1
|
Williams KB, Larsson AT, Keller BJ, Chaney KE, Williams RL, Bhunia MM, Draper GM, Jubenville TA, Hudson WA, Moertel CL, Ratner N, Largaespada DA. Pharmacogenomic synthetic lethal screens reveal hidden vulnerabilities and new therapeutic approaches for treatment of NF1-associated tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585959. [PMID: 38585724 PMCID: PMC10996510 DOI: 10.1101/2024.03.25.585959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neurofibromatosis Type 1 (NF1) is a common cancer predisposition syndrome, caused by heterozygous loss of function mutations in the tumor suppressor gene NF1. Individuals with NF1 develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage after somatic loss of the wild type NF1 allele, some of which progress further to malignant peripheral nerve sheath tumors (MPNST). There is only one FDA approved targeted therapy for symptomatic plexiform neurofibromas and none approved for MPNST. The genetic basis of NF1 syndrome makes associated tumors ideal for using synthetic drug sensitivity approaches to uncover therapeutic vulnerabilities. We developed a drug discovery pipeline to identify therapeutics for NF1-related tumors using isogeneic pairs of NF1-proficient and deficient immortalized human Schwann cells. We utilized these in a large-scale high throughput screen (HTS) for drugs that preferentially kill NF1-deficient cells, through which we identified 23 compounds capable of killing NF1-deficient Schwann cells with selectivity. Multiple hits from this screen clustered into classes defined by method of action. Four clinically interesting drugs from these classes were tested in vivo using both a genetically engineered mouse model of high-grade peripheral nerve sheath tumors and human MPNST xenografts. All drugs tested showed single agent efficacy in these models as well as significant synergy when used in combination with the MEK inhibitor Selumetinib. This HTS platform yielded novel therapeutically relevant compounds for the treatment of NF1-associated tumors and can serve as a tool to rapidly evaluate new compounds and combinations in the future.
Collapse
Affiliation(s)
- Kyle B Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex T Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryant J Keller
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-0713, USA
| | - Rory L Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minu M Bhunia
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Garrett M Draper
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wendy A Hudson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Moertel
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-0713, USA
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
2
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
3
|
Khan S, Alson D, Sun L, Maloney C, Sun D. Leveraging Neural Crest-Derived Tumors to Identify NF1 Cancer Stem Cell Signatures. Cancers (Basel) 2024; 16:3639. [PMID: 39518076 PMCID: PMC11545784 DOI: 10.3390/cancers16213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes individuals to develop benign and malignant tumors of the nerve sheath. Understanding the signatures of cancer stem cells (CSCs) for NF1-associated tumors may facilitate the early detection of tumor progression. Background: Neural crest cells, the cell of origin of NF1-associated tumors, can initiate multiple tumor types, including melanoma, neuroblastoma, and schwannoma. CSCs within these tumors have been reported; however, identifying and targeting CSC populations remains a challenge. Results: This study aims to leverage existing studies on neural crest-derived CSCs to explore markers pertinent to NF1 tumorigenesis. By focusing on the molecular and cellular dynamics within these tumors, we summarize CSC signatures in tumor maintenance, progression, and treatment resistance. Conclusion: A review of these signatures in the context of NF1 will provide insights into NF1 tumor biology and pave the way for developing targeted therapies and improving treatment outcomes for NF1 patients.
Collapse
Affiliation(s)
- Sajjad Khan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Donia Alson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Li Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Caroline Maloney
- Department of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daochun Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatric, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Children Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
4
|
Pundavela J, Dinglasan SA, Touvron M, Hummel SA, Hu L, Rizvi TA, Choi K, Hildeman DA, Ratner N. Stimulator of interferon gene facilitates recruitment of effector CD8 T cells that drive neurofibromatosis type 1 nerve tumor initiation and maintenance. SCIENCE ADVANCES 2024; 10:eado6342. [PMID: 39413183 PMCID: PMC11482331 DOI: 10.1126/sciadv.ado6342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Plexiform neurofibromas (PNFs) are benign nerve tumors driven by loss of the NF1 tumor suppressor in Schwann cells. PNFs are rich in immune cells, but whether immune cells are necessary for tumorigenesis is unknown. We show that inhibition of stimulator of interferon gene (STING) reduces plasma CXCL10, tumor T cell and dendritic cell (DC) recruitment, and tumor formation. Further, mice lacking XCR-1+ DCs showed reduced tumor-infiltrating T cells and PNF tumors. Antigen-presenting cells from tumor-bearing mice promoted CD8+ T cell proliferation in vitro, and PNF T cells expressed high levels of CCL5, implicating T cell activation. Notably, tumors and nerve-associated macrophages were absent in Rag1-/-; Nf1f/f; DhhCre mice and adoptive transfer of CD8+ T cells from tumor-bearing mice restored PNF initiation. In this setting, PNF shrunk upon subsequent T cell removal. Thus, STING pathway activation contributes to CD8+ T cell-dependent inflammatory responses required for PNF initiation and maintenance.
Collapse
Affiliation(s)
- Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samantha Anne Dinglasan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Melissa Touvron
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah A. Hummel
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Liang Hu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Sundby RT, Szymanski JJ, Pan AC, Jones PA, Mahmood SZ, Reid OH, Srihari D, Armstrong AE, Chamberlain S, Burgic S, Weekley K, Murray B, Patel S, Qaium F, Lucas AN, Fagan M, Dufek A, Meyer CF, Collins NB, Pratilas CA, Dombi E, Gross AM, Kim A, Chrisinger JS, Dehner CA, Widemann BC, Hirbe AC, Chaudhuri AA, Shern JF. Early Detection of Malignant and Premalignant Peripheral Nerve Tumors Using Cell-Free DNA Fragmentomics. Clin Cancer Res 2024; 30:4363-4376. [PMID: 39093127 PMCID: PMC11443212 DOI: 10.1158/1078-0432.ccr-24-0797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE Early detection of neurofibromatosis type 1 (NF1)-associated peripheral nerve sheath tumors (PNST) informs clinical decision-making, enabling early definitive treatment and potentially averting deadly outcomes. In this study, we describe a cell-free DNA (cfDNA) fragmentomic approach that distinguishes nonmalignant, premalignant, and malignant forms of PNST in the cancer predisposition syndrome, NF1. EXPERIMENTAL DESIGN cfDNA was isolated from plasma samples of a novel cohort of 101 patients with NF1 and 21 healthy controls and underwent whole-genome sequencing. We investigated diagnosis-specific signatures of copy-number alterations with in silico size selection as well as fragment profiles. Fragmentomics were analyzed using complementary feature types: bin-wise fragment size ratios, end motifs, and fragment non-negative matrix factorization signatures. RESULTS The novel cohort of patients with NF1 validated that our previous cfDNA copy-number alteration-based approach identifies malignant PNST (MPNST) but cannot distinguish between benign and premalignant states. Fragmentomic methods were able to differentiate premalignant states including atypical neurofibromas (AN). Fragmentomics also adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, which could have informed clinical management. CONCLUSIONS Novel cfDNA fragmentomic signatures distinguish AN from benign plexiform neurofibromas and MPNST, enabling more precise clinical diagnosis and management. This study pioneers the early detection of malignant and premalignant PNST in NF1 and provides a blueprint for decentralizing noninvasive cancer surveillance in hereditary cancer predisposition syndromes.
