1
|
Wearne N, Botha F, Manning K, Price B, Barday Z, Post FA, Freercks R, Bertels L, Mtingi-Nkonzombi L, Muller E. Clinical and Histopathological Findings in HIV-positive to HIV-positive Kidney Transplant Recipients. Transplantation 2024:00007890-990000000-00938. [PMID: 39590920 DOI: 10.1097/tp.0000000000005271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
BACKGROUND The spectrum of histological findings in transplanted kidneys from HIV-positive donors to HIV-positive recipients is relatively unexplored. This study describes the type and timing of histological diagnoses observed in this unique cohort. METHODS Adequate biopsies were analyzed at implantation and posttransplant between September 2008 and May 2022. Histological disease spectrum, distributions over time, and relevant clinical characteristics and management were reported for both for-cause and protocol biopsies. RESULTS Twenty-four implantation biopsies from 31 deceased donors and 179 allograft biopsies (100 for-cause, 79 protocol) from 50 recipients were analyzed. Most rejection episodes occurred in the first year posttransplant. Eighteen recipients (36%) had at least 1 episode of biopsy-confirmed acute/chronic T cell-mediated rejection (TCMR) or active antibody-mediated rejection (AMR). Protocol biopsies showed no active AMR or acute/chronic TCMR. However, 9 of 79 biopsies identified borderline/suspicious TCMR. Common nonrejection diagnoses were interstitial fibrosis and tubular atrophy, ascending pyelonephritis, and calcineurin inhibitor toxicity. Classic and suspected HIV-associated nephropathy (HIVAN) were identified in 3 and 6 patients, respectively. Protocol biopsies diagnosed 1 case of classic HIVAN and 6 cases of suspected HIVAN. AMR most adversely affected kidney function and significantly contributed to graft failure. CONCLUSIONS The histological findings in this cohort of HIV-positive kidney transplant recipients who received grafts from unmatched HIV-positive donors revealed a spectrum of abnormalities. Protocol biopsies added to surveillance on borderline rejection and assisted in the recognition of HIVAN. Confirmed rejection occurred in 18 recipients (36%). Understanding the factors contributing to this may assist in the optimization of immunosuppressive protocols in the future.
Collapse
Affiliation(s)
- Nicola Wearne
- Division of Nephrology and Hypertension, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Francois Botha
- Pathcare Laboratories, George, South Africa
- Division of Anatomical Pathology, National Health Laboratory Service/University of Cape Town, Faculty of Health Sciences, Groote Schuur Hospital, Cape Town, South Africa
| | - Kathryn Manning
- Department of Surgery, University of Cape Town, Faculty of Health Sciences, Groote Schuur Hospital, Cape Town, South Africa
| | - Brendon Price
- Division of Anatomical Pathology, National Health Laboratory Service/University of Cape Town, Faculty of Health Sciences, Groote Schuur Hospital, Cape Town, South Africa
| | - Zunaid Barday
- Division of Nephrology and Hypertension, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Frank A Post
- Division/HIV Medicine and Infectious Diseases, King's College Hospital NHS Foundation Trust, London, United Kingdom
- Division/HIV Medicine and Infectious Diseases, King's College London, London, United Kingdom
| | - Robert Freercks
- Department of Medicine, Nelson Mandela University, Livingstone Hospital, Gqeberha, South Africa
| | - Laurie Bertels
- Department of Surgery, University of Cape Town, Faculty of Health Sciences, Groote Schuur Hospital, Cape Town, South Africa
| | | | - Elmi Muller
- Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
2
|
Van Loon E, Lamarthée B, Callemeyn J, Farhat I, Koshy P, Anglicheau D, Cippà P, Franken A, Gwinner W, Kuypers D, Marquet P, Rinaldi A, Tinel C, Van Brussel T, Van Craenenbroeck A, Varin A, Vaulet T, Lambrechts D, Naesens M. Active immunologic participation and metabolic shutdown of kidney structural cells during kidney transplant rejection. Am J Transplant 2024:S1600-6135(24)00675-0. [PMID: 39461479 DOI: 10.1016/j.ajt.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Contrary to immune cells, the response of the kidney structural cells in rejection is less established. We performed single-cell RNA sequencing of 18 kidney transplant biopsies from 14 recipients. Single-cell RNA sequencing identified cells from the major compartments of the kidney, next to infiltrated immune cells. Endothelial cells from the glomerulus, peritubular capillaries, and vasa recta showed upregulation of class I and II human leukocyte antigen genes, adhesion molecules, cytokines, and chemokines, suggesting active participation in the alloimmune process, with compartment-specific differences. Epithelial cells including proximal tubular, loop of Henle, and collecting duct cells, also showed increased expression of immune genes. Strikingly, in proximal tubule cells, a strong downregulation of energy metabolism upon inflammation was observed. There was a large overlap between the cell-specific expression changes upon alloimmune inflammation and those observed in 2 large microarray biopsy cohorts. In conclusion, the kidney structural cells, being the main target of the alloimmune process, appear to actively contribute herein, enhancing the damaging effects of the infiltrating immune cells. In epithelial cells, a profound shutdown of metabolism was seen upon inflammation, which is associated with poor kidney function. These observations highlight the critical role of the graft in triggering and sustaining rejection after transplantation.
Collapse
Affiliation(s)
- Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; University of Franche-Comté, UBFC, Inserm UMR1098 Right, EFS BFC, Besançon, France
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Imane Farhat
- University of Franche-Comté, UBFC, Inserm UMR1098 Right, EFS BFC, Besançon, France
| | - Priyanka Koshy
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Université Paris Cité, Inserm U1151, Necker Enfants-Malades Institute, Paris, France
| | - Pietro Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Amelie Franken
- VIB Center for Cancer Biology, Leuven, Belgium; Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Wilfried Gwinner
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Pierre Marquet
- Department of Pharmacology and Transplantation, University of Limoges, Inserm U1248, Limoges University Hospital, Limoges, France
| | - Anna Rinaldi
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Claire Tinel
- University of Franche-Comté, UBFC, Inserm UMR1098 Right, EFS BFC, Besançon, France; Department of Nephrology and Kidney Transplantation, Dijon University Hospital, Dijon, France
| | - Thomas Van Brussel
- VIB Center for Cancer Biology, Leuven, Belgium; Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Amaryllis Van Craenenbroeck
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Alexis Varin
- University of Franche-Comté, UBFC, Inserm UMR1098 Right, EFS BFC, Besançon, France
| | - Thibaut Vaulet
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- VIB Center for Cancer Biology, Leuven, Belgium; Department of Human Genetics, Laboratory of Translational Genetics, KU Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium; Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Boshart A, Petrovic S, Abovsky M, Pastrello C, Farkona S, Manion K, Neupane S, Allen M, Jurisica I, Konvalinka A. Molecular landscape of kidney allograft tissues data integration portal (NephroDIP): a curated database to improve integration of high-throughput kidney transplant datasets. Front Immunol 2024; 15:1469500. [PMID: 39399491 PMCID: PMC11466753 DOI: 10.3389/fimmu.2024.1469500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Kidney transplantation is the optimal treatment for end-stage kidney disease; however, premature allograft loss remains a serious issue. While many high-throughput omics studies have analyzed patient allograft biospecimens, integration of these datasets is challenging, which represents a considerable barrier to advancing our understanding of the mechanisms of allograft loss. Methods To facilitate integration, we have created a curated database containing all open-access high-throughput datasets from human kidney transplant studies, termed NephroDIP (Nephrology Data Integration Portal). PubMed was searched for high-throughput transcriptomic, proteomic, single nucleotide variant, metabolomic, and epigenomic studies in kidney transplantation, which yielded 9,964 studies. Results From these, 134 studies with available data detailing 260 comparisons and 83,262 molecules were included in NephroDIP v1.0. To illustrate the capabilities of NephroDIP, we have used the database to identify common gene, protein, and microRNA networks that are disrupted in patients with chronic antibody-mediated rejection, the most important cause of late allograft loss. We have also explored the role of an immunomodulatory protein galectin-1 (LGALS1), along with its interactors and transcriptional regulators, in kidney allograft injury. We highlight the pathways enriched among LGALS1 interactors and transcriptional regulators in kidney fibrosis and during immunosuppression. Discussion NephroDIP is an open access data portal that facilitates data visualization and will help provide new insights into existing kidney transplant data through integration of distinct studies and modules (https://ophid.utoronto.ca/NephroDIP).
Collapse
Affiliation(s)
- Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stefan Petrovic
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Mark Abovsky
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Kieran Manion
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
| | - Slaghaniya Neupane
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Maya Allen
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Chauveau B, Couzi L, Merville P. The Microscope and Beyond: Current Trends in the Characterization of Kidney Allograft Rejection From Tissue Samples. Transplantation 2024:00007890-990000000-00841. [PMID: 39436268 DOI: 10.1097/tp.0000000000005153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The Banff classification is regularly updated to integrate recent advances in the characterization of kidney allograft rejection, gathering novel diagnostic, prognostic, and theragnostic data into a diagnostic and pathogenesis-based framework. Despite ongoing research on noninvasive biomarkers of kidney rejection, the Banff classification remains, to date, biopsy-centered, primarily relying on a semiquantitative histological scoring system that overall lacks reproducibility and granularity. Besides, the ability of histopathological injuries and transcriptomics analyses from bulk tissue to accurately infer the pathogenesis of rejection is questioned. This review discusses findings from past, current, and emerging innovative tools that have the potential to enhance the characterization of allograft rejection from tissue samples. First, the digitalization of pathological workflows and the rise of deep learning should yield more reproducible and quantitative results from routine slides. Additionally, novel histomorphometric features of kidney rejection could be discovered with an overall genuine clinical implementation perspective. Second, multiplex immunohistochemistry enables in-depth in situ phenotyping of cells from formalin-fixed samples, which can decipher the heterogeneity of the immune infiltrate during kidney allograft rejection. Third, transcriptomics from bulk tissue is gradually integrated into the Banff classification, and its specific context of use is currently under extensive consideration. Finally, single-cell transcriptomics and spatial transcriptomics from formalin-fixed and paraffin-embedded samples are emerging techniques capable of producing up to genome-wide data with unprecedented precision levels. Combining all these approaches gives us hope for novel advances that will address the current blind spots of the Banff system.
Collapse
Affiliation(s)
- Bertrand Chauveau
- Department of Pathology, Bordeaux University Hospital, Pellegrin Hospital, Place Amélie Raba Léon, Bordeaux, France
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Lionel Couzi
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| | - Pierre Merville
- CNRS UMR 5164 ImmunoConcEpT, University of Bordeaux, Bordeaux, France
- Department of Nephrology, Transplantation Dialysis, Apheresis, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| |
Collapse
|
5
|
Udomkarnjananun S, Schagen MR, Hesselink DA. A review of landmark studies on maintenance immunosuppressive regimens in kidney transplantation. ASIAN BIOMED 2024; 18:92-108. [PMID: 39175954 PMCID: PMC11338012 DOI: 10.2478/abm-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Immunosuppressive medications play a pivotal role in kidney transplantation, and the calcineurin inhibitors (CNIs), including cyclosporine A (CsA) and tacrolimus (TAC), are considered as the backbone of maintenance immunosuppressive regimens. Since the introduction of CNIs in kidney transplantation, the incidence of acute rejection has decreased, and allograft survival has improved significantly. However, CNI nephrotoxicity has been a major concern, believed to heavily impact long-term allograft survival and function. To address this concern, several CNI-sparing regimens were developed and studied in randomized, controlled, clinical trials, aiming to reduce CNI exposure and preserve long-term allograft function. However, more recent information has revealed that CNI nephrotoxicity is not the primary cause of late allograft failure, and its histopathology is neither specific nor pathognomonic. In this review, we discuss the historical development of maintenance immunosuppressive regimens in kidney transplantation, covering the early era of transplantation, the CNI-sparing era, and the current era where the alloimmune response, rather than CNI nephrotoxicity, appears to be the major contributor to late allograft failure. Our goal is to provide a chronological overview of the development of maintenance immunosuppressive regimens and summarize the most recent information for clinicians caring for kidney transplant recipients (KTRs).
Collapse
Affiliation(s)
- Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
- Excellence Center for Solid Organ Transplantation, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok10330, Thailand
- Renal Immunology and Transplantation Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok10330, Thailand
| | - Maaike R. Schagen
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam3000, The Netherlands
| | - Dennis A. Hesselink
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam3000, The Netherlands
| |
Collapse
|
6
|
Wen N, Wu J, Li H, Liao J, Lan L, Yang X, Zhu G, Lei Z, Dong J, Sun X. Immune landscape in rejection of renal transplantation revealed by high-throughput single-cell RNA sequencing. Front Cell Dev Biol 2023; 11:1208566. [PMID: 37547477 PMCID: PMC10397399 DOI: 10.3389/fcell.2023.1208566] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Background: The role of the cellular level in kidney transplant rejection is unclear, and single-cell RNA sequencing (scRNA-seq) can reveal the single-cell landscape behind rejection of human kidney allografts at the single-cell level. Methods: High-quality transcriptomes were generated from scRNA-seq data from five human kidney transplantation biopsy cores. Cluster analysis was performed on the scRNA-seq data by known cell marker genes in order to identify different cell types. In addition, pathways, pseudotime developmental trajectories and transcriptional regulatory networks involved in different cell subpopulations were explored. Next, we systematically analyzed the scoring of gene sets regarding single-cell expression profiles based on biological processes associated with oxidative stress. Results: We obtained 81,139 single cells by scRNA-seq from kidney transplant tissue biopsies of three antibody-mediated rejection (ABMR) patients and two acute kidney injury (AKI) patients with non-rejection causes and identified 11 cell types, including immune cells, renal cells and several stromal cells. Immune cells such as macrophages showed inflammatory activation and antigen presentation and complement signaling, especially in rejection where some subpopulations of cells specifically expressed in rejection showed specific pro-inflammatory responses. In addition, patients with rejection are characterized by an increased number of fibroblasts, and further analysis of subpopulations of fibroblasts revealed their involvement in inflammatory and fibrosis-related pathways leading to increased renal rejection and fibrosis. Notably, the gene set score for response to oxidative stress was higher in patients with rejection. Conclusion: Insight into histological differences in kidney transplant patients with or without rejection was gained by assessing differences in cellular levels at single-cell resolution. In conclusion, we applied scRNA-seq to rejection after renal transplantation to deconstruct its heterogeneity and identify new targets for personalized therapeutic approaches.
