1
|
Zhu K, Sah M, Mahimainathan L, Liu Y, Xing C, Roush K, Clark A, SoRelle J. Prospective clinical performance of CoVarScan in identifying SARS-CoV-2 Omicron subvariants. Microbiol Spectr 2025; 13:e0138524. [PMID: 39660915 PMCID: PMC11705950 DOI: 10.1128/spectrum.01385-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
The purpose of this work was to evaluate the performance of CoVarScan, a multiplex fragment analysis approach, in identifying severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of the Omicron lineage rapidly and accurately. The ability to identify variants with high fidelity and low turnaround time is important both epidemiologically and clinically for pandemic monitoring and therapeutic monoclonal antibody (mAb) selection. Currently, the gold-standard test for this task is whole-genome sequencing (WGS), which is prohibitively expensive and/or inaccessible due to equipment requirements for many laboratories. Omicron variants have been closely related, so the ability of genotyping tests to differentiate them is an important, outstanding question. CoVarScan uses PCR targeting eight SARS-CoV-2 mutational hot spots. In total, 4,918 SARS-CoV-2-positive cases between 17 December 2021 and 31 January 2024 were included in the analysis. CoVarScan achieved 96.5% concordance with WGS and could detect unique mutational signatures for BA.1, BA.2, BA.2.12.1, BA.4/BA.5, BA.2.75, XBB, and BA.2.86. These are the major variants of concern (VOCs) that have dominated since Omicron originally appeared in December 2021. Lastly, based on panel design, we predict a unique mutational pattern for the newly emergent, highly mutated variant BA.2.87. CoVarScan can rapidly, accurately, and cost-effectively identify all Omicron variants in a scalable manner. Furthermore, CoVarScan does not require design alterations to detect new VOCs. CoVarScan performs as accurately as WGS with higher sensitivity, allowing its use as a tool to quickly identify variants for epidemiological surveillance and clinical decision-making in the selection of effective therapeutic mAbs.IMPORTANCEAlmost 5 years since the start of the pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern continue to emerge, with mutations conferring new properties like increased transmissibility and resistance to therapeutic monoclonal antibodies and vaccines. Conventionally, whole-genome sequencing (WGS) has characterized new SARS-CoV-2 variants, but results come too late for clinical actionability. WGS suffers from high failure rates for samples with low viral RNA and is inaccessible for lower-resource laboratories. As new variants like Omicron appear, it is necessary to develop rapid and accurate testing to distinguish between variants. Fast and accurate identification of sensitive viral lineages would allow tailored use of monoclonal antibodies that may otherwise have been pulled from the market due to rising overall resistance. Rapid results also allow public health officials to make policy decisions in time to reduce morbidity and mortality for sensitive populations such as patients who are immunocompromised or have significant medical comorbidities.
Collapse
Affiliation(s)
- Kenneth Zhu
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - Manoj Sah
- UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Yan Liu
- UT Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Xing
- UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Andrew Clark
- UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
2
|
Sayama Y, Lo C, Tomizawa H, Saito M, Okamoto M, Ohmiya S, Nishimura H, Oshitani H. Serological analyses against endemic human coronaviruses and SARS-CoV-2 in children and adults using samples collected before the COVID-19 pandemic. IJID REGIONS 2024; 13:100485. [PMID: 39659746 PMCID: PMC11629223 DOI: 10.1016/j.ijregi.2024.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 12/12/2024]
Abstract
Objectives Four endemic human coronaviruses (HCoVs), HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43, infect humans during childhood and cause the common cold. COVID-19 caused by SARS-CoV-2 leads to mild symptoms in children, possibly owing to the protection conferred by immunity developed during a previous HCoV infection. This study analyzed the seroreactivity of four endemic HCoVs and SARS-CoV-2 in children and adults. Methods A total of 747 serum samples (from individuals aged 6 months to 69 years) were collected from 2015 to 2019 before the COVID-19 pandemic in Japan. The samples were tested for immunoglobulin G antibodies against the four endemic HCoVs and SARS-CoV-2 wild-type spike ectodomain proteins using enzyme-linked immunosorbent assay. Results The seroprevalence of endemic HCoVs (except HCoV-229E) showed 90% positivity by 3-4 years old, whereas HCoV-229E seroprevalence was observed at 8 years old. Approximately 35% of the samples showed reactivity to SARS-CoV-2 and did not change with age. However, the children's group presented higher antibody levels than the adult group. The sample reactivity against SARS-CoV-2 did not confirm neutralization capability. Conclusions The reactive samples against SARS-CoV-2 showed varying antibody levels among different age groups. These findings may contribute to a deeper understanding of the clinical symptoms of COVID-19 and coronavirus diseases.