Collapse
Affiliation(s)
- R. Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Jeffrey J. Szymanski
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota.
| | - Alexander C. Pan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Paul A. Jones
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri.
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Sana Z. Mahmood
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Olivia H. Reid
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Divya Srihari
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri.
| | - Amy E. Armstrong
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
| | - Stacey Chamberlain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Sanita Burgic
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Kara Weekley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Béga Murray
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Sneh Patel
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Faridi Qaium
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - Andrea N. Lucas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Margaret Fagan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Anne Dufek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Christian F. Meyer
- Division of Medical Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Natalie B. Collins
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts.
| | - Christine A. Pratilas
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Andrea M. Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, District of Columbia.
| | - John S.A. Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri.
| | - Carina A. Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, Indiana.
| | - Brigitte C. Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| | - Angela C. Hirbe
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri.
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri.
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri.
| | - Aadel A. Chaudhuri
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota.
| | - Jack F. Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
Yao X, Wang B, Su Y, Bing Z, Li Q, Dong Q, Yin H, Wang J, Pan Y, Yuan G. SOX9 Promotes Collagen VI Secretion by Upregulating PCOLCE in Neurofibroma. Mol Neurobiol 2024; 61:7862-7876. [PMID: 38436832 DOI: 10.1007/s12035-024-04036-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
Neurofibromatosis type 1 (NF1) is caused by NF1 gene mutations. Patients with NF1 often have complications with tumors, such as neurofibroma. In order to investigate the pathogenesis of human neurofibroma, a systematic comparison of protein expression levels between Schwann cell-like sNF96.2 cells, which originated from malignant peripheral nerve sheath tumors (MPNST), and normal Schwann cells was performed using 4-D label-free proteomic analysis. In addition, the expression levels and localization of dysregulated proteins were confirmed using a Gene Expression Omnibus (GEO) transcriptomic dataset, Western blot analysis, and immunofluorescence labeling. The effects of SRY-box transcription factor 9 (SOX9) in the neurofibroma and surrounding microenvironment were evaluated in vivo using a tumor transplantation model. The present study observed that SOX9 and procollagen C-endopeptidase enhancer (PCOLCE) were significantly altered. NF1 mutation promoted the nuclear translocation and transcriptional activity of SOX9 in neurofibromas. SOX9 increased collagen VI secretions by enhancing the activation of PCOLCE in neurofibroma cells. These findings might provide new perspectives on the pathophysiological significance of SOX9 in neurofibromas and elucidate a novel molecular mechanism underlying neurofibromas.
Collapse
Affiliation(s)
- Xuan Yao
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Bo Wang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yuanping Su
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Zhitong Bing
- Institute of modern physics, Chinese Academy of Science, Lanzhou, 730000, Gansu, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Qiao Li
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Hang Yin
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jianying Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
| | - Guoqiang Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
- The Second Clinical Medical School, Lanzhou University, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
7
|
Vittay O, Christopher J, Mehta SG, Toms AP. Genetic basis and imaging findings of neurofibromatosis 1 and other somatic overgrowth disorders. Skeletal Radiol 2024:10.1007/s00256-024-04772-7. [PMID: 39254838 DOI: 10.1007/s00256-024-04772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024]
Abstract
Somatic overgrowth disorders comprise a wide range of rare conditions that present with focal enlargement of one or more tissue types. The PI3K-AKT-mTOR pathway is a signalling pathway that induces angiogenesis and cell proliferation, and is one of the most commonly overactivated signalling pathways in cancer. The PI3K-AKT-mTOR pathway can be up-regulated by genetic variants that code for proteins in this pathway, or down-regulated by proteins that inhibit the pathway. Mosaic genetic variations can result in cells that proliferate excessively in specific anatomical locations. The PIK3CA-related overgrowth spectrum (PROS) disorders include CLOVES syndrome, macrodystrophia lipomatosa, and Klippel-Trenaunay syndrome among many. The neurofibromatosis type 1 (NF1) gene encodes neurofibromin which down-regulates the PI3K-AKT-mTOR pathway. Thousands of pathological variants in the NF1 gene have been described which can result in lower-than-normal levels of neurofibromin and therefore up-regulation of the PI3K-AKT-mTOR pathway promoting cellular overgrowth. Somatic overgrowth is a rare presentation in NF1 with a wide range of clinical and radiological presentations. Hypertrophy of all ectodermal and mesodermal elements has been described in NF1 including bone, muscle, fat, nerve, lymphatics, arteries and veins, and skin. The shared signalling pathway for cellular overgrowth means that these radiological appearances can overlap with other conditions in the PIK3CA-related overgrowth spectrum. The aim of this review is to describe the genetic basis for the radiological features of NF1 and in particular compare the appearances of the somatic overgrowth disorders in NF1 with other conditions in the PIK3CA-related overgrowth spectrum.
Collapse
Affiliation(s)
- Orsolya Vittay
- Department of Radiology, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Joseph Christopher
- Department of Clinical Genetics, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Sarju G Mehta
- Department of Clinical Genetics, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | - Andoni P Toms
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, UK.
