1
|
Hagan NB, Inaku C, Kunder N, White T, Iraguha T, Meyer A, Pauken K, Schenkel JM. In vivo antibody labeling route and fluorophore dictate labeling efficiency, sensitivity, and longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607414. [PMID: 39149319 PMCID: PMC11326299 DOI: 10.1101/2024.08.10.607414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Leukocytes migrate through the blood and extravasate into organs to surveil the host for infection or cancer. Recently, we demonstrated that intravenous (IV) anti-CD45.2 antibody labeling allowed for precise tracking of leukocyte migration. However, the narrow labeling window can make this approach challenging for tracking rare migration events. Here, we show that altering antibody administration route and fluorophore can significantly extend the antibody active labeling time. We found that while both IV and intraperitoneal (IP) anti-CD45.2 antibody labeled circulating leukocytes after injection, they had different kinetic properties that impacted labeling time and intensity. Quantification of circulating antibody revealed that while unbound IV anti-CD45.2 antibody rapidly decreased, unbound IP anti-CD45.2 antibody increased over one hour. Using in vitro and in vivo serial dilution assays, we found that Alexa Fluor 647 (AF647) and Brilliant Blue 700 (BB700) dyes had the greatest labeling sensitivity compared to other fluorophores. However, IP antibody injection with anti-CD45.2 BB700, but not AF647, resulted in continuous blood leukocyte labeling for over 6 hours. Finally, we leveraged IP anti-CD45.2 BB700 antibody to track slower migrating leukocytes into tumors. We found that IP anti-CD45.2 antibody injection allowed for the identification of ~seven times as many tumor-specific CD8+ T cells that had recently migrated from blood into tumors. Our results demonstrate how different injection routes and fluorophores affect anti-CD45.2 antibody leukocyte labeling and highlight the utility of this approach for defining leukocyte migration in the context of homeostasis and cancer.
Collapse
|
2
|
Xin L, Madarasz A, Ivan DC, Weber F, Aleandri S, Luciani P, Locatelli G, Proulx ST. Impairment of spinal CSF flow precedes immune cell infiltration in an active EAE model. J Neuroinflammation 2024; 21:272. [PMID: 39444001 DOI: 10.1186/s12974-024-03247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
Accumulation of immune cells and proteins in the subarachnoid space (SAS) is found during multiple sclerosis and in the animal model experimental autoimmune encephalomyelitis (EAE). Whether the flow of cerebrospinal fluid (CSF) along the SAS of the spinal cord is impacted is yet unknown. Combining intravital near-infrared (NIR) imaging with histopathological analyses, we observed a significantly impaired bulk flow of CSF tracers within the SAS of the spinal cord prior to EAE onset, which persisted until peak stage and was only partially recovered during chronic disease. The impairment of spinal CSF flow coincided with the appearance of fibrin aggregates in the SAS, however, it preceded immune cell infiltration and breakdown of the glia limitans superficialis. Conversely, cranial CSF efflux to cervical lymph nodes was not altered during the disease course. Our study highlights an early and persistent impairment of spinal CSF flow and suggests it as a sensitive imaging biomarker for pathological changes within the leptomeninges.
Collapse
Affiliation(s)
- Li Xin
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Adrian Madarasz
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Daniela C Ivan
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Florian Weber
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Giuseppe Locatelli
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland
| | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, CH-3012, Switzerland.
| |
Collapse
|
3
|
Shanahan SL, Kunder N, Inaku C, Hagan NB, Gibbons G, Mathey-Andrews N, Anandappa G, Soares S, Pauken KE, Jacks T, Schenkel JM. Longitudinal Intravascular Antibody Labeling Identified Regulatory T Cell Recruitment as a Therapeutic Target in a Mouse Model of Lung Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:906-918. [PMID: 39082930 PMCID: PMC11460633 DOI: 10.4049/jimmunol.2400268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024]
Abstract
Anticancer immunity is predicated on leukocyte migration into tumors. Once recruited, leukocytes undergo substantial reprogramming to adapt to the tumor microenvironment. A major challenge in the field is distinguishing recently recruited from resident leukocytes in tumors. In this study, we developed an intravascular Ab technique to label circulating mouse leukocytes before they migrate to tissues, providing unprecedented insight into the kinetics of recruitment. This approach unveiled the substantial role of leukocyte migration in tumor progression using a preclinical mouse model of lung adenocarcinoma. Regulatory T cells (Tregs), critical mediators of immunosuppression, were continuously and rapidly recruited into tumors throughout cancer progression. Moreover, leukocyte trafficking depended on the integrins CD11a/CD49d, and CD11a/CD49d blockade led to significant tumor burden reduction in mice. Importantly, preventing circulating Treg recruitment through depletion or sequestration in lymph nodes was sufficient to decrease tumor burden, indicating that Treg migration was crucial for suppressing antitumor immunity. These findings underscore the dynamic nature of the immune compartment within mouse lung tumors and demonstrate the relevance of a temporal map of leukocyte recruitment into tumors, thereby advancing our understanding of leukocyte migration in the context of tumor development.
Collapse
Affiliation(s)
- Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nikesh Kunder
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Inaku
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie B. Hagan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Grace Gibbons
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Nicolas Mathey-Andrews
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shawn Soares
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Kristen E. Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Jason M. Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
4
|
Fowler JWM, Song L, Tam K, Roth Flach RJ. Targeting lymphatic function in cardiovascular-kidney-metabolic syndrome: preclinical methods to analyze lymphatic function and therapeutic opportunities. Front Cardiovasc Med 2024; 11:1412857. [PMID: 38915742 PMCID: PMC11194411 DOI: 10.3389/fcvm.2024.1412857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
The lymphatic vascular system spans nearly every organ in the body and serves as an important network that maintains fluid, metabolite, and immune cell homeostasis. Recently, there has been a growing interest in the role of lymphatic biology in chronic disorders outside the realm of lymphatic abnormalities, lymphedema, or oncology, such as cardiovascular-kidney-metabolic syndrome (CKM). We propose that enhancing lymphatic function pharmacologically may be a novel and effective way to improve quality of life in patients with CKM syndrome by engaging multiple pathologies at once throughout the body. Several promising therapeutic targets that enhance lymphatic function have already been reported and may have clinical benefit. However, much remains unclear of the discreet ways the lymphatic vasculature interacts with CKM pathogenesis, and translation of these therapeutic targets to clinical development is challenging. Thus, the field must improve characterization of lymphatic function in preclinical mouse models of CKM syndrome to better understand molecular mechanisms of disease and uncover effective therapies.
