1
|
Kono DH, Hahn BH. Animal models of systemic lupus erythematosus (SLE). DUBOIS' LUPUS ERYTHEMATOSUS AND RELATED SYNDROMES 2025:189-234. [DOI: 10.1016/b978-0-323-93232-5.00024-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Fiske BE, Getahun A. Failed Downregulation of PI3K Signaling Makes Autoreactive B Cells Receptive to Bystander T Cell Help. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1150-1160. [PMID: 38353615 PMCID: PMC10948302 DOI: 10.4049/jimmunol.2300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
The role of T cell help in autoantibody responses is not well understood. Because tolerance mechanisms govern both T and B cell responses, one might predict that both T cell tolerance and B cell tolerance must be defeated in autoantibody responses requiring T cell help. To define whether autoreactive B cells depend on T cells to generate autoantibody responses, we studied the role of T cells in murine autoantibody responses resulting from acute B cell-specific deletion of regulatory phosphatases. Ars/A1 B cells are DNA reactive and require continuous inhibitory signaling by the tyrosine phosphatase SHP-1 and the inositol phosphatases SHIP-1 and PTEN to maintain unresponsiveness. Acute B cell-restricted deletion of any of these phosphatases results in an autoantibody response. In this study, we show that CD40-CD40L interactions are required to support autoantibody responses of B cells whose anergy has been compromised. If the B cell-intrinsic driver of loss of tolerance is failed negative regulation of PI3K signaling, bystander T cells provide sufficient CD40-mediated signal 2 to support an autoantibody response. However, although autoantibody responses driven by acute B cell-targeted deletion of SHP-1 also require T cells, bystander T cell help does not suffice. These results demonstrate that upregulation of PI3K signaling in autoreactive B cells, recapitulating the effect of multiple autoimmunity risk alleles, promotes autoantibody responses both by increasing B cells' cooperation with noncognate T cell help and by altering BCR signaling. Receptiveness to bystander T cell help enables autoreactive B cells to circumvent the fail-safe of T cell tolerance.
Collapse
Affiliation(s)
- Brigita E. Fiske
- Department of Immunology and Microbiology, University of Colorado SOM, Aurora, CO, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado SOM, Aurora, CO, USA
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
3
|
Tilstra JS, Kim M, Gordon RA, Leibler C, Cosgrove HA, Bastacky S, Nickerson KM, Shlomchik MJ. B cell-intrinsic Myd88 regulates disease progression in murine lupus. J Exp Med 2023; 220:e20230263. [PMID: 37787782 PMCID: PMC10541815 DOI: 10.1084/jem.20230263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Nucleic acid-specific Toll-like receptors (TLRs) have been implicated in promoting disease pathogenesis in systemic lupus erythematosus (SLE). Whether such TLRs mediate disease onset, progression, or both remains undefined; yet the answer to this question has important therapeutic implications. MyD88 is an essential adaptor that acts downstream of IL-1 family receptors and most TLRs. Both global and B cell-specific Myd88 deficiency ameliorated disease in lupus-prone mice when constitutively deleted. To address whether Myd88 was needed to sustain ongoing disease, we induced B cell-specific deletion of Myd88 after disease onset in MRL.Faslpr mice using an inducible Cre recombinase. B cell-specific deletion of Myd88 starting after disease onset resulted in ameliorated glomerulonephritis and interstitial inflammation. Additionally, treated mice had reduced autoantibody formation and an altered B cell compartment with reduced ABC and plasmablast numbers. These experiments demonstrate the role of MyD88 in B cells to sustain disease in murine lupus. Therefore, targeting MyD88 or its upstream activators may be a viable therapeutic option in SLE.
