1
|
Chen H, Zhang LF, Zhang L, Miao Y, Xi Y, Liu MF, Zhang M, Li B. CircANKRD17 promotes glycolysis by inhibiting miR-143 in breast cancer cells. J Cell Physiol 2023; 238:2765-2777. [PMID: 37812578 DOI: 10.1002/jcp.31128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023]
Abstract
Glucose metabolic reprogramming, known as the Warburg effect, is one of the metabolic hallmarks of tumor cells. Cancer cells preferentially metabolize glucose by glycolysis rather than mitochondrial oxidative phosphorylation regardless of oxygen availability, but the regulatory mechanism underlying this switch has been incompletely understood. Here, we report that the circular RNA circ ankyrin repeat domain 17 (ANKRD17) functions as a key regulator for glycolysis to promote cell growth, migration, invasion, and cell-cycle progression in breast cancer (BC) cells. We further show that circANKRD17 acts to accelerate glycolysis in BC cells by acting as a sponge for miR-143 and in turn overrides the repressive effect of miR-143, a well-documented glycolytic repressor, on hexokinase 2 in BC cells, thus resulting in enhanced glycolysis in BC cells. These data suggest the circANKRD17-miR-143 cascade as a novel mechanism in controlling glucose metabolic reprogramming in BC cells and suggest circANKRD17 as a promising therapeutic target to interrupt cancerous glycolysis.
Collapse
Affiliation(s)
- Hong Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
| | - Ling-Fei Zhang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lu Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
| | - Ying Miao
- Department of Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
| | - Yun Xi
- Department of Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
| | - Mo-Fang Liu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory of Molecular Biology, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Min Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, Shanghai, China
| |
Collapse
|
2
|
Chaturvedi S, Biswas M, Sadhukhan S, Sonawane A. Role of EGFR and FASN in breast cancer progression. J Cell Commun Signal 2023:10.1007/s12079-023-00771-w. [PMID: 37490191 DOI: 10.1007/s12079-023-00771-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Breast cancer (BC) emerged as one of the life-threatening diseases among females. Despite notable improvements made in cancer detection and treatment worldwide, according to GLOBACAN 2020, BC is the fifth leading cancer, with an estimated 1 in 6 cancer deaths, in a majority of countries. However, the exact cause that leads to BC progression still needs to be determined. Here, we reviewed the role of two novel biomarkers responsible for 50-70% of BC progression. The first one is epidermal growth factor receptor (EGFR) which belongs to the ErbB tyrosine kinases family, signalling pathways associated with it play a significant role in regulating cell proliferation and division. Another one is fatty acid synthase (FASN), a key enzyme responsible for the de novo lipid synthesis required for cancer cell development. This review presents a rationale for the EGFR-mediated pathways, their interaction with FASN, communion of these two biomarkers with BC, and improvements to overcome drug resistance caused by them.
Collapse
Affiliation(s)
- Suchi Chaturvedi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India
| | - Mainak Biswas
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
- Physical & Chemical Biology Laboratory and Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, 678623, India.
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa Road, Simrol, Madhya Pradesh, 453552, India.
