1
|
Feng X, Wang Q. Keratin-15 high expression links with lymph node metastasis and poor survival prognosis in epithelial ovarian cancer patients. Discov Oncol 2024; 15:555. [PMID: 39402426 PMCID: PMC11473747 DOI: 10.1007/s12672-024-01404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Keratin-15 (KRT15) involves in the progression and owns prognostic values in several solid cancers, whose clinical role in epithelial ovarian cancer (EOC) is rarely reported. This study aimed to identify the association of KRT15 expression with tumor features and survival of surgical EOC patients. METHODS Formalin-fixed paraffin-embedded tumor tissues of 140 EOC patients who underwent tumor resection were retrieved for KRT15 determination using immunohistochemistry (IHC) assay. RESULTS The median (interquartile range) KRT15 IHC score was 0.0 (0.0-1.0), ranging from 0.0 to 12.0. Among all, 36.4% of patients had positive KRT15 expression (IHC score > 0) and 15.0% of patients had high KRT15 expression (IHC score > 3). KRT15 was positively related to lymph node metastasis incidence (P = 0.027), and showed a tendency to correlate to FIGO stage but without statistical significance (P = 0.052), while it was not correlated with age, other tumor features, and tumor markers. Positive KRT15 expression was linked with poor disease-free survival (DFS) (P = 0.009) and overall survival (OS) (P = 0.032). Notably, high KRT15 expression showed an even stronger relationship with worse DFS (P = 0.001) and OS (P < 0.001). After adjustment of multivariable Cox's regression, high KRT15 expression was independently correlated with unfavorable DFS (hazard ratio (HR): 2.241, P = 0.007). CONCLUSION Even though KRT15 is insufficiently expressed in EOC tissues generally, its positive expression or high expression can predict the lymph node metastasis and poor survival prognosis in EOC patients who undergo tumor resection.
Collapse
Affiliation(s)
- Xuqin Feng
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Qian Wang
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, 434000, Hubei, China.
| |
Collapse
|
2
|
Gerner-Mauro KN, Ellis LV, Wang G, Nayak R, Lwigale PY, Poché RA, Chen J. Morphogenic, molecular, and cellular adaptations for unidirectional airflow in the chicken lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608866. [PMID: 39229219 PMCID: PMC11370416 DOI: 10.1101/2024.08.20.608866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Unidirectional airflow in the avian lung enables gas exchange during both inhalation and exhalation. The underlying developmental process and how it deviates from that of the bidirectional mammalian lung are poorly understood. Sampling key developmental stages with multiscale 3D imaging and single-cell transcriptomics, we delineate morphogenic, molecular, and cellular features that accommodate the unidirectional airflow in the chicken lung. Primary termini of hyper-elongated branches are eliminated via proximal-short and distal-long fusions, forming parabronchi. Neoform termini extend radially through parabronchial smooth muscle to form gas-exchanging alveoli. Supporting this radial alveologenesis, branch stalks halt their proximalization, defined by SOX9-SOX2 transition, and become SOX9 low parabronchi. Primary and secondary vascular plexi interface with primary and neoform termini, respectively. Single-cell and Stereo-seq spatial transcriptomics reveal a third, chicken-specific alveolar cell type expressing KRT14, hereby named luminal cells. Luminal, alveolar type 2, and alveolar type 1 cells sequentially occupy concentric zones radiating from the parabronchial lumen. Our study explores the evolutionary space of lung diversification and lays the foundation for functional analysis of species-specific genetic determinants.
