1
|
Gao Y, Zhan W, Guo D, Lin H, Farooq MA, Jin C, Zhang L, Zhou Y, Yao J, Duan Y, He C, Jiang S, Jiang W. GPR97 depletion aggravates imiquimod-induced psoriasis pathogenesis via amplifying IL-23/IL-17 axis signal pathway. Biomed Pharmacother 2024; 179:117431. [PMID: 39260323 DOI: 10.1016/j.biopha.2024.117431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Skin psoriasis is defined as receiving external stimulation to activate skin dendritic cells (DCs) which can release interleukin 23 (IL-23) to interlink the innate and adaptive immunity as well as induce T helper 17 (Th17) cell differentiation leading to elevated production of interleukin 17 (IL-17) for keratinocytes over production. This autoimmune loop in psoriasis pathogenesis is influenced by G protein-coupled receptor (GPCR) signalling transduction, and in particular, function of adhesion molecule GPR97 in psoriasis endures to be utterly addressed. In this research, our team allocated GPR97 depletion (GPR97-/-), GPR97 conditional depletion on dendritic cell (DC-cKO), and keratin 14-conditional knockout (K14-cKO) mice models to explore the function of GPR97 which influences keratinocytes and skin immunity. It was found that significantly aggravated psoriasis-like lesion in GPR97-/- mice. In addition, hyperproliferative keratinocytes as well as accumulation of DCs and Th17 cells were detected in imiquimod (IMQ)-induced GPR97-/- mice, which was consistent with the results in DC-cKO and K14-cKO psoriasis model. Additional investigations indicated that beclomethasone dipropionate (BDP), an agonist of GPR97, attenuated the psoriasis-like skin disease and restricted HaCaT cells abnormal proliferation as well as Th17 cells differentiation. Particularly, we found that level of NF-κB p65 was increased in GPR97-/- DCs and BDP could inhibit p65 activation in DCs. Role of GPR97 is indispensable and this adhesion receptor may affect immune cell enrichment and function in skin and alter keratinocytes proliferation as well as differentiation in psoriasis.
Collapse
Affiliation(s)
- Yaoxin Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China; Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Weirong Zhan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dandan Guo
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haizhen Lin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chenxu Jin
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Zhang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zhou
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yixin Duan
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Cong He
- Laboratory of Cancer Genomics and Biology, Department of Urology and Institute of Translational Medicine. Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute Fudan University, Shanghai 200438, China
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
2
|
Shang AQ, Yu CJ, Bi X, Jiang WW, Zhao ML, Sun Y, Guan H, Zhang ZR. Blocking CTLA-4 promotes pressure overload-induced heart failure via activating Th17 cells. FASEB J 2024; 38:e23851. [PMID: 39108204 DOI: 10.1096/fj.202400384r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 09/17/2024]
Abstract
Targeting cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) with specific antibody offers long-term benefits for cancer immunotherapy but can cause severe adverse effects in the heart. This study aimed to investigate the role of anti-CTLA-4 antibody in pressure overload-induced cardiac remodeling and dysfunction. Transverse aortic constriction (TAC) was used to induce cardiac hypertrophy and heart failure in mice. Two weeks after the TAC treatment, mice received anti-CTLA-4 antibody injection twice a week at a dose of 10 mg/kg body weight. The administration of anti-CTLA-4 antibody exacerbated TAC-induced decline in cardiac function, intensifying myocardial hypertrophy and fibrosis. Further investigation revealed that anti-CTLA-4 antibody significantly elevated systemic inflammatory factors levels and facilitated the differentiation of T helper 17 (Th17) cells in the peripheral blood of TAC-treated mice. Importantly, anti-CTLA-4 mediated differentiation of Th17 cells and hypertrophic phenotype in TAC mice were dramatically alleviated by the inhibition of interleukin-17A (IL-17A) by an anti-IL-17A antibody. Furthermore, the C-X-C motif chemokine receptor 4 (CXCR4) antagonist AMD3100, also reversed anti-CTLA-4-mediated cardiotoxicity in TAC mice. Overall, these results suggest that the administration of anti-CTLA-4 antibody exacerbates pressure overload-induced heart failure by activating and promoting the differentiation of Th17 cells. Targeting the CXCR4/Th17/IL-17A axis could be a potential therapeutic strategy for mitigating immune checkpoint inhibitors-induced cardiotoxicity.