- Department of Radiology, Norfolk & Norwich University Hospital, Colney Lane, Norwich, NR4 7UB, UK.
| |
Collapse
|
8
|
Wu L, Yang L, Qian X, Hu W, Wang S, Yan J. Mannan-Decorated Lipid Calcium Phosphate Nanoparticle Vaccine Increased the Antitumor Immune Response by Modulating the Tumor Microenvironment. J Funct Biomater 2024; 15:229. [PMID: 39194667 DOI: 10.3390/jfb15080229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024] Open
Abstract
With the rapid development of tumor immunotherapy, nanoparticle vaccines have attracted much attention as potential therapeutic strategies. A systematic review and analysis must be carried out to investigate the effect of mannose modification on the immune response to nanoparticles in regulating the tumor microenvironment, as well as to explore its potential clinical application in tumor therapy. Despite the potential advantages of nanoparticle vaccines in immunotherapy, achieving an effective immune response in the tumor microenvironment remains a challenge. Tumor immune escape and the overexpression of immunosuppressive factors limit its clinical application. Therefore, our review explored how to intervene in the immunosuppressive mechanism in the tumor microenvironment through the use of mannan-decorated lipid calcium phosphate nanoparticle vaccines to improve the efficacy of immunotherapy in patients with tumors and to provide new ideas and strategies for the field of tumor therapy.
Collapse
Affiliation(s)
- Liusheng Wu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 19077, Singapore
| | - Lei Yang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xinye Qian
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wang Hu
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shuang Wang
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jun Yan
- Center of Hepatobiliary Pancreatic Disease, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Bhandarkar AR, Bhandarkar S, Babovic-Vuksanovic D, Raghunathan A, Schwartz J, Spinner RJ. Precision oncology in neurofibromatosis type 1: quantification of differential sensitivity to selumetinib in plexiform neurofibromas using single-cell RNA sequencing. J Neurooncol 2024; 169:147-153. [PMID: 38739187 DOI: 10.1007/s11060-024-04711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE Selumetinib is an FDA-approved targeted therapy for plexiform neurofibromas in neurofibromatosis type 1(NF1) with durable response rates seen in most, but not all patients. In this proof-of-concept study, we demonstrate single-cell RNA sequencing(scRNAseq) as a technique for quantifying drug response to selumetinib at the single cell level. METHODS scRNAseq data from neurofibroma biopsies was obtained from a public genomics repository. Schwann cell populations were identified through standard clustering techniques and single-cell selumetinib sensitivity was quantified on a scale of 0(resistant) to 1(sensitive) based on the expression pattern of a 500 gene selumetinib sensitivity signature from the BeyondCell sensitivity library. RESULTS A total of seven plexiform neurofibromas were included in our final analysis. The median absolute number of Schwann cells across samples was 658 cells (IQR: 1,029 cells, Q1-Q3: 135 cells to 1,163 cells). There was a statistically significant difference in selumetinib sensitivity profiles across samples (p < 0.001). The tumor with the highest median selumetinib sensitivity score had a median selumetinib sensitivity score of 0.64(IQR: 0.14, Q1-Q3: 0.59-0.70, n = 112 cells) and the tumor with the lowest median selumetinib sensitivity score had a median score of 0.37 (IQR: 0.21, Q1-Q3: 0.27-0.48, n = 1,034 cells). CONCLUSIONS scRNAseq of plexiform neurofibroma biopsies reveals differential susceptibilities to selumetinib on a single cell level. These findings may explain the partial responses seen in clinical trials of selumetinib for NF1 and demonstrate the value of collecting scRNAseq data for future NF1 trials.
Collapse
Affiliation(s)
| | - Shaan Bhandarkar
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dusica Babovic-Vuksanovic
- Division of Pediatric Genetics, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jonathan Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Arumugam M, Tovar EA, Essenburg CJ, Dischinger PS, Beddows I, Wolfrum E, Madaj ZB, Turner L, Feenstra K, Gallik KL, Cohen L, Nichols M, Sheridan RTC, Esquibel CR, Mouneimne G, Graveel CR, Steensma MR. Nf1 deficiency modulates the stromal environment in the pretumorigenic rat mammary gland. Front Cell Dev Biol 2024; 12:1375441. [PMID: 38799507 PMCID: PMC11116614 DOI: 10.3389/fcell.2024.1375441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Background Neurofibromin, coded by the NF1 tumor suppressor gene, is the main negative regulator of the RAS pathway and is frequently mutated in various cancers. Women with Neurofibromatosis Type I (NF1)-a tumor predisposition syndrome caused by a germline NF1 mutation-have an increased risk of developing aggressive breast cancer with poorer prognosis. The mechanism by which NF1 mutations lead to breast cancer tumorigenesis is not well understood. Therefore, the objective of this work was to identify stromal alterations before tumor formation that result in the increased risk and poorer outcome seen among NF1 patients with breast cancer. Approach To accurately model the germline monoallelic NF1 mutations in NF1 patients, we utilized an Nf1-deficient rat model with accelerated mammary development before presenting with highly penetrant breast cancer. Results We identified increased collagen content in Nf1-deficient rat mammary glands before tumor formation that correlated with age of tumor onset. Additionally, gene expression analysis revealed that Nf1-deficient mature adipocytes in the rat mammary gland have increased collagen expression and shifted to a fibroblast and preadipocyte expression profile. This alteration in lineage commitment was also observed with in vitro differentiation, however, flow cytometry analysis did not show a change in mammary adipose-derived mesenchymal stem cell abundance. Conclusion Collectively, this study uncovered the previously undescribed role of Nf1 in mammary collagen deposition and regulating adipocyte differentiation. In addition to unraveling the mechanism of tumor formation, further investigation of adipocytes and collagen modifications in preneoplastic mammary glands will create a foundation for developing early detection strategies of breast cancer among NF1 patients.