Collapse
Affiliation(s)
| | | | | | - Rachel J. Roth Flach
- Internal Medicine Research Unit, Pfizer Research and Development, Cambridge, MA, United States
| |
Collapse
|
5
|
Kenney HM, Rangel-Moreno J, Peng Y, Chen KL, Bruno J, Embong A, Pritchett E, Fox JI, Becerril-Villanueva E, Gamboa-Domínguez A, Quataert S, Muthukrishnan G, Wood RW, Korman BD, Anolik JH, Xing L, Ritchlin CT, Schwarz EM, Wu CL. Multi-omics analysis identifies IgG2b class-switching with ALCAM-CD6 co-stimulation in joint-draining lymph nodes during advanced inflammatory-erosive arthritis. Front Immunol 2023; 14:1237498. [PMID: 37691918 PMCID: PMC10485835 DOI: 10.3389/fimmu.2023.1237498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Defective lymphatic drainage and translocation of B-cells in inflamed (Bin) joint-draining lymph node sinuses are pathogenic phenomena in patients with severe rheumatoid arthritis (RA). However, the molecular mechanisms underlying this lymphatic dysfunction remain poorly understood. Herein, we utilized multi-omic spatial and single-cell transcriptomics to evaluate altered cellular composition (including lymphatic endothelial cells, macrophages, B-cells, and T-cells) in the joint-draining lymph node sinuses and their associated phenotypic changes and cell-cell interactions during RA development using the tumor necrosis factor transgenic (TNF-Tg) mouse model. Methods Popliteal lymph nodes (PLNs) from wild-type (n=10) and TNF-Tg male mice with "Early" (5 to 6-months of age; n=6) and "Advanced" (>8-months of age; n=12) arthritis were harvested and processed for spatial transcriptomics. Single-cell RNA sequencing (scRNAseq) was performed in PLNs from the TNF-Tg cohorts (n=6 PLNs pooled/cohort). PLN histopathology and ELISPOT along with ankle histology and micro-CT were evaluated. Histopathology of human lymph nodes and synovia was performed for clinical correlation. Results Advanced PLN sinuses exhibited an increased Ighg2b/Ighm expression ratio (Early 0.5 ± 0.1 vs Advanced 1.4 ± 0.5 counts/counts; p<0.001) that significantly correlated with reduced talus bone volumes in the afferent ankle (R2 = 0.54, p<0.001). Integration of single-cell and spatial transcriptomics revealed the increased IgG2b+ plasma cells localized in MARCO+ peri-follicular medullary sinuses. A concomitant decreased Fth1 expression (Early 2.5 ± 0.74 vs Advanced 1.0 ± 0.50 counts, p<0.001) within Advanced PLN sinuses was associated with accumulation of iron-laden Prussian blue positive macrophages in lymph nodes and synovium of Advanced TNF-Tg mice, and further validated in RA clinical samples. T-cells were increased 8-fold in Advanced PLNs, and bioinformatic pathway assessment identified the interaction between ALCAM+ macrophages and CD6+ T-cells as a plausible co-stimulatory mechanism to promote IgG2b class-switching. Discussion Collectively, these data support a model of flare in chronic TNF-induced arthritis in which loss of lymphatic flow through affected joint-draining lymph nodes facilitates the interaction between effluxing macrophages and T-cells via ALCAM-CD6 co-stimulation, initiating IgG2b class-switching and plasma cell differentiation of the expanded Bin population. Future work is warranted to investigate immunoglobulin clonality and potential autoimmune consequences, as well as the efficacy of anti-CD6 therapy to prevent these pathogenic events.
Collapse
Affiliation(s)
- H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yue Peng
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Kiana L. Chen
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer Bruno
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Abdul Embong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Elizabeth Pritchett
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, United States
| | - Jeffrey I. Fox
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Enrique Becerril-Villanueva
- Psychoimmunology Laboratory, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Armando Gamboa-Domínguez
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sally Quataert
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Ronald W. Wood
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| | - Benjamin D. Korman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer H. Anolik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher T. Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
6
|
Xiang T, Feng D, Zhang X, Chen Y, Wang H, Liu X, Gong Z, Yuan J, Liu M, Sha Z, Lv C, Jiang W, Nie M, Fan Y, Wu D, Dong S, Feng J, Ponomarev ED, Zhang J, Jiang R. Effects of increased intracranial pressure on cerebrospinal fluid influx, cerebral vascular hemodynamic indexes, and cerebrospinal fluid lymphatic efflux. J Cereb Blood Flow Metab 2022; 42:2287-2302. [PMID: 35962479 PMCID: PMC9670008 DOI: 10.1177/0271678x221119855] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
The glymphatic-lymphatic fluid transport system (GLFTS) consists of glymphatic pathway and cerebrospinal fluid (CSF) lymphatic outflow routes, allowing biological liquids from the brain parenchyma to access the CSF along with perivascular space and to be cleaned out of the skull through lymphatic vessels. It is known that increased local pressure due to physical compression of tissue improves lymphatic transport in peripheral organs, but little is known about the exact relationship between increased intracranial pressure (IICP) and GLFTS. In this study, we verify our hypothesis that IICP significantly impacts GLFTS, and this effect depends on severity of the IICP. Using a previously developed inflating balloon model to induce IICP and inject fluorescent tracers into the cisterna magna, we found significant impairment of the glymphatic circulation after IICP. We further found that cerebrovascular occlusion occurred, and cerebrovascular pulsation decreased after IICP. IICP also interrupted the drainage of deep cervical lymph nodes and dorsal meningeal lymphatic function, enhancing spinal lymphatic outflow to the sacral lymph nodes. Notably, these effects were associated with the severity of IICP. Thus, our findings proved that the intensity of IICP significantly impacts GLFTS. This may have translational applications for preventing and treating related neurological disorders.
