1
|
Chen Q, Rong H, Zhang L, Wang Y, Bian Q, Zheng J. KLF2 Orchestrates Pathological Progression of Infantile Hemangioma through Hemangioma Stem Cell Fate Decisions. J Invest Dermatol 2024; 144:1850-1864.e9. [PMID: 38382868 DOI: 10.1016/j.jid.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Infantile hemangioma (IH) is the most prevalent vascular tumor during infancy, characterized by a rapid proliferation phase of disorganized blood vessels and spontaneous involution. IH possibly arises from a special type of multipotent stem cells called hemangioma stem cells (HemSCs), which could differentiate into endothelial cells, pericytes, and adipocytes. However, the underlying mechanisms that regulate the cell fate determination of HemSCs remain elusive. In this study, we unveil KLF2 as a candidate transcription factor involved in the control of HemSCs differentiation. KLF2 exhibits high expression in endothelial cells in proliferating IH but diminishes in adipocytes in involuting IH. Using a combination of in vitro culture of patient-derived HemSCs and HemSCs implantation mouse models, we show that KLF2 governs the proliferation, apoptosis, and cell cycle progression of HemSCs. Importantly, KLF2 acts as a crucial determinant of HemSC fate, directing their differentiation toward endothelial cells while inhibiting adipogenesis. Knockdown of KLF2 induces a proadipogenic transcriptome in HemSCs, leading to impaired blood vessel formation and accelerated adipocyte differentiation. Collectively, our findings highlight KLF2 as a critical regulator controlling the progression and involution of IH by modulating HemSC fate decisions.
Collapse
Affiliation(s)
- Qiming Chen
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hao Rong
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yanan Wang
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jiawei Zheng
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
2
|
Chen Q, Zheng J, Bian Q. Cell Fate Regulation During the Development of Infantile Hemangioma. J Invest Dermatol 2024:S0022-202X(24)01873-6. [PMID: 39023471 DOI: 10.1016/j.jid.2024.06.1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/05/2024] [Accepted: 06/09/2024] [Indexed: 07/20/2024]
Abstract
As the most common benign vascular tumor in infants, infantile hemangioma (IH) is characterized by rapid growth and vasculogenesis early in infancy, followed by spontaneous involution into fibrofatty tissues over time. Extensive evidence suggests that IH originates from hemangioma stem cells (HemSCs), a group of stem cells with clonal expansion and multi-directional differentiation capacity. However, the intricate mechanisms governing the cell fate transition of HemSCs during IH development remain elusive. Here we comprehensively examine the cellular composition of IH, emphasizing the nuanced properties of various IH cell types and their correlation with the clinical features of the tumor. We also summarize the current understanding of the regulatory pathways directing HemSC differentiation into endothelial cells (ECs), pericytes, and adipocytes throughout the stages of IH progression and involution. Furthermore, we discuss recent advances in unraveling the transcriptional and epigenetic regulation of EC and adipocyte development under physiological conditions, which offer crucial perspectives for understanding IH pathogenesis.
Collapse
Affiliation(s)
- Qiming Chen
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jiawei Zheng
- Department of Oromaxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Stomatology, Shanghai Jiao Tong University, Shanghai, China; National Center for Stomatology, Shanghai, China; National Clinical Research Center for Oral Diseases, Shanghai, China; Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Tan JWH, Wylie-Sears J, Seebauer CT, Mulliken JB, Francois M, Holm A, Bischoff J. R(+) Propranolol decreases lipid accumulation in hemangioma-derived stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601621. [PMID: 39005472 PMCID: PMC11245031 DOI: 10.1101/2024.07.01.601621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Infantile hemangioma (IH) is a benign vascular tumor that undergoes an initial rapid growth phase followed by spontaneous involution. A fibrofatty residuum remains in many tumors and often necessitates resection. We recently discovered that R(+) propranolol, the non-β blocker enantiomer, inhibits blood vessel formation of IH patient-derived hemangioma stem cells (HemSC) xenografted in mice. HemSC are multipotent cells with the ability to differentiate into endothelial cells, pericytes, and adipocytes. Objectives We investigated how R(+) propranolol affects HemSC adipogenic differentiation and lipid accumulation, in vitro and in a preclinical murine model for IH. Methods We conducted a 10-day adipogenesis assay on 4 IH patient-derived HemSCs. Oil Red O (ORO) staining was used to identify the onset and level of lipid accumulation in HemSC while quantitative real-time polymerase chain reaction was conducted to determine the temporal expression of key factors implicated in adipogenesis. 