Collapse
Affiliation(s)
- Menusha Arumugam
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Elizabeth A. Tovar
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Curt J. Essenburg
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Patrick S. Dischinger
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Ian Beddows
- Biostatistics ad Bioinformatics Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Emily Wolfrum
- Biostatistics ad Bioinformatics Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Zach B. Madaj
- Biostatistics ad Bioinformatics Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Lisa Turner
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Kristin Feenstra
- Pathology and Biorepository Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Kristin L. Gallik
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Lorna Cohen
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Madison Nichols
- Flow Cytometry Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | | | - Corinne R. Esquibel
- Optical Imaging Core, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Ghassan Mouneimne
- University of Arizona Cancer Center, Tucson, AZ, United States
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Carrie R. Graveel
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
| | - Matthew R. Steensma
- Department of Cell Biology, Van Andel Research Institute, Grand Rapids, MI, United States
- Helen DeVos Children’s Hospital, Spectrum Health System, Grand Rapids, MI, United States
- Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
11
|
Perrino MR, Ahmari N, Hall A, Jackson M, Na Y, Pundavela J, Szabo S, Woodruff TM, Dombi E, Kim MO, Köhl J, Wu J, Ratner N. C5aR plus MEK inhibition durably targets the tumor milieu and reveals tumor cell phagocytosis. Life Sci Alliance 2024; 7:e202302229. [PMID: 38458648 PMCID: PMC10923703 DOI: 10.26508/lsa.202302229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
Plexiform neurofibromas (PNFs) are nerve tumors caused by loss of NF1 and dysregulation of RAS-MAPK signaling in Schwann cells. Most PNFs shrink in response to MEK inhibition, but targets with increased and durable effects are needed. We identified the anaphylatoxin C5a as increased in PNFs and expressed largely by PNF m acrophages. We defined pharmacokinetic and immunomodulatory properties of a C5aR1/2 antagonist and tested if peptide antagonists augment the effects of MEK inhibition. MEK inhibition recruited C5AR1 to the macrophage surface; short-term inhibition of C5aR elevated macrophage apoptosis and Schwann cell death, without affecting MEK-induced tumor shrinkage. PNF macrophages lacking C5aR1 increased the engulfment of dying Schwann cells, allowing their visualization. Halting combination therapy resulted in altered T-cell distribution, elevated Iba1+ and CD169+ immunoreactivity, and profoundly altered cytokine expression, but not sustained trumor shrinkage. Thus, C5aRA inhibition independently induces macrophage cell death and causes sustained and durable effects on the PNF microenvironment.
Collapse
Affiliation(s)
- Melissa R Perrino
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Niousha Ahmari
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Hall
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mark Jackson
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Youjin Na
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jay Pundavela
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sara Szabo
- Departmentd of Pediatrics and Pediatric Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Mi-Ok Kim
- Department Biostatistics, University of California, San Francisco, CA, USA
| | - Jörg Köhl
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Institute for Systemic Inflammation Research, Lübeck, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
12
|
Tian Z, Du Z, Bai G, Gong Q, You Y, Xu G, Liu J, Xiao M, Wang Y, He Y. Schwann cell derived pleiotrophin stimulates fibroblast for proliferation and excessive collagen deposition in plexiform neurofibroma. Cancer Gene Ther 2024; 31:627-640. [PMID: 38302728 DOI: 10.1038/s41417-024-00727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024]
Abstract
Neurofibromatosis type 1 associated plexiform neurofibroma (pNF) is characterized by abundant fibroblasts and dense collagen, yet the intricate interactions between tumor-origin cells (Schwann cells) and neurofibroma-associated fibroblasts (NFAFs) remain elusive. Employing single-cell RNA sequencing on human pNF samples, we generated a comprehensive transcriptomics dataset and conducted cell-cell communication analysis to unravel the molecular dynamics between Schwann cells and NFAFs. Our focus centered on the pleiotrophin (PTN)/nucleolin (NCL) axis as a pivotal ligand-receptor pair orchestrating this interaction. Validation of PTN involvement was affirmed through coculture models and recombinant protein experiments. Functional and mechanistic investigations, employing assays such as CCK8, EdU, Western Blot, ELISA, Hydroxyproline Assay, and Human phospho-kinase array, provided critical insights. We employed siRNA or inhibitors to intercept the PTN/NCL/proline-rich Akt substrate of 40 kDa (PRAS40) axis, validating the associated molecular mechanism. Our analysis highlighted a subset of Schwann cells closely linked to collagen deposition, underscoring their significance in pNF development. The PTN/NCL axis emerged as a key mediator of the Schwann cell-NFAF interaction. Furthermore, our study demonstrated that elevated PTN levels enhanced NFAF proliferation and collagen synthesis, either independently or synergistically with TGF-β1 in vitro. Activation of the downstream molecule PRAS40 was noted in NFAFs upon PTN treatment. Crucially, by targeting NCL and PRAS40, we successfully reversed collagen synthesis within NFAFs. In conclusion, our findings unveil the pivotal role of the PTN/NCL/PRAS40 axis in driving pNF development by promoting NFAFs proliferation and function. Targeting this pathway emerges as a potential therapeutic strategy for pNF. This study contributes novel insights into the molecular mechanisms governing pNF pathogenesis.
Collapse
Affiliation(s)
- Zhuowei Tian
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
- Department of Oral Maxillofacial-Head and Neck Oncology, Fengcheng Hospital, Shanghai, China
| | - Zhong Du
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Guo Bai
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qiyu Gong
- Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanhe You
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Guisong Xu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jialiang Liu
- Department of Oral Maxillofacial Surgery, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Meng Xiao
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China.
- Department of Oral Maxillofacial-Head and Neck Oncology, Fengcheng Hospital, Shanghai, China.
| | - Yanan Wang
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Yue He
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
13
|
Somatilaka BN, Madana L, Sadek A, Chen Z, Chandrasekaran S, McKay RM, Le LQ. STING activation reprograms the microenvironment to sensitize NF1-related malignant peripheral nerve sheath tumors for immunotherapy. J Clin Invest 2024; 134:e176748. [PMID: 38502231 PMCID: PMC11093615 DOI: 10.1172/jci176748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene that encodes neurofibromin, a RAS GTPase-activating protein. Inactivating NF1 mutations cause hyperactivation of RAS-mediated signaling, resulting in the development of multiple neoplasms, including malignant peripheral nerve sheath tumors (MPNSTs). MPNSTs are an aggressive tumor and the main cause of mortality in patients with NF1. MPNSTs are difficult to resect and refractory to chemo- and radiotherapy, and no molecular therapies currently exist. Immune checkpoint blockade (ICB) is an approach to treat inoperable, undruggable cancers like MPNST, but successful outcomes require an immune cell-rich tumor microenvironment. While MPNSTs are noninflamed "cold" tumors, here, we converted MPNSTs into T cell-inflamed "hot" tumors by activating stimulator of IFN genes (STING) signaling. Mouse genetic and human xenograft MPNST models treated with a STING agonist plus ICB exhibited growth delay via increased apoptotic cell death. This strategy offers a potential treatment regimen for MPNSTs.