Collapse
Affiliation(s)
- Tangtang Xiang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Dongyi Feng
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Xinjie Zhang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Yupeng Chen
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Hanhua Wang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Xuanhui Liu
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Zhitao Gong
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Jiangyuan Yuan
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Mingqi Liu
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Zhuang Sha
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Chuanxiang Lv
- Department of Neurosurgery, The First Clinical Hospital, Jilin
University, Changchun, China
| | - Weiwei Jiang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Meng Nie
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Yibing Fan
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Di Wu
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Shiying Dong
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Jiancheng Feng
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General
Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post
Neuro-Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry
of Education and Tianjin City, Tianjin, China
| |
Collapse
|
7
|
Proulx ST, Engelhardt B. Central nervous system zoning: How brain barriers establish subdivisions for CNS immune privilege and immune surveillance. J Intern Med 2022; 292:47-67. [PMID: 35184353 PMCID: PMC9314672 DOI: 10.1111/joim.13469] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The central nervous system (CNS) coordinates all our body functions. Neurons in the CNS parenchyma achieve this computational task by high speed communication via electrical and chemical signals and thus rely on a strictly regulated homeostatic environment, which does not tolerate uncontrolled entry of blood components including immune cells. The CNS thus has a unique relationship with the immune system known as CNS immune privilege. Previously ascribed to the presence of blood-brain barriers and the lack of lymphatic vessels in the CNS parenchyma prohibiting, respectively, efferent and afferent connections with the peripheral immune system, it is now appreciated that CNS immune surveillance is ensured by cellular and acellular brain barriers that limit immune cell and mediator accessibility to specific compartments at the borders of the CNS. CNS immune privilege is established by a brain barriers anatomy resembling the architecture of a medieval castle surrounded by two walls bordering a castle moat. Built for protection and defense this two-walled rampart at the outer perimeter of the CNS parenchyma allows for accommodation of different immune cell subsets and efficient monitoring of potential danger signals derived from inside or outside of the CNS parenchyma. It enables effective mounting of immune responses within the subarachnoid or perivascular spaces, while leaving the CNS parenchyma relatively undisturbed. In this study, we propose that CNS immune privilege rests on the proper function of the brain barriers, which allow for CNS immune surveillance but prohibit activation of immune responses from the CNS parenchyma unless it is directly injured.
Collapse
Affiliation(s)
- Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
8
|
Khang M, Bindra RS, Mark Saltzman W. Intrathecal delivery and its applications in leptomeningeal disease. Adv Drug Deliv Rev 2022; 186:114338. [PMID: 35561835 DOI: 10.1016/j.addr.2022.114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 12/22/2022]
Abstract
Intrathecal delivery (IT) of opiates into the cerebrospinal fluid (CSF) for anesthesia and pain relief has been used clinically for decades, but this relatively straightforward approach of bypassing the blood-brain barrier has been underutilized for other indications because of its lack of utility in delivering small lipid-soluble drugs. However, emerging evidence suggests that IT drug delivery be an efficacious strategy for the treatment of cancers in which there is leptomeningeal spread of disease. In this review, we discuss CSF flow dynamics and CSF clearance pathways in the context of intrathecal delivery. We discuss human and animal studies of several new classes of therapeutic agents-cellular, protein, nucleic acid, and nanoparticle-based small molecules-that may benefit from IT delivery. The complexity of the CSF compartment presents several key challenges in predicting biodistribution of IT-delivered drugs. New approaches and strategies are needed that can overcome the high rates of turnover in the CSF to reach specific tissues or cellular targets.
Collapse
|
9
|
Decker Y, Krämer J, Xin L, Müller A, Scheller A, Fassbender K, Proulx ST. Magnetic resonance imaging of cerebrospinal fluid outflow after low-rate lateral ventricle infusion in mice. JCI Insight 2021; 7:150881. [PMID: 34905509 PMCID: PMC8855808 DOI: 10.1172/jci.insight.150881] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The anatomical routes for the clearance of cerebrospinal fluid (CSF) remain incompletely understood. However, recent evidence has given strong support for routes leading to lymphatic vessels. A current debate centers upon the routes through which CSF can access lymphatics, with evidence emerging for either direct routes to meningeal lymphatics or along cranial nerves to reach lymphatics outside the skull. Here, a method was established to infuse contrast agent into the ventricles using indwelling cannulae during imaging of mice at 2 and 12 months of age by magnetic resonance imaging. As expected, a significant decline in overall CSF turnover was found with aging. Quantifications demonstrated that the bulk of the contrast agent flowed from the ventricles to the subarachnoid space in the basal cisterns. Comparatively little contrast agent signal was found at the dorsal aspect of the skull. The imaging dynamics from the two cohorts revealed that the contrast agent cleared from the cranium through the cribriform plate to the nasopharyngeal lymphatics. On decalcified sections, we confirmed that fluorescentlylabeled ovalbumin drains through the cribriform plate and can be found within lymphatics surrounding the nasopharynx. In conclusion, routes leading to nasopharyngeal lymphatics appear to be a major efflux pathway for cranial CSF.
Collapse
Affiliation(s)
- Yann Decker
- Department of Neurology, Saarland University, Homburg, Germany
| | - Jonas Krämer
- Department of Neurology, Saarland University, Homburg, Germany
| | - Li Xin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University, Homburg, Germany
| | - Anja Scheller
- Department of Physiology, Saarland University, Homburg, Germany
| | | | - Steven T Proulx
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
10
|
García-Silva S, Benito-Martín A, Nogués L, Hernández-Barranco A, Mazariegos MS, Santos V, Hergueta-Redondo M, Ximénez-Embún P, Kataru RP, Lopez AA, Merino C, Sánchez-Redondo S, Graña-Castro O, Matei I, Nicolás-Avila JÁ, Torres-Ruiz R, Rodríguez-Perales S, Martínez L, Pérez-Martínez M, Mata G, Szumera-Ciećkiewicz A, Kalinowska I, Saltari A, Martínez-Gómez JM, Hogan SA, Saragovi HU, Ortega S, Garcia-Martin C, Boskovic J, Levesque MP, Rutkowski P, Hidalgo A, Muñoz J, Megías D, Mehrara BJ, Lyden D, Peinado H. Melanoma-derived small extracellular vesicles induce lymphangiogenesis and metastasis through an NGFR-dependent mechanism. NATURE CANCER 2021; 2:1387-1405. [PMID: 34957415 PMCID: PMC8697753 DOI: 10.1038/s43018-021-00272-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Secreted extracellular vesicles (EVs) influence the tumor microenvironment and promote distal metastasis. Here, we analyzed the involvement of melanoma-secreted EVs in lymph node pre-metastatic niche formation in murine models. We found that small EVs (sEVs) derived from metastatic melanoma cell lines were enriched in nerve growth factor receptor (NGFR, p75NTR), spread through the lymphatic system and were taken up by lymphatic endothelial cells, reinforcing lymph node metastasis. Remarkably, sEVs enhanced lymphangiogenesis and tumor cell adhesion by inducing ERK kinase, nuclear factor (NF)-κB activation and intracellular adhesion molecule (ICAM)-1 expression in lymphatic endothelial cells. Importantly, ablation or inhibition of NGFR in sEVs reversed the lymphangiogenic phenotype, decreased lymph node metastasis and extended survival in pre-clinical models. Furthermore, NGFR expression was augmented in human lymph node metastases relative to that in matched primary tumors, and the frequency of NGFR+ metastatic melanoma cells in lymph nodes correlated with patient survival. In summary, we found that NGFR is secreted in melanoma-derived sEVs, reinforcing lymph node pre-metastatic niche formation and metastasis.