Collapse
Affiliation(s)
- Yusuke Sayama
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chuan Lo
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroki Tomizawa
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Japan
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Barozi V, Chakraborty S, Govender S, Morgan E, Ramahala R, Graham SC, Bishop NT, Tastan Bishop Ö. Revealing SARS-CoV-2 M pro mutation cold and hot spots: Dynamic residue network analysis meets machine learning. Comput Struct Biotechnol J 2024; 23:3800-3816. [PMID: 39525081 PMCID: PMC11550722 DOI: 10.1016/j.csbj.2024.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Deciphering the effect of evolutionary mutations of viruses and predicting future mutations is crucial for designing long-lasting and effective drugs. While understanding the impact of current mutations on protein drug targets is feasible, predicting future mutations due to natural evolution of viruses and environmental pressures remains challenging. Here, we leveraged existing mutation data during the evolution of the SARS-CoV-2 protein drug target main protease (Mpro) to test the predictive power of dynamic residue network (DRN) analysis in identifying mutation cold and hot spots. We conducted molecular dynamics simulations on the Mpro of SARS-CoV-2 (Wuhan strain) and calculated eight DRN metrics (averaged BC, CC, DC, EC, ECC, KC, L, PR), each of which identifies a unique network feature within the protein. The sets of residues with the highest and lowest values for each metric, comprising potential cold and hot spots, were compared to published biochemical analyses and per residue mutation frequencies observed across five SARS-CoV-2 lineages, encompassing a total of 191,878 sequences. Individual DRN metrics displayed only modest power to predict the mutation frequency of individual residues. However, integrating the eight DRN metrics with additional structural and sequence-derived metrics allowed us to develop machine learning models which significantly improved the prediction of residue mutation frequency. While further refinements should enhance accuracy, we demonstrated a robust method to understand pathogen evolution. This approach can also guide the development of long-lasting drugs by targeting functional residues located in and near active site, and allosteric sites, that are less prone to mutations.
Collapse
Affiliation(s)
- Victor Barozi
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Shrestha Chakraborty
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Shaylyn Govender
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Emily Morgan
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Rabelani Ramahala
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
| | - Stephen C. Graham
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Nigel T. Bishop
- Department of Pure and Applied Mathematics, Rhodes University, Makhanda 6139, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda 6139, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), South Africa
| |
Collapse
|
4
|
Morgenlander WR, Chia WN, Parra B, Monaco DR, Ragan I, Pardo CA, Bowen R, Zhong D, Norris DE, Ruczinski I, Durbin A, Wang LF, Larman HB, Robinson ML. Precision arbovirus serology with a pan-arbovirus peptidome. Nat Commun 2024; 15:5833. [PMID: 38992033 PMCID: PMC11239951 DOI: 10.1038/s41467-024-49461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Arthropod-borne viruses represent a crucial public health threat. Current arboviral serology assays are either labor intensive or incapable of distinguishing closely related viruses, and many zoonotic arboviruses that may transition to humans lack any serologic assays. In this study, we present a programmable phage display platform, ArboScan, that evaluates antibody binding to overlapping peptides that represent the proteomes of 691 human and zoonotic arboviruses. We confirm that ArboScan provides detailed antibody binding information from animal sera, human sera, and an arthropod blood meal. ArboScan identifies distinguishing features of antibody responses based on exposure history in a Colombian cohort of Zika patients. Finally, ArboScan details epitope level information that rapidly identifies candidate epitopes with potential protective significance. ArboScan thus represents a resource for characterizing human and animal arbovirus antibody responses at cohort scale.