Collapse
Affiliation(s)
| | | | | | | | - Sanjay Chandrasekaran
- Simmons Comprehensive Cancer Center
- Department of Internal Medicine, Division of Hematology/Oncology
| | | | - Lu Q. Le
- Department of Dermatology
- Simmons Comprehensive Cancer Center
- University of Texas Southwestern Comprehensive Neurofibromatosis Clinic
- Hamon Center for Regenerative Science and Medicine, and
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Dermatology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
14
|
Taylor Sundby R, Szymanski JJ, Pan A, Jones PA, Mahmood SZ, Reid OH, Srihari D, Armstrong AE, Chamberlain S, Burgic S, Weekley K, Murray B, Patel S, Qaium F, Lucas AN, Fagan M, Dufek A, Meyer CF, Collins NB, Pratilas CA, Dombi E, Gross AM, Kim A, Chrisinger JSA, Dehner CA, Widemann BC, Hirbe AC, Chaudhuri AA, Shern JF. Early detection of malignant and pre-malignant peripheral nerve tumors using cell-free DNA fragmentomics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301053. [PMID: 38293154 PMCID: PMC10827240 DOI: 10.1101/2024.01.18.24301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Early detection of neurofibromatosis type 1 (NF1) associated peripheral nerve sheath tumors (PNST) informs clinical decision-making, potentially averting deadly outcomes. Here, we describe a cell-free DNA (cfDNA) fragmentomic approach which distinguishes non-malignant, pre-malignant and malignant forms of NF1 PNST. Using plasma samples from a novel cohort of 101 NF1 patients and 21 healthy controls, we validated that our previous cfDNA copy number alteration (CNA)-based approach identifies malignant peripheral nerve sheath tumor (MPNST) but cannot distinguish among benign and premalignant states. We therefore investigated the ability of fragment-based cfDNA features to differentiate NF1-associated tumors including binned genome-wide fragment length ratios, end motif analysis, and non-negative matrix factorization deconvolution of fragment lengths. Fragmentomic methods were able to differentiate pre-malignant states including atypical neurofibromas (AN). Fragmentomics also adjudicated AN cases suspicious for MPNST, correctly diagnosing samples noninvasively, which could have informed clinical management. Overall, this study pioneers the early detection of malignant and premalignant peripheral nerve sheath tumors in NF1 patients using plasma cfDNA fragmentomics. In addition to screening applications, this novel approach distinguishes atypical neurofibromas from benign plexiform neurofibromas and malignant peripheral nerve sheath tumors, enabling more precise clinical diagnosis and management.
Collapse
Affiliation(s)
- R Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey J Szymanski
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Alexander Pan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A Jones
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sana Z Mahmood
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Olivia H Reid
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Divya Srihari
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amy E Armstrong
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stacey Chamberlain
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sanita Burgic
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kara Weekley
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Béga Murray
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sneh Patel
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Faridi Qaium
- Division of Cancer Biology, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea N Lucas
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Margaret Fagan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anne Dufek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian F Meyer
- Division of Medical Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natalie B Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Christine A Pratilas
- Division of Pediatric Oncology, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children's National Hospital, Washington, DC, USA
| | - John S A Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Angela C Hirbe
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Aadel A Chaudhuri
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Mayo Clinic Comprehensive Cancer Center, Rochester, Minnesota, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
White EE, Rhodes SD. The NF1+/- Immune Microenvironment: Dueling Roles in Neurofibroma Development and Malignant Transformation. Cancers (Basel) 2024; 16:994. [PMID: 38473354 PMCID: PMC10930863 DOI: 10.3390/cancers16050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder resulting in the development of both benign and malignant tumors of the peripheral nervous system. NF1 is caused by germline pathogenic variants or deletions of the NF1 tumor suppressor gene, which encodes the protein neurofibromin that functions as negative regulator of p21 RAS. Loss of NF1 heterozygosity in Schwann cells (SCs), the cells of origin for these nerve sheath-derived tumors, leads to the formation of plexiform neurofibromas (PNF)-benign yet complex neoplasms involving multiple nerve fascicles and comprised of a myriad of infiltrating stromal and immune cells. PNF development and progression are shaped by dynamic interactions between SCs and immune cells, including mast cells, macrophages, and T cells. In this review, we explore the current state of the field and critical knowledge gaps regarding the role of NF1(Nf1) haploinsufficiency on immune cell function, as well as the putative impact of Schwann cell lineage states on immune cell recruitment and function within the tumor field. Furthermore, we review emerging evidence suggesting a dueling role of Nf1+/- immune cells along the neurofibroma to MPNST continuum, on one hand propitiating PNF initiation, while on the other, potentially impeding the malignant transformation of plexiform and atypical neurofibroma precursor lesions. Finally, we underscore the potential implications of these discoveries and advocate for further research directed at illuminating the contributions of various immune cells subsets in discrete stages of tumor initiation, progression, and malignant transformation to facilitate the discovery and translation of innovative diagnostic and therapeutic approaches to transform risk-adapted care.
Collapse
Affiliation(s)
- Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D. Rhodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
16
|
Chatterjee J, Koleske JP, Chao A, Sauerbeck AD, Chen JK, Qi X, Ouyang M, Boggs LG, Idate R, Marco Y Marquez LI, Kummer TT, Gutmann DH. Brain injury drives optic glioma formation through neuron-glia signaling. Acta Neuropathol Commun 2024; 12:21. [PMID: 38308315 PMCID: PMC10837936 DOI: 10.1186/s40478-024-01735-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/04/2024] Open
Abstract
Tissue injury and tumorigenesis share many cellular and molecular features, including immune cell (T cells, monocytes) infiltration and inflammatory factor (cytokines, chemokines) elaboration. Their common pathobiology raises the intriguing possibility that brain injury could create a tissue microenvironment permissive for tumor formation. Leveraging several murine models of the Neurofibromatosis type 1 (NF1) cancer predisposition syndrome and two experimental methods of brain injury, we demonstrate that both optic nerve crush and diffuse traumatic brain injury induce optic glioma (OPG) formation in mice harboring Nf1-deficient preneoplastic progenitors. We further elucidate the underlying molecular and cellular mechanisms, whereby glutamate released from damaged neurons stimulates IL-1β release by oligodendrocytes to induce microglia expression of Ccl5, a growth factor critical for Nf1-OPG formation. Interruption of this cellular circuit using glutamate receptor, IL-1β or Ccl5 inhibitors abrogates injury-induced glioma progression, thus establishing a causative relationship between injury and tumorigenesis.