Collapse
Affiliation(s)
- Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Benito-Martín
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - Laura Nogués
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Alberto Hernández-Barranco
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marina S Mazariegos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Marta Hergueta-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Pilar Ximénez-Embún
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ana Amor Lopez
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Cristina Merino
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | - José Ángel Nicolás-Avila
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Raúl Torres-Ruiz
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Molecular Cytogenetics Unit, Human Cancer Genetics Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lola Martínez
- Flow Cytometry Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Pérez-Martínez
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Gadea Mata
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Diagnostic Hematology Department, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Iwona Kalinowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Annalisa Saltari
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Julia M Martínez-Gómez
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Sabrina A Hogan
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - H Uri Saragovi
- Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Sagrario Ortega
- Transgenic Mice Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Carmen Garcia-Martin
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jasminka Boskovic
- Electron Microscopy Unit, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich, University of Zurich Hospital, Zurich, Switzerland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Andrés Hidalgo
- Area of Developmental and Cell Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Javier Muñoz
- Proteomics Unit, ProteoRed-ISCIII, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Diego Megías
- Cofocal Microscopy Unit, Biotechnology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics and Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA.
| | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| |
Collapse
|
11
|
Bernard FC, Kaiser J, Raval SK, Nepiyushchikh ZV, Doan TN, Willett NJ, Dixon JB. Multichromatic near-infrared imaging to assess interstitial lymphatic and venous uptake in vivo. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210078R. [PMID: 34881527 PMCID: PMC8654485 DOI: 10.1117/1.jbo.26.12.126001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/21/2021] [Indexed: 05/12/2023]
Abstract
SIGNIFICANCE Changes in interstitial fluid clearance are implicated in many diseases. Using near-infrared (NIR) imaging with properly sized tracers could enhance our understanding of how venous and lymphatic drainage are involved in disease progression or enhance drug delivery strategies. AIM We investigated multichromatic NIR imaging with multiple tracers to assess in vivo microvascular clearance kinetics and pathways in different tissue spaces. APPROACH We used a chemically inert IR Dye 800CW (D800) to target venous capillaries and a purified conjugate of IR dye 680RD with 40 kDa PEG (P40D680) to target lymphatic capillaries in vivo. Optical imaging settings were validated and tuned in vitro using tissue phantoms. We investigated multichromatic NIR imaging's utility in two in vivo tissue beds: the mouse tail and rat knee joint. We then tested the ability of the approach to detect interstitial fluid perturbations due to exercise. RESULTS In an in vitro simulated tissue environment, free dye and PEG mixture allowed for simultaneous detection without interference. In the mouse tail, co-injected NIR tracers cleared from the interstitial space via distinct routes, suggestive of lymphatic and venous uptake mechanisms. In the rat knee, we determined that exercise after injection transiently increased lymphatic drainage as measured by lower normalized intensity immediately after exercise, whereas exercise pre-injection exhibited a transient delay in clearance from the joint. CONCLUSIONS NIR imaging enables simultaneous imaging of lymphatic and venous-mediated fluid clearance with great sensitivity and can be used to measure temporal changes in clearance rates and pathways.
Collapse
Affiliation(s)
- Fabrice C. Bernard
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Jarred Kaiser
- Emory University, Department of Orthopaedics, Atlanta, Georgia, United States
| | - Sarvgna K. Raval
- Emory University, Department of Orthopaedics, Atlanta, Georgia, United States
| | - Zhanna V. Nepiyushchikh
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States
| | - Thanh N. Doan
- Emory University, Department of Orthopaedics, Atlanta, Georgia, United States
| | - Nick J. Willett
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Emory University, Department of Orthopaedics, Atlanta, Georgia, United States
- Atlanta Veteran’s Affairs Medical Center, Department of Orthopaedics, Atlanta, Georgia, United States
- Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States
| | - J. Brandon Dixon
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, Georgia, United States
- Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, Georgia, United States
| |
Collapse
|
12
|
Polomska A, Gousopoulos E, Fehr D, Bachmann A, Bonmarin M, Detmar M, Lindenblatt N. Development and Clinical Validation of the LymphMonitor Technology to Quantitatively Assess Lymphatic Function. Diagnostics (Basel) 2021; 11:diagnostics11101873. [PMID: 34679571 PMCID: PMC8534490 DOI: 10.3390/diagnostics11101873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/17/2021] [Accepted: 10/04/2021] [Indexed: 02/01/2023] Open
Abstract
Current diagnostic methods for evaluating the functionality of the lymphatic vascular system usually do not provide quantitative data and suffer from many limitations including high costs, complexity, and the need to perform them in hospital settings. In this work, we present a quantitative, simple outpatient technology named LymphMonitor to quantitatively assess lymphatic function. This method is based on the painless injection of the lymphatic-specific near-infrared fluorescent tracer indocyanine green complexed with human serum albumin, using MicronJet600TM microneedles, and monitoring the disappearance of the fluorescence signal at the injection site over time using a portable detection device named LymphMeter. This technology was investigated in 10 patients with unilateral leg or arm lymphedema. After injection of a tracer solution into each limb, the signal was measured over 3 h and the area under the normalized clearance curve was calculated to quantify the lymphatic function. A statistically significant difference in lymphatic clearance in the healthy versus the lymphedema extremities was found, based on the obtained area under curves of the normalized clearance curves. This study provides the first evidence that the LymphMonitor technology has the potential to diagnose and monitor the lymphatic function in patients.
Collapse
Affiliation(s)
- Anna Polomska
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Pharmaceutical Sciences, Vladimir-Prelog Weg 3, 8093 Zurich, Switzerland;
| | - Epameinondas Gousopoulos
- Department of Plastic and Hand Surgery, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (E.G.); (N.L.)
| | - Daniel Fehr
- Zurich University of Applied Sciences (ZHAW), Institute of Computational Physics, Technikumstrasse 9, 8401 Winterthur, Switzerland; (D.F.); (A.B.); (M.B.)
| | - Andreas Bachmann
- Zurich University of Applied Sciences (ZHAW), Institute of Computational Physics, Technikumstrasse 9, 8401 Winterthur, Switzerland; (D.F.); (A.B.); (M.B.)
| | - Mathias Bonmarin
- Zurich University of Applied Sciences (ZHAW), Institute of Computational Physics, Technikumstrasse 9, 8401 Winterthur, Switzerland; (D.F.); (A.B.); (M.B.)