Collapse
Affiliation(s)
- William R Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wan Ni Chia
- Program in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore
| | - Beatriz Parra
- Department of Microbiology, Universidad del Valle, Cali, Colombia
| | - Daniel R Monaco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Izabela Ragan
- Department of Biomedical Sciences, Colorado State University College of Veterinary and Biomedical Sciences, Fort Collins, CO, USA
| | - Carlos A Pardo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard Bowen
- Department of Biomedical Sciences, Colorado State University College of Veterinary and Biomedical Sciences, Fort Collins, CO, USA
| | - Diana Zhong
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Douglas E Norris
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Durbin
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lin-Fa Wang
- Program in Emerging Infectious Diseases Duke-NUS Medical School, Singapore, Singapore
| | - H Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Matthew L Robinson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Heo CK, Lim WH, Moon KB, Yang J, Kim SJ, Kim HS, Kim DJ, Cho EW. S2 Peptide-Conjugated SARS-CoV-2 Virus-like Particles Provide Broad Protection against SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2024; 12:676. [PMID: 38932406 PMCID: PMC11209314 DOI: 10.3390/vaccines12060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Approved COVID-19 vaccines primarily induce neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the emergence of variants of concern with RBD mutations poses challenges to vaccine efficacy. This study aimed to design a next-generation vaccine that provides broader protection against diverse coronaviruses, focusing on glycan-free S2 peptides as vaccine candidates to overcome the low immunogenicity of the S2 domain due to the N-linked glycans on the S antigen stalk, which can mask S2 antibody responses. Glycan-free S2 peptides were synthesized and attached to SARS-CoV-2 virus-like particles (VLPs) lacking the S antigen. Humoral and cellular immune responses were analyzed after the second booster immunization in BALB/c mice. Enzyme-linked immunosorbent assay revealed the reactivity of sera against SARS-CoV-2 variants, and pseudovirus neutralization assay confirmed neutralizing activities. Among the S2 peptide-conjugated VLPs, the S2.3 (N1135-K1157) and S2.5 (A1174-L1193) peptide-VLP conjugates effectively induced S2-specific serum immunoglobulins. These antisera showed high reactivity against SARS-CoV-2 variant S proteins and effectively inhibited pseudoviral infections. S2 peptide-conjugated VLPs activated SARS-CoV-2 VLP-specific T-cells. The SARS-CoV-2 vaccine incorporating conserved S2 peptides and CoV-2 VLPs shows promise as a universal vaccine capable of generating neutralizing antibodies and T-cell responses against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Doo-Jin Kim
- Chungbuk National University College of Medicine, 194-15 Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Republic of Korea;
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Cui L, Li T, Xue W, Zhang S, Wang H, Liu H, Gu Y, Xia N, Li S. Comprehensive Overview of Broadly Neutralizing Antibodies against SARS-CoV-2 Variants. Viruses 2024; 16:900. [PMID: 38932192 PMCID: PMC11209230 DOI: 10.3390/v16060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, SARS-CoV-2 has evolved into various variants, including the numerous highly mutated Omicron sub-lineages, significantly increasing immune evasion ability. The development raises concerns about the possibly diminished effectiveness of available vaccines and antibody-based therapeutics. Here, we describe those representative categories of broadly neutralizing antibodies (bnAbs) that retain prominent effectiveness against emerging variants including Omicron sub-lineages. The molecular characteristics, epitope conservation, and resistance mechanisms of these antibodies are further detailed, aiming to offer suggestion or direction for the development of therapeutic antibodies, and facilitate the design of vaccines with broad-spectrum potential.
Collapse
Affiliation(s)
- Lingyan Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Tingting Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Wenhui Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Sibo Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Hongjing Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ying Gu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| | - Shaowei Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health, School of Life Sciences, Xiamen University, Xiamen 361102, China (N.X.)