Collapse
|
3
|
Fu Y, Xie JL, Zhang WT, Zhang XL, Zhang XM, Xu MM, Han YT, Liu RQ, Xie GM, Zhang J, Zhang J. Synergistic delivery of hADSC-Exos and antioxidants has inhibitory effects on UVB-induced skin photoaging. Heliyon 2024; 10:e34321. [PMID: 39144947 PMCID: PMC11320485 DOI: 10.1016/j.heliyon.2024.e34321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Ultraviolet B (UVB) light exposure accelerates skin photoaging. Human adipose-derived stem cell exosomes (hADSC-Exos) and some antioxidants may have anti-photoaging effects. However, it is unknown whether the combination of hADSC-Exos and antioxidants plays a synergistic role in anti-photoaging. In cellular and 3D skin models, we showed that vitamin E (VE) and hADSC-Exos were optimal anti-photoaging combinations. In vivo, VE and hADSC-Exos increased skin tightening and elasticity in UVB-induced photoaging mice Combined treatment with VE and hADSC-Exos inhibited SIRT1/NF-κB pathway. These findings contribute to the understanding of hADSC-Exos in conjunction with other antioxidants, thereby providing valuable insights for the future pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Yu Fu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Jun-ling Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Wan-ting Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shangha, 200010, China
| | - Xing-liao Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Xin-Min Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shangha, 200010, China
| | - Meng-meng Xu
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Yao-ting Han
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shangha, 200010, China
| | - Rong-qi Liu
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shangha, 200010, China
| | - Guang-ming Xie
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
| | - Jing Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shangha, 200010, China
- Tongji Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai, 200092, China
| | - Jun Zhang
- Research Center for Translational Medicine at East Hospital, School of Medicine, Tongji University, Shanghai, 200010, China
- Tongji Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200092, China
| |
Collapse
|
4
|
Ichise H, Speranza E, La Russa F, Veres TZ, Chu CJ, Gola A, Germain RN. Rebalancing Viral and Immune Damage versus Tissue Repair Prevents Death from Lethal Influenza Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.601620. [PMID: 39372755 PMCID: PMC11451654 DOI: 10.1101/2024.07.04.601620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Maintaining tissue function while eliminating infected cells is fundamental to host defense. Innate inflammatory damage contributes to lethal influenza and COVID-19, yet other than steroids, immunomodulatory drugs have modest effects. Among more than 50 immunomodulatory regimes tested in mouse lethal influenza infection, only the previously reported early depletion of neutrophils showed efficacy, suggesting that the infected host passes an early tipping point in which limiting innate immune damage alone cannot rescue physiological function. To re-balance the system late in infection, we investigated whether partial limitation of viral spread using oseltamivir (Tamiflu) together with enhancement of epithelial repair by blockade of interferon signaling or the limitation of further epithelial cell loss mediated by cytotoxic CD8 + T cells would prevent death. These treatments salvaged a large fraction of infected animals, providing new insight into the importance of repair processes and the timing of adaptive immune responses in survival of pulmonary infections.
Collapse
|
5
|
Chen S, Li C, Tu Z, Cai T, Zhang X, Wang L, Tian R, Huang J, Gong Y, Yang X, Wu Z, He S, He W, Wang D. Off-label use of Baricitinib improves moderate and severe atopic dermatitis in China through inhibiting MAPK and PI3K/Akt/mTOR pathway via targeting JAK-STAT signaling of CD4 + cells. Front Pharmacol 2024; 15:1324892. [PMID: 38487164 PMCID: PMC10937442 DOI: 10.3389/fphar.2024.1324892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
As an inflammatory disease with a disrupted immune system, cytokine disorders in atopic dermatitis (AD) are closely related to the abnormal activation of JAK-STAT signal pathway. The critical relevance of the JAK-STAT signaling pathway to the pathogenesis of AD provides a strong rationale for JAK inhibitor research. Baricitinib, a small-molecule oral JAK inhibitor, has been proven to inhibit JAK-STAT signaling in a variety of diseases, including AD. It is currently available in China for off-label use. However, its efficacy in China and its mechanism are rarely reported. In our study, we found that the immune status of patients with moderate and severe AD was hyperactive. Among the 49 known immunotherapy targets, JAK1 and JAK2 genes on lymphocytes of AD patients were significantly upregulated, which was closely related to the symptom severity in moderate and severe AD patients. Baricitinib can improve immune hyperresponsiveness and clinical symptoms in moderate and severe AD by inhibiting the activation of Th2 cell subsets and the secretion of Th2-type cytokines through MAPK, mTOR and PI3K-Akt signaling pathways, providing an important theoretical basis for clinical off-label use of Baricitinib to treat moderate and severe AD.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caihua Li
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Zeng Tu
- Department of Pathogen Biology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Tao Cai
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinying Zhang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Lei Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruoyuan Tian
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jinglan Huang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yuxuan Gong
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Xiaotong Yang