Collapse
Affiliation(s)
- An-Qi Shang
- Departments of Cardiology and Critical Care Medicine, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang-Jiang Yu
- Departments of Pharmacy and Cardiology, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Bi
- Departments of Cardiology and Critical Care Medicine, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei-Wei Jiang
- Departments of Cardiology and Critical Care Medicine, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming-Luan Zhao
- Departments of Pharmacy and Cardiology, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Sun
- Departments of Cardiology and Critical Care Medicine, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Guan
- Departments of Cardiology and Critical Care Medicine, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi-Ren Zhang
- Departments of Cardiology and Critical Care Medicine, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Departments of Pharmacy and Cardiology, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin Medical University Cancer Hospital, Harbin, China
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Zhou P, Zhao J, Hu Q, Lin G, Zhang J, Xia A, Zhang S, Nan J, Li L. Discovery of (S)-3-(4-(benzyloxy)phenyl)-2-(2-phenoxyacetamido)propanoic acid derivatives as a new class of GPR34 antagonists. Bioorg Med Chem Lett 2024; 97:129548. [PMID: 37949379 DOI: 10.1016/j.bmcl.2023.129548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
GPR34 is a rhodopsin-like class G protein-coupled receptor (GPCR) that is involved in the development and progression of several diseases. Despite its importance, effective targeting strategies are lacking. We herein report a series of (S)-3-(4-(benzyloxy)phenyl)-2-(2-phenoxyacetamido)propanoic acid derivatives as a new class of GPR34 antagonists. Structure-activity relationship (SAR) studies led to the identification of the most potent compound, 5e, which displayed an IC50 value of 0.680 μM in the GloSensor cAMP assay and 0.059 μM in the Tango assay. 5e demonstrated low cytotoxicity and high selectivity in vitro, and it was able to dose-dependently inhibit Lysophosphatidylserine-induced ERK1/2 phosphorylation in CHO cells expressing GPR34. Furthermore, 5e displayed excellent efficacy in a mouse model of neuropathic pain without any apparent signs of toxicity. Collectively, this study has identified a promising compound, which shows great potential in the development of potent antagonists with a new chemical scaffold targeting GPR34.
Collapse
Affiliation(s)
- Pei Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinlong Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guifeng Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Anjie Xia
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shiyu Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinshan Nan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Palakurthi B, Fross SR, Guldner IH, Aleksandrovic E, Liu X, Martino AK, Wang Q, Neff RA, Golomb SM, Lewis C, Peng Y, Howe EN, Zhang S. Targeting CXCL16 and STAT1 augments immune checkpoint blockade therapy in triple-negative breast cancer. Nat Commun 2023; 14:2109. [PMID: 37055410 PMCID: PMC10101955 DOI: 10.1038/s41467-023-37727-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chemotherapy prior to immune checkpoint blockade (ICB) treatment appears to improve ICB efficacy but resistance to ICB remains a clinical challenge and is attributed to highly plastic myeloid cells associating with the tumor immune microenvironment (TIME). Here we show by CITE-seq single-cell transcriptomic and trajectory analyses that neoadjuvant low-dose metronomic chemotherapy (MCT) leads to a characteristic co-evolution of divergent myeloid cell subsets in female triple-negative breast cancer (TNBC). Specifically, we identify that the proportion of CXCL16 + myeloid cells increase and a high STAT1 regulon activity distinguishes Programmed Death Ligand 1 (PD-L1) expressing immature myeloid cells. Chemical inhibition of STAT1 signaling in MCT-primed breast cancer sensitizes TNBC to ICB treatment, which underscores the STAT1's role in modulating TIME. In summary, we leverage single-cell analyses to dissect the cellular dynamics in the tumor microenvironment (TME) following neoadjuvant chemotherapy and provide a pre-clinical rationale for modulating STAT1 in combination with anti-PD-1 for TNBC patients.
Collapse
Affiliation(s)
- Bhavana Palakurthi
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Shaneann R Fross
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Ian H Guldner
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Emilija Aleksandrovic
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Xiyu Liu
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Anna K Martino
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Qingfei Wang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Ryan A Neff
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Samantha M Golomb
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Cheryl Lewis
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Yan Peng
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Erin N Howe
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Siyuan Zhang
- Department of Biological Sciences, College of Science, University of Notre Dame, Notre Dame, IN, 46556, USA.