| |
Collapse
|
3
|
Hong BS. Regulation of the Effect of Physical Activity Through MicroRNAs in Breast Cancer. Int J Sports Med 2021; 43:455-465. [PMID: 34872116 DOI: 10.1055/a-1678-7147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Physical activity and exercise can induce beneficial molecular and biological regulations that have been associated with an incidence of various diseases, including breast cancer. Recent studies demonstrated that the potential links between physical activity-induced circulating microRNAs (miRNAs) and cancer risk and progression. Here, we investigated whether altered miRNAs by exercise could influence breast cancer progression. After primary searching in PubMed and reviewing the full-text papers, candidate miRNAs altered by exercise in breast cancer were identified. Analysis of expression profiles and clinical outcomes of altered miRNAs using The Cancer Genome Atlas datasets showed altered miRNAs expressions were significantly associated with the patient's prognosis, whereas prognostic values of each miRNA varied in different stages and subtypes. In addition, altered miRNAs profiles regulated various target genes and key signaling pathways in tumorigenesis, including pathways in cancer and the PI3K-Akt signaling pathway; however, miRNAs regulated the expression of target genes differently according to tumor stages and subtypes. These results indicate that circulating miRNAs are promising noninvasive stable biomarkers for early detection, diagnosis, prognosis, and monitoring the response to clinical therapies of breast cancer. Moreover, stages and subtype-stratified approaches for breast cancer progression would be needed to evaluate the prognostic value of miRNAs for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bok Sil Hong
- Cheju Halla University, Life Science Research Center, Department of Nursing, Jeju, Korea (the Republic of)
| |
Collapse
|
4
|
Chen X, Luo J, Liu J, Chen T, Sun J, Zhang Y, Xi Q. Exploration of the Effect on Genome-Wide DNA Methylation by miR-143 Knock-Out in Mice Liver. Int J Mol Sci 2021; 22:13075. [PMID: 34884879 PMCID: PMC8658369 DOI: 10.3390/ijms222313075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
MiR-143 play an important role in hepatocellular carcinoma and liver fibrosis via inhibiting hepatoma cell proliferation. DNA methyltransferase 3 alpha (DNMT3a), as a target of miR-143, regulates the development of primary organic solid tumors through DNA methylation mechanisms. However, the effect of miR-143 on DNA methylation profiles in liver is unclear. In this study, we used Whole-Genome Bisulfite Sequencing (WGBS) to detect the differentially methylated regions (DMRs), and investigated DMR-related genes and their enriched pathways by miR-143. We found that methylated cytosines increased 0.19% in the miR-143 knock-out (KO) liver fed with high-fat diet (HFD), compared with the wild type (WT). Furthermore, compared with the WT group, the CG methylation patterns of the KO group showed lower CG methylation levels in CG islands (CGIs), promoters and hypermethylation in CGI shores, 5'UTRs, exons, introns, 3'UTRs, and repeat regions. A total of 984 DMRs were identified between the WT and KO groups consisting of 559 hypermethylation and 425 hypomethylation DMRs. Furthermore, DMR-related genes were enriched in metabolism pathways such as carbon metabolism (serine hydroxymethyltransferase 2 (Shmt2), acyl-Coenzyme A dehydrogenase medium chain (Acadm)), arginine and proline metabolism (spermine synthase (Sms), proline dehydrogenase (Prodh2)) and purine metabolism (phosphoribosyl pyrophosphate synthetase 2 (Prps2)). In summary, we are the first to report the change in whole-genome methylation levels by miR-143-null through WGBS in mice liver, and provide an experimental basis for clinical diagnosis and treatment in liver diseases, indicating that miR-143 may be a potential therapeutic target and biomarker for liver damage-associated diseases and hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (X.C.); (J.L.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (X.C.); (J.L.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
5
|
Ma L, Liu Z, Fan Z. Potential Mechanisms of miR-143/Krupple Like Factor 5 Axis in Impeding the Proliferation of Michigan Cancer Foundation-7 Breast Cancer Cell Line. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Breast cancer is one of the most prevailing cancers in females, while the cancerous heterogeneity hinders its early diagnosis and subsequent therapy. miR-143-3p is a critical mediator in malignancy development and tumorigenesis as a tumor suppressor. Its role in various tumor entities