5-20µM R(+) propranolol treatment was added to HemSC induced to undergo adiogenesis for 4 and 8 days, followed by quantification of lipid-stained areas and transcript levels of key adipogenic factors. We immunostained for lipid droplet-associated protein Perilipin 1 (PLIN1) in HemSC-xenograft sections from mice treated with R(+) propranolol and quantified the area using ImageJ. Results We found that different patient-derived HemSC exhibit a robust and heterogenous adipogenic capacity when induced for adipogenic differentiation in vitro. Consistently across four IH patient-derived HemSC isolates, R(+) propranolol reduced ORO-stained areas and lipoprotein lipase (LPL) transcript levels in HemSC after 4 and 8 days of adipogenic induction. In contrast, R(+) propranolol had no significant inhibitory effect on transcript levels encoding adipogenic transcription factors. In a pre-clinical HemSC xenograft model, PLIN1-positive area was significantly reduced in xenograft sections from mice treated with R(+) propranolol, signifying reduced lipid accumulation. Conclusions Our findings suggest a novel regulatory role for the R(+) enantiomer of propranolol in modulating lipid accumulation in HemSC. This highlights a novel role of R(+) propranolol in the involuting phase of IH and a strategy to reduce fibrofatty residua in IH. What is already known about this topic? Propranolol is the mainstay treatment for infantile hemangioma (IH), the most common tumor of infancy, but its use can be associated with concerning β-blocker side effects.R(+) propranolol, the enantiomer largely devoid of β-blocker activity, was recently shown to inhibit endothelial differentiation of hemangioma-derived stem cells (HemSC) in vitro and reduce blood vessel formation in a HemSC-derived xenograft murine model of IH. What does this study add? R(+) propranolol inhibits lipid accumulation in HemSC in vitro.R(+) propranolol does not affect mRNA transcript levels of key adipogenic transcription factors in differentiating HemSC in vitro.R(+) propranolol reduces lipid accumulation in a pre-clinical xenograft murine model of IH. What is the translational message? The R(+) enantiomer of propranolol could be advantageous in terms of reduction in β-adrenergic side effects and fibrofatty tissue formation in the involuting phase of IH.Less fibrofatty residua might reduce the need for surgical resection.Disfigurement and associated psychosocial impacts might be improved in this young patient cohort.
Collapse
|
4
|
Holm A, Mulliken JB, Bischoff J. Infantile hemangioma: the common and enigmatic vascular tumor. J Clin Invest 2024; 134:e172836. [PMID: 38618963 PMCID: PMC11014660 DOI: 10.1172/jci172836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Infantile hemangioma (IH) is a benign vascular tumor that occurs in 5% of newborns. The tumor follows a life cycle of rapid proliferation in infancy, followed by slow involution in childhood. This unique life cycle has attracted the interest of basic and clinical scientists alike as a paradigm for vasculogenesis, angiogenesis, and vascular regression. Unanswered questions persist about the genetic and molecular drivers of the proliferating and involuting phases. The beta blocker propranolol usually accelerates regression of problematic IHs, yet its mechanism of action on vascular proliferation and differentiation is unclear. Some IHs fail to respond to beta blockers and regrow after discontinuation. Side effects occur and long-term sequelae of propranolol treatment are unknown. This poses clinical challenges and raises novel questions about the mechanisms of vascular overgrowth in IH.
Collapse
Affiliation(s)
- Annegret Holm
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University Hospital Freiburg, VASCERN-VASCA European Reference Center, Freiburg, Germany
| | - John B. Mulliken
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Jiang Y, Li X, Liu Q, Lei G, Wu C, Chen L, Zhao Y, Hu Y, Xian H, Mao R. Apolipoprotein A-I Binding Protein Inhibits the Formation of Infantile Hemangioma through Cholesterol-Regulated Hypoxia-Inducible Factor 1α Activation. J Invest Dermatol 2024; 144:645-658.e7. [PMID: 37832842 DOI: 10.1016/j.jid.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 10/15/2023]
Abstract
Infantile hemangioma (IH) is the most frequent vascular tumor of infancy with unclear pathogenesis; disordered angiogenesis is considered to be involved in its formation. Apolipoprotein A-I binding protein (AIBP)-also known as NAXE (NAD [P]HX epimerase)-a regulator of cholesterol metabolism, plays a critical role in the pathological angiogenesis of mammals. In this study, we found that AIBP had much lower expression levels in both tissues from patients with IH and hemangioma endothelial cells (HemECs) than in adjacent normal tissues and human dermal vascular endothelial cells, respectively. Knockout of NAXE by CRISPR-Cas9 in HemECs enhanced tube formation and migration, and NAXE overexpression impaired tube formation and migration of HemECs. Interestingly, AIBP suppressed the proliferation of HemECs in hypoxia. We then found that reduced expression of AIBP correlated with increased hypoxia-inducible factor 1α levels in tissues from patients with IH and HemECs. Further mechanistic investigation demonstrated that AIBP disrupted hypoxia-inducible factor 1α signaling through cholesterol metabolism under hypoxia. Notably, AIBP significantly inhibited the development of IH in immunodeficient mice. Furthermore, using the validated mouse endothelial cell (ie, EOMA cells) and Naxe-/- mouse models, we demonstrated that both endogenous AIBP from tumors and AIBP in the tumor microenvironment limit the formation of hemangioma. These findings suggested that AIBP was a player in the pathogenesis of IH and could be a potential pharmacological target for treating IH.