Collapse
Affiliation(s)
- Jeremy S. Tilstra
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minjung Kim
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rachael A. Gordon
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claire Leibler
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haylee A. Cosgrove
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin M. Nickerson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Abboud G, Choi SC, Zhang X, Park YP, Kanda N, Zeumer-Spataro L, Terrell M, Teng X, Nündel K, Shlomchik MJ, Morel L. Glucose Requirement of Antigen-Specific Autoreactive B Cells and CD4+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:377-388. [PMID: 36602759 PMCID: PMC9898175 DOI: 10.4049/jimmunol.2200325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
The activation of lymphocytes in patients with lupus and in mouse models of the disease is coupled with an increased cellular metabolism in which glucose plays a major role. The pharmacological inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reversed the expansion of follicular helper CD4+ T cells and germinal center B cells in lupus-prone mice, as well as the production of autoantibodies. The response of foreign Ags was however not affected by 2DG in these mice, suggesting that B and CD4+ T cell activation by autoantigens is uniquely sensitive to glycolysis. In this study, we tested this hypothesis with monoclonal B cells and CD4+ T cells specific for lupus-relevant autoantigens. AM14 Vκ8R (AM14) transgenic B cells are activated by IgG2a/chromatin immune complexes and they can receive cognate help from chromatin-specific 13C2 CD4+ T cells. We showed that activation of AM14 B cells by their cognate Ag PL2-3 induced glycolysis, and that the inhibition of glycolysis reduced their activation and differentiation into Ab-forming cells, in the absence or presence of T cell help. The dependency of autoreactive B cells on glycolysis is in sharp contrast with the previously reported dependency of 4-hydroxy-3-nitrophenyl acetyl-specific B cells on fatty acid oxidation. Contrary to AM14 B cells, the activation and differentiation of 13C2 T cells into follicular helper CD4+ T cells was not altered by 2DG, which differs from polyclonal CD4+ T cells from lupus-prone mice. These results further define the role of glycolysis in the production of lupus autoantibodies and demonstrate the need to evaluate the metabolic requirements of Ag-specific B and T cells.
Collapse
Affiliation(s)
- Georges Abboud
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Xiaojuan Zhang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Yuk Pheel Park
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Nathalie Kanda
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Leilani Zeumer-Spataro
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Morgan Terrell
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Xiangyu Teng
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Kirsten Nündel
- Department of Medicine, Division of Rheumatology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Reed JH. Transforming mutations in the development of pathogenic B cell clones and autoantibodies. Immunol Rev 2022; 307:101-115. [PMID: 35001403 DOI: 10.1111/imr.13064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
Autoimmune diseases are characterized by serum autoantibodies, some of which are pathogenic, causing severe manifestations and organ injury. However, autoantibodies of the same antigenic reactivity are also present in the serum of asymptomatic people years before they develop any clinical signs of autoimmunity. Autoantibodies can arise during multiple stages of B cell development, and various genetic and environmental factors drive their production. However, what drives the development of pathogenic autoantibodies is poorly understood. Advances in single-cell technology have enabled the deep analysis of rare B cell clones producing pathogenic autoantibodies responsible for vasculitis in patients with primary Sjögren's syndrome complicated by mixed cryoglobulinaemia. These findings demonstrated a cascade of genetic events involving stereotypic immunoglobulin V(D)J recombination and transforming somatic mutations in lymphoma genes and V(D)J regions that disrupted antibody quality control mechanisms and decreased autoantibody solubility. Most studies consider V(D)J mutations that enhance autoantibody affinity to drive pathology; however, V(D)J mutations that increase autoantibody propensity to form insoluble complexes could be a major contributor to autoantibody pathogenicity. Defining the molecular characteristics of pathogenic autoantibodies and failed tolerance checkpoints driving their formation will improve prognostication, enabling early treatment to prevent escalating organ damage and B cell malignancy.
Collapse
Affiliation(s)
- Joanne H Reed
- Westmead Institute for Medical Research, Centre for Immunology and Allergy Research, Westmead, NSW, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
6
|
Akama-Garren EH, van den Broek T, Simoni L, Castrillon C, van der Poel CE, Carroll MC. Follicular T cells are clonally and transcriptionally distinct in B cell-driven mouse autoimmune disease. Nat Commun 2021; 12:6687. [PMID: 34795279 PMCID: PMC8602266 DOI: 10.1038/s41467-021-27035-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 10/23/2021] [Indexed: 11/30/2022] Open
Abstract
Pathogenic autoantibodies contribute to tissue damage and clinical decline in autoimmune disease. Follicular T cells are central regulators of germinal centers, although their contribution to autoantibody-mediated disease remains unclear. Here we perform single cell RNA and T cell receptor (TCR) sequencing of follicular T cells in a mouse model of autoantibody-mediated disease, allowing for analyses of paired transcriptomes and unbiased TCRαβ repertoires at single cell resolution. A minority of clonotypes are preferentially shared amongst autoimmune follicular T cells and clonotypic expansion is associated with differential gene signatures in autoimmune disease. Antigen prediction using algorithmic and machine learning approaches indicates convergence towards shared specificities between non-autoimmune and autoimmune follicular T cells. However, differential autoimmune transcriptional signatures are preserved even amongst follicular T cells with shared predicted specificities. These results demonstrate that follicular T cells are phenotypically distinct in B cell-driven autoimmune disease, providing potential therapeutic targets to modulate autoantibody development.