has been investigated, such as colon cancer and breast cancer. Using MCF-7 breast cancer cell model, we planned to explore the underlying mechanisms of miR-143/KLF-5 axis in retarding breast cancer cells growth. Bioinformatics analysis searched the target KLF5 of miR-143, and the miR-143-targeted
mimic and inhibitor were employed to detect the changes of KLF5. After transfection of mimic miR-143, the CCK-8 reagent assessed cell proliferation. Based on optimal stimulation time, miR-143 stimulation model was established, followed by determining expression of KLF5, EGFR and PCNA via western
blot and qPCR. Eventually, siRNA-KLF5 was applied to silencing KLF5 level to evaluate its role in MCF-7 cells. The transcription and translation levels of KLF5 were diminished in miR-143-mimic transfected MCF-7 cells, while enhanced in miR-143-inhibitor transfected MCF-7 cells. When MCF-7
cells were transfected with miR-143-mimic at different time points, 48 hours was found to be the optimal transfection time, with reduced transcription and translation levels of KLF5, EGFR and PCNA. The transcription and translation levels of PNCA and EGFR were declined after silencing KLF5
by siRNA. miR-143/KLF5 axis could retard the proliferation of MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Le Ma
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhenyu Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
6
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
7
|
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188413. [PMID: 32827583 DOI: 10.1016/j.bbcan.2020.188413] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs that are essential for regulation of gene expression of the target genes. Large number of miRNAs are organized into defined units known as miRNA clusters (MCs). The MCs consist of two or more than two miRNA encoding genes driven by a single promoter, transcribed together in the same orientation, that are not separated from each other by a transcription unit. Aberrant miRNA clusters expression is reported in breast cancer (BC), exhibiting both pro-tumorogenic and anti-tumorigenic role. Altered MCs expression facilitates to breast carcinogenesis by promoting the breast cells to acquire the various hallmarks of the cancer. Since miRNA clusters contain multiple miRNA encoding genes, targeting cluster may be more attractive than targeting individual miRNAs. Besides targeting dysregulated miRNA clusters in BC, studies have focused on the mechanism of action, and its contribution to the progression of the BC. The present review provides a comprehensive overview of dysregulated miRNA clusters and its role in the acquisition of cancer hallmarks in BC. More specifically, we have presented the regulation, differential expression, classification, targets, mechanism of action, and signaling pathways of miRNA clusters in BC. Additionally, we have also discussed the potential utility of the miRNA cluster as a diagnostic and prognostic indicator in BC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
8
|
Du Y, Zhang J, Meng Y, Huang M, Yan W, Wu Z. MicroRNA-143 targets MAPK3 to regulate the proliferation and bone metastasis of human breast cancer cells. AMB Express 2020; 10:134. [PMID: 32737620 PMCID: PMC7394972 DOI: 10.1186/s13568-020-01072-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRs) have shown tremendous potential to act as therapeutic targets for cancer treatment. In this context, the present study was designed to investigate the potential of miR-143 in the treatment of breast cancer. Results showed that miR-143 to be significantly (P < 0.05) downregulated in breast cancer tissues and cell lines. The miR-143 has inhibitory effect on CAMA-1cell growth which was manifested as significant (P < 0.05) decline in loss of viability of cancer cells. The loss of cell viability was revealed to be due to the induction of apoptotic cell death as evident from acridine orange/ethidium bromide (AO/EB) and 4′,6-diamidino-2-phenylindole (DAPI) staining assays. The apoptotic cell percentage was found to be 35.7% in miR-143 mimics transfected in comparison to 6.4% in miR-NC transfected cells. The western blot analysis showed that miR-143 caused enhancement in Bax and suppression in Bcl-2 expression in CAMA-1 cells. The miR-143 also suppressed the bone metastasis of the CAMA-1 cells by suppressing the expression of Jag1 and deactivation of the Rho-signalling pathway. The transwell assays also showed considerable anti-metastatic effects of miR-143 on CAMA-1 cells. Taken together, miR-143 has growth inhibitory anti-metastatic effect on breast cancer and thus may prove beneficial in breast cancer treatment.