Collapse
Affiliation(s)
- Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Xingjuan Li
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Qin Liu
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Gongyun Lei
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Changyue Wu
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, China
| | - Long Chen
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, China
| | - Yinshuang Zhao
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, China
| | - Yae Hu
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China
| | - Hua Xian
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong University, Jiangsu, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Jiangsu, China.
| |
Collapse
|
6
|
Dai Y, Qiu M, Zhang S, Peng J, Hou X, Liu J, Li F, Ou J. The Mechanism of Oxymatrine Targeting miR-27a-3p/PPAR-γ Signaling Pathway through m6A Modification to Regulate the Influence on Hemangioma Stem Cells on Propranolol Resistance. Cancers (Basel) 2023; 15:5213. [PMID: 37958388 PMCID: PMC10649746 DOI: 10.3390/cancers15215213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE The proliferation and migration of hemangioma stem cells (HemSCs) induced apoptosis and adipose differentiation as well as increased the sensitivity of HemSCs to propranolol (PPNL). MiR-27a-3p negatively controlled the peroxisome-proliferator-activated receptor γ (PPAR-γ) level, counteracting the effect of PPAR-γ on HemSC progression and PPNL resistance. OMT accelerated HemSC progression and adipocyte differentiation via modulating the miR-27a-3p/PPAR-γ axis, inhibiting HemSC resistance to PPNL. In tumor-forming experiments, OMT exhibited a dose-dependent inhibitory effect on the volume of IH PPNL-resistant tumors, which was partially dependent on the regulation of m6A methylation transfer enzyme METTL3 and the miR-27a-3p/PPAR-γ axis, thereby inducing apoptosis. CONCLUSIONS We conclude that OMT regulates IH and influences PPNL resistance via targeting the miR-27a-3p/PPAR-γ signaling pathway through m6A modification.
Collapse
Affiliation(s)
- Yuxin Dai
- Department of Intervention and Vascular Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Y.D.); (M.Q.); (J.P.)
| | - Mingke Qiu
- Department of Intervention and Vascular Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Y.D.); (M.Q.); (J.P.)
- Department of General Surgery, Shigatse People’s Hospital, Shigatse 857000, China
| | - Shenglai Zhang
- Department of General Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China;
| | - Jingyu Peng
- Department of Intervention and Vascular Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Y.D.); (M.Q.); (J.P.)
| | - Xin Hou
- Department of Intervention and Vascular Surgery, Chongming Branch of Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (X.H.); (F.L.)
| | - Jie Liu
- Department of Interventional & Vascular Surgery, Shanghai Tenth People’s Hospital, Shanghai 200072, China;
| | - Feifei Li
- Department of Intervention and Vascular Surgery, Chongming Branch of Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (X.H.); (F.L.)
| | - Jingmin Ou
- Department of Intervention and Vascular Surgery, XinHua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; (Y.D.); (M.Q.); (J.P.)
| |
Collapse
|
7
|
Propranolol inhibits the angiogenic capacity of hemangioma endothelia via blocking β-adrenoceptor in mast cell. Pediatr Res 2022; 92:424-429. [PMID: 34650198 DOI: 10.1038/s41390-021-01683-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Propranolol, a non-selective blocker of the β-adrenoceptor (AR), is a first-line treatment for infantile hemangioma (IH). Mast cells have been implicated in the pathophysiology of propranolol-treated hemangioma. However, the function of mast cells remains unclear. METHODS HMC-1s (Human mast cell line) having been treated with propranolol for 24 h were centrifuged, washed with PBS twice, and maintained in cell culture medium for another 24 h. The supernatants with propranolol which were named as propranolol-treated HMC-1s supernatants were obtained. The expression of cytokines and mediators was examined among HMC-1s dealt with propranolol. HemECs (hemangioma endothelial cells) were co-cultured with propranolol-treated HMC-1s supernatants, and their proliferation and apoptosis were investigated. The autophagic-related protein was examined in HemECs using immunoblot. RESULTS In propranolol-treated HMC-1s, the expressions of ADRB1 (β1-AR) and ADRB2 (β2-AR) were reduced by 70% and 60%, respectively, and that of cytokines and mediators were reduced. The proliferation was decreased, but apoptosis and autophagy were induced in HemECs treated with propranolol-treated HMC-1s supernatants. However, propranolol can work well in shRNA-ADRB1 or shRNA-ADRB2 transfected HMC-1s. CONCLUSIONS Propranolol inhibit the proliferation of HemECs and promote their apoptosis and autophagy through acting on both β1 and β2 adrenoceptor in mast cell. IMPACT Treated with propranolol, β1, and β2 adrenoceptor on human mast cell expression was reduced significantly. After hemangioma endothelial cell treated with the supernatants from propranolol-treated human mast cell, its proliferation was decreased, but apoptosis and autophagy were significantly induced. Propranolol can work well in shRNA-ADRB1 or shRNA-ADRB2 transfected HMC-1s. Mast cells may have a role in the action of propranolol in infantile hemangioma through both β1 and β2 adrenoceptors to inhibit the angiogenic capacity of hemangioma endothelial cells.