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Zetong Wu
- International Medical College, Chongqing Medical University, Chongqing, China
| | - Sirong He
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Basic and Translational Research of Tumor Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Wenyan He
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhu W, Han L, Wu Y, Tong L, He L, Wang Q, Yan Y, Pan T, Shen J, Song Y, Shen Y, Zhu Q, Zhou J. Keratin 15 protects against cigarette smoke-induced epithelial mesenchymal transformation by MMP-9. Respir Res 2023; 24:297. [PMID: 38007424 PMCID: PMC10675954 DOI: 10.1186/s12931-023-02598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease, is a leading cause of morbidity and mortality worldwide. Prolonged cigarette smoking (CS) that causes irreversible airway remodeling and significantly reduces lung function is a major risk factor for COPD. Keratin15+ (Krt15+) cells with the potential of self-renewal and differentiation properties have been implicated in the maintenance, proliferation, and differentiation of airway basal cells; however, the role of Krt15 in COPD is not clear. METHODS Krt15 knockout (Krt15-/-) and wild-type (WT) mice of C57BL/6 background were exposed to CS for six months to establish COPD models. Krt15-CrePGR;Rosa26-LSL-tdTomato mice were used to trace the fate of the Krt15+ cells. Hematoxylin and eosin (H&E) and Masson stainings were performed to assess histopathology and fibrosis, respectively. Furthermore, lentivirus-delivered short hairpin RNA (shRNA) was used to knock down KRT15 in human bronchial epithelial (HBE) cells stimulated with cigarette smoke extract (CSE). The protein expression was assessed using western blot, immunohistochemistry, and enzyme-linked immunosorbent assay. RESULTS Krt15-/- CS mice developed severe inflammatory cell infiltration, airway remodeling, and emphysema. Moreover, Krt15 knockout aggravated CS-induced secretion of matrix metalloproteinase-9 (MMP-9) and epithelial-mesenchymal transformation (EMT), which was reversed by SB-3CT, an MMP-9 inhibitor. Consistent with this finding, KRT15 knockdown promoted MMP-9 expression and EMT progression in vitro. Furthermore, Krt15+ cells gradually increased in the bronchial epithelial cells and were transformed into alveolar type II (AT2) cells. CONCLUSION Krt15 regulates the EMT process by promoting MMP-9 expression and protects the lung tissue from CS-induced injury, inflammatory infiltration, and apoptosis. Furthermore, Krt15+ cells transformed into AT2 cells to protect alveoli. These results suggest Krt15 as a potential therapeutic target for COPD.
Collapse
Affiliation(s)
- Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ludan He
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yu Yan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ting Pan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Fudan University, Shanghai, 200540, China
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 200540, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China.
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China.
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Fudan University, Shanghai, 200540, China.
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China.
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 200540, China.
| |
Collapse
|
7
|
Xia Y, Andersson E, Caputo M, Cansby E, Sedda F, Font-Gironès F, Ruud J, Kurhe Y, Hallberg B, Marschall HU, Asterholm IW, Romeo S, Blüher M, Mahlapuu M. Knockout of STE20-type kinase TAOK3 does not attenuate diet-induced NAFLD development in mice. Mol Med 2023; 29:138. [PMID: 37864157 PMCID: PMC10589923 DOI: 10.1186/s10020-023-00738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD), the primary hepatic consequence of obesity, is affecting about 25% of the global adult population. The aim of this study was to examine the in vivo role of STE20-type protein kinase TAOK3, which has been previously reported to regulate hepatocellular lipotoxicity in vitro, in the development of NAFLD and systemic insulin resistance in the context of obesity. METHODS Taok3 knockout mice and wild-type littermates were challenged with a high-fat diet. Various in vivo tests were performed to characterize the whole-body metabolism. NAFLD progression in the liver, and lipotoxic damage in adipose tissue, kidney, and skeletal muscle were compared between the genotypes by histological assessment, immunofluorescence microscopy, protein and gene expression profiling, and biochemical assays. Intracellular lipid accumulation and oxidative/ER stress were analyzed in cultured human and mouse hepatocytes where TAOK3 was knocked down by small interfering RNA. The expression of TAOK3-related STE20-type kinases was quantified in different organs from high-fat diet-fed Taok3-/- and wild-type mice. RESULTS TAOK3 deficiency had no impact on body weight or composition, food consumption, locomotor activity, or systemic glucose or insulin homeostasis in obese mice. Consistently, Taok3-/- mice and wild-type littermates developed a similar degree of high-fat diet-induced liver steatosis, inflammation, and fibrosis, and we detected no difference in lipotoxic damage of adipose tissue, kidney, or skeletal muscle when comparing the two genotypes. In contrast, the silencing of TAOK3 in vitro markedly suppressed ectopic lipid accumulation and metabolic stress in mouse and human hepatocytes. Interestingly, the hepatic mRNA abundance of several TAOK3-related kinases, which have been previously implicated to increase the risk of NAFLD susceptibility, was significantly elevated in Taok3-/- vs. wild-type mice. CONCLUSIONS In contrast to the in vitro observations, genetic deficiency of TAOK3 in mice failed to mitigate the detrimental metabolic consequences of chronic exposure to dietary lipids, which may be partly attributable to the activation of liver-specific compensation response for the genetic loss of TAOK3 by related STE20-type kinases.