Collapse
Affiliation(s)
- Ning Wen
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| | - Jihua Wu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| | - Haibin Li
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| | - Jixiang Liao
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liugen Lan
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiawei Yang
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangyi Zhu
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiying Lei
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianhui Dong
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xuyong Sun
- Transplant Medical Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Organ Donation and Transplantation, Nanning, China
- Guangxi Clinical Research Center for Organ Transplantation, Nanning, China
| |
Collapse
|
7
|
Madill-Thomsen KS, Böhmig GA, Bromberg J, Einecke G, Eskandary F, Gupta G, Myslak M, Viklicky O, Perkowska-Ptasinska A, Solez K, Halloran PF. Relating Molecular T Cell-mediated Rejection Activity in Kidney Transplant Biopsies to Time and to Histologic Tubulitis and Atrophy-fibrosis. Transplantation 2023; 107:1102-1114. [PMID: 36575574 PMCID: PMC10125115 DOI: 10.1097/tp.0000000000004396] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND We studied the variation in molecular T cell-mediated rejection (TCMR) activity in kidney transplant indication biopsies and its relationship with histologic lesions (particularly tubulitis and atrophy-fibrosis) and time posttransplant. METHODS We examined 175 kidney transplant biopsies with molecular TCMR as defined by archetypal analysis in the INTERCOMEX study ( ClinicalTrials.gov #NCT01299168). TCMR activity was defined by a molecular classifier. RESULTS Archetypal analysis identified 2 TCMR classes, TCMR1 and TCMR2: TCMR1 had higher TCMR activity and more antibody-mediated rejection ("mixed") activity and arteritis but little hyalinosis, whereas TCMR2 had less TCMR activity but more atrophy-fibrosis. TCMR1 and TCMR2 had similar levels of molecular injury and tubulitis. Both TCMR1 and TCMR2 biopsies were uncommon after 2 y posttransplant and were rare after 10 y, particularly TCMR1. Within late TCMR biopsies, TCMR classifier activity and activity molecules such as IFNG fell progressively with time, but tubulitis and molecular injury were sustained. Atrophy-fibrosis was increased in TCMR biopsies, even in the first year posttransplant, and rose with time posttransplant. TCMR1 and TCMR2 both reduced graft survival, but in random forests, the strongest determinant of survival after biopsies with TCMR was molecular injury, not TCMR activity. CONCLUSIONS TCMR varies in intensity but is always strongly related to molecular injury and atrophy-fibrosis, which ultimately explains its effect on survival. We hypothesize, based on the reciprocal relationship with hyalinosis, that the TCMR1-TCMR2 gradient reflects calcineurin inhibitor drug underexposure, whereas the time-dependent decline in TCMR activity and frequency after the first year reflects T-cell exhaustion.
Collapse
Affiliation(s)
| | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Gunilla Einecke
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA
| | - Marek Myslak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation SPWSZ Hospital, Pomeranian Medical University, Szczecin, Poland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Kim Solez
- Department of Laboratory Medicine and Pathology, Division of Anatomical Pathology, University of Alberta, Edmonton, Canada
| | - Philip F. Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
- Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Halloran K, Mackova M, Parkes MD, Hirji A, Weinkauf J, Timofte IL, Snell GI, Westall GP, Lischke R, Zajacova A, Havlin J, Hachem R, Kreisel D, Levine D, Kubisa B, Piotrowska M, Juvet S, Keshavjee S, Jaksch P, Klepetko W, Halloran PF. The molecular features of chronic lung allograft dysfunction in lung transplant airway mucosa. J Heart Lung Transplant 2022; 41:1689-1699. [PMID: 36163162 DOI: 10.1016/j.healun.2022.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Many lung transplants fail due to chronic lung allograft dysfunction (CLAD). We recently showed that transbronchial biopsies (TBBs) from CLAD patients manifest severe parenchymal injury and dedifferentiation, distinct from time-dependent changes. The present study explored time-selective and CLAD-selective transcripts in mucosal biopsies from the third bronchial bifurcation (3BMBs), compared to those in TBBs. METHODS We used genome-wide microarray measurements in 324 3BMBs to identify CLAD-selective changes as well as time-dependent changes and develop a CLAD classifier. CLAD-selective transcripts were identified with linear models for microarray data (limma) and were used to build an ensemble of 12 classifiers to predict CLAD. Hazard models and random forests were then used to predict the risk of graft loss using the CLAD classifier, transcript sets associated with rejection, injury, and time. RESULTS T cell-mediated rejection and donor-specific antibody were increased in CLAD 3BMBs but most had no rejection. Like TBBs, 3BMBs showed a time-dependent increase in transcripts expressed in inflammatory cells that was not associated with CLAD or survival. Also like TBBs, the CLAD-selective transcripts in 3BMBs reflected severe parenchymal injury and dedifferentiation, not inflammation or rejection. While 3BMBs and TBBs did not overlap in their top 20 CLAD-selective transcripts, many CLAD-selective transcripts were significantly increased in both for example LOXL1, an enzyme controlling matrix remodeling. In Cox models for one-year survival, the 3BMB CLAD-selective transcripts and CLAD classifier predicted graft loss and correlated with CLAD stage. Many 3BMB CLAD-selective transcripts were also increased by injury in kidney transplants and correlated with decreased kidney survival, including LOXL1. CONCLUSIONS Mucosal and transbronchial biopsies from CLAD patients reveal a diffuse molecular injury and dedifferentiation state that impacts prognosis and correlates with the physiologic disturbances. CLAD state in lung transplants shares features with failing kidney transplants, indicating elements shared by the injury responses of distressed organs.
Collapse
Affiliation(s)
| | | | | | - Alim Hirji
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Greg I Snell
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | - Glen P Westall
- Alfred Hospital Lung Transplant Service, Melbourne, Victoria, Australia
| | | | | | - Jan Havlin
- University Hospital Motol, Prague, Czech Republic
| | - Ramsey Hachem
- Washington University in St Louis, St. Louis, Missouri
| | | | | | | | | | - Stephen Juvet
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
9
|
Chancay J, Liu C, Chauhan K, Andersen L, Harris C, Coca S, Delaney V, Tedla F, De Boccardo G, Sehgal V, Moledina D, Formica R, Reghuvaran A, Banu K, Florman S, Akalin E, Shapiro R, Salem F, Menon MC. Role of time from transplantation to biopsy in histologic ABMR: A single center report. Clin Transplant 2022; 36:e14802. [PMID: 36069577 PMCID: PMC10211409 DOI: 10.1111/ctr.14802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/24/2022] [Accepted: 08/19/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Allograft biopsies with lesions of Antibody-Mediated Rejection (ABMR) with Microvascular Inflammation (MVI) have shown heterogeneous etiologies and outcomes. METHODS To examine factors associated with outcomes in biopsies that meet histologic ABMR criteria, we retrospectively evaluated for-cause biopsies at our center between 2011 and 2017. We included biopsies that met the diagnosis of ABMR by histology, along with simultaneous evaluation for anti-Human Leukocyte Antigen (HLA) donor-specific antibodies (DSA). We evaluated death-censored graft loss (DCGL) and used a principal component analysis (PCA) approach to identify key predictors of outcomes. RESULTS Out of the histologic ABMR cohort (n = 118), 70 were DSA-positive ABMR, while 48 had no DSA. DSA(+)ABMR were younger and more often female recipients. DSA(+)ABMR occurred significantly later post-transplant than DSA(-)ABMR suggesting time-dependence. DSA(+)ABMR had higher inflammatory scores (i,t), chronicity scores (ci, ct) and tended to have higher MVI scores. Immunodominance of DQ-DSA in DSA(+)ABMR was associated with higher i+t scores. Clinical/histologic factors significantly associated with DCGL after biopsy were inputted into the PCA. Principal component-1 (PC-1), which contributed 34.8% of the variance, significantly correlated with time from transplantation to biopsy, ci/ct scores and DCGL. In the PCA analyses, i, t scores, DQ-DSA, and creatinine at biopsy retained significant correlations with GL-associated PCs. CONCLUSIONS Time from transplantation to biopsy plays a major role in the prognosis of biopsies with histologic ABMR and MVI, likely due to ongoing chronic allograft injury over time.
Collapse
Affiliation(s)
- Jorge Chancay
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Caroline Liu
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lisa Andersen
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cynthia Harris
- Transplant Center at Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, United States
| | - Steven Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Veronica Delaney
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fasika Tedla
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Graciela De Boccardo
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Vinita Sehgal
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Dennis Moledina
- Yale New Haven Transplantation Center, Yale School of Medicine, New Haven, CT, United States
| | - Richard Formica
- Yale New Haven Transplantation Center, Yale School of Medicine, New Haven, CT, United States
| | - Anand Reghuvaran
- Yale New Haven Transplantation Center, Yale School of Medicine, New Haven, CT, United States
| | - Khadija Banu
- Yale New Haven Transplantation Center, Yale School of Medicine, New Haven, CT, United States
| | - Sander Florman
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Enver Akalin
- Montefiore Einstein Center for Transplantation, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ron Shapiro
- Transplant Center at Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, United States
| | - Fadi Salem
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Madhav C Menon
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Yale New Haven Transplantation Center, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Assessing the Relationship Between Molecular Rejection and Parenchymal Injury in Heart Transplant Biopsies. Transplantation 2022; 106:2205-2216. [PMID: 35968995 DOI: 10.1097/tp.0000000000004231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The INTERHEART study (ClinicalTrials.gov #NCT02670408) used genome-wide microarrays to detect rejection in endomyocardial biopsies; however, many heart transplants with no rejection have late dysfunction and impaired survival. We used the microarray measurements to develop a molecular classification of parenchymal injury. METHODS In 1320 endomyocardial biopsies from 645 patients previously studied for rejection-associated transcripts, we measured the expression of 10 injury-induced transcript sets: 5 induced by recent injury; 2 reflecting macrophage infiltration; 2 normal heart transcript sets; and immunoglobulin transcripts, which correlate with time. We used archetypal clustering to assign injury groups. RESULTS Injury transcript sets correlated with impaired function. Archetypal clustering based on the expression of injury transcript sets assigned each biopsy to 1 of 5 injury groups: 87 Severe-injury, 221 Late-injury, and 3 with lesser degrees of injury, 376 No-injury, 526 Mild-injury, and 110 Moderate-injury. Severe-injury had extensive loss of normal transcripts (dedifferentiation) and increase in macrophage and injury-induced transcripts. Late-injury was characterized by high immunoglobulin transcript expression. In Severe- and Late-injury, function was depressed, and short-term graft failure was increased, even in hearts with no rejection. T cell-mediated rejection almost always had parenchymal injury, and 85% had Severe- or Late-injury. In contrast, early antibody-mediated rejection (ABMR) had little injury, but late ABMR often had the Late-injury state. CONCLUSION Characterizing heart transplants for their injury state provides new understanding of dysfunction and outcomes and demonstrates the differential impact of T cell-mediated rejection versus ABMR on the parenchyma. Slow deterioration from ABMR emerges as a major contributor to late dysfunction.
Collapse
|
11
|
Halloran PF, Madill‐Thomsen KS, Pon S, Sikosana MLN, Böhmig GA, Bromberg J, Einecke G, Eskandary F, Gupta G, Hidalgo LG, Myslak M, Viklicky O, Perkowska‐Ptasinska A. Molecular diagnosis of ABMR with or without donor-specific antibody in kidney transplant biopsies: Differences in timing and intensity but similar mechanisms and outcomes. Am J Transplant 2022; 22:1976-1991. [PMID: 35575435 PMCID: PMC9540308 DOI: 10.1111/ajt.17092] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied the clinical, histologic, and molecular features distinguishing DSA-negative from DSA-positive molecularly defined antibody-mediated rejection (mABMR). We analyzed mABMR biopsies with available DSA assessments from the INTERCOMEX study: 148 DSA-negative versus 248 DSA-positive, compared with 864 no rejection (excluding TCMR and Mixed). DSA-positivity varied with mABMR stage: early-stage (EABMR) 56%; fully developed (FABMR) 70%; and late-stage (LABMR) 58%. DSA-negative patients with mABMR were usually sensitized, 60% being HLA antibody-positive. Compared with DSA-positive mABMR, DSA-negative mABMR was more often C4d-negative; earlier by 1.5 years (average 2.4 vs. 3.9 years); and had lower ABMR activity and earlier stage in molecular and histology features. However, the top ABMR-associated transcripts were identical in DSA-negative versus DSA-positive mABMR, for example, NK-associated (e.g., KLRD1 and GZMB) and IFNG-inducible (e.g., PLA1A). Genome-wide class comparison between DSA-negative and DSA-positive mABMR showed no significant differences in transcript expression except those related to lower intensity and earlier time of DSA-negative ABMR. Three-year graft loss in DSA-negative mABMR was the same as DSA-positive mABMR, even after adjusting for ABMR stage. Thus, compared with DSA-positive mABMR, DSA-negative mABMR is on average earlier, less active, and more often C4d-negative but has similar graft loss, and genome-wide analysis suggests that it involves the same mechanisms. SUMMARY SENTENCE: In 398 kidney transplant biopsies with molecular antibody-mediated rejection, the 150 DSA-negative cases are earlier, less intense, and mostly C4d-negative, but use identical molecular mechanisms and have the same risk of graft loss as the 248 DSA-positive cases.