Collapse
|
8
|
Tefft JB, Bays JL, Lammers A, Kim S, Eyckmans J, Chen CS. Notch1 and Notch3 coordinate for pericyte-induced stabilization of vasculature. Am J Physiol Cell Physiol 2022; 322:C185-C196. [PMID: 34878922 PMCID: PMC8791789 DOI: 10.1152/ajpcell.00320.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Notch pathway regulates complex patterning events in many species and is critical for the proper formation and function of the vasculature. Despite this importance, how the various components of the Notch pathway work in concert is still not well understood. For example, NOTCH1 stabilizes homotypic endothelial junctions, but the role of NOTCH1 in heterotypic interactions is not entirely clear. NOTCH3, on the other hand, is essential for heterotypic interactions of pericytes with the endothelium, but how NOTCH3 signaling in pericytes impacts the endothelium remains elusive. Here, we use in vitro vascular models to investigate whether pericyte-induced stabilization of the vasculature requires the cooperation of NOTCH1 and NOTCH3. We observe that both pericyte NOTCH3 and endothelial NOTCH1 are required for the stabilization of the endothelium. Loss of either NOTCH3 or NOTCH1 decreases the accumulation of VE-cadherin at endothelial adherens junctions and increases the frequency of wider, more motile junctions. We found that DLL4 was the key ligand for simulating NOTCH1 activation in endothelial cells and observed that DLL4 expression in pericytes is dependent on NOTCH3. Altogether, these data suggest that an interplay between pericyte NOTCH3 and endothelial NOTCH1 is critical for pericyte-induced vascular stabilization.
Collapse
Affiliation(s)
- Juliann B. Tefft
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jennifer L. Bays
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Alex Lammers
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Sudong Kim
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Jeroen Eyckmans
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Christopher S. Chen
- 1The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, Massachusetts,2The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| |
Collapse
|
9
|
Seebauer CT, Graus MS, Huang L, McCann AJ, Wylie-Sears J, Fontaine FR, Karnezis T, Zurakowski D, Staffa SJ, Meunier FA, Mulliken JB, Bischoff J, Francois M. Non-β-blocker enantiomers of propranolol and atenolol inhibit vasculogenesis in infantile hemangioma. J Clin Invest 2021; 132:151109. [PMID: 34874911 PMCID: PMC8803322 DOI: 10.1172/jci151109] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Abstract
Propranolol and atenolol, current therapies for problematic infantile hemangioma (IH), are composed of R(+) and S(–) enantiomers: the R(+) enantiomer is largely devoid of beta blocker activity. We investigated the effect of R(+) enantiomers of propranolol and atenolol on the formation of IH-like blood vessels from hemangioma stem cells (HemSCs) in a murine xenograft model. Both R(+) enantiomers inhibited HemSC vessel formation in vivo. In vitro, similar to R(+) propranolol, both atenolol and its R(+) enantiomer inhibited HemSC to endothelial cell differentiation. As our previous work implicated the transcription factor sex-determining region Y (SRY) box transcription factor 18 (SOX18) in propranolol-mediated inhibition of HemSC to endothelial differentiation, we tested in parallel a known SOX18 small-molecule inhibitor (Sm4) and show that this compound inhibited HemSC vessel formation in vivo with efficacy similar to that seen with the R(+) enantiomers. We next examined how R(+) propranolol alters SOX18 transcriptional activity. Using a suite of biochemical, biophysical, and quantitative molecular imaging assays, we show that R(+) propranolol directly interfered with SOX18 target gene trans-activation, disrupted SOX18-chromatin binding dynamics, and reduced SOX18 dimer formation. We propose that the R(+) enantiomers of widely used beta blockers could be repurposed to increase the efficiency of current IH treatment and lower adverse associated side effects.