Collapse
|
9
|
Testa U, Castelli G, Pelosi E. Breast Cancer: A Molecularly Heterogenous Disease Needing Subtype-Specific Treatments. Med Sci (Basel) 2020; 8:E18. [PMID: 32210163 PMCID: PMC7151639 DOI: 10.3390/medsci8010018] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/23/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly occurring cancer in women. There were over two-million new cases in world in 2018. It is the second leading cause of death from cancer in western countries. At the molecular level, breast cancer is a heterogeneous disease, which is characterized by high genomic instability evidenced by somatic gene mutations, copy number alterations, and chromosome structural rearrangements. The genomic instability is caused by defects in DNA damage repair, transcription, DNA replication, telomere maintenance and mitotic chromosome segregation. According to molecular features, breast cancers are subdivided in subtypes, according to activation of hormone receptors (estrogen receptor and progesterone receptor), of human epidermal growth factors receptor 2 (HER2), and or BRCA mutations. In-depth analyses of the molecular features of primary and metastatic breast cancer have shown the great heterogeneity of genetic alterations and their clonal evolution during disease development. These studies have contributed to identify a repertoire of numerous disease-causing genes that are altered through different mutational processes. While early-stage breast cancer is a curable disease in about 70% of patients, advanced breast cancer is largely incurable. However, molecular studies have contributed to develop new therapeutic approaches targeting HER2, CDK4/6, PI3K, or involving poly(ADP-ribose) polymerase inhibitors for BRCA mutation carriers and immunotherapy.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
10
|
The Microrna-143/145 Cluster in Tumors: A Matter of Where and When. Cancers (Basel) 2020; 12:cancers12030708. [PMID: 32192092 PMCID: PMC7140083 DOI: 10.3390/cancers12030708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 01/06/2023] Open
Abstract
The establishment and spreading of cancer involve the acquirement of many biological functions including resistance to apoptosis, enhanced proliferation and the ability to invade the surrounding tissue, extravasate from the primary site, survive in circulating blood, and finally extravasate and colonize distant organs giving origin to metastatic lesions, the major cause of cancer deaths. Dramatic changes in the expression of protein coding genes due to altered transcription factors activity or to epigenetic modifications orchestrate these events, intertwining with a microRNA regulatory network that is often disrupted in cancer cells. microRNAs-143 and -145 represent puzzling players of this game, with apparently contradictory functions. They were at first classified as tumor suppressive due to their frequently reduced levels in tumors, correlating with cell survival, proliferation, and migration. More recently, pro-oncogenic roles of these microRNAs have been described, challenging their simplistic definition as merely tumor-suppressive. Here we review their known activities in tumors, whether oncogenic or onco-suppressive, and highlight how their expression and functions are strongly dependent on their complex regulation downstream and upstream of cytokines and growth factors, on the cell type of expression and on the specific tumor stage.
Collapse
|
11
|
Wang DY, Jiang Z, Zacksenhaus E. Stratifying the stratifiers of triple negative breast cancer. Oncotarget 2020; 11:306-308. [PMID: 32064036 PMCID: PMC6996905 DOI: 10.18632/oncotarget.27455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Indexed: 11/25/2022] Open
|
12
|
Wang C, Song J, Liu W, Yao Y, Kapranov P, Sample KM, Gajendran B, Zacksenhaus E, Hao X, Ben-David Y. FLI1 promotes protein translation via the transcriptional regulation of MKNK1 expression. Int J Oncol 2019; 56:430-438. [PMID: 31894299 PMCID: PMC6959374 DOI: 10.3892/ijo.2019.4943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/18/2019] [Indexed: 01/16/2023] Open
Abstract
The disruption of protein translation machinery is a common feature of cancer initiation and progression, and drugs that target protein translation offer new avenues for therapy. The translation initiation factor, eukaryotic initiation factor 4E (eIF4E), is induced in a number of cancer cell lines and is one such candidate for therapeutic intervention. Friend leukemia integration 1 (FLI1) is a potent oncogenic transcription factor that promotes various types of cancer by promoting several hallmarks of cancer progression. FLI1 has recently been implicated in protein translation through yet unknown mechanisms. This study identified a positive association between FLI1 expression and mitogen-activated protein kinase (MAPK)-interacting serine/threonine kinase1 (MKNK1), the immediate upstream regulator of the eIF4E initiation factor. The short hairpin RNA (shRNA)-mediated silencing or overexpression of FLI1 in leukemic cell lines downregulated or upregulated MKNK1 expression, respectively. Promoter analysis identified a potent FLI1 binding site in the regulatory region of the MKNK1 promoter. In transient transfection experiments, FLI1 increased MKNK1 promoter activity, which was blocked by mutating the FLI1 binding site. FLI1 specifically affected the expression of MKNK1, but not that of MKNK2. The siRNA-mediated downregulation of MKNK1 downregulated the expression of survivin (BIRC5) and significantly suppressed cell proliferation in culture. FLI1 inhibitory compounds were shown to downregulate this oncogene through the suppression of MAPK/extracellular-regulated kinase (ERK) signaling and the subsequent activation of miR-145, leading to a lower MKNK1 expression and the suppression of leukemic growth. These results uncover a critical role for FLI1 in the control of protein translation and the importance of targeting its function and downstream mediators, such as MKNK1, for cancer therapy.