Collapse
Affiliation(s)
- Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Joshua P Koleske
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Astoria Chao
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Andrew D Sauerbeck
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Ji-Kang Chen
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Xuanhe Qi
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Megan Ouyang
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Lucy G Boggs
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Rujuta Idate
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Lara Isabel Marco Y Marquez
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - Terrence T Kummer
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
17
|
Raut NG, Maile LA, Oswalt LM, Mitxelena I, Adlakha A, Sprague KL, Rupert AR, Bokros L, Hofmann MC, Patritti-Cram J, Rizvi TA, Queme LF, Choi K, Ratner N, Jankowski MP. Schwann cells modulate nociception in neurofibromatosis 1. JCI Insight 2024; 9:e171275. [PMID: 38258905 PMCID: PMC10906222 DOI: 10.1172/jci.insight.171275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/28/2023] [Indexed: 01/24/2024] Open
Abstract
Pain of unknown etiology is frequent in individuals with the tumor predisposition syndrome neurofibromatosis 1 (NF1), even when tumors are absent. Nerve Schwann cells (SCs) were recently shown to play roles in nociceptive processing, and we find that chemogenetic activation of SCs is sufficient to induce afferent and behavioral mechanical hypersensitivity in wild-type mice. In mouse models, animals showed afferent and behavioral hypersensitivity when SCs, but not neurons, lacked Nf1. Importantly, hypersensitivity corresponded with SC-specific upregulation of mRNA encoding glial cell line-derived neurotrophic factor (GDNF), independently of the presence of tumors. Neuropathic pain-like behaviors in the NF1 mice were inhibited by either chemogenetic silencing of SC calcium or by systemic delivery of GDNF-targeting antibodies. Together, these findings suggest that alterations in SCs directly modulate mechanical pain and suggest cell-specific treatment strategies to ameliorate pain in individuals with NF1.
Collapse
Affiliation(s)
- Namrata G.R. Raut
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura A. Maile
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Leila M. Oswalt
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Irati Mitxelena
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Aaditya Adlakha
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kourtney L. Sprague
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley R. Rupert
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lane Bokros
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Megan C. Hofmann
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jennifer Patritti-Cram
- Graduate Program in Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Cancer Biology and Experimental Hematology and
| | - Tilat A. Rizvi
- Division of Cancer Biology and Experimental Hematology and
| | - Luis F. Queme
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kwangmin Choi
- Division of Cancer Biology and Experimental Hematology and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Cancer Biology and Experimental Hematology and
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michael P. Jankowski
- Department of Anesthesia, Division of Pain Management, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Pediatric Pain Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
18
|
Pacot L, Sabbagh A, Sohier P, Hadjadj D, Ye M, Boland-Auge A, Bacq-Daian D, Laurendeau I, Briand-Suleau A, Deleuze JF, Margueron R, Vidaud M, Ferkal S, Parfait B, Vidaud D, Pasmant E, Wolkenstein P. Identification of potential common genetic modifiers of neurofibromas: a genome-wide association study in 1333 patients with neurofibromatosis type 1. Br J Dermatol 2024; 190:226-243. [PMID: 37831592 DOI: 10.1093/bjd/ljad390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is characterized by the highly variable and unpredictable development of benign peripheral nerve sheath tumours: cutaneous (cNFs), subcutaneous (scNFs) and plexiform (pNFs) neurofibromas. OBJECTIVES To identify neurofibroma modifier genes, in order to develop a database of patients with NF1. METHODS All patients were phenotypically evaluated by a medical practitioner using a standardized questionnaire and the causal NF1 variant identified. We enrolled 1333 patients with NF1 who were genotyped for > 7 million common variants. RESULTS A genome-wide association case-only study identified a significant association with 9q21.33 in the pNF phenotype in the discovery cohort. Twelve, three and four regions suggestive of association at the P ≤ 1 × 10-6 threshold were identified for pNFs, cNFs and scNFs, respectively. Evidence of replication was observed for 4, 2 and 6 loci, including 168 candidate modifier protein-coding genes. Among the candidate modifier genes, some were implicated in the RAS-mitogen-activated protein kinase pathway, cell-cycle control and myelination. Using an original CRISPR/Cas9-based functional assay, we confirmed GAS1 and SPRED2 as pNF and scNF candidate modifiers, as their inactivation specifically affected NF1-mutant Schwann cell growth. CONCLUSIONS Our study may shed new light on the pathogenesis of NF1-associated neurofibromas and will, hopefully, contribute to the development of personalized care for patients with this deleterious and life-threatening condition.