Collapse
Affiliation(s)
- Caroline T Seebauer
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Matthew S Graus
- David Richmond Laboratory for Cardiovascular Development, University of Sydney, Sydney, Australia
| | - Lan Huang
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Alex J McCann
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jill Wylie-Sears
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Frank R Fontaine
- Gertrude Biomedical, Gertrude Biomedical Pty Ltd, Melbourne, Australia
| | - Tara Karnezis
- Gertrude Biomedical, Gertrude Biomedical Pty Ltd, Melbourne, Australia
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Steven J Staffa
- Department of Anesthesiology, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Frédéric A Meunier
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - John B Mulliken
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Joyce Bischoff
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, United States of America
| | - Mathias Francois
- David Richmond Laboratory for Cardiovascular Development, University of Sydney, Sydney, Australia
| |
Collapse
|
10
|
Lymphatic Endothelial Cell Defects in Congenital Cardiac Patients With Postoperative Chylothorax. ACTA ACUST UNITED AC 2021; 2. [PMID: 34590077 PMCID: PMC8478352 DOI: 10.1097/jova.0000000000000016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Objectives Chylothorax following cardiac surgery for congenital cardiac anomalies is a complication associated with severe morbidities and mortality. We hypothesize that there are intrinsic defects in the lymphatics of congenital cardiac patients. Methods Postsurgical chylothorax lymphatic endothelial cells (pcLECs) (n = 10) were isolated from the chylous fluid from congenital cardiac defect patients, and characterized by fluorescent-activated cell sorting, immunofluorescent staining, and quantitative RT-PCR. Results were compared to normal human dermal lymphatic endothelial cells (HdLECs). pcLECs (n = 3) and HdLECs were xenografted into immunocompromised mice. Implants and postoperative chylothorax patient's pulmonary tissues were characterized by immunostaining for lymphatic endothelial proteins. Results pcLECs expressed endothelial markers VECADHERIN, CD31, VEGFR2, lymphatic endothelial markers PROX1, podoplanin, VEGFR3, and progenitor endothelial markers CD90 and CD146. However, pcLECs had key differences relative to HdLECs, including altered expression and mislocalization of junctional proteins (VECADHERIN and CD31), and essential endothelial proteins, VEGFR2, VEGFR3, and PROX1. When xenografted in mice, pcLECs formed dilated lymphatic channels with poor cell-cell association. Similar to congenital lymphatic anomalies, the pulmonary lymphatics were dilated in a patient who developed postoperative chylothorax after cardiac surgery. Conclusions Recent studies have shown that some postoperative chylothoraces in congenital cardiac anomalies are associated with anatomical lymphatic defects. We found that pcLECs have defects in expression and localization of proteins necessary to maintain lymphatic specification and function. This pcLEC phenotype is similar to that observed in lymphatic endothelial cells from congenital lymphatic anomalies. Co-existence of lymphatic anomalies should be considered as a feature of congenital cardiac anomalies.
Collapse
|
11
|
Abstract
BACKGROUND Propranolol, a nonselective β-adrenergic receptor antagonist, is approved by the U.S. Food and Drug Administration to treat problematic infantile hemangiomas, but a subset of patients experience treatment complications. Parents wary of long-term use and side effects consult plastic surgeons on surgical options or as a second opinion. Understanding the mechanism(s) of action of propranolol will allow plastic surgeons to better inform parents. METHODS A systemic literature search was performed to query published translational and basic science studies on propranolol effects on infantile hemangiomas and cells derived from these lesions. RESULTS In experimental studies, propranolol was antiproliferative and cytotoxic against hemangioma endothelial and stem cells and affected infantile hemangioma perivascular cell contractility. Propranolol inhibited migration, network formation, vascular endothelial growth factor A production, and vascular endothelial growth factor receptor 2 activation and down-regulated PI3K/AKT and mitogen-activated protein kinase signaling in hemangioma endothelial cells, but it increased ERK1/2 activity in hemangioma stem cells. At effective clinical doses, measured propranolol plasma concentration is 100 times higher than necessary for complete β-adrenergic receptor blockade, yet was 10 to 100 times less than required to induce hemangioma stem cell death. CONCLUSIONS Propranolol targets multiple cell types in infantile hemangiomas by means of β-adrenergic receptor-dependent and -independent mechanisms. Plasma concentration played a significant role. At clinically relevant doses, incomplete infantile hemangioma suppression may explain the rebound phenomenon and worsening ulceration, and propranolol off target effects may lead to commonly reported adverse effects, such as sleep and gastrointestinal disturbances. Propranolol limitations and complications underscore the importance of surgical treatment options in cases of rebound and severe adverse effects. Surgical intervention remains an important treatment choice when parents are hesitant to use propranolol.