Collapse
Affiliation(s)
- Chunlin Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun, Guiyang, Guizhou 550014, P.R. China
| | - Jialei Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun, Guiyang, Guizhou 550014, P.R. China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun, Guiyang, Guizhou 550014, P.R. China
| | - Yao Yao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun, Guiyang, Guizhou 550014, P.R. China
| | - Philipp Kapranov
- Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, P.R. China
| | - Klarke M Sample
- Central Laboratory, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University Medical College, Guiyang, Guizhou 550002, P.R. China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun, Guiyang, Guizhou 550014, P.R. China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiaojiang Hao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun, Guiyang, Guizhou 550014, P.R. China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Province Science City, High Tech Zone, Baiyun, Guiyang, Guizhou 550014, P.R. China
| |
Collapse
|
13
|
Molecular stratification within triple-negative breast cancer subtypes. Sci Rep 2019; 9:19107. [PMID: 31836816 PMCID: PMC6911070 DOI: 10.1038/s41598-019-55710-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
Triple-negative breast cancer (TNBC) has been subdivided into six distinct subgroups: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem-like (MSL), immunomodulatory (IM), and luminal androgen receptor (LAR). We recently identified a subgroup of TNBC with loss of the tumor suppressor PTEN and five specific microRNAs that exhibits exceedingly poor clinical outcome and contains TP53 mutation, RB1 loss and high MYC and WNT signalling. Here, show that these PTEN-low/miRNA-low lesions cluster with BL1 TNBC. These tumors exhibited high RhoA signalling and were significantly stratified on the basis of PTEN-low/RhoA-signalling-high with hazard ratios (HRs) of 8.2 (P = 0.0009) and 4.87 (P = 0.033) in training and test cohorts, respectively. For BL2 TNBC, we identified AKT1 copy gain/high mRNA expression as surrogate for poor prognosis (HR = 3.9; P = 0.02 and HR = 6.1; P = 0.0032). In IM, programmed cell death 1 (PD1) was elevated and predictive of poor prognosis (HR = 5.3; P = 0.01 and HR = 3.5; P < 0.004). Additional alterations, albeit without prognostic power, characterized each subtype including high E2F2 and TGFβ signalling and CXCL8 expression in BL2, high IFNα and IFNγ signalling and CTLA4 expression in IM, and high EGFR signalling in MSL, and may be targeted for therapy. This study identified PTEN-low/RhoA-signalling-high, and high AKT1 and PD1 expression as potent prognostications for BL1, BL2 and IM subtypes with survival differences of over 14, 2.75 and 10.5 years, respectively. This intrinsic heterogeneity could be exploited to prioritize patients for precision medicine.
Collapse
|
14
|
Abstract
Oncogenic activation of RAS isoforms leads tumor initiation and progression in many types of cancers and is gaining increasing interest as target for novel therapeutic strategies. In sharp contrast with other types of cancer, the importance of RAS in breast tumorigenesis has long been undermined by the low frequency of its oncogenic mutation in human breast lesions. Nevertheless, a wealth of studies over the last years have revealed how the engagement of RAS function might be mandatory downstream varied oncogenic alterations for the progression, metastatic dissemination, and therapy resistance in breast cancers. We review herein the major studies over the last three decades which have explored the controversial role of RAS proteins and their mutation status in breast tumorigenesis and have contributed to reveal their role as supporting actors, instead of as primary cause, in breast cancer.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
15
|
Liu JC, Granieri L, Shrestha M, Wang DY, Vorobieva I, Rubie EA, Jones R, Ju Y, Pellecchia G, Jiang Z, Palmerini CA, Ben-David Y, Egan SE, Woodgett JR, Bader GD, Datti A, Zacksenhaus E. Identification of CDC25 as a Common Therapeutic Target for Triple-Negative Breast Cancer. Cell Rep 2019; 23:112-126. [PMID: 29617654 PMCID: PMC9357459 DOI: 10.1016/j.celrep.2018.03.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/31/2018] [Accepted: 03/11/2018] [Indexed: 12/18/2022] Open
Abstract