Collapse
Affiliation(s)
- Ying Xia
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emma Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Caputo
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Francesca Sedda
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ferran Font-Gironès
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Ruud
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ingrid Wernstedt Asterholm
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity, and Vascular Research (HI-MAG) of the Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
8
|
Shi J, Peng B, Zhou X, Wang C, Xu R, Lu T, Chang X, Shen Z, Wang K, Xu C, Zhang L. An anoikis-based gene signature for predicting prognosis in malignant pleural mesothelioma and revealing immune infiltration. J Cancer Res Clin Oncol 2023; 149:12089-12102. [PMID: 37421452 DOI: 10.1007/s00432-023-05128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is an aggressive, treatment-resistant tumor. Anoikis is a particular type of programmed apoptosis brought on by the separation of cell-cell or extracellular matrix (ECM). Anoikis has been recognized as a crucial element in the development of tumors. However, few studies have comprehensively examined the role of anoikis-related genes (ARGs) in malignant mesothelioma. METHODS ARGs were gathered from the GeneCard database and the Harmonizome portals. We obtained differentially expressed genes (DEGs) using the GEO database. Univariate Cox regression analysis, and the least absolute shrinkage and selection operator (LASSO) algorithm were utilized to select ARGs associated with the prognosis of MPM. We then developed a risk model, and time-dependent receiver operating characteristic (ROC) analysis and calibration curves were employed to confirm the ability of the model. The patients were divided into various subgroups using consensus clustering analysis. Based on the median risk score, patients were divided into low- and high-risk groups. Functional analysis and immune cell infiltration analysis were conducted to estimate molecular mechanisms and the immune infiltration landscape of patients. Finally, drug sensitivity analysis and tumor microenvironment landscape were further explored. RESULTS A novel risk model was constructed based on the six ARGs. The patients were successfully divided into two subgroups by consensus clustering analysis, with a striking difference in the prognosis and landscape of immune infiltration. The Kaplan-Meier survival analysis indicated that the OS rate of the low-risk group was significantly higher than the high-risk group. Functional analysis, immune cell infiltration analysis, and drug sensitivity analysis showed that high- and low-risk groups had different immune statuses and drug sensitivity. CONCLUSIONS In summary, we developed a novel risk model to predict MPM prognosis based on six selected ARGs, which could broaden comprehension of personalized and precise therapy approaches for MPM.
Collapse
Affiliation(s)
- Jiaxin Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chenghao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Zhiping Shen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Kaiyu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chengyu Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Ievlev V, Pai AC, Dillon DS, Kuhl S, Lynch TJ, Freischlag KW, Gries CB, Engelhardt JF, Parekh KR. Development and characterization of ferret ex vivo tracheal injury and cell engraftment model. Front Med (Lausanne) 2023; 10:1144754. [PMID: 37113613 PMCID: PMC10126424 DOI: 10.3389/fmed.2023.1144754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
The field of airway biology research relies primarily on in vitro and in vivo models of disease and injury. The use of ex vivo models to study airway injury and cell-based therapies remains largely unexplored although such models have the potential to overcome certain limitations of working with live animals and may more closely replicate in vivo processes than in vitro models can. Here, we characterized a ferret ex vivo tracheal injury and cell engraftment model. We describe a protocol for whole-mount staining of cleared tracheal explants, and showed that it provides a more comprehensive structural overview of the surface airway epithelium (SAE) and submucosal glands (SMGs) than 2D sections, revealing previously underappreciated structural anatomy of tracheal innervation and vascularization. Using an ex vivo model of tracheal injury, we evaluated the injury responses in the SAE and SMGs that turned out to be consistent with published in vivo work. We used this model to assess factors that influence engraftment of transgenic cells, providing a system for optimizing cell-based therapies. Finally, we developed a novel 3D-printed reusable culture chamber that enables live imaging of tracheal explants and differentiation of engrafted cells at an air-liquid interface. These approaches promise to be useful for modeling pulmonary diseases and testing therapies. Graphical abstract1,2. We describe here a method for differential mechanical injury of ferret tracheal explants that can be used to evaluate airway injury responses ex vivo. 3. Injured explants can be cultured at ALI (using the novel tissue-transwell device on the right) and submerged long-term to evaluate tissue-autonomous regeneration responses. 4. Tracheal explants can also be used for low throughput screens of compounds to improve cell engraftment efficiency or can be seeded with particular cells to model a disease phenotype. 5. Lastly, we demonstrate that ex vivo-cultured tracheal explants can be evaluated by various molecular assays and by immunofluorescent imaging that can be performed live using our custom-designed tissue-transwell.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Albert C. Pai
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Drew S. Dillon
- Protostudios, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Spencer Kuhl
- Protostudios, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Thomas J. Lynch
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Kyle W. Freischlag
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Caitlyn B. Gries
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
10
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|