Collapse
|
12
|
Sun R, Kong X, Qiu X, Huang C, Wong PP. The Emerging Roles of Pericytes in Modulating Tumor Microenvironment. Front Cell Dev Biol 2021; 9:676342. [PMID: 34179005 PMCID: PMC8232225 DOI: 10.3389/fcell.2021.676342] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Pericytes (PCs), known as mural cells, play an important blood vessel (BV) supporting role in regulating vascular stabilization, permeability and blood flow in microcirculation as well as blood brain barrier. In carcinogenesis, defective interaction between PCs and endothelial cells (ECs) contributes to the formation of leaky, chaotic and dysfunctional vasculature in tumors. However, recent works from other laboratories and our own demonstrate that the direct interaction between PCs and other stromal cells/cancer cells can modulate tumor microenvironment (TME) to favor cancer growth and progression, independent of its BV supporting role. Furthermore, accumulating evidence suggests that PCs have an immunomodulatory role. In the current review, we focus on recent advancement in understanding PC's regulatory role in the TME by communicating with ECs, immune cells, and tumor cells, and discuss how we can target PC's functions to re-model TME for an improved cancer treatment strategy.
Collapse
Affiliation(s)
- Ruipu Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyi Qiu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Cheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Schonning MJ, Koh S, Sun RW, Richter GT, Edwards AK, Shawber CJ, Wu JK. Venous malformation vessels are improperly specified and hyperproliferative. PLoS One 2021; 16:e0252342. [PMID: 34043714 PMCID: PMC8158993 DOI: 10.1371/journal.pone.0252342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/12/2021] [Indexed: 11/26/2022] Open
Abstract
Venous malformations (VMs) are slow-flow malformations of the venous vasculature and are the most common type of vascular malformation with a prevalence of 1%. Germline and somatic mutations have been shown to contribute to VM pathogenesis, but how these mutations affect VM pathobiology is not well understood. The goal of this study was to characterize VM endothelial and mural cell expression by performing a comprehensive expression analysis of VM vasculature. VM specimens (n = 16) were stained for pan-endothelial, arterial, venous, and endothelial progenitor cell proteins; proliferation was assessed with KI67. Endothelial cells in the VM vessels were abnormally orientated and improperly specified, as seen by the misexpression of both arterial and endothelial cell progenitor proteins not observed in control vessels. Consistent with arterialization of the endothelial cells, VM vessels were often surrounded by multiple layers of disorganized mural cells. VM endothelium also had a significant increase in proliferative endothelial cells, which may contribute to the dilated channels seen in VMs. Together the expression analysis indicates that the VM endothelium is misspecified and hyperproliferative, suggesting that VMs are biologically active lesions, consistent with clinical observations of VM progression over time.
Collapse
Affiliation(s)
- Michael J. Schonning
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
| | - Seung Koh
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
| | - Ravi W. Sun
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Gresham T. Richter
- Department of Otolaryngology-Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, United States of America
| | - Andrew K. Edwards
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
| | - Carrie J. Shawber
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
- Department of Ob/Gyn, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
| | - June K. Wu
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
14
|
Wang QZ, Zhao ZL, Liu C, Zheng JW. Exosome-derived miR-196b-5p facilitates intercellular interaction in infantile hemangioma via down-regulating CDKN1B. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:394. [PMID: 33842615 PMCID: PMC8033367 DOI: 10.21037/atm-20-6456] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background Though infantile hemangioma (IH) is a common benign vascular tumor, its pathogenesis remains unclear. This study explored the function of hemangioma-derived stem cells (HemSCs) derived exosomes, which exerted an intercellular effect on hemangioma-derived endothelial cells (HemECs). Methods First, HemSCs and HemECs were extracted and cultured. HemSCs derived exosomes (HemSCs-exos) were harvested. miRNA sequencing and target prediction were used to explore differentially expressed miRNAs and potential binding targets. After HemECs were co-cultured with HemSCs-exos, a series of in vitro assays were then performed including cell counting kit-8 (CCK-8) assay, cell apoptosis assay, cell cycle assay and tube formation assay to evaluate proliferation, angiogenesis abilities, etc. qRT-PCR and Western blot were conducted to detect the expression level of target genes and proteins. Results After co-culturing with HemSCs-exos, proliferation, and angiogenesis abilities of HemECs were enhanced, while apoptosis and cell cycle arrest rate were decreased. MiR-196b-5p was observed to be significantly highly expressed in HemSCs-exos. CDKN1B was identified as the binding target of miR-196b-5p. HemECs' proliferation and angiogenesis abilities were elevated when co-cultured with exosomes from HemSCs transfected with miR-196b-5p mimic. In addition, apoptosis rate declined, and lower cells were arrested in G0/G1 phases. Cyclin E, bcl-2 were significantly highly expressed, whereas p27, Bax expression were significantly down-regulated. The positive effect of miR-196b-5p in HemSCs-exos was dramatically reversed when HemECs were transfected with oe-CDKN1B. Conclusions The current study found a novel intercellular interaction between IH cells. Briefly, exosome-derived miRNA-196b-5p in HemSCs could facilitate proliferation and angiogenesis abilities, and attenuate apoptosis and cell cycle repression rate of HemECs by directly binding with CDKN1B.