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen 361102, China
| |
Collapse
|
7
|
Sayama Y, Sakagami A, Okamoto M, Sakamoto M, Koizumi H, Kimura Y, Dapat C, Saito M, Suzuki Y, Sasaki M, Sugawara N, Oshitani H. Identification of Various Recombinants in a Patient Coinfected With the Different SARS-CoV-2 Variants. Influenza Other Respir Viruses 2024; 18:e13340. [PMID: 38890805 PMCID: PMC11187932 DOI: 10.1111/irv.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/18/2024] [Accepted: 05/30/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Viral recombination that occurs by exchanging genetic materials between two viral genomes coinfecting the same host cells is associated with the emergence of new viruses with different virulence. Herein, we detected a patient coinfected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta and Omicron variants and identified various recombinants in the SARS-CoV-2 full-length spike gene using long-read and Sanger sequencing. METHODS Samples from five patients in Japan with household transmission of coronavirus disease 2019 (COVID-19) were analyzed using molecular assays for detection and identification of SARS-CoV-2. Whole-genome sequencing was conducted using multiplex PCR with short-read sequencing. RESULTS Among the five SARS-CoV-2-positive patients, the mutation-specific assay identified the Delta variant in three, the Omicron variant in one, and an undetermined in one. The undermined patient was identified as Delta using whole-genome sequencing, but samples showed a mixed population of Delta and Omicron variants. This patient was analyzed for viral quasispecies by long-read and Sanger sequencing using a full-length spike gene amplicon. In addition to the Delta and Omicron sequences, the viral quasispecies analysis identified nine different genetic recombinant sequences with various breakpoints between Delta and Omicron sequences. The nine detected recombinant sequences in the spike gene showed over 99% identity with viruses that were detected during the Delta and Omicron cocirculation period from the United States and Europe. CONCLUSIONS This study demonstrates that patients coinfected with different SARS-CoV-2 variants can generate various viral recombinants and that various recombinant viruses may be produced during the cocirculation of different variants.
Collapse
Affiliation(s)
- Yusuke Sayama
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Akie Sakagami
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Michiko Okamoto
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Masahiro Sakamoto
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Hikari Koizumi
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Yoko Kimura
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Clyde Dapat
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Mayuko Saito
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| | - Yuko Suzuki
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Mie Sasaki
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Naoko Sugawara
- Department of MicrobiologyMiyagi Prefectural Institute of Public Health and EnvironmentSendaiMiyagiJapan
| | - Hitoshi Oshitani
- Department of VirologyTohoku University of Graduate School of MedicineSendaiMiyagiJapan
| |
Collapse
|
8
|
Inoue T, Yamamoto Y, Sato K, Okemoto-Nakamura Y, Shimizu Y, Ogawa M, Onodera T, Takahashi Y, Wakita T, Kaneko MK, Fukasawa M, Kato Y, Noguchi K. Overcoming antibody-resistant SARS-CoV-2 variants with bispecific antibodies constructed using non-neutralizing antibodies. iScience 2024; 27:109363. [PMID: 38500835 PMCID: PMC10946335 DOI: 10.1016/j.isci.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
A current challenge is the emergence of SARS-CoV-2 variants, such as BQ.1.1 and XBB.1.5, that can evade immune defenses, thereby limiting antibody drug effectiveness. Emergency-use antibody drugs, including the widely effective bebtelovimab, are losing their benefits. One potential approach to address this issue are bispecific antibodies which combine the targeting abilities of two antibodies with distinct epitopes. We engineered neutralizing bispecific antibodies in the IgG-scFv format from two initially non-neutralizing antibodies, CvMab-6 (which binds to the receptor-binding domain [RBD]) and CvMab-62 (targeting a spike protein S2 subunit epitope adjacent to the known anti-S2 antibody epitope). Furthermore, we created a bispecific antibody by incorporating the scFv of bebtelovimab with our anti-S2 antibody, demonstrating significant restoration of effectiveness against bebtelovimab-resistant BQ.1.1 variants. This study highlights the potential of neutralizing bispecific antibodies, which combine existing less effective anti-RBD antibodies with anti-S2 antibodies, to revive the effectiveness of antibody therapeutics compromised by immune-evading variants.