Collapse
MESH Headings
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cells, Cultured
- Clone Cells/immunology
- Clone Cells/metabolism
- Gene Expression Profiling/methods
- Germinal Center/cytology
- Germinal Center/immunology
- Germinal Center/metabolism
- Mice, Inbred C57BL
- Microscopy, Confocal
- RNA-Seq/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Single-Cell Analysis/methods
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Mice
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA
| | - Theo van den Broek
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Lea Simoni
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Carlos Castrillon
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Cees E van der Poel
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Michael C Carroll
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
7
|
Ghosh D, Jiang W, Mukhopadhyay D, Mellins ED. New insights into B cells as antigen presenting cells. Curr Opin Immunol 2021; 70:129-137. [PMID: 34242927 DOI: 10.1016/j.coi.2021.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/06/2023]
Abstract
In addition to their role as antibody producing cells, B cells make a critical contribution to adaptive immune responses by functioning as professional antigen-presenting cells (APC). Distinctive features of B cells as APC include the expression of the B cell receptor (BCR) for antigen and regulated expression of HLA-DO. Here, we discuss recent progress in investigation of B cells as APC. We start with an update on the canonical MHC class II antigen presentation pathway in B cells and alternative pathways, including generation of extracellular vesicles. Turning to APC function, we highlight the roles of B cells as thymic APC, as APC for T follicular helper (TFH), as APC for CD4 memory T cells and as presenters of idiotypic BCR determinants. We also note recent examples that link B cell Ag-presentation to disease. Emerging evidence indicates that, in addition to unique features of B cells compared to other professional APC, there is appreciable heterogeneity among B cells, arising from, for example, B cell activation state or the microenvironment.
Collapse
Affiliation(s)
- Debopam Ghosh
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wei Jiang
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dhriti Mukhopadhyay
- Department of Surgery, University of Arizona, Tucson, AZ 85724, USA; Tuba City Regional Health Care, Tuba City, AZ 86045, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Abstract
The humoral immune response and antibody-mediated functions of B cells during viral infections are well described. However, we have limited understanding of antibody-independent B cell functions, such as cytokine production and antigen presentation, in acute and chronic viral infections and their role in protection and/or immunopathogenesis. Here, we summarize the current literature on these antibody-independent B cell functions and identify remaining knowledge gaps. B cell subsets produce anti- and pro-inflammatory cytokines, which can have both beneficial and detrimental effects during viral clearance. As professional antigen presenting cells, B cells also play an important role in immune regulation/shaping of the developing adaptive immune responses. Since B cells primarily express TLR7 and TLR9, we specifically discuss the role of Toll-like receptor (TLR)-mediated B cell responses to viral infections and their role in augmenting adaptive immunity through enhanced cytokine production and antigen presentation. However, viruses have evolved strategies to subvert TLR signaling and additional stimulation via B cell receptor (BCR) may be required to overcome the defective TLR response in B cells. To conclude, antibody-independent B cell functions seem to have an important role in regulating both acute and chronic viral infections and may form the basis for novel therapeutic approaches in treatment of viral infections in the future.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Izabela Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- * E-mail:
| |
Collapse
|
9
|
Datta SK. Harnessing Tolerogenic Histone Peptide Epitopes From Nucleosomes for Selective Down-Regulation of Pathogenic Autoimmune Response in Lupus (Past, Present, and Future). Front Immunol 2021; 12:629807. [PMID: 33936042 PMCID: PMC8080879 DOI: 10.3389/fimmu.2021.629807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Autoantigen-directed tolerance can be induced by certain nucleosomal histone peptide epitope/s in nanomolar dosage leading to sustained remission of disease in mice with spontaneous SLE. By contrast, lupus is accelerated by administration of intact (whole) histones, or whole nucleosomes in microparticles from apoptotic cells, or by post-translationally acetylated histone-peptides. Low-dose therapy with the histone-peptide epitopes simultaneously induces TGFβ and inhibits IL-6 production by DC in vivo, especially pDC, which then induce CD4+CD25+ Treg and CD8+ Treg cells that suppress pathogenic autoimmune response. Both types of induced Treg cells are FoxP3+ and act by producing TGFβ at close cell-to-cell range. No anaphylactic adverse reactions, or generalized immunosuppression have been detected in mice injected with the peptides, because the epitopes are derived from evolutionarily conserved histones in the chromatin; and the peptides are expressed in the thymus during ontogeny, and their native sequences have not been altered. The peptide-induced Treg cells can block severe lupus on adoptive transfer reducing inflammatory cell reaction and infiltration in the kidney. In Humans, similar potent Treg cells are generated by the histone peptide epitopes in vitro in lupus patients’ PBMC, inhibiting anti-dsDNA autoantibody and interferon production. Furthermore, the same types of Treg cells are generated in lupus patients who are in very long-term remission (2-8 years) after undergoing autologous hematopoietic stem cell transplantation. These Treg cells are not found in lupus patients treated conventionally into clinical remission (SLEDAI of 0); and consequently they still harbor pathogenic autoimmune cells, causing subclinical damage. Although antigen-specific therapy with pinpoint accuracy is suitable for straight-forward organ-specific autoimmune diseases, Systemic Lupus is much more complex. The histone peptide epitopes have unique tolerogenic properties for inhibiting Innate immune cells (DC), T cells and B cell populations that are both antigen-specifically and cross-reactively involved in the pathogenic autoimmune response in lupus. The histone peptide tolerance is a natural and non-toxic therapy suitable for treating early lupus, and also maintaining lupus patients after toxic drug therapy. The experimental steps, challenges and possible solutions for successful therapy with these peptide epitopes are discussed in this highly focused review on Systemic Lupus.