| | - Michael Detmar
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Pharmaceutical Sciences, Vladimir-Prelog Weg 3, 8093 Zurich, Switzerland;
- Correspondence:
| | - Nicole Lindenblatt
- Department of Plastic and Hand Surgery, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland; (E.G.); (N.L.)
| |
Collapse
|
13
|
Polomska AK, Proulx ST. Imaging technology of the lymphatic system. Adv Drug Deliv Rev 2021; 170:294-311. [PMID: 32891679 DOI: 10.1016/j.addr.2020.08.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
The lymphatic system plays critical roles in tissue fluid homeostasis and immunity and has been implicated in the development of many different pathologies, ranging from lymphedema, the spread of cancer to chronic inflammation. In this review, we first summarize the state-of-the-art of lymphatic imaging in the clinic and the advantages and disadvantages of these existing techniques. We then detail recent progress on imaging technology, including advancements in tracer design and injection methods, that have allowed visualization of lymphatic vessels with excellent spatial and temporal resolution in preclinical models. Finally, we describe the different approaches to quantifying lymphatic function that are being developed and discuss some emerging topics for lymphatic imaging in the clinic. Continued advancements in lymphatic imaging technology will be critical for the optimization of diagnostic methods for lymphatic disorders and the evaluation of novel therapies targeting the lymphatic system.
Collapse
Affiliation(s)
- Anna K Polomska
- ETH Zürich, Institute of Pharmaceutical Sciences, Vladimir-Prelog Weg 1-5/10, 8093 Zürich, Switzerland
| | - Steven T Proulx
- University of Bern, Theodor Kocher Institute, Freiestrasse 1, 3012 Bern, Switzerland.
| |
Collapse
|
14
|
Babity S, Polomska AK, Couture F, Bonmarin M, Fehr D, Detmar M, Brambilla D. Rational design of a fluorescent microneedle tattoo for minimally invasive monitoring of lymphatic function. J Control Release 2020; 327:350-359. [DOI: 10.1016/j.jconrel.2020.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 02/08/2023]
|
15
|
Goodman JR, Iliff JJ. Vasomotor influences on glymphatic-lymphatic coupling and solute trafficking in the central nervous system. J Cereb Blood Flow Metab 2020; 40:1724-1734. [PMID: 31506012 PMCID: PMC7370362 DOI: 10.1177/0271678x19874134] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite the recent description of meningeal lymphatic vessels draining solutes from the brain interstitium and cerebrospinal fluid (CSF), the physiological factors governing cranial lymphatic efflux remain largely unexplored. In agreement with recent findings, cervical lymphatic drainage of 70 kD and 2000 kD fluorescent tracers injected into the adult mouse cortex was significantly impaired in the anesthetized compared to waking animals (tracer distribution across 2.1 ± 4.5% and 23.7 ± 15.8% of deep cervical lymph nodes, respectively); however, free-breathing anesthetized mice were markedly hypercapnic and acidemic (paCO2 = 64 ± 8 mmHg; pH = 7.22 ± 0.05). Mechanical ventilation normalized arterial blood gases in anesthetized animals, and rescued lymphatic efflux of interstitial solutes in anesthetized mice. Experimental hypercapnia blocked cervical lymphatic efflux of intraparenchymal tracers. When tracers were injected into the subarachnoid CSF compartment, glymphatic influx into brain tissue was virtually abolished by hypercapnia, while lymphatic drainage was not appreciably altered. These findings demonstrate that cervical lymphatic drainage of interstitial solutes is, in part, regulated by upstream changes in glymphatic CSF-interstitial fluid exchange. Further, they suggest that maintaining physiological blood gas values in studies of glymphatic exchange and meningeal lymphatic drainage may be critical to defining the physiological regulation of these processes.
Collapse
Affiliation(s)
- James R Goodman
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
16
|
Ma Q, Decker Y, Müller A, Ineichen BV, Proulx ST. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels. J Exp Med 2019; 216:2492-2502. [PMID: 31455602 PMCID: PMC6829589 DOI: 10.1084/jem.20190351] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 01/12/2023] Open
Abstract
The pathways of circulation and clearance of cerebrospinal fluid (CSF) in the spine have yet to be elucidated. We have recently shown with dynamic in vivo imaging that routes of outflow of CSF in mice occur along cranial nerves to extracranial lymphatic vessels. Here, we use near-infrared and magnetic resonance imaging to demonstrate the flow of CSF tracers within the spinal column and reveal the major spinal pathways for outflow to lymphatic vessels in mice. We found that after intraventricular injection, a spread of CSF tracers occurs within both the central canal and the spinal subarachnoid space toward the caudal end of the spine. Outflow of CSF tracers from the spinal subarachnoid space occurred predominantly from intravertebral regions of the sacral spine to lymphatic vessels, leading to sacral and iliac LNs. Clearance of CSF from the spine to lymphatic vessels may have significance for many conditions, including multiple sclerosis and spinal cord injury.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Yann Decker
- Department of Neurology, University of the Saarland, Homburg, Germany
| | - Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, University of the Saarland, Homburg, Germany
| | | | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Ma Q, Schlegel F, Bachmann SB, Schneider H, Decker Y, Rudin M, Weller M, Proulx ST, Detmar M. Lymphatic outflow of cerebrospinal fluid is reduced in glioma. Sci Rep 2019; 9:14815. [PMID: 31616011 PMCID: PMC6794292 DOI: 10.1038/s41598-019-51373-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/28/2019] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma is a malignant brain tumor with mean overall survival of less than 15 months. Blood vessel leakage and peritumoral edema lead to increased intracranial pressure and augment neurological deficits which profoundly decrease the quality of life of glioblastoma patients. It is unknown how the dynamics of cerebrospinal fluid (CSF) turnover are affected during this process. By monitoring the transport of CSF tracers to the systemic blood circulation after infusion into the cisterna magna, we demonstrate that the outflow of CSF is dramatically reduced in glioma-bearing mice. Using a combination of magnetic resonance imaging (MRI) and near-infrared (NIR) imaging, we found that the circulation of CSF tracers was hindered after cisterna magna injection with reduced signals along the exiting cranial nerves and downstream lymph nodes, which represent the major CSF outflow route in mice. Due to blockage of the normal routes of CSF bulk flow within and from the cranial cavity, CSF tracers were redirected into the spinal space. In some mice, impaired CSF clearance from the cranium was compensated by a lymphatic outflow from the sacral spine.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Felix Schlegel
- Institute of Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Samia B Bachmann
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Hannah Schneider
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Yann Decker
- Department of Neurology, University of the Saarland, Homburg, Germany
| | - Markus Rudin
- Institute of Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
18
|
Jacob L, Boisserand LSB, Geraldo LHM, de Brito Neto J, Mathivet T, Antila S, Barka B, Xu Y, Thomas JM, Pestel J, Aigrot MS, Song E, Nurmi H, Lee S, Alitalo K, Renier N, Eichmann A, Thomas JL. Anatomy and function of the vertebral column lymphatic network in mice. Nat Commun 2019; 10:4594. [PMID: 31597914 PMCID: PMC6785564 DOI: 10.1038/s41467-019-12568-w] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/11/2019] [Indexed: 12/26/2022] Open
Abstract
Cranial lymphatic vessels (LVs) are involved in the transport of fluids, macromolecules and central nervous system (CNS) immune responses. Little information about spinal LVs is available, because these delicate structures are embedded within vertebral tissues and difficult to visualize using traditional histology. Here we show an extended vertebral column LV network using three-dimensional imaging of decalcified iDISCO+-clarified spine segments. Vertebral LVs connect to peripheral sensory and sympathetic ganglia and form metameric vertebral circuits connecting to lymph nodes and the thoracic duct. They drain the epidural space and the dura mater around the spinal cord and associate with leukocytes. Vertebral LVs remodel extensively after spinal cord injury and VEGF-C-induced vertebral lymphangiogenesis exacerbates the inflammatory responses, T cell infiltration and demyelination following focal spinal cord lesion. Therefore, vertebral LVs add to skull meningeal LVs as gatekeepers of CNS immunity and may be potential targets to improve the maintenance and repair of spinal tissues.