Collapse
Affiliation(s)
- Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Kaoru Sato
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku 164-8530, Japan
| | - Motohiko Ogawa
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takaji Wakita
- National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Masayoshi Fukasawa
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Kohji Noguchi
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
9
|
Hsieh MS, Hsu CW, Liao HC, Lin CL, Chiang CY, Chen MY, Liu SJ, Liao CL, Chen HW. SARS-CoV-2 spike-FLIPr fusion protein plus lipidated FLIPr protects against various SARS-CoV-2 variants in hamsters. J Virol 2024; 98:e0154623. [PMID: 38299865 PMCID: PMC10878263 DOI: 10.1128/jvi.01546-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chang-Ling Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Yamamoto Y, Inoue T. Current Status and Perspectives of Therapeutic Antibodies Targeting the Spike Protein S2 Subunit against SARS-CoV-2. Biol Pharm Bull 2024; 47:917-923. [PMID: 38692869 DOI: 10.1248/bpb.b23-00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has devastated public health and the global economy. New variants are continually emerging because of amino acid mutations within the SARS-CoV-2 spike protein. Existing neutralizing antibodies (nAbs) that target the receptor-binding domain (RBD) within the spike protein have been shown to have reduced neutralizing activity against these variants. In particular, the recently expanding omicron subvariants BQ 1.1 and XBB are resistant to nAbs approved for emergency use by the United States Food and Drug Administration. Therefore, it is essential to develop broad nAbs to combat emerging variants. In contrast to the massive accumulation of mutations within the RBD, the S2 subunit remains highly conserved among variants. Therefore, nAbs targeting the S2 region may provide effective cross-protection against novel SARS-CoV-2 variants. Here, we provide a detailed summary of nAbs targeting the S2 subunit: the fusion peptide, stem helix, and heptad repeats 1 and 2. In addition, we provide prospects to solve problems such as the weak neutralizing potency of nAbs targeting the S2 subunit.
Collapse
Affiliation(s)
- Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
11
|
Amani B, Shabestan R, Rajabkhah K, Amani B. Sotrovimab in solid organ transplant recipients with COVID-19: a systematic review and meta-analysis. KOREAN JOURNAL OF TRANSPLANTATION 2023; 37:277-285. [PMID: 37916433 PMCID: PMC10772269 DOI: 10.4285/kjt.23.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Background Despite widespread implementation of vaccination against coronavirus disease 2019 (COVID-19), solid organ transplant recipients (SOTRs) can remain particularly vulnerable to this disease. The present study was conducted to investigate the efficacy and safety of sotrovimab in the treatment of SOTRs with COVID-19. Methods A search was performed of PubMed, Cochrane Library, Web of Science, medRxiv, and Google Scholar to gather relevant evidence through July 25, 2023. The quality of the included studies was assessed using the risk of bias tool. Comprehensive Meta-Analysis software (ver. 3.0, Biostat) was employed for data analysis. Results Ten studies, involving a total of 1,569 patients, were included. The meta-analysis revealed significant differences between the patients administered sotrovimab and those treated with the standard of care. These differences were observed in mortality rate (odds ratio [OR], 0.15; 95% confidence interval [CI], 0.03-0.67), hospitalization rate (OR, 0.35; 95% CI, 0.21-0.57), intensive care unit (ICU) admission rate (OR, 0.16; 95% CI, 0.04-0.62), the need for supplemental oxygen therapy (OR, 0.22; 95% CI, 0.09-0.51), and the need for mechanical ventilation (OR, 0.09; 95% CI, 0.01-0.70). However, no significant difference was observed between sotrovimab and other treatments regarding the rates of hospitalization or ICU admission (P>0.05). Regarding safety, sotrovimab was associated with a lower rate of adverse events compared to the absence of sotrovimab (OR, 0.15; 95% CI, 0.02-0.86). Conclusions These results suggest that sotrovimab may improve efficacy outcomes among SOTRs with COVID-19. Nevertheless, additional high-quality trials are necessary to confirm these findings.