- Mike and Josie Harper Cancer Research Institute, University of Notre Dame, 1234N. Notre Dame Avenue, South Bend, IN, 46617, USA.
- Department of Pathology and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA.
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Verstockt B, Verstockt S, Cremer J, Sabino J, Ferrante M, Vermeire S, Sudhakar P. Distinct transcriptional signatures in purified circulating immune cells drive heterogeneity in disease location in IBD. BMJ Open Gastroenterol 2023; 10:bmjgast-2022-001003. [PMID: 36746519 PMCID: PMC9906185 DOI: 10.1136/bmjgast-2022-001003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/25/2022] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To infer potential mechanisms driving disease subtypes among patients with inflammatory bowel disease (IBD), we profiled the transcriptome of purified circulating monocytes and CD4 T-cells. DESIGN RNA extracted from purified monocytes and CD4 T-cells derived from the peripheral blood of 125 endoscopically active patients with IBD was sequenced using Illumina HiSeq 4000NGS. We used complementary supervised and unsupervised analytical methods to infer gene expression signatures associated with demographic/clinical features. Expression differences and specificity were validated by comparison with publicly available single cell datasets, tissue-specific expression and meta-analyses. Drug target information, druggability and adverse reaction records were used to prioritise disease subtype-specific therapeutic targets. RESULTS Unsupervised/supervised methods identified significant differences in the expression profiles of CD4 T-cells between patients with ileal Crohn's disease (CD) and ulcerative colitis (UC). Following a pathway-based classification (Area Under Receiver Operating Characteristic - AUROC=86%) between ileal-CD and UC patients, we identified MAPK and FOXO pathways to be downregulated in UC. Coexpression module/regulatory network analysis using systems-biology approaches revealed mediatory core transcription factors. We independently confirmed that a subset of the disease location-associated signature is characterised by T-cell-specific and location-specific expression. Integration of drug-target information resulted in the discovery of several new (BCL6, GPR183, TNFAIP3) and repurposable drug targets (TUBB2A, PRKCQ) for ileal CD as well as novel targets (NAPEPLD, SLC35A1) for UC. CONCLUSIONS Transcriptomic profiling of circulating CD4 T-cells in patients with IBD demonstrated marked molecular differences between the IBD-spectrum extremities (UC and predominantly ileal CD, sandwiching colonic CD), which could help in prioritising particular drug targets for IBD subtypes.
Collapse
Affiliation(s)
- Bram Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Sare Verstockt
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| | - João Sabino
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Marc Ferrante
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Severine Vermeire
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Padhmanand Sudhakar
- KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), IBD group, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Roy A. Advances in the molecular level understanding of G-protein coupled receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:1-13. [PMID: 36813353 DOI: 10.1016/bs.pmbts.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
G-protein coupled receptors (GPCRs) represent largest family of plasma membrane-bound receptor proteins that are involved in numerous cellular and physiological functions. Many extracellular stimuli such as hormones, lipids and chemokines activate these receptors. Aberrant expression and genetic alteration in GPCR are associated with many human diseases including cancer and cardiovascular disease. GPCRs have emerged as potential therapeutic target and numerous drugs are either approved by FDA or under clinical trial. This chapter provides an update on GPCR research and its significance as a promising therapeutic target.
Collapse
Affiliation(s)
- Adhiraj Roy
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
7
|
Paley MA, Baker BJ, Dunham SR, Linskey N, Cantoni C, Lee K, Hassman LM, Laurent J, Roberson EDO, Clifford DB, Yokoyama WM. The CSF in neurosarcoidosis contains consistent clonal expansion of CD8 T cells, but not CD4 T cells. J Neuroimmunol 2022; 367:577860. [PMID: 35405431 PMCID: PMC9338453 DOI: 10.1016/j.jneuroim.2022.577860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Accepted: 03/29/2022] [Indexed: 01/02/2023]
Abstract
The tissue-specific drivers of neurosarcoidosis remain poorly defined. To identify cerebrospinal fluid (CSF) specific, antigen-driven T and B cell responses, we performed single-cell RNA sequencing of CSF and blood cells from neurosarcoid participants coupled to T and B cell receptor sequencing. In contrast to pulmonary sarcoidosis, which is driven by CD4 T cells, we found CD8 T cell clonal expansion enriched in the neurosarcoid CSF. These CSF-enriched CD8 T cells were composed of two subsets with differential expression of EBI2, CXCR3, and CXCR4. Lastly, our data suggest that IFNγ signaling may distinguish neurosarcoidosis from other neurological disorders.