Collapse
Affiliation(s)
- Laurent Jacob
- Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | | | - Luiz Henrique Medeiros Geraldo
- INSERM U970, Paris Cardiovascular Research Center, 56 Rue Leblanc, 75015, Paris, France
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose de Brito Neto
- Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas Mathivet
- INSERM U970, Paris Cardiovascular Research Center, 56 Rue Leblanc, 75015, Paris, France
| | - Salli Antila
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Besma Barka
- Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Yunling Xu
- INSERM U970, Paris Cardiovascular Research Center, 56 Rue Leblanc, 75015, Paris, France
| | | | - Juliette Pestel
- Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Marie-Stéphane Aigrot
- Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Eric Song
- Department of Immunology, Yale University School of Medicine, New Haven, CT, 06510-3221, USA
| | - Harri Nurmi
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Seyoung Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nicolas Renier
- Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Anne Eichmann
- INSERM U970, Paris Cardiovascular Research Center, 56 Rue Leblanc, 75015, Paris, France
- Cardiovascular Research Center and the Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, 06510-3221, USA
| | - Jean-Leon Thomas
- Université Pierre et Marie Curie Paris 06 UMRS1127, Sorbonne Université, Institut du Cerveau et de la Moelle Epinière, Paris, France.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
19
|
Kilarski WW, Martin C, Pisano M, Bain O, Babayan SA, Swartz MA. Inherent biomechanical traits enable infective filariae to disseminate through collecting lymphatic vessels. Nat Commun 2019; 10:2895. [PMID: 31263185 PMCID: PMC6603047 DOI: 10.1038/s41467-019-10675-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
Filariases are diseases caused by arthropod-borne filaria nematodes. The related pathologies depend on the location of the infective larvae when their migration, the asymptomatic and least studied phase of the disease, comes to an end. To determine factors assisting in filariae dissemination, we image Litomosoides sigmodontis infective larvae during their escape from the skin. Burrowing through the dermis filariae exclusively enter pre-collecting lymphatics by mechanical disruption of their wall. Once inside collectors, their rapid and unidirectional movement towards the lymph node is supported by the morphology of lymphatic valves. In a microfluidic maze mimicking lymphatic vessels, filariae follow the direction of the flow, the first biomechanical factor capable of helminth guidance within the host. Finally, non-infective nematodes that rely on universal morpho-physiological cues alone also migrate through the dermis, and break in lymphatics, indicating that the ability to spread by the lymphatic route is an ancestral trait rather than acquired parasitic adaptation.
Collapse
Affiliation(s)
- Witold W Kilarski
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
| | - Coralie Martin
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, 75005, France
| | - Marco Pisano
- Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Odile Bain
- UMR7245, MCAM, Museum national d'Histoire naturelle, Paris, 75005, France
| | - Simon A Babayan
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Melody A Swartz
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
20
|
Lenti E, Bianchessi S, Proulx ST, Palano MT, Genovese L, Raccosta L, Spinelli A, Drago D, Andolfo A, Alfano M, Petrova TV, Mukenge S, Russo V, Brendolan A. Therapeutic Regeneration of Lymphatic and Immune Cell Functions upon Lympho-organoid Transplantation. Stem Cell Reports 2019; 12:1260-1268. [PMID: 31155505 PMCID: PMC6565831 DOI: 10.1016/j.stemcr.2019.04.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
Lymph nodes (LNs) are secondary lymphoid tissues that play a critical role in filtering the lymph and promoting adaptive immune responses. Surgical resection of LNs, radiation therapy, or infections may damage lymphatic vasculature and compromise immune functions. Here, we describe the generation of functional synthetic lympho-organoids (LOs) using LN stromal progenitors and decellularized extracellular matrix-based scaffolds, two basic constituents of secondary lymphoid tissues. We show that upon transplantation at the site of resected LNs, LOs become integrated into the endogenous lymphatic vasculature and efficiently restore lymphatic drainage and perfusion. Upon immunization, LOs support the activation of antigen-specific immune responses, thus acquiring properties of native lymphoid tissues. These findings provide a proof-of-concept strategy for the development of functional lympho-organoids suitable for restoring lymphatic and immune cell functions.