Collapse
Affiliation(s)
- Philip F. Halloran
- Alberta Transplant Applied Genomics CentreEdmontonAlbertaCanada,Department of Medicine, Division of Nephrology and Transplant ImmunologyUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Shane Pon
- Alberta Transplant Applied Genomics CentreEdmontonAlbertaCanada
| | | | - Georg A. Böhmig
- Division of Nephrology and Dialysis, Department of Medicine IIIMedical University of ViennaViennaAustria
| | | | - Gunilla Einecke
- Department of NephrologyHannover Medical SchoolHannoverGermany
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine IIIMedical University of ViennaViennaAustria
| | - Gaurav Gupta
- Division of NephrologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | | - Marek Myslak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation SPWSZ HospitalPomeranian Medical UniversitySzczecinPoland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant CenterInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | | | | |
Collapse
|
12
|
Ponticelli C, Citterio F. Non-Immunologic Causes of Late Death-Censored Kidney Graft Failure: A Personalized Approach. J Pers Med 2022; 12:1271. [PMID: 36013220 PMCID: PMC9410103 DOI: 10.3390/jpm12081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Despite continuous advances in surgical and immunosuppressive protocols, the long-term survival of transplanted kidneys is still far from being satisfactory. Antibody-mediated rejection, recurrent autoimmune diseases, and death with functioning graft are the most frequent causes of late-kidney allograft failure. However, in addition to these complications, a number of other non-immunologic events may impair the function of transplanted kidneys and directly or indirectly lead to their failure. In this narrative review, we will list and discuss the most important nonimmune causes of late death-censored kidney graft failure, including quality of the donated kidney, adherence to prescriptions, drug toxicities, arterial hypertension, dyslipidemia, new onset diabetes mellitus, hyperuricemia, and lifestyle of the renal transplant recipient. For each of these risk factors, we will report the etiopathogenesis and the potential consequences on graft function, keeping in mind that in many cases, two or more risk factors may negatively interact together.
Collapse
Affiliation(s)
| | - Franco Citterio
- Renal Transplant Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica Sacro Cuore, 00168 Roma, Italy
| |
Collapse
|
13
|
Halloran PF, Böhmig GA, Bromberg J, Einecke G, Eskandary FA, Gupta G, Myslak M, Viklicky O, Perkowska-Ptasinska A, Madill-Thomsen KS. Archetypal Analysis of Injury in Kidney Transplant Biopsies Identifies Two Classes of Early AKI. Front Med (Lausanne) 2022; 9:817324. [PMID: 35463013 PMCID: PMC9021747 DOI: 10.3389/fmed.2022.817324] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/07/2022] [Indexed: 01/07/2023] Open
Abstract
All transplanted kidneys are subjected to some degree of injury as a result of the donation-implantation process and various post-transplant stresses such as rejection. Because transplants are frequently biopsied, they present an opportunity to explore the full spectrum of kidney response-to-wounding from all causes. Defining parenchymal damage in transplanted organs is important for clinical management because it determines function and survival. In this study, we classified the scenarios associated with parenchymal injury in genome-wide microarray results from 1,526 kidney transplant indication biopsies collected during the INTERCOMEX study. We defined injury groups by using archetypal analysis (AA) of scores for gene sets and classifiers previously identified in various injury states. Six groups and their characteristics were defined in this population: No injury, minor injury, two classes of acute kidney injury ("AKI," AKI1, and AKI2), chronic kidney disease (CKD), and CKD combined with AKI. We compared the two classes of AKI, namely, AKI1 and AKI2. AKI1 had a poor function and increased parenchymal dedifferentiation but minimal response-to-injury and inflammation, instead having increased expression of PARD3, a gene previously characterized as being related to epithelial polarity and adherens junctions. In contrast, AKI2 had a poor function and increased response-to-injury, significant inflammation, and increased macrophage activity. In random forest analysis, the most important predictors of function (estimated glomerular filtration rate) and graft loss were injury-based molecular scores, not rejection scores. AKI1 and AKI2 differed in 3-year graft survival, with better survival in the AKI2 group. Thus, injury archetype analysis of injury-induced gene expression shows new heterogeneity in kidney response-to-wounding, revealing AKI1, a class of early transplants with a poor function but minimal inflammation or response to injury, a deviant response characterized as PC3, and an increased risk of failure. Given the relationship between parenchymal injury and kidney survival, further characterization of the injury phenotypes in kidney transplants will be important for an improved understanding that could have implications for understanding native kidney diseases (ClinicalTrials.gov #NCT01299168).
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jonathan Bromberg
- Department of Surgery, University of Maryland, Baltimore, MD, United States
| | - Gunilla Einecke
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Farsad A Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, VA, United States
| | - Marek Myslak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation Samodzielny Publiczny Wojewódzki Szpital Zespolony (SPWSZ) Hospital, Pomeranian Medical University, Szczecin, Poland
| | - Ondrej Viklicky
- Department of Nephrology and Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Agnieszka Perkowska-Ptasinska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | | | | |
Collapse
|
14
|
Raza SS, Agarwal G, Anderson D, Deierhoi M, Fatima H, Hanaway M, Locke J, MacLennan P, Orandi B, Young C, Mannon RB, Seifert ME. Abnormal time-zero histology is predictive of kidney transplant outcomes. Clin Transplant 2022; 36:e14676. [PMID: 35437836 DOI: 10.1111/ctr.14676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/03/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022]
Abstract
Time-zero biopsies can detect donor-derived lesions at the time of kidney transplantation, but their utility in predicting long-term outcomes is unclear under the updated Kidney Allocation System. We conducted a single-center retrospective cohort study of 272 consecutive post-reperfusion time-zero biopsies. We tested the hypothesis that abnormal time-zero histology is a strong indicator of donor quality that increases the precision of the kidney donor profile index (KDPI) score to predict long-term outcomes. We detected abnormal biopsies in 42% of the cohort, which were independently associated with a 1.2-fold increased hazard for a composite of acute rejection, allograft failure, and death after adjusting for clinical characteristics including KDPI. By Kaplan-Meier analysis, the relationship between abnormal time-zero histology and the composite endpoint was only significant in the subgroup of deceased donor kidney transplants with KDPI scores > 35. Abnormal time-zero histology, particularly vascular intimal fibrosis and arteriolar hyalinosis scores, was independently associated with lower 12-month estimated GFR. In conclusion, abnormal time-zero histology is relatively common and identifies a group of kidney recipients at increased risk for worse long-term outcomes. Further studies are needed to determine the optimal patient population in which to deploy time-zero biopsies as an additional surveillance tool. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Syed Sikandar Raza
- Department of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Gaurav Agarwal
- Department of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Douglas Anderson
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Mark Deierhoi
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Huma Fatima
- Department of Pathology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Michael Hanaway
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Jayme Locke
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Paul MacLennan
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Babak Orandi
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Carlton Young
- Department of Surgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Roslyn B Mannon
- Department of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael E Seifert
- Department of Medicine, University of Alabama School of Medicine, Birmingham, AL, USA.,Department of Pediatrics, University of Alabama School of Medicine, Birmingham, AL, USA
| |
Collapse
|
15
|
Parkes MD, Halloran K, Hirji A, Pon S, Weinkauf J, Timofte IL, Snell GI, Westall GP, Havlin J, Lischke R, Zajacová A, Hachem R, Kreisel D, Levine D, Kubisa B, Piotrowska M, Juvet S, Keshavjee S, Jaksch P, Klepetko W, Halloran PF. Transcripts associated with chronic lung allograft dysfunction in transbronchial biopsies of lung transplants. Am J Transplant 2022; 22:1054-1072. [PMID: 34850543 DOI: 10.1111/ajt.16895] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/14/2021] [Accepted: 11/07/2021] [Indexed: 01/25/2023]
Abstract
Transplanted lungs suffer worse outcomes than other organ transplants with many developing chronic lung allograft dysfunction (CLAD), diagnosed by physiologic changes. Histology of transbronchial biopsies (TBB) yields little insight, and the molecular basis of CLAD is not defined. We hypothesized that gene expression in TBBs would reveal the nature of CLAD and distinguish CLAD from changes due simply to time posttransplant. Whole-genome mRNA profiling was performed with microarrays in 498 prospectively collected TBBs from the INTERLUNG study, 90 diagnosed as CLAD. Time was associated with increased expression of inflammation genes, for example, CD1E and immunoglobulins. After correcting for time, CLAD manifested not as inflammation but as parenchymal response-to-wounding, with increased expression of genes such as HIF1A, SERPINE2, and IGF1 that are increased in many injury and disease states and cancers, associated with development, angiogenesis, and epithelial response-to-wounding in pathway analysis. Fibrillar collagen genes were increased in CLAD, indicating matrix changes, and normal transcripts were decreased-dedifferentiation. Gene-based classifiers predicted CLAD with AUC 0.70 (no time-correction) and 0.87 (time-corrected). CLAD related gene sets and classifiers were strongly prognostic for graft failure and correlated with CLAD stage. Thus, in TBBs, molecular changes indicate that CLAD primarily reflects severe parenchymal injury-induced changes and dedifferentiation.
Collapse
Affiliation(s)
| | | | - Alim Hirji
- University of Alberta, Edmonton, Alberta, Canada
| | - Shane Pon
- University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Greg I Snell
- Alfred Hospital Lung Transplant Service, Melbourne, Australia
| | - Glen P Westall
- Alfred Hospital Lung Transplant Service, Melbourne, Australia
| | - Jan Havlin
- University Hospital Motol, Prague, Czech Republic
| | | | | | - Ramsey Hachem
- Washington University in St Louis, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Washington University in St Louis, St. Louis, Missouri, USA
| | - Deborah Levine
- University of Texas San Antonio, San Antonio, Texas, USA
| | - Bartosz Kubisa
- Pomeranian Medical University of Szczecin, Szczecin, Poland
| | | | - Stephen Juvet
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Madill-Thomsen KS, Abouljoud M, Bhati C, Ciszek M, Durlik M, Feng S, Foroncewicz B, Francis I, Grąt M, Jurczyk K, Klintmalm G, Krasnodębski M, McCaughan G, Miquel R, Montano-Loza A, Moonka D, Mucha K, Myślak M, Pączek L, Perkowska-Ptasińska A, Piecha G, Reichman T, Sanchez-Fueyo A, Tronina O, Wawrzynowicz-Syczewska M, Więcek A, Zieniewicz K, Halloran PF. The molecular phenotypes of injury, steatohepatitis, and fibrosis in liver transplant biopsies in the INTERLIVER study. Am J Transplant 2022; 22:909-926. [PMID: 34780106 DOI: 10.1111/ajt.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/25/2023]
Abstract
To extend previous molecular analyses of rejection in liver transplant biopsies in the INTERLIVER study (ClinicalTrials.gov #NCT03193151), the present study aimed to define the gene expression selective for parenchymal injury, fibrosis, and steatohepatitis. We analyzed genome-wide microarray measurements from 337 liver transplant biopsies from 13 centers. We examined expression of genes previously annotated as increased in injury and fibrosis using principal component analysis (PCA). PC1 reflected parenchymal injury and related inflammation in the early posttransplant period, slowly regressing over many months. PC2 separated early injury from late fibrosis. Positive PC3 identified a distinct mildly inflamed state correlating with histologic steatohepatitis. Injury PCs correlated with liver function and histologic abnormalities. A classifier trained on histologic steatohepatitis predicted histologic steatohepatitis with cross-validated AUC = 0.83, and was associated with pathways reflecting metabolic abnormalities distinct from fibrosis. PC2 predicted histologic fibrosis (AUC = 0.80), as did a molecular fibrosis classifier (AUC = 0.74). The fibrosis classifier correlated with matrix remodeling pathways with minimal overlap with those selective for steatohepatitis, although some biopsies had both. Genome-wide assessment of liver transplant biopsies can not only detect molecular changes induced by rejection but also those correlating with parenchymal injury, steatohepatitis, and fibrosis, offering potential insights into disease mechanisms for primary diseases.
Collapse
Affiliation(s)
| | | | - Chandra Bhati
- Virginia Commonwealth University, Richmond, Virginia, USA
| | - Michał Ciszek
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sandy Feng
- University of California San Francisco, San Francisco, California, USA
| | - Bartosz Foroncewicz
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Jurczyk
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University, Szczecin, Poland
| | | | - Maciej Krasnodębski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Geoff McCaughan
- Centenary Research Institute, Australian National Liver Transplant Unit, Royal Prince Alfred Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Myślak
- Department of Clinical Interventions, Department of Nephrology and Kidney Transplantation SPWSZ Hospital, Pomeranian Medical University, Szczecin, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | | | | | - Olga Tronina
- Department of Transplant Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Marta Wawrzynowicz-Syczewska
- Department of Infectious Diseases, Hepatology and Liver Transplantation, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
17
|
He X, Tolosa MF, Zhang T, Goru SK, Ulloa Severino L, Misra PS, McEvoy CM, Caldwell L, Szeto SG, Gao F, Chen X, Atin C, Ki V, Vukosa N, Hu C, Zhang J, Yip C, Krizova A, Wrana JL, Yuen DA. Myofibroblast YAP/TAZ activation is a key step in organ fibrogenesis. JCI Insight 2022; 7:146243. [PMID: 35191398 PMCID: PMC8876427 DOI: 10.1172/jci.insight.146243] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Fibrotic diseases account for nearly half of all deaths in the developed world. Despite its importance, the pathogenesis of fibrosis remains poorly understood. Recently, the two mechanosensitive transcription cofactors YAP and TAZ have emerged as important profibrotic regulators in multiple murine tissues. Despite this growing recognition, a number of important questions remain unanswered, including which cell types require YAP/TAZ activation for fibrosis to occur and the time course of this activation. Here, we present a detailed analysis of the role that myofibroblast YAP and TAZ play in organ fibrosis and the kinetics of their activation. Using analyses of cells, as well as multiple murine and human tissues, we demonstrated that myofibroblast YAP and TAZ were activated early after organ injury and that this activation was sustained. We further demonstrated the critical importance of myofibroblast YAP/TAZ in driving progressive scarring in the kidney, lung, and liver, using multiple transgenic models in which YAP and TAZ were either deleted or hyperactivated. Taken together, these data establish the importance of early injury-induced myofibroblast YAP and TAZ activation as a key event driving fibrosis in multiple organs. This information should help guide the development of new antifibrotic YAP/TAZ inhibition strategies.