Collapse
Affiliation(s)
- Qi-Zhang Wang
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Liang Zhao
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Liu
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Wei Zheng
- Department of Oromaxillofacial Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Hu W, Liu Z, Salato V, North PE, Bischoff J, Kumar SN, Fang Z, Rajan S, Hussain MM, Miao QR. NOGOB receptor-mediated RAS signaling pathway is a target for suppressing proliferating hemangioma. JCI Insight 2021; 6:142299. [PMID: 33400686 PMCID: PMC7934876 DOI: 10.1172/jci.insight.142299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
Infantile hemangioma is a vascular tumor characterized by the rapid growth of disorganized blood vessels followed by slow spontaneous involution. The underlying molecular mechanisms that regulate hemangioma proliferation and involution still are not well elucidated. Our previous studies reported that NOGOB receptor (NGBR), a transmembrane protein, is required for the translocation of prenylated RAS from the cytosol to the plasma membrane and promotes RAS activation. Here, we show that NGBR was highly expressed in the proliferating phase of infantile hemangioma, but its expression decreased in the involuting phase, suggesting that NGBR may have been involved in regulating the growth of proliferating hemangioma. Moreover, we demonstrate that NGBR knockdown in hemangioma stem cells (HemSCs) attenuated growth factor-stimulated RAS activation and diminished the migration and proliferation of HemSCs, which is consistent with the effects of RAS knockdown in HemSCs. In vivo differentiation assay further shows that NGBR knockdown inhibited blood vessel formation and adipocyte differentiation of HemSCs in immunodeficient mice. Our data suggest that NGBR served as a RAS modulator in controlling the growth and differentiation of HemSCs.
Collapse
Affiliation(s)
- Wenquan Hu
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhong Liu
- Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Valerie Salato
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Paula E North
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Suresh N Kumar
- Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Zhi Fang
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Sujith Rajan
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - M Mahmood Hussain
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA
| | - Qing R Miao
- Department of Foundations of Medicine, New York University Long Island School of Medicine, Mineola, New York, USA.,Division of Pediatric Surgery, Department of Surgery, and.,Division of Pediatric Pathology, Department of Pathology, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
16
|
Xu M, Ouyang T, Lv K, Ma X. Integrated WGCNA and PPI Network to Screen Hub Genes Signatures for Infantile Hemangioma. Front Genet 2021; 11:614195. [PMID: 33519918 PMCID: PMC7844399 DOI: 10.3389/fgene.2020.614195] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Infantile hemangioma (IH) is characterized by proliferation and regression. METHODS Based on the GSE127487 dataset, the differentially expressed genes (DEGs) between 6, 12, or 24 months and normal samples were screened, respectively. STEM software was used to screen the continued up-regulated or down-regulated in common genes. The modules were assessed by weighted gene co-expression network analysis (WGCNA). The enrichment analysis was performed to identified the biological function of important module genes. The area under curve (AUC) value and protein-protein interaction (PPI) network were used to identify hub genes. The differential expression of hub genes in IH and normal tissues was detected by qPCR. RESULTS There were 5,785, 4,712, and 2,149 DEGs between 6, 12, and 24 months and normal tissues. We found 1,218 DEGs were up-regulated or down-regulated expression simultaneously in common genes. They were identified as 10 co-expression modules. Module 3 and module 4 were positively or negatively correlated with the development of IH, respectively. These two module genes were significantly involved in immunity, cell cycle arrest and mTOR signaling pathway. The two module genes with AUC greater than 0.8 at different stages of IH were put into PPI network, and five genes with the highest degree were identified as hub genes. The differential expression of these genes was also verified by qRTPCR. CONCLUSION Five hub genes may distinguish for proliferative and regressive IH lesions. The WGCNA and PPI network analyses may help to clarify the molecular mechanism of IH at different stages.
Collapse
Affiliation(s)
| | | | - Kaiyang Lv
- Department of Plastic and Reconstructive Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaorong Ma
- Department of Plastic and Reconstructive Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Häussinger D, Kordes C. Space of Disse: a stem cell niche in the liver. Biol Chem 2020; 401:81-95. [PMID: 31318687 DOI: 10.1515/hsz-2019-0283] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Recent evidence indicates that the plasticity of preexisting hepatocytes and bile duct cells is responsible for the appearance of intermediate progenitor cells capable of restoring liver mass after injury without the need of a stem cell compartment. However, mesenchymal stem cells (MSCs) exist in all organs and are associated with blood vessels which represent their perivascular stem cell niche. MSCs are multipotent and can differentiate into several cell types and are known to support regenerative processes by the release of immunomodulatory and trophic factors. In the liver, the space of Disse constitutes a stem cell niche that harbors stellate cells as liver resident MSCs. This perivascular niche is created by extracellular matrix proteins, sinusoidal endothelial cells, liver parenchymal cells and sympathetic nerve endings and establishes a microenvironment that is suitable to maintain stellate cells and to control their fate. The stem cell niche integrity is important for the behavior of stellate cells in the normal, regenerative, aged and diseased liver. The niche character of the space of Disse may further explain why the liver can become an organ of extra-medullar hematopoiesis and why this organ is frequently prone to tumor metastasis.