Collapse
Affiliation(s)
- Elisa Lenti
- Unit of Lymphoid Organ Development, Division of Experimental Oncology, DIBIT-1 3A2, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Silvia Bianchessi
- Unit of Lymphoid Organ Development, Division of Experimental Oncology, DIBIT-1 3A2, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Maria Teresa Palano
- Unit of Lymphoid Organ Development, Division of Experimental Oncology, DIBIT-1 3A2, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Luca Genovese
- Unit of Lymphoid Organ Development, Division of Experimental Oncology, DIBIT-1 3A2, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Laura Raccosta
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Denise Drago
- ProMiFa, Protein Microsequencing Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annapaola Andolfo
- ProMiFa, Protein Microsequencing Facility, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne, and Ludwig Institute for Cancer Research, 1066 Lausanne, Switzerland
| | - Sylvain Mukenge
- Department of Hepatobiliary Surgery, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Vincenzo Russo
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Andrea Brendolan
- Unit of Lymphoid Organ Development, Division of Experimental Oncology, DIBIT-1 3A2, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
21
|
Bachmann SB, Proulx ST, He Y, Ries M, Detmar M. Differential effects of anaesthesia on the contractility of lymphatic vessels
in vivo. J Physiol 2019; 597:2841-2852. [DOI: 10.1113/jp277254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Affiliation(s)
- Samia B. Bachmann
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| | - Steven T. Proulx
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| | - Yuliang He
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| | - Miriam Ries
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical SciencesSwiss Federal Institute of Technology ETH Zurich Switzerland
| |
Collapse
|
22
|
Yücel YH, Cardinell K, Khattak S, Zhou X, Lapinski M, Cheng F, Gupta N. Active Lymphatic Drainage From the Eye Measured by Noninvasive Photoacoustic Imaging of Near-Infrared Nanoparticles. Invest Ophthalmol Vis Sci 2019; 59:2699-2707. [PMID: 29860456 DOI: 10.1167/iovs.17-22850] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To visualize and quantify lymphatic drainage of aqueous humor from the eye to cervical lymph nodes in the dynamic state. Methods A near-infrared tracer was injected into the right eye anterior chamber of 10 mice under general anesthesia. Mice were imaged with photoacoustic tomography before and 20 minutes, 2, 4, and 6 hours after injection. Tracer signal intensity was measured in both eyes and right and left neck lymph nodes at every time point and signal intensity slopes were calculated. Slope differences between right and left eyes and right and left nodes were compared using paired t-test. Neck nodes were examined with fluorescence optical imaging and histologically for the presence of tracer. Results Following right eye intracameral injection of tracer, an exponential decrease in tracer signal was observed from 20 minutes to 6 hours in all mice. Slope differences of the signal intensity between right and left eyes were significant (P < 0.001). Simultaneously, increasing tracer signal was observed in the right neck node from 20 minutes to 6 hours. Slope differences of the signal intensity between right and left neck nodes were significant (P = 0.0051). Ex vivo optical fluorescence imaging and histopathologic examination of neck nodes confirmed tracer presence within submandibular nodes. Conclusions Active lymphatic drainage of aqueous from the eye to cervical lymph nodes was measured noninvasively by photoacoustic imaging of near-infrared nanoparticles. This unique in vivo assay may help to uncover novel drugs that target alternative outflow routes to lower IOP in glaucoma and may provide new insights into lymphatic drainage in eye health and disease.
Collapse
Affiliation(s)
- Yeni H Yücel
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital, Ryerson University, Toronto, Ontario, Canada.,Department of Mechanical Engineering, Faculty of Engineering and Architectural Science, Ryerson University, Toronto, Ontario, Canada
| | - Kirsten Cardinell
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Physics, Faculty of Science, Ryerson University, Toronto, Ontario, Canada
| | - Shireen Khattak
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Xun Zhou
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Michael Lapinski
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Fang Cheng
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Neeru Gupta
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Ophthalmology and Vision Sciences, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine & Pathobiology, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.,Glaucoma Unit, St. Michael's Hospital, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Polomska AK, Proulx ST, Brambilla D, Fehr D, Bonmarin M, Brändli S, Meboldt M, Steuer C, Vasileva T, Reinke N, Leroux JC, Detmar M. Minimally invasive method for the point-of-care quantification of lymphatic vessel function. JCI Insight 2019; 4:126515. [PMID: 30667371 DOI: 10.1172/jci.insight.126515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Current clinical methods for the evaluation of lymphatic vessel function, crucial for early diagnosis and evaluation of treatment response of several pathological conditions, in particular of postsurgical lymphedema, are based on complex and mainly qualitative imaging techniques. To address this unmet medical need, we established a simple strategy for the painless and quantitative assessment of cutaneous lymphatic function. We prepared a lymphatic-specific tracer formulation, consisting of the clinically approved near-infrared fluorescent dye, indocyanine green, and the solubilizing surfactant Kolliphor HS15. The tracer was noninvasively delivered to the dermal layer of the skin using MicronJet600 hollow microneedles, and the fluorescence signal decay at the injection site was measured over time using a custom-made, portable detection device. The decay rate of fluorescence signal in the skin was used as a direct measure of lymphatic vessel drainage function. With this method, we could quantify impaired lymphatic clearance in transgenic mice lacking dermal lymphatics and distinguish distinct lymphatic clearance patterns in pigs in different body locations and under manual stimulus. Overall, this method has the potential for becoming a noninvasive and quantitative clinical "office test" for lymphatic function assessment.
Collapse
Affiliation(s)
- Anna K Polomska
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Steven T Proulx
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | | | - Daniel Fehr
- Zurich University of Applied Sciences, School of Engineering, Winterthur, Switzerland
| | - Mathias Bonmarin
- Zurich University of Applied Sciences, School of Engineering, Winterthur, Switzerland
| | - Simon Brändli
- Swiss Federal Institute of Technology (ETH Zürich), Department of Mechanical and Process Engineering, Zürich, Switzerland
| | - Mirko Meboldt
- Swiss Federal Institute of Technology (ETH Zürich), Department of Mechanical and Process Engineering, Zürich, Switzerland
| | - Christian Steuer
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Tsvetina Vasileva
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Nils Reinke
- Zurich University of Applied Sciences, School of Engineering, Winterthur, Switzerland
| | - Jean-Christophe Leroux
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Pharmaceutical Sciences, Zürich, Switzerland
| | - Michael Detmar
- Swiss Federal Institute of Technology (ETH Zürich), Institute of Pharmaceutical Sciences, Zürich, Switzerland
| |
Collapse
|
24
|
Ma Q, Ries M, Decker Y, Müller A, Riner C, Bücker A, Fassbender K, Detmar M, Proulx ST. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol 2019; 137:151-165. [PMID: 30306266 PMCID: PMC6338719 DOI: 10.1007/s00401-018-1916-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/23/2022]
Abstract
The relationships between cerebrospinal fluid (CSF) and brain interstitial fluid are still being elucidated. It has been proposed that CSF within the subarachnoid space will enter paravascular spaces along arteries to flush through the parenchyma of the brain. However, CSF also directly exits the subarachnoid space through the cribriform plate and other perineural routes to reach the lymphatic system. In this study, we aimed to elucidate the functional relationship between CSF efflux through lymphatics and the potential influx into the brain by assessment of the distribution of CSF-infused tracers in awake and anesthetized mice. Using near-infrared fluorescence imaging, we showed that tracers quickly exited the subarachnoid space by transport through the lymphatic system to the systemic circulation in awake mice, significantly limiting their spread to the paravascular spaces of the brain. Magnetic resonance imaging and fluorescence microscopy through the skull under anesthetized conditions indicated that tracers remained confined to paravascular spaces on the surface of the brain. Immediately after death, a substantial influx of tracers occurred along paravascular spaces extending into the brain parenchyma. We conclude that under normal conditions a rapid CSF turnover through lymphatics precludes significant bulk flow into the brain.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland
| | - Miriam Ries
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland
| | - Yann Decker
- Department of Neurology, University of the Saarland, 66421, Homburg, Saar, Germany
| | - Andreas Müller
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, 66421, Homburg, Saar, Germany
| | - Chantal Riner
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland
| | - Arno Bücker
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, 66421, Homburg, Saar, Germany
| | - Klaus Fassbender
- Department of Neurology, University of the Saarland, 66421, Homburg, Saar, Germany
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, HCI H398, 8093, Zurich, Switzerland.