Collapse
Affiliation(s)
- Xiaolin He
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Monica F Tolosa
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Tianzhou Zhang
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Santosh Kumar Goru
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Luisa Ulloa Severino
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Paraish S Misra
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Caitríona M McEvoy
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Lauren Caldwell
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Stephen G Szeto
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Feng Gao
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and.,Department of Pathology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Xiaolan Chen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and.,Department of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Cassandra Atin
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Victoria Ki
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Noah Vukosa
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Catherine Hu
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Johnny Zhang
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| | - Christopher Yip
- Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Adriana Krizova
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and.,Department of Laboratory Medicine and Pathobiology, St. Michael's Hospital (Unity Health Toronto) and University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Darren A Yuen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital (Unity Health Toronto) and Department of Medicine, and
| |
Collapse
|
18
|
Halloran PF, Reeve J, Madill-Thomsen KS, Demko Z, Prewett A, Billings P. The Trifecta Study: Comparing Plasma Levels of Donor-derived Cell-Free DNA with the Molecular Phenotype of Kidney Transplant Biopsies. J Am Soc Nephrol 2022; 33:387-400. [PMID: 35058354 PMCID: PMC8819982 DOI: 10.1681/asn.2021091191] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The relationship between the donor-derived cell-free DNA fraction (dd-cfDNA[%]) in plasma in kidney transplant recipients at time of indication biopsy and gene expression in the biopsied allograft has not been defined. METHODS In the prospective, multicenter Trifecta study, we collected tissue from 300 biopsies from 289 kidney transplant recipients to compare genome-wide gene expression in biopsies with dd-cfDNA(%) in corresponding plasma samples drawn just before biopsy. Rejection was assessed with the microarray-based Molecular Microscope Diagnostic System using automatically assigned rejection archetypes and molecular report sign-outs, and histology assessments that followed Banff guidelines. RESULTS The median time of biopsy post-transplantation was 455 days (5 days to 32 years), with a case mix similar to that of previous studies: 180 (60%) no rejection, 89 (30%) antibody-mediated rejection (ABMR), and 31 (10%) T cell-mediated rejection (TCMR) and mixed. In genome-wide mRNA measurements, all 20 top probe sets correlating with dd-cfDNA(%) were previously annotated for association with ABMR and all types of rejection, either natural killer (NK) cell-expressed (e.g., GNLY, CCL4, TRDC, and S1PR5) or IFN-γ-inducible (e.g., PLA1A, IDO1, CXCL11, and WARS). Among gene set and classifier scores, dd-cfDNA(%) correlated very strongly with ABMR and all types of rejection, reasonably strongly with active TCMR, and weakly with inactive TCMR, kidney injury, and atrophy fibrosis. Active ABMR, mixed, and active TCMR had the highest dd-cfDNA(%), whereas dd-cfDNA(%) was lower in late-stage ABMR and less-active TCMR. By multivariate random forests and logistic regression, molecular rejection variables predicted dd-cfDNA(%) better than histologic variables. CONCLUSIONS The dd-cfDNA(%) at time of indication biopsy strongly correlates with active molecular rejection and has the potential to reduce unnecessary biopsies. CLINICAL TRIAL REGISTRATION NUMBER NCT04239703.
Collapse
Affiliation(s)
- Philip F. Halloran
- Alberta Transplant Applied Genomics Center, Edmonton, Canada,Department of Medicine, University of Alberta, Edmonton, Canada,Transcriptome Sciences Inc., Edmonton, Canada
| | - Jeff Reeve
- Alberta Transplant Applied Genomics Center, Edmonton, Canada
| | - Katelynn S. Madill-Thomsen
- Alberta Transplant Applied Genomics Center, Edmonton, Canada,Transcriptome Sciences Inc., Edmonton, Canada
| | | | | | | | | |
Collapse
|
19
|
Halloran PF, Einecke G, Sikosana MLN, Madill-Thomsen K. The Biology and Molecular Basis of Organ Transplant Rejection. Handb Exp Pharmacol 2022; 272:1-26. [PMID: 35091823 DOI: 10.1007/164_2021_557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Allograft rejection is defined as tissue injury in a transplanted allogeneic organ produced by the effector mechanisms of the adaptive alloimmune response. Effector T lymphocytes and IgG alloantibodies cause two different types of rejection that can occur either individually or simultaneously: T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR). In TCMR, cognate effector T cells infiltrate the graft and orchestrate an interstitial inflammatory response in the kidney interstitium in which effector T cells engage antigen-presenting myeloid cells, activating the T cells, antigen-presenting cells, and macrophages. The result is intense expression of IFNG and IFNG-induced molecules, expression of effector T cell molecules and macrophage molecules and checkpoints, and deterioration of parenchymal function. The diagnostic lesions of TCMR follow, i.e. interstitial inflammation, parenchymal deterioration, and intimal arteritis. In ABMR, HLA IgG alloantibodies produced by plasma cells bind to the donor antigens on graft microcirculation, leading to complement activation, margination, and activation of NK cells and neutrophils and monocytes, and endothelial injury, sometimes with intimal arteritis. TCMR becomes infrequent after 5-10 years post-transplant, probably reflecting adaptive mechanisms such as checkpoints, but ABMR can present even decades post-transplant. Some rejection is triggered by inadequate immunosuppression and non-adherence, challenging the clinician to target effective immunosuppression even decades post-transplant.
Collapse
Affiliation(s)
- Philip F Halloran
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Gunilla Einecke
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Majid L N Sikosana
- Division of Nephrology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
20
|
Karakizlis H, van Rosmalen M, Boide P, Askevold I, Vogelaar S, Lorf T, Berlakovich G, Nitschke M, Padberg W, Weimer R. Retransplanting a previously transplanted kidney: A safe strategy in times of organ shortage? Clin Transplant 2021; 36:e14554. [PMID: 34862985 DOI: 10.1111/ctr.14554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The shortage of organs for transplantation remains a global problem. The retransplantation of a previously transplanted kidney might be a possibility to expand the pool of donors. We provide our experience with the successful reuse of transplanted kidneys in the Eurotransplant region. METHODS A query in the Eurotransplant database was performed between January 1, 1995 and December 31, 2015, to find kidney donors who themselves had previously received a kidney graft. RESULTS Nine out of a total of 68,554 allocated kidneys had previously been transplanted. Four of these kidneys were transplanted once again. The mean interval between the first transplant and retransplantation was 1689±1682 days (SD; range 55-5,333 days). At the time of the first transplantation the mean serum creatinine of the donors was 1.0 mg/dl (.6-1.3 mg/dl) and at the second transplantation 1.4 mg/dl (.8-1.5 mg/dl). The mean graft survival in the first recipient was 50 months (2-110 months) and in the second recipient 111 months (40-215 months). CONCLUSION Transplantation of a previously transplanted kidney may successfully be performed with well-preserved graft function and long-term graft survival, even if the first transplantation was performed a long time ago. Such organs should be considered even for younger recipients in carefully selected cases.
Collapse
Affiliation(s)
- Hristos Karakizlis
- Department of Internal Medicine II, Division of Nephrology and Renal Transplantation, Justus-Liebig-University of Giessen, Giessen, Germany
| | | | - Philipp Boide
- Department of Internal Medicine II, Division of Nephrology and Renal Transplantation, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ingolf Askevold
- Department of General, Visceral and Thoracic Surgery, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Serge Vogelaar
- Eurotransplant International Foundation, Leiden, The Netherlands
| | - Thomas Lorf
- Department of General, Visceral and Pediatric Surgery, Georg-August-University of Göttingen, Göttingen, Germany
| | - Gabrielle Berlakovich
- Department of General Surgery and Transplantation, University of Vienna, Vienna, Austria
| | - Martin Nitschke
- Division of Nephrology and Transplantation, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Winfried Padberg
- Department of General, Visceral and Thoracic Surgery, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Rolf Weimer
- Department of Internal Medicine II, Division of Nephrology and Renal Transplantation, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
21
|
Li SS, Sun Q, Hua MR, Suo P, Chen JR, Yu XY, Zhao YY. Targeting the Wnt/β-Catenin Signaling Pathway as a Potential Therapeutic Strategy in Renal Tubulointerstitial Fibrosis. Front Pharmacol 2021; 12:719880. [PMID: 34483931 PMCID: PMC8415231 DOI: 10.3389/fphar.2021.719880] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis. Wnt signaling is induced, and β-catenin is activated, associated with the development and progression of renal fibrosis. Wnt/β-catenin controls the expression of various downstream mediators such as snail1, twist, matrix metalloproteinase-7, plasminogen activator inhibitor-1, transient receptor potential canonical 6, and renin-angiotensin system components in epithelial cells, fibroblast, and macrophages. In addition, Wnt/β-catenin is usually intertwined with other signaling pathways to promote renal interstitial fibrosis. Actually, given the crucial of Wnt/β-catenin signaling in renal fibrogenesis, blocking this signaling may benefit renal interstitial fibrosis. There are several antagonists of Wnt signaling that negatively control Wnt activation, and these include soluble Fzd-related proteins, the family of Dickkopf 1 proteins, Klotho and Wnt inhibitory factor-1. Furthermore, numerous emerging small-molecule β-catenin inhibitors cannot be ignored to prevent and treat renal fibrosis. Moreover, we reviewed the knowledge focusing on anti-fibrotic effects of natural products commonly used in kidney disease by inhibiting the Wnt/β-catenin signaling pathway. Therefore, in this review, we summarize recent advances in the regulation, downstream targets, role, and mechanisms of Wnt/β-catenin signaling in renal fibrosis pathogenesis. We also discuss the therapeutic potential of targeting this pathway to treat renal fibrosis; this may shed new insights into effective treatment strategies to prevent and treat renal fibrosis.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China.,The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China.,The First School of Clinical Medicine, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
| | - Meng-Ru Hua
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| | - Jia-Rong Chen
- Department of Clinical Pharmacy, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi'an, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi'an, China
| |
Collapse
|
22
|
Fan Z, Liu T, Huang H, Lin J, Zeng Z. A ferroptosis-related gene signature for graft loss prediction following renal allograft. Bioengineered 2021; 12:4217-4232. [PMID: 34338139 PMCID: PMC8806795 DOI: 10.1080/21655979.2021.1953310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Allogeneic kidney transplantation (renal allograft) is the most effective treatment for advanced kidney disease. Previous studies have indicated that ferroptosis participates in the progression of acute kidney injury and renal transplant failure. However, few studies have evaluated the prognostic value of ferroptosis on renal transplantation outcomes. In this study, a total of 22 differentially expressed ferroptosis-related genes (DFGs) were identified, which were mainly enriched in infection-related pathways. Next, a ferroptosis-related gene signature, including GA-binding protein transcription factor subunit beta 1 (GABPB1), cyclin-dependent kinase inhibitor 1A (CDKN1A), Toll-like receptor 4 (TLR4), C-X-C motif chemokine ligand 2 (CXCL2), caveolin 1 (CAV1), and ribonucleotide reductase subunit M2 (RRM2), was constructed to predict graft loss following renal allograft. Moreover, receiver operating characteristic (ROC) curves (area under the ROC curve [AUC] > 0.8) demonstrated the accuracy of the gene signature and univariate Cox analysis suggested that the gene signature could play an independent role in graft loss (p < 0.05). Furthermore, the nomogram and calibration plots also indicated the good prognostic capability of the gene signature. Finally, immune-related and cytokine signaling pathways were mostly enriched in renal allograft patients with poor outcomes. Considered together, a ferroptosis-related gene signature and nomogram based on DFGs were created to predict the 1-, 2- and 3- year graft loss probability of renal allograft patients.The gene signature could serve as a valuable biomarker for predicting graft loss, contributing to improving the outcome of allogeneic kidney transplantation.
Collapse
Affiliation(s)
- Zhenlei Fan
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Tao Liu
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Hanfei Huang
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Jie Lin
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| | - Zhong Zeng
- Organ Transplantation Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P. R. China
| |
Collapse
|
23
|
Kung VL, Sandhu R, Haas M, Huang E. Chronic active T cell–mediated rejection is variably responsive to immunosuppressive therapy. Kidney Int 2021; 100:391-400. [DOI: 10.1016/j.kint.2021.03.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/24/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
|
24
|
An Integrated Transcriptomic Approach to Identify Molecular Markers of Calcineurin Inhibitor Nephrotoxicity in Pediatric Kidney Transplant Recipients. Int J Mol Sci 2021; 22:ijms22115414. [PMID: 34063776 PMCID: PMC8196602 DOI: 10.3390/ijms22115414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/29/2023] Open
Abstract
Calcineurin inhibitors are highly efficacious immunosuppressive agents used in pediatric kidney transplantation. However, calcineurin inhibitor nephrotoxicity (CNIT) has been associated with the development of chronic renal allograft dysfunction and decreased graft survival. This study evaluated 37 formalin-fixed paraffin-embedded biopsies from pediatric kidney transplant recipients using gene expression profiling. Normal allograft samples (n = 12) served as negative controls and were compared to biopsies exhibiting CNIT (n = 11). The remaining samples served as positive controls to validate CNIT marker specificity and were characterized by other common causes of graft failure such as acute rejection (n = 7) and interstitial fibrosis/tubular atrophy (n = 7). MiRNA profiles served as the platform for data integration. Oxidative phosphorylation and mitochondrial dysfunction were the top molecular pathways associated with overexpressed genes in CNIT samples. Decreased ATP synthesis was identified as a significant biological function in CNIT, while key toxicology pathways included NRF2-mediated oxidative stress response and increased permeability transition of mitochondria. An integrative analysis demonstrated a panel of 13 significant miRNAs and their 33 CNIT-specific gene targets involved with mitochondrial activity and function. We also identified a candidate panel of miRNAs/genes, which may serve as future molecular markers for CNIT diagnosis as well as potential therapeutic targets.
Collapse
|
25
|
Halloran PF, Böhmig GA, Bromberg JS, Budde K, Gupta G, Einecke G, Eskandary F, Madill-Thomsen K, Reeve J. Discovering novel injury features in kidney transplant biopsies associated with TCMR and donor aging. Am J Transplant 2021; 21:1725-1739. [PMID: 33107191 DOI: 10.1111/ajt.16374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/27/2020] [Accepted: 10/19/2020] [Indexed: 01/25/2023]
Abstract
We previously characterized the molecular changes in acute kidney injury (AKI) and chronic kidney disease (CKD) in kidney transplant biopsies, but parenchymal changes selective for specific types of injury could be missed by such analyses. The present study searched for injury changes beyond AKI and CKD related to specific scenarios, including correlations with donor age. We defined injury using previously defined gene sets and classifiers and used principal component analysis to discover new injury dimensions. As expected, Dimension 1 distinguished normal vs. injury, and Dimension 2 separated early AKI from late CKD, correlating with time posttransplant. However, Dimension 3 was novel, distinguishing a set of genes related to epithelial polarity (e.g., PARD3) that were increased in early AKI and decreased in T cell-mediated rejection (TCMR) but not in antibody-mediated rejection. Dimension 3 was increased in kidneys from older donors and was particularly important in survival of early kidneys. Thus high Dimension 3 scores emerge as a previously unknown element in the kidney response-to-injury that affects epithelial polarity genes and is increased in AKI but depressed in TCMR, indicating that in addition to general injury elements, certain injury elements are selective for specific pathologic mechanisms. (ClinicalTrials.gov NCT01299168).