Collapse
Affiliation(s)
- Michael A Paley
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States of America.
| | - Brandi J Baker
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - S Richard Dunham
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Nicole Linskey
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Claudia Cantoni
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Kenneth Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Lynn M Hassman
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Jennifer Laurent
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Elisha D O Roberson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States of America; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - David B Clifford
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Wayne M Yokoyama
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, United States of America.
| |
Collapse
|
8
|
Mann ON, Kong CS, Lucas ES, Brosens JJ, Hanyaloglu AC, Brighton PJ. Expression and function of the luteinizing hormone choriogonadotropin receptor in human endometrial stromal cells. Sci Rep 2022; 12:8624. [PMID: 35597810 PMCID: PMC9124191 DOI: 10.1038/s41598-022-12495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/03/2022] [Indexed: 12/28/2022] Open
Abstract
The human luteinising hormone choriogonadotropin receptor (LHCGR) is a G-protein coupled receptor activated by both human chorionic gonadotropin (hCG) and luteinizing hormone (LH), two structurally related gonadotropins with essential roles in ovulation and maintenance of the corpus luteum. LHCGR expression predominates in ovarian tissues where it elicits functional responses through cyclic adenosine mononucleotide (cAMP), Ca2+ and extracellular signal-regulated kinase (ERK) signalling. LHCGR expression has also been localized to the human endometrium, with purported roles in decidualization and implantation. However, these observations are contentious. In this investigation, transcripts encoding LHCGR were undetectable in bulk RNA sequencing datasets from whole cycling endometrial tissue and cultured human endometrial stromal cells (EnSC). However, analysis of single-cell RNA sequencing data revealed cell-to-cell transcriptional heterogeneity, and we identified a small subpopulation of stromal cells with detectable LHCGR transcripts. In HEK-293 cells expressing recombinant LHCGR, both hCG and LH elicited robust cAMP, Ca2+ and ERK signals that were absent in wild-type HEK-293 cells. However, none of these responses were recapitulated in primary EnSC cultures. In addition, proliferation, viability and decidual transformation of EnSC were refractory to both hCG and LH, irrespective of treatment to induce differentiation. Although we challenge the assertion that LHCGR is expressed at a functionally active level in the human endometrium, the discovery of a discrete subpopulation of EnSC that express LHCGR transcripts may plausibly account for the conflicting evidence in the literature.
Collapse
Affiliation(s)
- O N Mann
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - C-S Kong
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK
| | - E S Lucas
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.,Centre for Early Life, University of Warwick, Coventry, CV4 7AL, UK
| | - J J Brosens
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.,Centre for Early Life, University of Warwick, Coventry, CV4 7AL, UK.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, CV2 2DX, UK
| | - A C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - P J Brighton
- Division of Biomedical Sciences, Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, Coventry, CV2 2DX, UK.
| |
Collapse
|
9
|
Cheng Y, Heng X, Feng F. G-protein Coupled Receptor 34 Promotes Gliomagenesis by Inducing Proliferation and Malignant Phenotype via TGF-Beta/Smad Signaling Pathway. Technol Cancer Res Treat 2022; 21:15330338221105733. [PMID: 35770303 PMCID: PMC9252019 DOI: 10.1177/15330338221105733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background: G-protein coupled receptor 34 (GPR34) is involved in cell motility, differentiation, and mitosis. GPR34 was reported to be highly expressed and play an oncogenic role in several solid tumors. Here, we investigated the mechanisms underlying how GPR34 promotes glioma progression. Methods: Bioinformatic analysis was performed on RNA-seq and clinical data from the gene expression omnibus (GEO), cancer genome atlas (TCGA), and Genotype-Tissue Expression (GTEx) databases. TIMER database and single-sample GSEA (ssGAEA) method were used to investigate the association between the GPR34 expression and immune infiltration level in glioma. Cox regression analysis was employed to ascertain whether the risk signature was an independent prognostic indicator for glioma. The viability and migratory/invasive potential of glioma cells were assessed using Cell Counting Kit-8, colony formation, wound healing, and Transwell assays. Results: We found that GPR34 expression was positively correlated with immune infiltration level and that high GPR34 level may be associated with poor prognosis in glioma. We further found that GPR34 may serve as an independent prognostic marker and prediction factor for the clinicopathological features of glioma. We showed that knocking down GPR34 attenuated the viability and migratory/invasive capacity of glioma cells (U251 and LN229), while GPR34 overexpression exerted the opposite effects. Additionally, core enrichment in the GSEA analysis indicated that GPR34-mediated gliomagenesis was associated with the cell cycle arrest, epithelial–mesenchymal transition (EMT), and activation of the TGF-β/Smad pathway; furthermore, inhibiting TGF-β/Smad signaling using LY2157299, a TGF-β inhibitor, reversed the oncogenic effects and malignant phenotype associated with GPR34 overexpression. Conclusion: GPR34 enhances the malignancy and carcinogenesis of glioma by promoting an EMT-like process, G1/S phase cell cycle transition, and TGF-β/Smad signaling. Accordingly, GPR34 likely functions as an oncogene in glioma and may represent a potential therapeutic target for this cancer.