Collapse
Affiliation(s)
- Behnam Amani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Rouhollah Shabestan
- Department of Biostatistics and Epidemiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kourosh Rajabkhah
- Department of Curative Affairs, Ministry of Health and Medical Education, Tehran, Iran
| | - Bahman Amani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Mykytyn AZ, Fouchier RA, Haagmans BL. Antigenic evolution of SARS coronavirus 2. Curr Opin Virol 2023; 62:101349. [PMID: 37647851 DOI: 10.1016/j.coviro.2023.101349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/01/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, emerged in China in December 2019. Vaccines developed were very effective initially, however, the virus has shown remarkable evolution with multiple variants spreading globally over the last three years. Nowadays, newly emerging Omicron lineages are gaining substitutions at a fast rate, resulting in escape from neutralization by antibodies that target the Spike protein. Tools to map the impact of substitutions on the further antigenic evolution of SARS-CoV-2, such as antigenic cartography, may be helpful to update SARS-CoV-2 vaccines. In this review, we focus on the antigenic evolution of SARS-CoV-2, highlighting the impact of Spike protein substitutions individually and in combination on immune escape.
Collapse
Affiliation(s)
- Anna Z Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ron Am Fouchier
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Liao HC, Huang MS, Chiu FF, Chai KM, Liao CL, Wu SC, Chen HW, Liu SJ. Co-delivery of a trimeric spike DNA and protein vaccine with aluminum hydroxide enhanced Th1-dominant humoral and cellular immunity against SARS-CoV-2. J Med Virol 2023; 95:e29040. [PMID: 37635380 DOI: 10.1002/jmv.29040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 07/18/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023]
Abstract
Protein subunit vaccines have been used as prophylactic vaccines for a long time. The well-established properties of these vaccines make them the first choice for the coronavirus disease 2019 (COVID-19) outbreak. However, it is not easy to develop a protein vaccine that induces cytotoxic T lymphocyte responses and requires a longer time for manufacturing, which limits the usage of this vaccine type. Here, we report the combination of a recombinant spike (S)-trimer protein with a DNA vaccine-encoded S protein as a novel COVID-19 vaccine. The recombinant S protein was formulated with different adjuvants and mixed with the DNA plasmid before injection. We found that the recombinant S protein formulated with the adjuvant aluminum hydroxide and mixed with the DNA plasmid could enhance antigen-specific antibody titers, neutralizing antibody titers. We further evaluated the IgG2a/IgG1 isotype and cytokine profiles of the specific boosted T-cell response, which indicated that the combined vaccine induced a T-helper 1 cell-biased immune response. Immunized hamsters were challenged with severe acute respiratory syndrome coronavirus 2, and the body weight of the hamsters that received the recombinant S protein with aluminum hydroxide and/or the DNA plasmid was not reduced. Alternatively, those that received control or only the DNA plasmid immunization were reduced. Interestingly, after the third day of the viral load in the lungs, the viral challenge could not be detected in hamsters immunized with the recombinant S protein in aluminum hydroxide mixed with DNA (tissue culture infectious dose < 10). The viral load in the lungs was 109 , 106 , and 107 for the phosphate-buffered saline, protein in aluminum hydroxide, and DNA-only immunizations, respectively. These results indicated that antiviral mechanisms neutralizing antibodies play important roles. Furthermore, we found that the combination of protein and DNA vaccination could induce relatively strong CD8+ T-cell responses. In summary, the protein subunit vaccine combined with a DNA vaccine could induce strong CD8+ T-cell responses to increase antiviral immunity for disease control.