Collapse
Affiliation(s)
- Syamal K Datta
- Department of Medicine, Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
10
|
Wigton EJ, DeFranco AL, Ansel KM. Antigen Complexed with a TLR9 Agonist Bolsters c-Myc and mTORC1 Activity in Germinal Center B Lymphocytes. Immunohorizons 2019; 3:389-401. [PMID: 31427364 PMCID: PMC6738343 DOI: 10.4049/immunohorizons.1900030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023] Open
Abstract
The germinal center (GC) is the anatomical site where humoral immunity evolves. B cells undergo cycles of proliferation and selection to produce high-affinity Abs against Ag. Direct linkage of a TLR9 agonist (CpG) to a T-dependent Ag increases the number of GC B cells. We used a T-dependent Ag complexed with CpG and a genetic model for ablating the TLR9 signaling adaptor molecule MyD88 specifically in B cells (B-MyD88- mice) together with transcriptomics to determine how this innate pathway positively regulates the GC. GC B cells from complex Ag-immunized B-MyD88- mice were defective in inducing gene expression signatures downstream of c-Myc and mTORC1. In agreement with the latter gene signature, ribosomal protein S6 phosphorylation was increased in GC B cells from wild-type mice compared with B-MyD88- mice. However, GC B cell expression of a c-Myc protein reporter was enhanced by CpG attached to Ag in both wild-type and B-MyD88- mice, indicating a B cell-extrinsic effect on c-Myc protein expression combined with a B cell-intrinsic enhancement of gene expression downstream of c-Myc. Both mTORC1 activity and c-Myc are directly induced by T cell help, indicating that TLR9 signaling in GC B cells either enhances their access to T cell help or directly influences these pathways to further enhance the effect of T cell help. Taken together, these findings indicate that TLR9 signaling in the GC could provide a surrogate prosurvival stimulus, "TLR help," thus lowering the threshold for selection and increasing the magnitude of the GC response.
Collapse
Affiliation(s)
- Eric J Wigton
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143; and.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - Anthony L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - K Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143; and .,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
11
|
Soni C, Reizis B. Self-DNA at the Epicenter of SLE: Immunogenic Forms, Regulation, and Effects. Front Immunol 2019; 10:1601. [PMID: 31354738 PMCID: PMC6637313 DOI: 10.3389/fimmu.2019.01601] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Self-reactive B cells generated through V(D)J recombination in the bone marrow or through accrual of random mutations in secondary lymphoid tissues are mostly purged or edited to prevent autoimmunity. Yet, 10–20% of all mature naïve B cells in healthy individuals have self-reactive B cell receptors (BCRs). In patients with serologically active systemic lupus erythematosus (SLE) the percentage increases up to 50%, with significant self-DNA reactivity that correlates with disease severity. Endogenous or self-DNA has emerged as a potent antigen in several autoimmune disorders, particularly in SLE. However, the mechanism(s) regulating or preventing anti-DNA antibody production remain elusive. It is likely that in healthy subjects, DNA-reactive B cells avoid activation due to the unavailability of endogenous DNA, which is efficiently degraded through efferocytosis and various DNA-processing proteins. Genetic defects, physiological, and/or pathological conditions can override these protective checkpoints, leading to autoimmunity. Plausibly, increased availability of immunogenic self-DNA may be the key initiating event in the loss of tolerance of otherwise quiescent DNA-reactive B cells. Indeed, mutations impairing apoptotic cell clearance pathways and nucleic acid metabolism-associated genes like DNases, RNases, and their sensors are known to cause autoimmune disorders including SLE. Here we review the literature supporting the idea that increased availability of DNA as an immunogen or adjuvant, or both, may cause the production of pathogenic anti-DNA antibodies and subsequent manifestations of clinical disease such as SLE. We discuss the main cellular players involved in anti-DNA responses; the physical forms and sources of immunogenic DNA in autoimmunity; the DNA-protein complexes that render DNA immunogenic; the regulation of DNA availability by intracellular and extracellular DNases and the autoimmune pathologies associated with their dysfunction; the cytosolic and endosomal sensors of immunogenic DNA; and the cytokines such as interferons that drive auto-inflammatory and autoimmune pathways leading to clinical disease. We propose that prevention of DNA availability by aiding extracellular DNase activity could be a viable therapeutic modality in controlling SLE.