Collapse
Affiliation(s)
- Yanhao Cheng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Institute of Brain Science and Brain-Like Intelligence, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China.,Department of Neurosurgery, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Xueyuan Heng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Institute of Brain Science and Brain-Like Intelligence, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China.,Department of Neurosurgery, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Fan Feng
- Institute of Clinical Medicine College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China.,Institute of Brain Science and Brain-Like Intelligence, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China.,Department of Neurosurgery, 529858Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| |
Collapse
|
10
|
G-protein-coupled receptor P2Y10 facilitates chemokine-induced CD4 T cell migration through autocrine/paracrine mediators. Nat Commun 2021; 12:6798. [PMID: 34815397 PMCID: PMC8611058 DOI: 10.1038/s41467-021-26882-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
G-protein-coupled receptors (GPCRs), especially chemokine receptors, play a central role in the regulation of T cell migration. Various GPCRs are upregulated in activated CD4 T cells, including P2Y10, a putative lysophospholipid receptor that is officially still considered an orphan GPCR, i.e., a receptor with unknown endogenous ligand. Here we show that in mice lacking P2Y10 in the CD4 T cell compartment, the severity of experimental autoimmune encephalomyelitis and cutaneous contact hypersensitivity is reduced. P2Y10-deficient CD4 T cells show normal activation, proliferation and differentiation, but reduced chemokine-induced migration, polarization, and RhoA activation upon in vitro stimulation. Mechanistically, CD4 T cells release the putative P2Y10 ligands lysophosphatidylserine and ATP upon chemokine exposure, and these mediators induce P2Y10-dependent RhoA activation in an autocrine/paracrine fashion. ATP degradation impairs RhoA activation and migration in control CD4 T cells, but not in P2Y10-deficient CD4 T cells. Importantly, the P2Y10 pathway appears to be conserved in human T cells. Taken together, P2Y10 mediates RhoA activation in CD4 T cells in response to auto-/paracrine-acting mediators such as LysoPS and ATP, thereby facilitating chemokine-induced migration and, consecutively, T cell-mediated diseases.
Collapse
|
11
|
Gate D, Tapp E, Leventhal O, Shahid M, Nonninger TJ, Yang AC, Strempfl K, Unger MS, Fehlmann T, Oh H, Channappa D, Henderson VW, Keller A, Aigner L, Galasko DR, Davis MM, Poston KL, Wyss-Coray T. CD4 + T cells contribute to neurodegeneration in Lewy body dementia. Science 2021; 374:868-874. [PMID: 34648304 PMCID: PMC9122025 DOI: 10.1126/science.abf7266] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Recent studies indicate that the adaptive immune system plays a role in Lewy body dementia (LBD). However, the mechanism regulating T cell brain homing in LBD is unknown. Here, we observed T cells adjacent to Lewy bodies and dopaminergic neurons in post-mortem LBD brains. Single-cell RNA sequencing of cerebrospinal fluid (CSF) identified upregulated expression of C-X-C Motif Chemokine Receptor 4 (CXCR4) in CD4+ T cells in LBD. CSF protein levels of the CXCR4 ligand, C-X-C Motif Chemokine Ligand 12 (CXCL12) were associated with neuroaxonal damage in LBD. Furthermore, we observed clonal expansion and upregulated Interleukin 17A expression by CD4+ T cells stimulated with a phosphorylated α-synuclein epitope. Thus, CXCR4-CXCL12 signaling may represent a mechanistic target for inhibiting pathological interleukin-17-producing T cell trafficking in LBD. The immune system is implicated in the neurodegenerative process of Lewy body dementia.