CDK4/6 inhibitors are effective against cancer cells expressing the tumor suppressor RB1, but not RB1-deficient cells, posing the challenge of how to target RB1 loss. In triple-negative breast cancer (TNBC), RB1 and PTEN are frequently inactivated together with TP53. We performed kinome/phosphatase inhibitor screens on primary mouse Rb/p53-, Pten/p53-, and human RB1/PTEN/TP53-deficient TNBC cell lines and identified CDC25 phosphatase as a common target. Pharmacological or genetic inhibition of CDC25 suppressed growth of RB1-deficient TNBC cells that are resistant to combined CDK4/6 plus CDK2 inhibition. Minimal cooperation was observed in vitro between CDC25 antagonists and CDK1, CDK2, or CDK4/6 inhibitors, but strong synergy with WEE1 inhibition was apparent. In accordance with increased PI3K signaling following long-term CDC25 inhibition, CDC25 and PI3K inhibitors effectively synergized to suppress TNBC growth both in vitro and in xenotransplantation models. These results provide a rationale for the development of CDC25-based therapies for diverse RB1/PTEN/TP53-deficient and -proficient TNBCs. Liu et al. report that inhibition of the protein phosphatase CDC25 kills diverse triple-negative breast cancer (TNBC) cells. Moreover, CDC25 antagonists cooperate with other drugs, such as PI3K inhibitors, to efficiently suppress growth of human TNBC engrafted into mice.
Collapse
Affiliation(s)
- Jeff C Liu
- Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, Canada M5G 2M1
| | - Letizia Granieri
- Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, Canada M5G 2M1; Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Mariusz Shrestha
- Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, Canada M5G 2M1; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, Canada M5G 2M1
| | - Ioulia Vorobieva
- Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, Canada M5G 2M1; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Elizabeth A Rubie
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
| | - Rob Jones
- Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, Canada M5G 2M1
| | - YoungJun Ju
- Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, Canada M5G 2M1
| | - Giovanna Pellecchia
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Zhe Jiang
- Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, Canada M5G 2M1
| | - Carlo A Palmerini
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Yaacov Ben-David
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou 550014, China; State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Sean E Egan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Cell Biology, The Peter Gilgan Center for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy; Network Biology Collaborative Centre, SMART Laboratory for High-Throughput Screening Programs, Mount Sinai Hospital, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, 67 College Street, Toronto, ON, Canada M5G 2M1; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
16
|
Natarajan L, Pu M, Davies SR, Vickery TL, Nelson SH, Pittman E, Parker BA, Ellis MJ, Flatt SW, Mardis ER, Marinac CR, Pierce JP, Messer K. miRNAs and Long-term Breast Cancer Survival: Evidence from the WHEL Study. Cancer Epidemiol Biomarkers Prev 2019; 28:1525-1533. [PMID: 31186261 DOI: 10.1158/1055-9965.epi-18-1322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND There is substantial variation in breast cancer survival rates, even among patients with similar clinical and genomic profiles. New biomarkers are needed to improve risk stratification and inform treatment options. Our aim was to identify novel miRNAs associated with breast cancer survival and quantify their prognostic value after adjusting for established clinical factors and genomic markers. METHODS Using the Women's Healthy Eating and Living (WHEL) breast cancer cohort with >15 years of follow-up and archived tumor specimens, we assayed PAM50 mRNAs and 25 miRNAs using the Nanostring nCounter platform. RESULTS We obtained high-quality reads on 1,253 samples (75% of available specimens) and used an existing research-use algorithm to ascertain PAM50 subtypes and risk scores (ROR-PT). We identified miRNAs significantly associated with breast cancer outcomes and then tested these in independent TCGA samples. miRNAs that were also prognostic in TCGA samples were further evaluated in multiple regression Cox models. We also used penalized regression for unbiased discovery. CONCLUSIONS Two miRNAs, 210 and 29c, were associated with breast cancer outcomes in the WHEL and TCGA studies and further improved risk stratification within PAM50 risk groups: 10-year survival was 62% in the node-negative high miR-210-high ROR-PT group versus 75% in the low miR-210- high ROR-PT group. Similar results were obtained for miR-29c. We identified three additional miRNAs, 187-3p, 143-3p, and 205-5p, via penalized regression. IMPACT Our findings suggest that miRNAs might be prognostic for long-term breast cancer survival and might improve risk stratification. Further research to incorporate miRNAs into existing clinicogenomic signatures is needed.