| |
Collapse
|
25
|
Bisso S, Degrassi A, Brambilla D, Leroux JC. Poly(ethylene glycol)-alendronate coated nanoparticles for magnetic resonance imaging of lymph nodes. J Drug Target 2018; 27:659-669. [DOI: 10.1080/1061186x.2018.1545235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sofia Bisso
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Anna Degrassi
- Department of Biology, Nerviano Medical Sciences Srl, Milan, Italy
| | - Davide Brambilla
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
- Faculté de Pharmacie, Université de Montréal, Montréal, Canada
| | - Jean-Christophe Leroux
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Dai Y, Chen X, Yin J, Wang G, Wang B, Zhan Y, Nie Y, Wu K, Liang J. Investigation of the influence of sampling schemes on quantitative dynamic fluorescence imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:1859-1870. [PMID: 29675325 PMCID: PMC5905930 DOI: 10.1364/boe.9.001859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/22/2018] [Accepted: 03/18/2018] [Indexed: 05/08/2023]
Abstract
Dynamic optical data from a series of sampling intervals can be used for quantitative analysis to obtain meaningful kinetic parameters of probe in vivo. The sampling schemes may affect the quantification results of dynamic fluorescence imaging. Here, we investigate the influence of different sampling schemes on the quantification of binding potential (BP) with theoretically simulated and experimentally measured data. Three groups of sampling schemes are investigated including the sampling starting point, sampling sparsity, and sampling uniformity. In the investigation of the influence of the sampling starting point, we further summarize two cases by considering the missing timing sequence between the probe injection and sampling starting time. Results show that the mean value of BP exhibits an obvious growth trend with an increase in the delay of the sampling starting point, and has a strong correlation with the sampling sparsity. The growth trend is much more obvious if throwing the missing timing sequence. The standard deviation of BP is inversely related to the sampling sparsity, and independent of the sampling uniformity and the delay of sampling starting time. Moreover, the mean value of BP obtained by uniform sampling is significantly higher than that by using the non-uniform sampling. Our results collectively suggest that a suitable sampling scheme can help compartmental modeling of dynamic fluorescence imaging provide more accurate results and simpler operations.
Collapse
Affiliation(s)
- Yunpeng Dai
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- These authors contributed equally to this work
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
- These authors contributed equally to this work
| | - Jipeng Yin
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
- These authors contributed equally to this work
| | - Guodong Wang
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Bo Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jimin Liang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education & School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| |
Collapse
|
27
|
Ma Q, Ineichen BV, Detmar M, Proulx ST. Outflow of cerebrospinal fluid is predominantly through lymphatic vessels and is reduced in aged mice. Nat Commun 2017; 8:1434. [PMID: 29127332 PMCID: PMC5681558 DOI: 10.1038/s41467-017-01484-6] [Citation(s) in RCA: 411] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 09/18/2017] [Indexed: 11/09/2022] Open
Abstract
Cerebrospinal fluid (CSF) has been commonly accepted to drain through arachnoid projections from the subarachnoid space to the dural venous sinuses. However, a lymphatic component to CSF outflow has long been known. Here, we utilize lymphatic-reporter mice and high-resolution stereomicroscopy to characterize the anatomical routes and dynamics of outflow of CSF. After infusion into a lateral ventricle, tracers spread into the paravascular spaces of the pia mater and cortex of the brain. Tracers also rapidly reach lymph nodes using perineural routes through foramina in the skull. Using noninvasive imaging techniques that can quantify the transport of tracers to the blood and lymph nodes, we find that lymphatic vessels are the major outflow pathway for both large and small molecular tracers in mice. A significant decline in CSF lymphatic outflow is found in aged compared to young mice, suggesting that the lymphatic system may represent a target for age-associated neurological conditions.
Collapse
Affiliation(s)
- Qiaoli Ma
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | | | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
28
|
Tumor Regulation of Lymph Node Lymphatic Sinus Growth and Lymph Flow in Mice and in Humans. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:403-415. [PMID: 28955180 PMCID: PMC5612184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The lymphatic vasculature collects and drains fluid and cells from the periphery through lymph nodes (LNs) for immune monitoring, and then returns lymph to the bloodstream. During immune responses LNs enlarge and remodel, featuring extensive growth of lymphatic sinuses (lymphangiogenesis). This LN lymphangiogenesis also arises in cancer, and is associated with altered lymph drainage through LNs. Studies of mouse solid tumor models identified lymphatic sinus growth throughout tumor-draining LNs (TDLNs), and increased lymph flow through the expanded sinuses. Mice developing B cell lymphomas also feature LN lymphangiogenesis and increased lymph flow, indicating that these changes occur in lymphoma as well as in solid tumors. These LN alterations may be key to promote tumor growth and metastasis to draining LNs and distant organs. Lymphatic sinus growth within the TDLN may suppress anti-tumor-immune responses, and/or the increased lymph drainage could promote metastasis to draining LNs and distant organs. Investigations of human cancers and lymphomas are now identifying TDLN lymphatic sinus growth and increased lymph flow, that correlate with metastasis and poor prognosis. Pathology assessment of TDLN lymphangiogenesis or noninvasive imaging of tumor lymph drainage thus could potentially be useful to assist with diagnosis and treatment decisions. Moreover, the expanded lymphatic sinuses and increased lymph flow could facilitate vaccine or drug delivery, to manipulate TDLN immune functioning or to treat metastases. The insights obtained thus far should encourage further investigation of the mechanisms and consequences of TDLN lymphatic sinus growth and lymph flow alterations in mouse cancer models, and in human cancer patients.
Collapse
|
29
|
Blei F. Update March 2017. Lymphat Res Biol 2017. [DOI: 10.1089/lrb.2017.29019.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|