Collapse
Affiliation(s)
- Chetna Soni
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Boris Reizis
- Department of Pathology, New York University School of Medicine, New York, NY, United States.,Department of Medicine, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
12
|
Abstract
The ability to express and study a single T cell receptor (TCR) in vivo is an important aspect of both basic and translational immunological research. Traditionally, this was achieved by using TCR transgenic mice. In the past decade, a more efficient approach for single TCR expression was developed. This relatively rapid and accessible method utilizes retrovirus-mediated stem cell-based gene transfer and is commonly referred to as the TCR retrogenic approach. In this approach, hematopoietic bone marrow precursors are transduced with retroviral vector carrying both alpha and beta chains of a T cell receptor. After successful transduction, bone marrow is injected into recipient mice, in which T cell development is driven by expression of the vector-encoded TCR. This article details the materials and methods required to generate TCR retrogenic mice. It is divided into three sections and provides detailed methods for generation of stable retroviral producer cell lines, isolation and optimal transduction of hematopoietic bone marrow cells, and subsequent analysis of TCR retrogenic T cells. A detailed example of such analysis is provided. The current protocol is a culmination of many years of optimization and is the most efficient approach to date. Bone marrow transduction and transfer into recipient mice can now be achieved in a short period of four days. The protocol can be followed in most laboratories with standard biomedical equipment, and is supported by a troubleshooting guide that covers potential pitfalls and unexpected results. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yuelin Kong
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Yi Jing
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Maria Bettini
- Department of Pediatrics, Section of Diabetes and Endocrinology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas.,McNair Medical Institute, Houston, Texas
| |
Collapse
|
13
|
Arkatkar T, Du SW, Jacobs HM, Dam EM, Hou B, Buckner JH, Rawlings DJ, Jackson SW. B cell-derived IL-6 initiates spontaneous germinal center formation during systemic autoimmunity. J Exp Med 2017; 214:3207-3217. [PMID: 28899868 PMCID: PMC5679179 DOI: 10.1084/jem.20170580] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/26/2017] [Accepted: 08/25/2017] [Indexed: 12/29/2022] Open
Abstract
Arkatkar et al. report that B cell–derived IL-6 is critical for T follicular helper cell differentiation, spontaneous germinal center formation, and class-switched autoantibody production during humoral autoimmunity. Recent studies have identified critical roles for B cells in triggering autoimmune germinal centers (GCs) in systemic lupus erythematosus (SLE) and other disorders. The mechanisms whereby B cells facilitate loss of T cell tolerance, however, remain incompletely defined. Activated B cells produce interleukin 6 (IL-6), a proinflammatory cytokine that promotes T follicular helper (TFH) cell differentiation. Although B cell IL-6 production correlates with disease severity in humoral autoimmunity, whether B cell–derived IL-6 is required to trigger autoimmune GCs has not, to our knowledge, been addressed. Here, we report the unexpected finding that a lack of B cell–derived IL-6 abrogates spontaneous GC formation in mouse SLE, resulting in loss of class-switched autoantibodies and protection from systemic autoimmunity. Mechanistically, B cell IL-6 production was enhanced by IFN-γ, consistent with the critical roles for B cell–intrinsic IFN-γ receptor signals in driving autoimmune GC formation. Together, these findings identify a key mechanism whereby B cells drive autoimmunity via local IL-6 production required for TFH differentiation and autoimmune GC formation.
Collapse
Affiliation(s)
| | - Samuel W Du
- Seattle Children's Research Institute, Seattle, WA
| | | | | | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - David J Rawlings
- Seattle Children's Research Institute, Seattle, WA .,Department of Immunology, University of Washington School of Medicine, Seattle, WA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA .,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|