Collapse
Affiliation(s)
- Loki Natarajan
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California. .,Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Minya Pu
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Sherri R Davies
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Tammi L Vickery
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri
| | - Sandahl H Nelson
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California
| | - Emily Pittman
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Barbara A Parker
- Moores Cancer Center, University of California, San Diego, La Jolla, California.,Department of Medicine, University of California, San Diego, La Jolla, California
| | - Matthew J Ellis
- Baylor College of Medicine, Lester and Sue Smith Breast Center, Houston, Texas
| | - Shirley W Flatt
- Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Catherine R Marinac
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Epidemiology, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - John P Pierce
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Karen Messer
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, California.,Moores Cancer Center, University of California, San Diego, La Jolla, California
| |
Collapse
|
17
|
Identification of diterpenoid compounds that interfere with Fli-1 DNA binding to suppress leukemogenesis. Cell Death Dis 2019; 10:117. [PMID: 30741932 PMCID: PMC6370842 DOI: 10.1038/s41419-019-1363-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/26/2022]
Abstract
The ETS transcription factor Fli-1 controls the expression of genes involved in hematopoiesis including cell proliferation, survival, and differentiation. Dysregulation of Fli-1 induces hematopoietic and solid tumors, rendering it an important target for therapeutic intervention. Through high content screens of a library of chemicals isolated from medicinal plants in China for inhibitors of a Fli-1 transcriptional reporter cells, we hereby report the identification of diterpenoid-like compounds that strongly inhibit Fli-1 transcriptional activity. These agents suppressed the growth of erythroleukemic cells by inducing apoptosis and differentiation. They also inhibited survival and proliferation of B-cell leukemic cell lines as well as primary B-cell lymphocytic leukemia (B-CLL) isolated from 7 patients. Moreover, these inhibitors blocked leukemogenesis in a mouse model of erythroleukemia, in which Fli-1 is the driver of tumor initiation. Computational docking analysis revealed that the diterpenoid-like compounds bind with high affinity to nucleotide residues in a pocket near the major groove within the DNA-binding sites of Fli-1. Functional inhibition of Fli-1 by these compounds triggered its further downregulation through miR-145, whose promoter is normally repressed by Fli-1. These results uncover the importance of Fli-1 in leukemogenesis, a Fli-1-miR145 autoregulatory loop and new anti-Fli-1 diterpenoid agents for the treatment of diverse hematological malignancies overexpressing this transcription factor.
Collapse
|
18
|
Wang DY, Gendoo DMA, Ben-David Y, Woodgett JR, Zacksenhaus E. A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt signaling. Breast Cancer Res 2019; 21:18. [PMID: 30704524 PMCID: PMC6357448 DOI: 10.1186/s13058-019-1098-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) represents a heterogeneous group of ER- and HER2-negative tumors with poor clinical outcome. We recently reported that Pten-loss cooperates with low expression of microRNA-145 to induce aggressive TNBC-like lesions in mice. To systematically identify microRNAs that cooperate with PTEN-loss to induce aggressive human BC, we screened for miRNAs whose expression correlated with PTEN mRNA levels and determined the prognostic power of each PTEN-miRNA pair alone and in combination with other miRs. METHODS Publically available data sets with mRNA, microRNA, genomics, and clinical outcome were interrogated to identify miRs that correlate with PTEN expression and predict poor clinical outcome. Alterations in genomic landscape and signaling pathways were identified in most aggressive TNBC subgroups. Connectivity mapping was used to predict response to therapy. RESULTS In TNBC, PTEN loss cooperated with reduced expression of hsa-miR-4324, hsa-miR-125b, hsa-miR-381, hsa-miR-145, and has-miR136, all previously implicated in metastasis, to predict poor prognosis. A subgroup of TNBC patients with PTEN-low and reduced expression of four or five of these miRs exhibited the worst clinical outcome relative to other TNBCs (hazard ratio (HR) = 3.91; P < 0.0001), and this was validated on an independent cohort (HR = 4.42; P = 0.0003). The PTEN-low/miR-low subgroup showed distinct oncogenic alterations as well as TP53 mutation, high RB1-loss signature and high MYC, PI3K, and β-catenin signaling. This lethal subgroup almost completely overlapped with TNBC patients selected on the basis of Pten-low and RB1 signature loss or β-catenin signaling-high. Connectivity mapping predicted response to inhibitors of the PI3K pathway. CONCLUSIONS This analysis identified microRNAs that define a subclass of highly lethal TNBCs that should be prioritized for aggressive therapy.