Collapse
Affiliation(s)
- Laurence Pacot
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Audrey Sabbagh
- UMR 261 MERIT, Institut de Recherche pour le Développement, UFR de Pharmacie de Paris, Université Paris Cité, Paris, France
| | - Pierre Sohier
- Service de Pathologie, Hôpital Cochin, AP-HP, Centre-Université Paris Cité, Paris, France
| | - Djihad Hadjadj
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Manuela Ye
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Anne Boland-Auge
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Delphine Bacq-Daian
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Ingrid Laurendeau
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Audrey Briand-Suleau
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Raphaël Margueron
- Institut Curie, INSERM U934/CNRS UMR3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Michel Vidaud
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Salah Ferkal
- Department of Dermatology, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
- INSERM, Clinical Investigation Center 1430, Referral Center of Neurofibromatosis, Hôpital Henri Mondor, AP-HP, Faculté de Santé Paris Est Créteil, Créteil, France
| | - Béatrice Parfait
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Dominique Vidaud
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Eric Pasmant
- Fédération de Génétique et Médecine Génomique, Hôpital Cochin, DMU BioPhyGen, AP-HP, Centre-Université Paris Cité, Paris, France
- Institut Cochin, Inserm U1016, CNRS UMR8104, UFR de Pharmacie de Paris, Université Paris Cité, CARPEM, Paris, France
| | - Pierre Wolkenstein
- Department of Dermatology, Hôpital Henri Mondor, Assistance Publique-Hôpital Paris (AP-HP), Créteil, France
- INSERM, Clinical Investigation Center 1430, Referral Center of Neurofibromatosis, Hôpital Henri Mondor, AP-HP, Faculté de Santé Paris Est Créteil, Créteil, France
| |
Collapse
|
19
|
郑 婷, 朱 倍, 王 智, 李 青. [Gene therapy strategies and prospects for neurofibromatosis type 1]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:1-8. [PMID: 38225833 PMCID: PMC10796236 DOI: 10.7507/1002-1892.202309071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
Objective To summarize the gene therapy strategies for neurofibromatosis type 1 (NF1) and related research progress. Methods The recent literature on gene therapy for NF1 at home and abroad was reviewed. The structure and function of the NF1 gene and its mutations were analyzed, and the current status as well as future prospects of the transgenic therapy and gene editing strategies were summarized. Results NF1 is an autosomal dominantly inherited tumor predisposition syndrome caused by mutations in the NF1 tumor suppressor gene, which impair the function of the neurofibromin and lead to the disease. It has complex clinical manifestations and is not yet curable. Gene therapy strategies for NF1 are still in the research and development stage. Existing studies on the transgenic therapy for NF1 have mainly focused on the construction and expression of the GTPase-activating protein-related domain in cells that lack of functional neurofibromin, confirming the feasibility of the transgenic therapy for NF1. Future research may focus on split adeno-associated virus (AAV) gene delivery, oversized AAV gene delivery, and the development of new vectors for targeted delivery of full-length NF1 cDNA. In addition, the gene editing tools of the new generation have great potential to treat monogenic genetic diseases such as NF1, but need to be further validated in terms of efficiency and safety. Conclusion Gene therapy, including both the transgenic therapy and gene editing, is expected to become an important new therapeutic approach for NF1 patients.
Collapse
Affiliation(s)
- 婷婷 郑
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - 倍瑶 朱
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - 智超 王
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - 青峰 李
- 上海交通大学医学院附属第九人民医院整复外科(上海 200011)Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- 上海交通大学医学院附属第九人民医院Ⅰ型神经纤维瘤病诊疗中心(上海 200011)Neurofibromatosis Type 1 Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| |
Collapse
|
20
|
Pillay-Smiley N, Fletcher JS, de Blank P, Ratner N. Shedding New Light: Novel Therapies for Common Disorders in Children with Neurofibromatosis Type I. Pediatr Clin North Am 2023; 70:937-950. [PMID: 37704352 DOI: 10.1016/j.pcl.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Neurofibromatosis type I (NF1) is a common dominantly inherited disorder, and one of the most common of the RASopathies. Most individuals with NF1 develop plexiform neurofibromas and cutaneous neurofibromas, nerve tumors caused by NF1 loss of function in Schwann cells. Cell culture models and mouse models of NF1 are being used to test drug efficacy in preclinical trials, which led to Food and Drug Administration approval for use of MEK inhibitors to shrink most inoperable plexiform neurofibromas. This article details methods used for testing in preclinical models, and outlines newer models that may identify additional, curative, strategies.
Collapse
Affiliation(s)
- Natasha Pillay-Smiley
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Current Address: Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Peter de Blank
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
21
|
Amani V, Riemondy KA, Fu R, Griesinger AM, Grimaldo E, De Sousa GR, Gilani A, Hemenway M, Foreman NK, Donson AM, Willard N. Integration of single-nuclei RNA-sequencing, spatial transcriptomics and histochemistry defines the complex microenvironment of NF1-associated plexiform neurofibromas. Acta Neuropathol Commun 2023; 11:158. [PMID: 37770931 PMCID: PMC10537467 DOI: 10.1186/s40478-023-01639-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Plexiform neurofibroma (PN) is a leading cause of morbidity in children with the genetic condition Neurofibromatosis Type 1 (NF1), often disfiguring or threatening vital structures. During formation of PN, a complex tumor microenvironment (TME) develops, with recruitment of neoplastic and non-neoplastic cell types being critical for growth and progression. Due to the cohesive cellularity of PN, single-cell RNA-sequencing is difficult and may result in a loss of detection of critical cellular subpopulations. To bypass this barrier, we performed single-nuclei RNA-sequencing (snRNA-seq) on 8 frozen PN samples, and integrated this with spatial transcriptomics (ST) in 4 PN samples and immunohistochemistry to provide morphological context to transcriptomic data. SnRNA-seq analysis definitively charted the heterogeneous cellular subpopulations in the PN TME, with the predominant fraction being fibroblast subtypes. PN showed a remarkable amount of inter-sample homogeneity regarding cellular subpopulation proportions despite being resected from a variety of anatomical locations. ST analysis identified distinct cellular subpopulations which were annotated using snRNA-seq data and correlated with histological features. Schwann cell/fibroblast interactions were identified by receptor/ligand interaction analysis demonstrating a high probability of Neurexin 1/Neuroligin 1 (NRXN1/NLGN1) receptor-ligand cross-talk predicted between fibroblasts and non-myelinated Schwann cells (NM-SC) and subtypes, respectively. We observed aberrant expression of NRXN1 and NLGN1 in our PN snRNA-seq data compared to a normal mouse sciatic nerve single-cell RNA-seq dataset. This pathway has never been described in PN and may indicate a clear and direct communication pathway between putative NM-SC cells of origin and surrounding fibroblasts, potentially driving disease progression. SnRNA-seq integrated with spatial transcriptomics advances our understanding of the complex cellular heterogeneity of PN TME and identify potential novel communication pathways that may drive disease progression, a finding that could provide translational therapy options for patients with these devastating tumors of childhood and early adulthood.