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Klemens Budde
- Charite-Medical University of Berlin, Berlin, Germany
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, Virginia
| | | | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Jeff Reeve
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
| | | |
Collapse
|
26
|
Einecke G, Reeve J, Gupta G, Böhmig GA, Eskandary F, Bromberg JS, Budde K, Halloran PF. Factors associated with kidney graft survival in pure antibody-mediated rejection at the time of indication biopsy: Importance of parenchymal injury but not disease activity. Am J Transplant 2021; 21:1391-1401. [PMID: 32594646 DOI: 10.1111/ajt.16161] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 01/25/2023]
Abstract
We studied the relative association of clinical, histologic, and molecular variables with risk of kidney transplant failure after an indication biopsy, both in all kidneys and in kidneys with pure antibody-mediated rejection (ABMR). From a prospective study of 1679 biopsies with histologic and molecular testing, we selected one random biopsy per patient (N = 1120), including 321 with pure molecular ABMR. Diagnoses were associated with actuarial survival differences but not good predictions. Therefore we concentrated on clinical (estimated GFR [eGFR], proteinuria, time posttransplant, donor-specific antibody [DSA]) and molecular and histologic features reflecting injury (acute kidney injury [AKI] and atrophy-fibrosis [chronic kidney disease (CKD)] and rejection. For all biopsies, univariate analysis found that failure was strongly associated with low eGFR, AKI, CKD, and glomerular deterioration, but not with rejection activity. In molecular ABMR, the findings were similar: Molecular and histologic activity and DSA were not important compared with injury. Survival in DSA-negative and DSA-positive molecular ABMR was similar. Multivariate survival analysis confirmed the dominance of molecular AKI, CKD, and eGFR. Thus, at indication biopsy, the dominant predictors of failure, both in all kidneys and in ABMR, were related to molecular AKI and CKD and to eGFR, not rejection activity, presumably because rejection confers risk via injury.
Collapse
Affiliation(s)
- Gunilla Einecke
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Jeff Reeve
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Gaurav Gupta
- Division of Nephrology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Georg A Böhmig
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Farsad Eskandary
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité-University Hospital Berlin, Berlin, Germany
| | - Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Medicine, Division of Nephrology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
27
|
Smith RN. In-silico performance, validation, and modeling of the Nanostring Banff Human Organ transplant gene panel using archival data from human kidney transplants. BMC Med Genomics 2021; 14:86. [PMID: 33740956 PMCID: PMC7977303 DOI: 10.1186/s12920-021-00891-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA gene expression of renal transplantation biopsies is commonly used to identify the immunological patterns of graft rejection. Mostly done with microarrays, seminal findings defined the patterns of gene sets associated with rejection and non-rejection kidney allograft diagnoses. To make gene expression more accessible, the Molecular Diagnostics Working Group of the Banff Foundation for Allograft Pathology and NanoString Technologies partnered to create the Banff Human Organ Transplant Panel (BHOT), a gene panel set of 770 genes as a surrogate for microarrays (~ 50,000 genes). The advantage of this platform is that gene expressions are quantifiable on formalin fixed and paraffin embedded archival tissue samples, making gene expression analyses more accessible. The purpose of this report is to test in silico the utility of the BHOT panel as a surrogate for microarrays on archival microarray data and test the performance of the modelled BHOT data. METHODS BHOT genes as a subset of genes from downloaded archival public microarray data on human renal allograft gene expression were analyzed and modelled by a variety of statistical methods. RESULTS Three methods of parsing genes verify that the BHOT panel readily identifies renal rejection and non-rejection diagnoses using in silico statistical analyses of seminal archival databases. Multiple modelling algorithms show a highly variable pattern of misclassifications per sample, either between differently constructed principal components or between modelling algorithms. The misclassifications are related to the gene expression heterogeneity within a given diagnosis because clustering the data into 9 groups modelled with fewer misclassifications. CONCLUSION This report supports using the Banff Human Organ Transplant Panel for gene expression of human renal allografts as a surrogate for microarrays on archival tissue. The data modelled satisfactorily with aggregate diagnoses although with limited per sample accuracy and, thereby, reflects and confirms the modelling complexity and the challenges of modelling gene expression as previously reported.
Collapse
Affiliation(s)
- R N Smith
- Department of Pathology, Massachusetts General Hospital, 501 Warren Bldg, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
28
|
Yang Y, Nankivell BJ, Hua W, Rao P, Ren X, Yu H, Chen T, Cao Q, Wang Y, Wang YM, Lee VW, Alexander SI, P'Ng CH, Rogers N, Zheng G, Harris DC. Renal tubular cell binding of β-catenin to TCF1 versus FoxO1 is associated with chronic interstitial fibrosis in transplanted kidneys. Am J Transplant 2021; 21:727-739. [PMID: 32870598 DOI: 10.1111/ajt.16287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 01/25/2023]
Abstract
β-Catenin is an important co-factor which binds multiple transcriptional molecules and mediates fibrogenic signaling pathways. Its role in kidney transplantation is unknown. We quantified binding of β-catenin within renal tubular epithelial cells to transcription factors, TCF1 and FoxO1, using a proximity ligation assay in 240 transplanted kidneys, and evaluated their pathological and clinical outcomes. β-Catenin/FoxO1 binding in 1-month protocol biopsies inversely correlated with contemporaneous chronic fibrosis, subsequent inflammation. and inflammatory fibrosis (P < .001). The relative binding of β-catenin/TCF1 versus β-catenin/FoxO1 (TF ratio) was the optimal biomarker, and abnormal in diverse fibrotic transplant diseases. A high 1-month TF ratio was followed by greater tubular atrophy and interstitial fibrosis scores, cortical inflammation, renal impairment, and proteinuria at 1 year (n = 131, all P < .001). The TF ratio was associated with reduced eGFR (AUC 0.817), mild fibrosis (AUC 0.717), and moderate fibrosis (AUC 0.769) using receiver operating characteristic analysis. An independent validation cohort (n = 76) confirmed 1-month TF was associated with 12-month moderate fibrosis (15.8% vs. 2.6%, P = .047), however, not with other outcomes or 10-year graft survival, which limits generalizabilty of these findings. In summary, differential binding of β-catenin to TCF1 rather than FoxO1 in renal tubular cells was associated with the fibrogenic response in transplanted kidneys.
Collapse
Affiliation(s)
- Ying Yang
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia.,Department of Nephrology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Brian J Nankivell
- Department of Renal Medicine, Westmead Hospital, Westmead, Australia
| | - Winston Hua
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia
| | - Padmashree Rao
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia
| | - Xiaojun Ren
- Department of Nephrology, Shanxi Bethune Hospital, Taiyuan, China
| | - Hong Yu
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia
| | - Titi Chen
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia
| | - Qi Cao
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia
| | - Yiping Wang
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia
| | - Yuan M Wang
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, Australia
| | - Vincent W Lee
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, Australia
| | - Stephen I Alexander
- Centre for Kidney Research, Children's Hospital at Westmead, Westmead, Australia
| | - Chow H P'Ng
- Tissue Pathology and Diagnostic Oncology ICPMR, Sydney, Australia
| | - Natasha Rogers
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, Australia
| | - Guoping Zheng
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia
| | - David C Harris
- Centre for Transplant and Renal Research, University of Sydney at Westmead Institute for Medical Research, Westmead, Australia.,Department of Renal Medicine, Westmead Hospital, Westmead, Australia
| |
Collapse
|
29
|
Dao M, François H. Cannabinoid Receptor 1 Inhibition in Chronic Kidney Disease: A New Therapeutic Toolbox. Front Endocrinol (Lausanne) 2021; 12:720734. [PMID: 34305821 PMCID: PMC8293381 DOI: 10.3389/fendo.2021.720734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic kidney disease (CKD) concerns millions of individuals worldwide, with few therapeutic strategies available to date. Recent evidence suggests that the endocannabinoid system (ECS) could be a new therapeutic target to prevent CKD. ECS combines receptors, cannabinoid receptor type 1 (CB1R) and type 2 (CB2R), and ligands. The most prominent receptor within the kidney is CB1R, its endogenous local ligands being anandamide and 2-arachidonoylglycerol. Therefore, the present review focuses on the therapeutic potential of CB1R and not CB2R. In the normal kidney, CB1R is expressed in many cell types, especially in the vasculature where it contributes to the regulation of renal hemodynamics. CB1R could also participate to water and sodium balance and to blood pressure regulation but its precise role remains to decipher. CB1R promotes renal fibrosis in both metabolic and non-metabolic nephropathies. In metabolic syndrome, obesity and diabetes, CB1R inhibition not only improves metabolic parameters, but also exerts a direct role in preventing renal fibrosis. In non-metabolic nephropathies, its inhibition reduces the development of renal fibrosis. There is a growing interest of the industry to develop new CB1R antagonists without central nervous side-effects. Experimental data on renal fibrosis are encouraging and some molecules are currently under early-stage clinical phases (phases I and IIa studies). In the present review, we will first describe the role of the endocannabinoid receptors, especially CB1R, in renal physiology. We will next explore the role of endocannabinoid receptors in both metabolic and non-metabolic CKD and renal fibrosis. Finally, we will discuss the therapeutic potential of CB1R inhibition using the new pharmacological approaches. Overall, the new pharmacological blockers of CB1R could provide an additional therapeutic toolbox in the management of CKD and renal fibrosis from both metabolic and non-metabolic origin.
Collapse
Affiliation(s)
- Myriam Dao
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Néphrologie et Transplantation Rénale Adulte, Hôpital Necker Enfants Malades, Paris, France
| | - Helene François
- INSERM UMR_S 1155, Hôpital Tenon, Sorbonne Université, Paris, France
- AP-HP, Soins Intensifs Néphrologiques et Rein Aigu (SINRA), Hôpital Tenon, Sorbonne Université, Paris, France
- *Correspondence: Helene François,
| |
Collapse
|
30
|
Chronic Histologic Changes Are Present Regardless of HLA Mismatches: Evidence from HLA Identical Living Donor Kidney Transplants. Transplantation 2020; 105:e244-e256. [PMID: 33315759 DOI: 10.1097/tp.0000000000003579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND At 5 and 10 years after kidney transplantation, chronic histologic changes such as arteriolar hyalinosis and mesangial expansion are common, however, determining etiology is difficult. We compared surveillance biopsies in living donor kidney transplants (LDKTx) from HLA matched siblings (termed HLA-identical (HLA-ID)) to HLA non-ID to investigate which histologic changes were likely due to alloimmune injury and which were due to non-alloimmune injury. METHODS We performed a retrospective, cohort study comparing HLA-ID sibling LDKTx (n=175) to HLA non-ID LDKTx (n=175; matched for age, sex and year of transplant +/- 2 years) performed at a single institution from 03/1999 to 11/2018. RESULTS Baseline characteristics and maintenance immunosuppression were similar. Mortality rates were similar, but in the HLA-ID group, 10-year death-censored graft survival was higher (93.8% vs 80.9% HLA non-ID LDKTx, p<0.001), rejection rates were lower (after 1 year 9.6% vs 27.1%; p<0.001) and Banff inflammation scores including glomerulitis and peritubular capillaritis were lower on surveillance biopsies at 1, 5 and 10 years. In contrast, chronic Banff scores (interstitial fibrosis, arteriolar hyalinosis, mesangial expansion, etc.) were similar in prevalence and severity on surveillance biopsies at 1, 5 and 10 years. CONCLUSIONS HLA-ID LDKTx have less inflammation and less transplant glomerulopathy, but most chronic histologic changes were similar to less-well matched LDKTx. We conclude that these types of chronic changes are not associated with HLA mismatches and may be due to non-immunologic causes (hypertension, obesity, etc.) suggesting that new management approaches to prevent these lesions may be needed.
Collapse
|
31
|
Cox SN, Chiurlia S, Divella C, Rossini M, Serino G, Bonomini M, Sirolli V, Aiello FB, Zaza G, Squarzoni I, Gangemi C, Stangou M, Papagianni A, Haas M, Schena FP. Formalin-fixed paraffin-embedded renal biopsy tissues: an underexploited biospecimen resource for gene expression profiling in IgA nephropathy. Sci Rep 2020; 10:15164. [PMID: 32938960 PMCID: PMC7494931 DOI: 10.1038/s41598-020-72026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/29/2020] [Indexed: 01/01/2023] Open
Abstract
Primary IgA nephropathy (IgAN) diagnosis is based on IgA-dominant glomerular deposits and histological scoring is done on formalin-fixed paraffin embedded tissue (FFPE) sections using the Oxford classification. Our aim was to use this underexploited resource to extract RNA and identify genes that characterize active (endocapillary–extracapillary proliferations) and chronic (tubulo-interstitial) renal lesions in total renal cortex. RNA was extracted from archival FFPE renal biopsies of 52 IgAN patients, 22 non-IgAN and normal renal tissue of 7 kidney living donors (KLD) as controls. Genome-wide gene expression profiles were obtained and biomarker identification was carried out comparing gene expression signatures a subset of IgAN patients with active (N = 8), and chronic (N = 12) renal lesions versus non-IgAN and KLD. Bioinformatic analysis identified transcripts for active (DEFA4,TNFAIP6,FAR2) and chronic (LTB,CXCL6, ITGAX) renal lesions that were validated by RT-PCR and IHC. Finally, two of them (TNFAIP6 for active and CXCL6 for chronic) were confirmed in the urine of an independent cohort of IgAN patients compared with non-IgAN patients and controls. We have integrated transcriptomics with histomorphological scores, identified specific gene expression changes using the invaluable repository of archival renal biopsies and discovered two urinary biomarkers that may be used for specific clinical decision making.