Collapse
Affiliation(s)
- Dong-Yu Wang
- Toronto General Research Institute - University Health Network, 67 College Street, Rm. 407, Toronto, Ontario M5G 2M1 Canada
| | - Deena M. A. Gendoo
- Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Yaacov Ben-David
- The Key laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014 Guizhou China
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550025 China
| | - James R. Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, 600 University Avenue, Toronto, ON Canada
| | - Eldad Zacksenhaus
- Toronto General Research Institute - University Health Network, 67 College Street, Rm. 407, Toronto, Ontario M5G 2M1 Canada
- Department of Medicine, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
19
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
20
|
MiR-143-3p inhibits the proliferation, cell migration and invasion of human breast cancer cells by modulating the expression of MAPK7. Biochimie 2018; 147:98-104. [DOI: 10.1016/j.biochi.2018.01.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/11/2018] [Indexed: 11/18/2022]
|
21
|
Yuan N, Zhang G, Bie F, Ma M, Ma Y, Jiang X, Wang Y, Hao X. Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer. Onco Targets Ther 2017; 10:5883-5897. [PMID: 29276392 PMCID: PMC5731337 DOI: 10.2147/ott.s149308] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Triple negative breast cancer (TNBC) is a particular subtype of breast malignant tumor with poorer prognosis than other molecular subtypes. Currently, there is increasing focus on long non-coding RNAs (lncRNAs), which can act as competing endogenous RNAs (ceR-NAs) and suppress miRNA functions involved in post-transcriptional regulatory networks in the tumor. Therefore, to investigate specific mechanisms of TNBC carcinogenesis and improve treatment efficiency, we comprehensively integrated expression profiles, including data on mRNAs, lncRNAs and miRNAs obtained from 116 TNBC tissues and 11 normal tissues from The Cancer Genome Atlas. As a result, we selected the threshold with |log2FC|>2.0 and an adjusted p-value >0.05 to obtain the differentially expressed mRNAs, miRNAs and lncRNAs. Hereafter, weighted gene co-expression network analysis was performed to identify the expression characteristics of dysregulated genes. We obtained five co-expression modules and related clinical feature. By means of correlating gene modules with protein-protein interaction network analysis that had identified 22 hub mRNAs which could as hub target genes. Eleven key dysregulated differentially expressed micro RNAs (DEmiRNAs) were identified that were significantly associated with the 22 hub potential target genes. Moreover, we found that 14 key differentially expressed lncRNAs could interact with the key DEmiRNAs. Then, the ceRNA crosstalk network of TNBC was constructed by utilizing key lncRNAs, key miRNAs, and hub mRNAs in Cytoscape software. We analyzed and described the potential characteristics of biological function and pathological roles of the TNBC ceRNA co-regulatory network; also, the survival analysis was performed for each molecule. These findings revealed that ceRNA crosstalk network could play an important role in the development and progression for TNBC. In addition, we also identified that some molecules in the ceRNA network possess clinical correlation and prognosis.
Collapse
Affiliation(s)
- Naijun Yuan
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University
| | | | - Fengjie Bie
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University
| | - Min Ma
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University
| | - Yi Ma
- Department of Cellular Biology, Guangdong Province Key Lab of Bioengineering Medicine, Institute of Biomedicine, Jinan University, Guangdong, China
| | - Xuefeng Jiang
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University
| | - Yurong Wang
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University
| | - Xiaoqian Hao
- College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University
| |
Collapse
|