Collapse
Affiliation(s)
- Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Institute of Biotechnology, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Min-Syuan Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Institute of Biotechnology, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Fang-Feng Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Suh-Chin Wu
- Institute of Biotechnology, College of Life Science and Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Almagro JC, Mellado-Sánchez G, Pedraza-Escalona M, Pérez-Tapia SM. Evolution of Anti-SARS-CoV-2 Therapeutic Antibodies. Int J Mol Sci 2022; 23:ijms23179763. [PMID: 36077159 PMCID: PMC9456190 DOI: 10.3390/ijms23179763] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/17/2023] Open
Abstract
Since the first COVID-19 reports back in December of 2019, this viral infection caused by SARS-CoV-2 has claimed millions of lives. To control the COVID-19 pandemic, the Food and Drug Administration (FDA) and/or European Agency of Medicines (EMA) have granted Emergency Use Authorization (EUA) to nine therapeutic antibodies. Nonetheless, the natural evolution of SARS-CoV-2 has generated numerous variants of concern (VOCs) that have challenged the efficacy of the EUA antibodies. Here, we review the most relevant characteristics of these therapeutic antibodies, including timeline of approval, neutralization profile against the VOCs, selection methods of their variable regions, somatic mutations, HCDR3 and LCDR3 features, isotype, Fc modifications used in the therapeutic format, and epitope recognized on the receptor-binding domain (RBD) of SARS-CoV-2. One of the conclusions of the review is that the EUA therapeutic antibodies that still retain efficacy against new VOCs bind an epitope formed by conserved residues that seem to be evolutionarily conserved as thus, critical for the RBD:hACE-2 interaction. The information reviewed here should help to design new and more efficacious antibodies to prevent and/or treat COVID-19, as well as other infectious diseases.
Collapse
Affiliation(s)
- Juan C. Almagro
- GlobalBio, Inc., 320 Concord Ave, Cambridge, MA 02138, USA
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Correspondence: (J.C.A.); (S.M.P.-T.)
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Martha Pedraza-Escalona
- CONACyT-Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
| | - Sonia M. Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico
- Correspondence: (J.C.A.); (S.M.P.-T.)
| |
Collapse
|
15
|
Chiang CY, Chen MY, Hsu CW, Liu CY, Tsai YW, Liao HC, Yan JY, Chuang ZS, Wang HI, Pan CH, Yu CY, Yu GY, Liao CL, Liu SJ, Chen HW. Induction of high affinity monoclonal antibodies against SARS-CoV-2 variant infection using a DNA prime-protein boost strategy. J Biomed Sci 2022; 29:37. [PMID: 35681239 PMCID: PMC9178533 DOI: 10.1186/s12929-022-00823-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Calls for the coronavirus to be treated as an endemic illness, such as the flu, are increasing. After achieving high coverage of COVID-19 vaccination, therapeutic drugs have become important for future SARS-CoV-2 variant outbreaks. Although many monoclonal antibodies have been approved for emergency use as treatments for SARS-CoV-2 infection, some monoclonal antibodies are not authorized for variant treatment. Broad-spectrum monoclonal antibodies are unmet medical needs. METHODS We used a DNA prime-protein boost approach to generate high-quality monoclonal antibodies. A standard ELISA was employed for the primary screen, and spike protein-human angiotensin-converting enzyme 2 blocking assays were used for the secondary screen. The top 5 blocking clones were selected for further characterization, including binding ability, neutralization potency, and epitope mapping. The therapeutic effects of the best monoclonal antibody against SARS-CoV-2 infection were evaluated in a hamster infection model. RESULTS Several monoclonal antibodies were selected that neutralize different SARS-CoV-2 variants of concern (VOCs). These VOCs include Alpha, Beta, Gamma, Delta, Kappa and Lambda variants. The high neutralizing antibody titers against the Beta variant would be important to treat Beta-like variants. Among these monoclonal antibodies, mAb-S5 displays the best potency in terms of binding affinity and neutralizing capacity. Importantly, mAb-S5 protects animals from SARS-CoV-2 challenge, including the Wuhan strain, D614G, Alpha and Delta variants, although mAb-S5 exhibits decreased neutralization potency against the Delta variant. Furthermore, the identified neutralizing epitopes of monoclonal antibodies are all located in the receptor-binding domain (RBD) of the spike protein but in different regions. CONCLUSIONS Our approach generates high-potency monoclonal antibodies against a broad spectrum of VOCs. Multiple monoclonal antibody combinations may be the best strategy to treat future SARS-CoV-2 variant outbreaks.
Collapse
Affiliation(s)
- Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chia-Yeh Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Yu-Wen Tsai
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
- Department of Life Sciences, National Tsing Hua University, Hsinchu, 30072, Taiwan
| | - Jia-Ying Yan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Zih-Shiuan Chuang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Hsin-I Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chien-Hsiung Pan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 307378, Taiwan.
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 406040, Taiwan.
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 307378, Taiwan.
| |
Collapse
|