Collapse
Affiliation(s)
- Sharon Natasha Cox
- Schena Foundation, Research Center of Kidney Diseases, Strada Provinciale Valenzano-Casamassima Km. 3.00, 70100, Valenzano, Bari, Italy. .,Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.
| | - Samantha Chiurlia
- Schena Foundation, Research Center of Kidney Diseases, Strada Provinciale Valenzano-Casamassima Km. 3.00, 70100, Valenzano, Bari, Italy
| | - Chiara Divella
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Rossini
- Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Grazia Serino
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, 70013, Castellana Grotte, Bari, Italy
| | - Mario Bonomini
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Vittorio Sirolli
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Francesca B Aiello
- Department of Medicine and Aging Sciences, University "G. D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Isabella Squarzoni
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Concetta Gangemi
- Renal Unit, Department of Medicine, University-Hospital of Verona, Verona, Italy
| | - Maria Stangou
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini Papagianni
- Department of Nephrology, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mark Haas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Francesco Paolo Schena
- Schena Foundation, Research Center of Kidney Diseases, Strada Provinciale Valenzano-Casamassima Km. 3.00, 70100, Valenzano, Bari, Italy. .,Division of Nephrology, Dialysis, and Transplantation, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy.
| |
Collapse
|
32
|
Liu Y, Hu J, Liu D, Zhou S, Liao J, Liao G, Yang S, Guo Z, Li Y, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Lin A, Zhao M. Single-cell analysis reveals immune landscape in kidneys of patients with chronic transplant rejection. Am J Cancer Res 2020; 10:8851-8862. [PMID: 32754283 PMCID: PMC7392010 DOI: 10.7150/thno.48201] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Single-cell RNA sequencing (scRNA-seq) has provided an unbiased assessment of specific profiling of cell populations at the single-cell level. Conventional renal biopsy and bulk RNA-seq only average out the underlying differences, while the extent of chronic kidney transplant rejection (CKTR) and how it is shaped by cells and states in the kidney remain poorly characterized. Here, we analyzed cells from CKTR and matched healthy adult kidneys at single-cell resolution. Methods: High-quality transcriptomes were generated from three healthy human kidneys and two CKTR biopsies. Unsupervised clustering analysis of biopsy specimens was performed to identify fifteen distinct cell types, including major immune cells, renal cells and a few types of stromal cells. Single-sample gene set enrichment (ssGSEA) algorithm was utilized to explore functional differences between cell subpopulations and between CKTR and normal cells. Results: Natural killer T (NKT) cells formed five subclasses, representing CD4+ T cells, CD8+ T cells, cytotoxic T lymphocytes (CTLs), regulatory T cells (Tregs) and natural killer cells (NKs). Memory B cells were classified into two subtypes, representing reverse immune activation. Monocytes formed a classic CD14+ group and a nonclassical CD16+ group. We identified a novel subpopulation [myofibroblasts (MyoF)] in fibroblasts, which express collagen and extracellular matrix components. The CKTR group was characterized by increased numbers of immune cells and MyoF, leading to increased renal rejection and fibrosis. Conclusions: By assessing functional differences of subtype at single-cell resolution, we discovered different subtypes that correlated with distinct functions in CKTR. This resource provides deeper insights into CKTR biology that will be helpful in the diagnosis and treatment of CKTR.
Collapse
|
33
|
Kaltenecker CC, Domenig O, Kopecky C, Antlanger M, Poglitsch M, Berlakovich G, Kain R, Stegbauer J, Rahman M, Hellinger R, Gruber C, Grobe N, Fajkovic H, Eskandary F, Böhmig GA, Säemann MD, Kovarik JJ. Critical Role of Neprilysin in Kidney Angiotensin Metabolism. Circ Res 2020; 127:593-606. [PMID: 32418507 DOI: 10.1161/circresaha.119.316151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
RATIONALE Kidney homeostasis is critically determined by the coordinated activity of the renin-angiotensin system (RAS), including the balanced synthesis of its main effector peptides Ang (angiotensin) II and Ang (1-7). The condition of enzymatic overproduction of Ang II relative to Ang (1-7) is termed RAS dysregulation and leads to cellular signals, which promote hypertension and organ damage, and ultimately progressive kidney failure. ACE2 (angiotensin-converting enzyme 2) and NEP (neprilysin) induce the alternative, and potentially reno-protective axis by enhancing Ang (1-7) production. However, their individual contribution to baseline RAS balance and whether their activities change in chronic kidney disease (CKD) has not yet been elucidated. OBJECTIVE To examine whether NEP-mediated Ang (1-7) generation exceeds Ang II formation in the healthy kidney compared with diseased kidney. METHODS AND RESULTS In this exploratory study, we used liquid chromatography-tandem mass spectrometry to measure Ang II and Ang (1-7) synthesis rates of ACE, chymase and NEP, ACE2, PEP (prolyl-endopeptidase), PCP (prolyl-carboxypeptidase) in kidney biopsy homogenates in 11 healthy living kidney donors, and 12 patients with CKD. The spatial expression of RAS enzymes was determined by immunohistochemistry. Healthy kidneys showed higher NEP-mediated Ang (1-7) synthesis than Ang II formation, thus displaying a strong preference towards the reno-protective alternative RAS axis. In contrast, in CKD kidneys higher levels of Ang II were recorded, which originated from mast cell chymase activity. CONCLUSIONS Ang (1-7) is the dominant RAS peptide in healthy human kidneys with NEP rather than ACE2 being essential for its generation. Severe RAS dysregulation is present in CKD dictated by high chymase-mediated Ang II formation. Kidney RAS enzyme analysis might lead to novel therapeutic approaches for CKD.
Collapse
Affiliation(s)
- Christopher C Kaltenecker
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Oliver Domenig
- Attoquant Diagnostics GmbH, Vienna, Austria (O.D., M.P.)
| | - Chantal Kopecky
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia (C.K.)
| | - Marlies Antlanger
- 2nd Department of Internal Medicine, Kepler University Hospital, Med Campus III, Linz, Austria (M.A.)
| | | | - Gabriela Berlakovich
- Division of Transplantation, Department of Surgery (G.B.), Medical University of Vienna, Austria
| | - Renate Kain
- Department of Pathology (R.K.), Medical University of Vienna, Austria
| | - Johannes Stegbauer
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (J.S., M.R.)
| | - Masudur Rahman
- Department of Nephrology, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany (J.S., M.R.)
| | - Roland Hellinger
- Center for Physiology and Pharmacology (R.H., C.G.), Medical University of Vienna, Austria
| | - Christian Gruber
- Center for Physiology and Pharmacology (R.H., C.G.), Medical University of Vienna, Austria
| | - Nadja Grobe
- Renal Research Institute, New York, NY (N.G.)
| | - Harun Fajkovic
- Department of Urology (H.F.), Medical University of Vienna, Austria
| | - Farsad Eskandary
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Georg A Böhmig
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| | - Marcus D Säemann
- 6th Medical Department with Nephrology and Dialysis, Wilhelminenhospital, Vienna, Austria (M.D.S.).,Sigmund-Freud University, Vienna, Austria (M.D.S.)
| | - Johannes J Kovarik
- From the Division of Nephrology and Dialysis, Department of Internal Medicine III (C.C.K., F.E., G.A.B., J.J.K.), Medical University of Vienna, Austria
| |
Collapse
|
34
|
Mehta RB, Tandukar S, Jorgensen D, Randhawa P, Sood P, Puttarajappa C, Zeevi A, Tevar AD, Hariharan S. Early subclinical tubulitis and interstitial inflammation in kidney transplantation have adverse clinical implications. Kidney Int 2020; 98:436-447. [PMID: 32624181 DOI: 10.1016/j.kint.2020.03.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
This prospective observational cohort study compared the impact of subclinical tubulitis with or without interstitial inflammation to interstitial inflammation alone and to no inflammation in early post kidney transplant biopsies. A study cohort of 415 patients (living and deceased donor recipients) was divided into three groups on the basis of their three-month biopsy: 149 patients with No Inflammation (NI), 83 patients with Isolated Interstitial Inflammation (IIF), and 183 patients with Tubulitis [(with or without interstitial inflammation) (TIF) but not meeting criteria for Banff IA]. TIF was further divided into 56 patients with tubulitis without interstitial inflammation (TIF0) and 127 patients with tubulitis alongside interstitial inflammation (TIF1). TIF was significantly associated with higher incidence of subsequent T-cell mediated rejection (clinical or subclinical) at one year compared to IIF (31% vs 15%) and NI (31% vs 17%). Chronicity on one-year biopsy was significantly higher in TIF compared to IIF (22% vs 11%) and NI (22% vs 7%). De novo donor-specific antibody development was significantly higher in TIF compared to NI (6% vs 0.7%). Tubulitis subgroups (TIF0 and TIF1) revealed comparable effects on de novo donor-specific antibody and interstitial fibrosis/tubular atrophy development. However, tubulitis with interstitial inflammation had a significantly higher incidence of subsequent rejection and posed an increased hazard for the composite end point (subsequent acute rejection and death censored graft loss) compared to other groups [adjusted hazard 2.1 (95% confidence interval 1.2-3.5)]. Thus, subclinical tubulitis is a marker of adverse immunological events, but tubulitis with interstitial inflammation has a worse prognosis. Hence, the Banff 1997 (TIF1) and Banff 2005 classifications (TIF) for borderline change may have different implications.
Collapse
Affiliation(s)
- Rajil B Mehta
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Srijan Tandukar
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Dana Jorgensen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Parmjeet Randhawa
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Puneet Sood
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Chethan Puttarajappa
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Adriana Zeevi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Amit D Tevar
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sundaram Hariharan
- Division of Transplant Nephrology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
35
|
Bharat A. Operationalizing mucosal biopsies using machine learning to determine lung allograft dysfunction. Am J Transplant 2020; 20:918-919. [PMID: 31886604 DOI: 10.1111/ajt.15765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Ankit Bharat
- Division of Thoracic Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
36
|
Hruba P, Krejcik Z, Dostalova Merkerova M, Klema J, Stranecky V, Slatinska J, Maluskova J, Honsova E, Viklicky O. Molecular Fingerprints of Borderline Changes in Kidney Allografts Are Influenced by Donor Category. Front Immunol 2020; 11:423. [PMID: 32269565 PMCID: PMC7109293 DOI: 10.3389/fimmu.2020.00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/24/2020] [Indexed: 11/13/2022] Open
Abstract
The fate of transplanted kidneys is substantially influenced by graft quality, with transplantation of kidneys from elderly and expanded criteria donors (ECDs) associated with higher occurrence of delayed graft function, rejection, and inferior long-term outcomes. However, little is known about early molecular fingerprints of these events in different donor categories. Borderline changes represent the most frequent histological finding early after kidney transplantation. Therefore, we examined outcomes and transcriptomic profiles of early-case biopsies diagnosed as borderline changes in different donor categories. In this single-center, retrospective, observational study, we compared midterm outcomes of kidney transplant recipients with early borderline changes as a first pathology between ECD (n = 109), standard criteria donor (SCDs, n = 109), and living donor (LD, n = 51) cohorts. Intragraft gene expression profiling by microarray was performed in part of these ECD, SCD, and LD cohorts. Although 5 year graft survival in patients with borderline changes in early-case biopsies was not influenced by donor category (log-rank P = 0.293), impaired kidney graft function (estimated glomerular filtration rate by Chronic Kidney Disease Epidemiology Collaboration equation) at M3, 1, 2, and 3 years was observed in the ECD cohort (P < 0.001). Graft biopsies from ECD donors had higher vascular intimal fibrosis and arteriolar hyalinosis compared to SCD and LD (P < 0.001), suggesting chronic vascular changes. Increased transcripts typical for ECD, as compared to both LD and SCD, showed enrichment of the inflammatory, defense, and wounding responses and the ECM-receptor interaction pathway. Additionally, increased transcripts in ECD vs. LD showed activation of complement and coagulation and cytokine-cytokine receptor pathways along with platelet activation and cell cycle regulation. Comparative gene expression overlaps of ECD, SCD, and LD using Venn diagrams found 64 up- and 16 down-regulated genes in ECD compared to both LD and SCD. Shared increased transcripts in ECD vs. both SCD and LD included thrombospondin-2 (THBS2), angiopoietin-like 4 (ANGPTL4), collagens (COL6A3, COL1A1), chemokine CCL13, and interleukin IL11, and most significantly, down-regulated transcripts included proline-rich 35 (PRR35) and fibroblast growth factor 9. Early borderline changes in ECD kidney transplantation are characterized by increased regulation of inflammation, extracellular matrix remodeling, and acute kidney injury transcripts in comparison with both LD and SCD grafts.
Collapse
Affiliation(s)
- Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenek Krejcik
- Department of Genomics, Institute of Haematology and Blood Transfusion, Prague, Czechia
| | | | - Jiri Klema
- Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University, Prague, Czechia
| | - Viktor Stranecky
- Department of Paediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Janka Slatinska
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Jana Maluskova
- Department of Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Eva Honsova
- Department of Pathology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Ondrej Viklicky
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| |
Collapse
|
37
|
Trailin A, Hruba P, Viklicky O. Molecular Assessment of Kidney Allografts: Are We Closer to a Daily Routine? Physiol Res 2020; 69:215-226. [PMID: 32199018 DOI: 10.33549/physiolres.934278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Kidney allograft pathology assessment has been traditionally based on clinical and histological criteria. Despite improvements in Banff histological classification, the diagnostics in particular cases is problematic reflecting a complex pathogenesis of graft injuries. With the advent of molecular techniques, polymerase-chain reaction, oligo- and microarray technologies allowed to study molecular phenotypes of graft injuries, especially acute and chronic rejections. Moreover, development of the molecular microscope diagnostic system (MMDx) to assess kidney graft biopsies, represents the first clinical application of a microarray-based method in transplantation. Whether MMDx may replace conventional pathology is the subject of ongoing research, however this platform is particularly useful in complex histological findings and may help clinicians to guide the therapy.
