokawa S, Ng VH, Thompson JJ, Jacobse J, Goettel JA, Lee E, Choksi YA, Lau KS, Short SP, Williams CS. SELENOP modifies sporadic colorectal carcinogenesis and WNT signaling activity through LRP5/6 interactions. J Clin Invest 2023; 133:e165988. [PMID: 37166989 PMCID: PMC10313376 DOI: 10.1172/jci165988] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic CRC. In human single-cell cRNA-Seq (scRNA-Seq) data sets, we discovered that SELENOP expression rose as normal colon stem cells transformed into adenomas that progressed into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involved conditional, intestinal epithelium-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as in CRC and noncancer cell lines. Selenop-KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining the mechanism of action of SELENOP, we mapped protein-protein interactions between SELENOP and the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). Last, we confirmed that SELENOP-LRP5/6 interactions contributed to the effects of SELENOP on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.
Collapse
Affiliation(s)
| | - Rachel E. Brown
- Program in Cancer Biology
- Medical Scientist Training Program, and
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
| | - Nathaniel J. Berle
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | | | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Suguru Kurokawa
- Department of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | | | | | - Justin Jacobse
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Jeremy A. Goettel
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ethan Lee
- Program in Cancer Biology
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ken S. Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Surgery, VUMC, Nashville, Tennessee, USA
| | - Sarah P. Short
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher S. Williams
- Program in Cancer Biology
- Medical Scientist Training Program, and
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H, Liu Q, Chen J, Guli S, Chen X. Orchestration of MUC2 - The key regulatory target of gut barrier and homeostasis: A review. Int J Biol Macromol 2023; 236:123862. [PMID: 36870625 DOI: 10.1016/j.ijbiomac.2023.123862] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The gut mucosa of human is covered by mucus, functioning as a crucial defense line for the intestine against external stimuli and pathogens. Mucin2 (MUC2) is a subtype of secretory mucins generated by goblet cells and is the major macromolecular component of mucus. Currently, there is an increasing interest on the investigations of MUC2, noting that its function is far beyond a maintainer of the mucus barrier. Moreover, numerous gut diseases are associated with dysregulated MUC2 production. Appropriate production level of MUC2 and mucus contributes to gut barrier function and homeostasis. The production of MUC2 is regulated by a series of physiological processes, which are orchestrated by various bioactive molecules, signaling pathways and gut microbiota, etc., forming a complex regulatory network. Incorporating the latest findings, this review provided a comprehensive summary of MUC2, including its structure, significance and secretory process. Furthermore, we also summarized the molecular mechanisms of the regulation of MUC2 production aiming to provide developmental directions for future researches on MUC2, which can act as a potential prognostic indicator and targeted therapeutic manipulation for diseases. Collectively, we elucidated the micro-level mechanisms underlying MUC2-related phenotypes, hoping to offer some constructive guidance for intestinal and overall health of mankind.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qinlingfei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Sitan Guli
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|