Collapse
Affiliation(s)
- Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| | - Claus Kordes
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Huang L, Bischoff J. Isolation of Stem Cells, Endothelial Cells and Pericytes from Human Infantile Hemangioma. Bio Protoc 2020; 10:e3487. [PMID: 33654720 DOI: 10.21769/bioprotoc.3487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/23/2019] [Accepted: 12/12/2019] [Indexed: 11/02/2022] Open
Abstract
Infantile hemangioma (IH) is a vascular tumor noted for its excessive blood vessel formation during infancy, glucose-transporter-1 (GLUT1)-positive staining of the blood vessels, and its slow spontaneous involution over several years in early childhood. For most children, IH poses no serious threat because it will eventually involute, but a subset can destroy facial structures and impair vision, breathing and feeding. To unravel the molecular mechanism(s) driving IH-specific vascular overgrowth, which to date remains elusive, investigators have studied IH histopathology, the cellular constituents and mRNA expression. Hemangioma endothelial cells (HemEC) were first isolated from surgically removed IH specimens in 1982 by Mulliken and colleagues ( Mulliken et al., 1982 ). Hemangioma stem cells (HemSC) were isolated in 2008, hemangioma pericytes in 2013 and GLUT1-positive HemEC in 2015. Indeed, as we describe here, it is possible to isolate HemSC, GLUT1-positive HemEC, GLUT1-negative HemEC and HemPericytes from a single proliferating IH tissue specimen. This is accomplished by sequential selection using antibodies against specific cell surface markers: anti-CD133 to select HemSC, anti-GLUT1 and anti-CD31 to select HemECs and anti-PDGFRβ to select HemPericytes. IH-derived cells proliferate well in culture and can be used for in vitro and in vivo vasculogenesis and angiogenesis assays.
Collapse
Affiliation(s)
- Lan Huang
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Joyce Bischoff
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Mong EF, Akat KM, Canfield J, Lockhart J, VanWye J, Matar A, Tsibris JCM, Wu JK, Tuschl T, Totary-Jain H. Modulation of LIN28B/Let-7 Signaling by Propranolol Contributes to Infantile Hemangioma Involution. Arterioscler Thromb Vasc Biol 2018; 38:1321-1332. [PMID: 29724816 DOI: 10.1161/atvbaha.118.310908] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/18/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Infantile hemangiomas (IHs) are the most common benign vascular neoplasms of infancy, characterized by a rapid growth phase followed by a spontaneous involution, or triggered by propranolol treatment by poorly understood mechanisms. LIN28/let-7 axis plays a central role in the regulation of stem cell self-renewal and tumorigenesis. However, the role of LIN28B/let-7 signaling in IH pathogenesis has not yet been elucidated. APPROACH AND RESULTS LIN28B is highly expressed in proliferative IH and is less expressed in involuted and in propranolol-treated IH samples as measured by immunofluorescence staining and quantitative RT-PCR. Small RNA sequencing analysis of IH samples revealed a decrease in microRNAs that target LIN28B, including let-7, and an increase in microRNAs in the mir-498(46) cistron. Overexpression of LIN28B in HEK293 cells induced the expression of miR-516b in the mir-498(46) cistron. Propranolol treatment of induced pluripotent stem cells, which express mir-498(46) endogenously, reduced the expression of both LIN28B and mir-498(46) and increased the expression of let-7. Furthermore, propranolol treatment reduced the proliferation of induced pluripotent stem cells and induced epithelial-mesenchymal transition. CONCLUSIONS This work uncovers the role of the LIN28B/let-7 switch in IH pathogenesis and provides a novel mechanism by which propranolol induces IH involution. Furthermore, it provides therapeutic implications for cancers in which the LIN28/let-7 pathway is imbalanced.
Collapse
Affiliation(s)
- Ezinne Francess Mong
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Kemal Marc Akat
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - John Canfield
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John Lockhart
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Jeffrey VanWye
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - Andrew Matar
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| | - John C M Tsibris
- Department of Obstetrics and Gynecology (J.C.M.T.), Morsani College of Medicine, University of South Florida, Tampa
| | - June K Wu
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York (J.K.W.)
| | - Thomas Tuschl
- Howard Hughes Medical Institute and Laboratory for RNA Molecular Biology, The Rockefeller University, New York (K.M.A., T.T.)
| | - Hana Totary-Jain
- From the Department of Molecular Pharmacology and Physiology (E.F.M., J.C., J.L., J.V., A.M., H.T.-J.)
| |
Collapse
|