Collapse
Affiliation(s)
- A Trailin
- Department of Nephrology, Transplant Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | |
Collapse
|
38
|
Rivero J, Rodríguez F, Soto V, Macedo E, Chawla LS, Mehta RL, Vaingankar S, Garimella PS, Garza C, Madero M. Furosemide stress test and interstitial fibrosis in kidney biopsies in chronic kidney disease. BMC Nephrol 2020; 21:87. [PMID: 32143585 PMCID: PMC7060600 DOI: 10.1186/s12882-020-01721-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 02/11/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Interstitial fibrosis (IF) on kidney biopsy is one of the most potent risk factors for kidney disease progression. The furosemide stress test (FST) is a validated tool that predicts the severity of acute kidney injury (especially at 2 h) in critically ill patients. Since furosemide is secreted through the kidney tubules, the response to FST represents the tubular secretory capacity. To our knowledge there is no data on the correlation between functional tubular capacity assessed by the FST with IF on kidney biopsies from patients with chronic kidney disease (CKD). The aim of this study was to determine the association between urine output (UO), Furosemide Excreted Mass (FEM) and IF on kidney biopsies after a FST. METHODS This study included 84 patients who underwent kidney biopsy for clinical indications and a FST. The percentage of fibrosis was determined by morphometry technique and reviewed by a nephropathologist. All patients underwent a FST prior to the biopsy. Urine volume and urinary sodium were measured in addition to urine concentrations of furosemide at different times (2, 4 and 6 h). We used an established equation to determine the FEM. Values were expressed as mean, standard deviation or percentage and Pearson Correlation. RESULTS The mean age of the participants was 38 years and 44% were male. The prevalence of diabetes mellitus, hypertension and diuretic use was significantly higher with more advanced degree of fibrosis. Nephrotic syndrome and acute kidney graft dysfunction were the most frequent indications for biopsy. eGFR was inversely related to the degree of fibrosis. Subjects with the highest degree of fibrosis (grade 3) showed a significant lower UO at first hour of the FST when compared to lower degrees of fibrosis (p = 0.015). Likewise, the total UO and the FEM was progressively lower with higher degrees of fibrosis. An inversely linear correlation between FEM and the degree of fibrosis (r = - 0.245, p = 0.02) was observed. CONCLUSIONS Our findings indicate that interstitial fibrosis correlates with total urine output and FEM. Further studies are needed to determine if UO and FST could be a non-invasive tool to evaluate interstitial fibrosis. TRIAL REGISTRATION ClinicalTrials.gov NCT02417883.
Collapse
Affiliation(s)
- Jesús Rivero
- Nephrology Department, National Institute of Lung Disease Ismael Cosio Villegas , Mexico City, Mexico
| | - Francisco Rodríguez
- Nephrology Department, National Institute Cardiology Ignacio Chávez, Juan Badiano No. 1, 14080-Tlalpan, Mexico City, Mexico
| | - Virgilia Soto
- Nephrology Department, National Institute Cardiology Ignacio Chávez, Juan Badiano No. 1, 14080-Tlalpan, Mexico City, Mexico
| | - Etienne Macedo
- Division of Nephrology, University of California, San Diego, CA, USA
| | - Lakhmir S Chawla
- Division of Nephrology, University of California, San Diego, CA, USA
| | - Ravindra L Mehta
- Division of Nephrology, University of California, San Diego, CA, USA
| | - Sucheta Vaingankar
- Nephrology Department, National Institute Cardiology Ignacio Chávez, Juan Badiano No. 1, 14080-Tlalpan, Mexico City, Mexico
| | | | - Carlos Garza
- Nephrology Department, National Institute Cardiology Ignacio Chávez, Juan Badiano No. 1, 14080-Tlalpan, Mexico City, Mexico
| | - Magdalena Madero
- Nephrology Department, National Institute Cardiology Ignacio Chávez, Juan Badiano No. 1, 14080-Tlalpan, Mexico City, Mexico.
| |
Collapse
|
39
|
Dao M, Lecru L, Vandermeersch S, Ferreira M, Ferlicot S, Posseme K, Dürrbach A, Hermeziu B, Mussini C, Chatziantoniou C, François H. The cannabinoid receptor 1 is involved in renal fibrosis during chronic allograft dysfunction: Proof of concept. J Cell Mol Med 2019; 23:7279-7288. [PMID: 31469511 PMCID: PMC6815790 DOI: 10.1111/jcmm.14570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/14/2019] [Accepted: 06/28/2019] [Indexed: 12/22/2022] Open
Abstract
Chronic allograft dysfunction (CAD), defined as the replacement of functional renal tissue by extracellular matrix proteins, remains the first cause of graft loss. The aim of our study was to explore the potential role of the cannabinoid receptor 1 (CB1) during CAD. We retrospectively quantified CB1 expression and correlated it with renal fibrosis in 26 kidney‐transplanted patients who underwent serial routine kidney biopsies. Whereas CB1 expression was low in normal kidney grafts, it was highly expressed during CAD, especially in tubular cells. CB1 expression significantly increased early on after transplantation, from day 0 (D0) to month 3 post‐transplant (M3) (22.5% ± 15.4% vs 33.4% ± 13.8%, P < .01), and it remained stable thereafter. CB1 expression correlated with renal fibrosis at M3 (P = .04). In an in vitro model of tacrolimus‐mediated fibrogenesis by tubular cells, we found that tacrolimus treatment significantly induced mRNA and protein expression of CB1 concomitantly to col3a1 and col4a3 up regulation. Administration of rimonabant, a CB1 antagonist, blunted collagen synthesis by tubular cells (P < .05). Overall, our study strongly suggests an involvement of the cannabinoid system in the progression of fibrosis during CAD and indicates the therapeutic potential of CB1 antagonists in this pathology.
Collapse
Affiliation(s)
- Myriam Dao
- Inserm UMR_S 1155, Hôpital Tenon, Paris, France.,APHP, Service de Néphrologie Adulte, Hôpital Necker, Paris, France
| | | | | | | | - Sophie Ferlicot
- AP-HP, Service d'Anatomie et de Cytologie Pathologiques, Hôpital Bicêtre, Université Paris Sud, Le Kremlin Bicêtre, France
| | - Katia Posseme
- AP-HP, Service d'Anatomie et de Cytologie Pathologiques, Hôpital Bicêtre, Université Paris Sud, Le Kremlin Bicêtre, France
| | - Antoine Dürrbach
- AP-HP, Service de Néphrologie, Hôpital Bicêtre, Université Paris Sud, Le Kremlin Bicêtre, France
| | - Bogdan Hermeziu
- AP-HP, Service d'Hépatologie Pédiatrique, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Charlotte Mussini
- AP-HP, Service d'Anatomie et de Cytologie Pathologiques, Hôpital Bicêtre, Université Paris Sud, Le Kremlin Bicêtre, France
| | | | - Hélène François
- Inserm UMR_S 1155, Hôpital Tenon, Paris, France.,AP-HP, Unité de Néphrologie et de Transplantation rénale, Hôpital Tenon, Sorbonne Université, Paris, France
| |
Collapse
|
40
|
Intrarenal Renin-Angiotensin-System Dysregulation after Kidney Transplantation. Sci Rep 2019; 9:9762. [PMID: 31278281 PMCID: PMC6611786 DOI: 10.1038/s41598-019-46114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEis) are beneficial in patients with chronic kidney disease (CKD). Yet, their clinical effects after kidney transplantation (KTx) remain ambiguous and local renin-angiotensin system (RAS) regulation including the ‘classical’ and ‘alternative’ RAS has not been studied so far. Here, we investigated both systemic and kidney allograft-specific intrarenal RAS using tandem mass-spectrometry in KTx recipients with or without established ACEi therapy (n = 48). Transplant patients were grouped into early (<2 years), intermediate (2–12 years) or late periods after KTx (>12 years). Patients on ACEi displayed lower angiotensin (Ang) II plasma levels (P < 0.01) and higher levels of Ang I (P < 0.05) and Ang-(1–7) (P < 0.05) compared to those without ACEi independent of graft vintage. Substantial intrarenal Ang II synthesis was observed regardless of ACEi therapy. Further, we detected maximal allograft Ang II synthesis in the late transplant vintage group (P < 0.005) likely as a consequence of increased allograft chymase activity (P < 0.005). Finally, we could identify neprilysin (NEP) as the central enzyme of ‘alternative RAS’ metabolism in kidney allografts. In summary, a progressive increase of chymase-dependent Ang II synthesis reveals a transplant-specific distortion of RAS regulation after KTx with considerable pathogenic and therapeutic implications.
Collapse
|
41
|
Halloran PF, Matas A, Kasiske BL, Madill-Thomsen KS, Mackova M, Famulski KS. Molecular phenotype of kidney transplant indication biopsies with inflammation in scarred areas. Am J Transplant 2019; 19:1356-1370. [PMID: 30417539 DOI: 10.1111/ajt.15178] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 01/25/2023]
Abstract
In kidney transplant biopsies, inflammation in areas of atrophy-fibrosis (i-IFTA) is associated with increased risk of failure, presumably because inflammation is evoked by recent parenchymal injury from rejection or other insults, but some cases also have rejection. The present study explored the frequency of rejection in i-IFTA, by using histology Banff 2015 and a microarray-based molecular diagnostic system (MMDx). In unselected indication biopsies (108 i-IFTA, 73 uninflamed IFTA [i0-IFTA], and 53 no IFTA), i-IFTA biopsies occurred later, showed more scarring, and had more antibody-mediated rejection (ABMR) based on histology (28%) and MMDx (45%). T cell-mediated rejection (TCMR) was infrequent in i-IFTA based on histology (8%) and MMDx (16%). Twelve i-IFTA biopsies (11%) had molecular TCMR not diagnosed by histology, although 6 were called borderline and almost all had histologic TCMR lesions. The prominent feature of i-IFTA biopsies was molecular injury (eg, acute kidney injury [AKI] transcripts). In multivariate analysis of biopsies >1 year posttransplant, the strongest associations with graft loss were AKI transcripts and histologic atrophy-scarring; i-IFTA was not significant when molecular AKI was included. We conclude that i-IFTA in indication biopsies reflects recent/ongoing parenchymal injury, often with concomitant ABMR but few with TCMR. Thus, the application of Banff i-IFTA in the population of late biopsies needs to be reconsidered.
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arthur Matas
- Department of Surgery, University of Minnesota at Fairview, Minneapolis, Minnesota
| | | | - Katelynn S Madill-Thomsen
- Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Martina Mackova
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
| | - Konrad S Famulski
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
| |
Collapse
|
42
|
Moroni G, Binda V, Quaglini S, Sacchi L, Raffiotta F, Cosa F, Montagnino G, Favi E, Messa P, Ponticelli C. Causes of late transplant failure in cyclosporine-treated kidney allograft recipients. Clin Exp Nephrol 2019; 23:1076-1086. [PMID: 31016431 DOI: 10.1007/s10157-019-01740-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND There is little information about very long-term outcomes of kidney allograft recipients exposed to calcineurin inhibitors. METHODS In this single-centre retrospective study with 20-year follow-up, we analyzed data from 644 patients who underwent primary renal transplantation between 1983 and 1993. Participants were treated with a cyclosporine-based immunosuppressive scheme and had allograft function at 1 year. RESULTS After 20 years, 15.2% patients died, 39.7% experienced allograft loss, 26.8% were alive with a functioning transplant, and 18.2% were lost to follow-up. Cardiovascular disease (30.8%), malignancy (26.6%) and infection (17.0%) were the main causes of death. Age, new-onset proteinuria > 1 g/day, major acute cardiovascular event (MACE), and malignancy were independent predictors of mortality at time-dependent multivariate analysis. Chronic rejection (63.3%), recurrent glomerulonephritis (14.0%), and nonspecific interstitial fibrosis/tubular atrophy (13.2%) were the leading cause of allograft loss. Basal disease, hepatitis C, difference between 1 year and nadir serum creatinine, new-onset proteinuria > 1 g/day, and MACE were independent predictors of transplant failure. Among patients with 20-year allograft function, we recorded the following complications: hypertension (85%), malignancy (13%), diabetes (9%), and cardiovascular disease (9%). Median serum creatinine and proteinuria were 1.4 mg/dL and 0.6 g/day, respectively. CONCLUSIONS Prolonged use of cyclosporine may expose to several dose-related adverse events and may contribute to the development of allograft dysfunction but it does not necessarily cause relentless, progressive transplant failure if patients are carefully and consistently monitored during the follow-up.
Collapse
Affiliation(s)
- Gabriella Moroni
- Nephrology and Dialysis, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Binda
- Nephrology and Dialysis, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Quaglini
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Lucia Sacchi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Francesca Raffiotta
- Nephrology and Dialysis, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Cosa
- Nephrology and Dialysis, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Montagnino
- Nephrology and Dialysis, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Evaldo Favi
- Renal Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via della Commenda 15, 20122, Milan, Italy.
| | - Piergiorgio Messa
- Nephrology and Dialysis, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudio Ponticelli
- Renal Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
43
|
Krezdorn N, Lian CG, Wells M, Wo L, Tasigiorgos S, Xu S, Borges TJ, Frierson RM, Stanek E, Riella LV, Pomahac B, Murphy GF. Chronic rejection of human face allografts. Am J Transplant 2019; 19:1168-1177. [PMID: 30312535 PMCID: PMC6433509 DOI: 10.1111/ajt.15143] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/14/2018] [Accepted: 09/23/2018] [Indexed: 01/25/2023]
Abstract
Face vascularized composite allografts (FVCAs) have helped patients with severe facial disfigurement, with acute rejection now largely controlled through iatrogenic immunosuppression. However, little is known regarding the incidence and mechanism(s) of more long-term pathologic alterations in FVCAs that may affect function and graft durability. Protocol surveillance biopsy specimens for up to an 8-year interval in 7 patients who received FVCAs at our institution revealed histopathologic evidence of chronic rejection. Clinical manifestations included features of premature aging, mottled leukoderma accentuating suture lines, telangiectasia, and dryness of nasal mucosa. Pathologic changes consisted of epidermal thinning accompanied by discrete foci of lymphocyte-mediated cytotoxicity, hyperkeratosis, follicular plugging, vascular ectasia, and sclerosis beneath the epidermal layer associated with collagen type I deposition. Genomic interrogation and immunohistochemistry of sclerotic zones revealed upregulation of the AP-1 pathway components, JunB and c-Fos, previously implicated in overproduction of type I dermal collagen in the setting of systemic sclerosis. We conclude that some patients develop chronic rejection in FVCAs with striking similarities to alterations seen in certain autoimmune cutaneous disorders (lupus erythematosus and scleroderma/chronic sclerodermoid graft-versus-host disease). Identification of relevant pathways and genes, such as JunB and c-Fos, may provide new targets for preventative therapies for chronic immune-mediated changes in vascularized composite allografts.