Collapse
Affiliation(s)
- Vladimir Amani
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA.
| | - Kent A Riemondy
- RNA Biosciences Initiative, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rui Fu
- Computational Biology, New York Genome Center, New York, NY, USA
| | - Andrea M Griesinger
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Enrique Grimaldo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Graziella Ribeiro De Sousa
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Ahmed Gilani
- Department of Pathology, University of Colorado Denver, Aurora, CO, USA
| | - Molly Hemenway
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Nicholas K Foreman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Andrew M Donson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's Hospital Colorado, Aurora, CO, USA
| | - Nicholas Willard
- Department of Pathology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
22
|
McLean DT, Meudt JJ, Lopez Rivera LD, Schomberg DT, Pavelec DM, Duellman TT, Buehler DG, Schwartz PB, Graham M, Lee LM, Graff KD, Reichert JL, Bon-Durant SS, Konsitzke CM, Ronnekleiv-Kelly SM, Shanmuganayagam D, Rubinstein CD. Single-cell RNA sequencing of neurofibromas reveals a tumor microenvironment favorable for neural regeneration and immune suppression in a neurofibromatosis type 1 porcine model. Front Oncol 2023; 13:1253659. [PMID: 37817770 PMCID: PMC10561395 DOI: 10.3389/fonc.2023.1253659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetically inherited disorders that affects 1 in 3000 children annually. Clinical manifestations vary widely but nearly always include the development of cutaneous, plexiform and diffuse neurofibromas that are managed over many years. Recent single-cell transcriptomics profiling efforts of neurofibromas have begun to reveal cell signaling processes. However, the cell signaling networks in mature, non-cutaneous neurofibromas remain unexplored. Here, we present insights into the cellular composition and signaling within mature neurofibromas, contrasting with normal adjacent tissue, in a porcine model of NF1 using single-cell RNA sequencing (scRNA-seq) analysis and histopathological characterization. These neurofibromas exhibited classic diffuse-type histologic morphology and expected patterns of S100, SOX10, GFAP, and CD34 immunohistochemistry. The porcine mature neurofibromas closely resemble human neurofibromas histologically and contain all known cellular components of their human counterparts. The scRNA-seq confirmed the presence of all expected cell types within these neurofibromas and identified novel populations of fibroblasts and immune cells, which may contribute to the tumor microenvironment by suppressing inflammation, promoting M2 macrophage polarization, increasing fibrosis, and driving the proliferation of Schwann cells. Notably, we identified tumor-associated IDO1 +/CD274+ (PD-L1) + dendritic cells, which represent the first such observation in any NF1 animal model and suggest the role of the upregulation of immune checkpoints in mature neurofibromas. Finally, we observed that cell types in the tumor microenvironment are poised to promote immune evasion, extracellular matrix reconstruction, and nerve regeneration.
Collapse
Affiliation(s)
- Dalton T. McLean
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Jennifer J. Meudt
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Loren D. Lopez Rivera
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
| | - Dominic T. Schomberg
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Derek M. Pavelec
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Tyler T. Duellman
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Darya G. Buehler
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Patrick B. Schwartz
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Melissa Graham
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Laura M. Lee
- Research Animal Resources and Compliance (RARC), Office of the Vice Chancellor for Research and Graduate Education, University of Wisconsin–Madison, Madison, WI, United States
| | - Keri D. Graff
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Jamie L. Reichert
- Swine Research and Teaching Center, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
| | - Sandra S. Bon-Durant
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Charles M. Konsitzke
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Sean M. Ronnekleiv-Kelly
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Molecular & Environmental Toxicology Program, University of Wisconsin–Madison, Madison, WI, United States
- Biomedical & Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI, United States
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- Center for Biomedical Swine Research and Innovation, University of Wisconsin–Madison, Madison, WI, United States
| | - C. Dustin Rubinstein
- Biotechnology Center, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
23
|
Jiang C, Kumar A, Yu Z, Shipman T, Wang Y, McKay RM, Xing C, Le LQ. Basement membrane proteins in extracellular matrix characterize NF1 neurofibroma development and response to MEK inhibitor. J Clin Invest 2023; 133:e168227. [PMID: 37140985 PMCID: PMC10266775 DOI: 10.1172/jci168227] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/02/2023] [Indexed: 05/05/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is one of the most common tumor-predisposing genetic disorders. Neurofibromas are NF1-associated benign tumors. A hallmark feature of neurofibromas is an abundant collagen-rich extracellular matrix (ECM) that constitutes more than 50% of the tumor dry weight. However, little is known about the mechanism underlying ECM deposition during neurofibroma development and treatment response. We performed a systematic investigation of ECM enrichment during plexiform neurofibroma (pNF) development and identified basement membrane (BM) proteins, rather than major collagen isoforms, as the most upregulated ECM component. Following MEK inhibitor treatment, the ECM profile displayed an overall downregulation signature, suggesting ECM reduction as a therapeutic benefit of MEK inhibition. Through these proteomic studies, TGF-β1 signaling was identified as playing a role in ECM dynamics. Indeed, TGF-β1 overexpression promoted pNF progression in vivo. Furthermore, by integrating single-cell RNA sequencing, we found that immune cells including macrophages and T cells produce TGF-β1 to induce Schwann cells to produce and deposit BM proteins for ECM remodeling. Following Nf1 loss, neoplastic Schwann cells further increased BM protein deposition in response to TGF-β1. Our data delineate the regulation governing ECM dynamics in pNF and suggest that BM proteins could serve as biomarkers for disease diagnosis and treatment response.
Collapse
Affiliation(s)
| | - Ashwani Kumar
- Eugene McDermott Center for Human Growth and Development
| | - Ze Yu
- Eugene McDermott Center for Human Growth and Development
| | | | | | | | - Chao Xing
- Eugene McDermott Center for Human Growth and Development
- Lyda Hill Department of Bioinformatics
| | - Lu Q. Le
- Department of Dermatology
- Simmons Comprehensive Cancer Center
- UTSW Comprehensive Neurofibromatosis Clinic
- Hamon Center for Regenerative Science and Medicine, and
- O’Donnell Brain Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
24
|
Zhang X, Gopalan V, Syed N, Hannenhalli S, Shern JF. Protocol for using single-cell sequencing to study the heterogeneity of NF1 nerve sheath tumors from clinical biospecimens. STAR Protoc 2023; 4:102297. [PMID: 37167059 DOI: 10.1016/j.xpro.2023.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023] Open
Abstract
Single-cell sequencing is a powerful technology to understand the heterogeneity of clinical biospecimens. Here, we present a protocol for obtaining single-cell suspension from neurofibromatosis type 1-associated nerve sheath tumors for transcriptomic profiling on the 10x platform. We describe steps for clinical sample collection, generation of single-cell suspension, and cell capture and sequencing. We then detail methods for integrative analysis, developmental Schwann cell trajectory building using bioinformatic tools, and comparative analysis. This protocol can be adapted for single-cell sequencing using mouse nerve tumors. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).1.
Collapse
Affiliation(s)
- Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Neeraja Syed
- Pediatric Oncology Branch Childhood Cancer Data Initiative, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|