Collapse
Affiliation(s)
- Nicco Krezdorn
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, 02115 Boston, MA, USA,Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christine G. Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, 75 Francis St, 02115 Boston, MA, USA
| | - Michael Wells
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, 75 Francis St, 02115 Boston, MA, USA
| | - Luccie Wo
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, 02115 Boston, MA, USA
| | - Sotirios Tasigiorgos
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, 02115 Boston, MA, USA
| | - Shuyen Xu
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, 75 Francis St, 02115 Boston, MA, USA
| | - Thiago J. Borges
- Transplant Research Center, Renal Division, Department of Medicine, Brigham and Women’s Hospital, 75 Francis St, 02115 Boston, MA, USA
| | - Rayven M. Frierson
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, 75 Francis St, 02115 Boston, MA, USA
| | - Ewelina Stanek
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, 75 Francis St, 02115 Boston, MA, USA
| | - Leonardo V. Riella
- Transplant Research Center, Renal Division, Department of Medicine, Brigham and Women’s Hospital, 75 Francis St, 02115 Boston, MA, USA
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, 02115 Boston, MA, USA
| | - George F. Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women’s Hospital, 75 Francis St, 02115 Boston, MA, USA
| |
Collapse
|
44
|
Cippà PE, Liu J, Sun B, Kumar S, Naesens M, McMahon AP. A late B lymphocyte action in dysfunctional tissue repair following kidney injury and transplantation. Nat Commun 2019; 10:1157. [PMID: 30858375 PMCID: PMC6411919 DOI: 10.1038/s41467-019-09092-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
The mechanisms initiating late immune responses to an allograft are poorly understood. Here we show, via transcriptome analysis of serial protocol biopsies from kidney transplants, that the initial responses to kidney injury correlate with a late B lymphocyte signature relating to renal dysfunction and fibrosis. With a potential link between dysfunctional repair and immunoreactivity, we investigate the immunological consequences of dysfunctional repair examining chronic disease in mouse kidneys 18 months after a bilateral ischemia/reperfusion injury event. In the absence of foreign antigens, a sustained immune response involving both innate and adaptive immune systems accompanies a transition to chronic kidney damage. At late stages, B lymphocytes exhibite an antigen-driven proliferation, selection and maturation into broadly-reacting antibody-secreting cells. These findings reveal a previously unappreciated role for dysfunctional tissue repair in local immunomodulation that may have particular relevance to transplant-associated immunobiology.
Collapse
Affiliation(s)
- Pietro E Cippà
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA.
- Division of Nephrology, Regional Hospital Lugano, Lugano, 6900, Switzerland.
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA
| | - Bo Sun
- Molecular and Computational Biology, University of Southern California, Los Angeles, 90089-2910, CA, USA
| | - Sanjeev Kumar
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA
| | - Maarten Naesens
- Department of Microbiology and Immunology, KU Leuven, Leuven, 3000, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, 3000, Belgium
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, 90033-9080, CA, USA.
| |
Collapse
|
45
|
Sayin B, Ozdemir A, Ayvazoglu Soy EH, Kirnap M, Akdur A, Moray G, Haberal M. Over 5 Years of Excellent Graft Kidney Function Determinants: Baskent University Experience. EXP CLIN TRANSPLANT 2019; 17:75-77. [PMID: 30777527 DOI: 10.6002/ect.mesot2018.o12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Kidney graft survival may be evaluated according to the duration of time with a functioning graft. Survival alone may not satisfy expectations of a successful kidney transplant if the graft kidney does not show excellent function. In our study, we analyzed the characteristics of kidney transplant recipients who showed excellent graft function after 5 to 10 years of follow-up in an aim to improve graft survival and to ensure the best kidney function in the long term. MATERIALS AND METHODS We retrospectively evaluated graft function and demographic characteristics of 288 patients who underwent kidney transplant between January 2008 and December 2012. RESULTS We found that 149 patients (51.7%) had excellent graft function, 88 patients (30.5%) had a functioning graft with a glomerular filtration rate lower than 60 mL/min and/or had signs of graft kidney dysfunction, and 45 patients (15.6%) experienced graft loss. Of 288 kidney transplant recipients enrolled in the study, most were male (56%), and mean age was 30.47 ± 14.36 years at time of transplant. Median time on dialysis was 39.09 ± 59.30 months. The overall graft survival rate in the patient group was 82.2% after 5 to 10 years of follow-up. Multivariate analysis showed that excellent graft survival predictors beyond 5 years were negative panel reactive antibody levels, lower donor age, shorter duration on dialysis, absence of acute rejection episodes, 3 or less HLA mismatches, lower immunosuppressive levels, and lower recipient age at transplant. CONCLUSIONS Lower panel reactive antibody levels, lower donor age, shorter duration on dialysis, absence of acute rejection episodes, 3 or less HLA mismatches, and lower recipient age at transplant are major determinants of excellent graft survival in our kidney transplant recipients.
Collapse
Affiliation(s)
- Burak Sayin
- From the Department of Nephrology, Baskent University Ankara Hospital, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
46
|
Lever JM, Hull TD, Boddu R, Pepin ME, Black LM, Adedoyin OO, Yang Z, Traylor AM, Jiang Y, Li Z, Peabody JE, Eckenrode HE, Crossman DK, Crowley MR, Bolisetty S, Zimmerman KA, Wende AR, Mrug M, Yoder BK, Agarwal A, George JF. Resident macrophages reprogram toward a developmental state after acute kidney injury. JCI Insight 2019; 4:e125503. [PMID: 30674729 PMCID: PMC6413788 DOI: 10.1172/jci.insight.125503] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs. However, if KRMs are depleted using polyinosinic/polycytidylic acid (poly I:C), they can be reconstituted from bone marrow-derived precursors. Further, KRMs lack major histocompatibility complex class II (MHCII) expression before P7 but upregulate it over the next 14 days. This MHCII- KRM phenotype reappears after injury. RNA sequencing shows that injury causes transcriptional reprogramming of KRMs such that they more closely resemble that found at P7. KRMs after injury are also enriched in Wingless-type MMTV integration site family (Wnt) signaling, indicating that a pathway vital for mouse and human kidney development is active. These data indicate that mechanisms involved in kidney development may be functioning after injury in KRMs.
Collapse
Affiliation(s)
- Jeremie M. Lever
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Travis D. Hull
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ravindra Boddu
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Laurence M. Black
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oreoluwa O. Adedoyin
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhengqin Yang
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Amie M. Traylor
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yanlin Jiang
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zhang Li
- Department of Cellular, Developmental and Integrative Biology, and
| | | | - Han E. Eckenrode
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael R. Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Subhashini Bolisetty
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | - Michal Mrug
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs, Birmingham, Alabama, USA
| | - Bradley K. Yoder
- Department of Cellular, Developmental and Integrative Biology, and
| | - Anupam Agarwal
- Department of Medicine and
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Veterans Affairs, Birmingham, Alabama, USA
| | - James F. George
- Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
47
|
Halloran PF, Reeve J, Aliabadi AZ, Cadeiras M, Crespo-Leiro MG, Deng M, Depasquale EC, Goekler J, Jouven X, Kim DH, Kobashigawa J, Loupy A, Macdonald P, Potena L, Zuckermann A, Parkes MD. Exploring the cardiac response to injury in heart transplant biopsies. JCI Insight 2018; 3:123674. [PMID: 30333303 DOI: 10.1172/jci.insight.123674] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Because injury is universal in organ transplantation, heart transplant endomyocardial biopsies present an opportunity to explore response to injury in heart parenchyma. Histology has limited ability to assess injury, potentially confusing it with rejection, whereas molecular changes have potential to distinguish injury from rejection. Building on previous studies of transcripts associated with T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR), we explored transcripts reflecting injury. METHODS Microarray data from 889 prospectively collected endomyocardial biopsies from 454 transplant recipients at 14 centers were subjected to unsupervised principal component analysis and archetypal analysis to detect variation not explained by rejection. The resulting principal component and archetype scores were then examined for their transcript, transcript set, and pathway associations and compared to the histology diagnoses and left ventricular function. RESULTS Rejection was reflected by principal components PC1 and PC2, and by archetype scores S2TCMR, and S3ABMR, with S1normal indicating normalness. PC3 and a new archetype score, S4injury, identified unexplained variation correlating with expression of transcripts inducible in injury models, many expressed in macrophages and associated with inflammation in pathway analysis. S4injury scores were high in recent transplants, reflecting donation-implantation injury, and both S4injury and S2TCMR were associated with reduced left ventricular ejection fraction. CONCLUSION Assessment of injury is necessary for accurate estimates of rejection and for understanding heart transplant phenotypes. Biopsies with molecular injury but no molecular rejection were often misdiagnosed rejection by histology.TRAIL REGISTRATION. ClinicalTrials.gov NCT02670408FUNDING. Roche Organ Transplant Research Foundation, the University of Alberta Hospital Foundation, and Alberta Health Services.
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jeff Reeve
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Martin Cadeiras
- Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | | | - Mario Deng
- Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | | | | | | | - Daniel H Kim
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - Peter Macdonald
- The Victor Chang Cardiac Research Institute, Sydney, Australia
| | - Luciano Potena
- Cardiovascular Department, University of Bologna, Bologna, Italy
| | | | - Michael D Parkes
- Alberta Transplant Applied Genomics Centre, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Barner M, DeKoning J, Kashi Z, Halloran P. Recent Advancements in the Assessment of Renal Transplant Dysfunction with an Emphasis on Microarray Molecular Diagnostics. Clin Lab Med 2018; 38:623-635. [PMID: 30420057 DOI: 10.1016/j.cll.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Conventional assessment of renal transplant rejection and injury through use of histology, C4d staining, and HLA antibody testing, has been the standard approach to transplant management. By many measures, these methods of conventional assessment may be considered flawed, particularly with the subjective nature of histologic diagnoses. The Alberta Transplant Applied Genomics Center has developed the Molecular Microscope diagnostic system, which uses microarrays to measure gene expression. These data are analyzed using classifiers (weighted equations) that compare the tested biopsy to a proprietary reference set of biopsies to provide objective measures of the status of the renal transplant.
Collapse
Affiliation(s)
- Meagan Barner
- Kashi Clinical Laboratories, 10101 Southwest Barbur Boulevard Suite 200, Portland, OR 97219, USA
| | - Jenefer DeKoning
- Kashi Clinical Laboratories, 10101 Southwest Barbur Boulevard Suite 200, Portland, OR 97219, USA
| | - Zahra Kashi
- Kashi Clinical Laboratories, 10101 Southwest Barbur Boulevard Suite 200, Portland, OR 97219, USA.
| | - Phillip Halloran
- Division of Nephrology and Transplant Immunology, Department of Medicine, University of Alberta, Alberta Transplant Applied Genomics Center, 250 Heritage Medical Research Centre, Edmonton, Alberta T6G 2S2, Canada; Transcriptome Sciences Inc, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
Polichnowski AJ. Microvascular rarefaction and hypertension in the impaired recovery and progression of kidney disease following AKI in preexisting CKD states. Am J Physiol Renal Physiol 2018; 315:F1513-F1518. [PMID: 30256130 DOI: 10.1152/ajprenal.00419.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a major complication in hospitalized patients and is associated with elevated mortality rates. Numerous recent studies indicate that AKI also significantly increases the risk of chronic kidney disease (CKD), end-stage renal disease (ESRD), hypertension, cardiovascular disease, and mortality in those patients who survive AKI. Moreover, the risk of ESRD and mortality after AKI is substantially higher in patients with preexisting CKD. However, the underlying mechanisms by which AKI and CKD interact to promote ESRD remain poorly understood. The recently developed models that superimpose AKI on rodents with preexisting CKD have provided new insights into the pathogenic mechanisms mediating the deleterious interactions between AKI and CKD. These studies show that preexisting CKD impairs recovery from AKI and promotes the development of mechanisms of CKD progression. Specifically, preexisting CKD exacerbates microvascular rarefaction, failed tubular redifferentiation, disruption of cell cycle regulation, hypertension, and proteinuria after AKI. The purpose of this review is to discuss the potential mechanisms by which microvascular rarefaction and hypertension contribute to impaired recovery from AKI and the subsequent progression of renal disease in preexisting CKD states.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee.,Center of Excellence in Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
50
|
Halloran PF, Venner JM, Madill-Thomsen KS, Einecke G, Parkes MD, Hidalgo LG, Famulski KS. Review: The transcripts associated with organ allograft rejection. Am J Transplant 2018; 18:785-795. [PMID: 29178397 DOI: 10.1111/ajt.14600] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/31/2017] [Accepted: 11/17/2017] [Indexed: 01/25/2023]
Abstract
The molecular mechanisms operating in human organ transplant rejection are best inferred from the mRNAs expressed in biopsies because the corresponding proteins often have low expression and short half-lives, while small non-coding RNAs lack specificity. Associations should be characterized in a population that rigorously identifies T cell-mediated (TCMR) and antibody-mediated rejection (ABMR). This is best achieved in kidney transplant biopsies, but the results are generalizable to heart, lung, or liver transplants. Associations can be universal (all rejection), TCMR-selective, or ABMR-selective, with universal being strongest and ABMR-selective weakest. Top universal transcripts are IFNG-inducible (eg, CXCL11 IDO1, WARS) or shared by effector T cells (ETCs) and NK cells (eg, KLRD1, CCL4). TCMR-selective transcripts are expressed in activated ETCs (eg, CTLA4, IFNG), activated (eg, ADAMDEC1), or IFNG-induced macrophages (eg, ANKRD22). ABMR-selective transcripts are expressed in NK cells (eg, FGFBP2, GNLY) and endothelial cells (eg, ROBO4, DARC). Transcript associations are highly reproducible between biopsy sets when the same rejection definitions, case mix, algorithm, and technology are applied, but exact ranks will vary. Previously published rejection-associated transcripts resemble universal and TCMR-selective transcripts due to incomplete representation of ABMR. Rejection-associated transcripts are never completely rejection-specific because they are shared with the stereotyped response-to-injury and innate immunity.
Collapse
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, AB, Canada
| | - Jeffery M Venner
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
| | - Katelynn S Madill-Thomsen
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Medicine, Division of Nephrology and Transplant Immunology, University of Alberta, Edmonton, AB, Canada
| | | | - Michael D Parkes
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
| | - Luis G Hidalgo
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Konrad S Famulski
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|