Collapse
Affiliation(s)
- David Gate
- Department of Neurology, Northwestern University, Chicago, IL, USA.,Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Emma Tapp
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Olivia Leventhal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Marian Shahid
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tim J Nonninger
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Andrew C Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.,Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Katharina Strempfl
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria.,QPS Austria GmbH, Parkring 12, 8074 Grambach, Austria
| | - Michael S Unger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbrucken, Germany
| | - Hamilton Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Divya Channappa
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Victor W Henderson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Andreas Keller
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Chair for Clinical Bioinformatics, Saarland University, Saarbrucken, Germany
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.,Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Single-cell analyses of Crohn's disease tissues reveal intestinal intraepithelial T cells heterogeneity and altered subset distributions. Nat Commun 2021; 12:1921. [PMID: 33771991 PMCID: PMC7997960 DOI: 10.1038/s41467-021-22164-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
Crohn's disease (CD) is a chronic transmural inflammation of intestinal segments caused by dysregulated interaction between microbiome and gut immune system. Here, we profile, via multiple single-cell technologies, T cells purified from the intestinal epithelium and lamina propria (LP) from terminal ileum resections of adult severe CD cases. We find that intraepithelial lymphocytes (IEL) contain several unique T cell subsets, including NKp30+γδT cells expressing RORγt and producing IL-26 upon NKp30 engagement. Further analyses comparing tissues from non-inflamed and inflamed regions of patients with CD versus healthy controls show increased activated TH17 but decreased CD8+T, γδT, TFH and Treg cells in inflamed tissues. Similar analyses of LP find increased CD8+, as well as reduced CD4+T cells with an elevated TH17 over Treg/TFH ratio. Our analyses of CD tissues thus suggest a potential link, pending additional validations, between transmural inflammation, reduced IEL γδT cells and altered spatial distribution of IEL and LP T cell subsets.
Collapse
|
13
|
Schöneberg T, Liebscher I. Mutations in G Protein-Coupled Receptors: Mechanisms, Pathophysiology and Potential Therapeutic Approaches. Pharmacol Rev 2020; 73:89-119. [PMID: 33219147 DOI: 10.1124/pharmrev.120.000011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are approximately 800 annotated G protein-coupled receptor (GPCR) genes, making these membrane receptors members of the most abundant gene family in the human genome. Besides being involved in manifold physiologic functions and serving as important pharmacotherapeutic targets, mutations in 55 GPCR genes cause about 66 inherited monogenic diseases in humans. Alterations of nine GPCR genes are causatively involved in inherited digenic diseases. In addition to classic gain- and loss-of-function variants, other aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, pseudogenes, gene fusion, and gene dosage, contribute to the repertoire of GPCR dysfunctions. However, the spectrum of alterations and GPCR involvement is probably much larger because an additional 91 GPCR genes contain homozygous or hemizygous loss-of-function mutations in human individuals with currently unidentified phenotypes. This review highlights the complexity of genomic alteration of GPCR genes as well as their functional consequences and discusses derived therapeutic approaches. SIGNIFICANCE STATEMENT: With the advent of new transgenic and sequencing technologies, the number of monogenic diseases related to G protein-coupled receptor (GPCR) mutants has significantly increased, and our understanding of the functional impact of certain kinds of mutations has substantially improved. Besides the classical gain- and loss-of-function alterations, additional aspects, such as biased signaling, trans-signaling, ectopic expression, allele variants of GPCRs, uniparental disomy, pseudogenes, gene fusion, and gene dosage, need to be elaborated in light of GPCR dysfunctions and possible therapeutic strategies.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig, Germany
| |
Collapse
|
14
|
Insel PA, Sriram K, Gorr MW, Wiley SZ, Michkov A, Salmerón C, Chinn AM. GPCRomics: An Approach to Discover GPCR Drug Targets. Trends Pharmacol Sci 2019; 40:378-387. [PMID: 31078319 PMCID: PMC6604616 DOI: 10.1016/j.tips.2019.04.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/17/2019] [Accepted: 04/03/2019] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are targets for ∼35% of approved drugs but only ∼15% of the ∼800 human GPCRs are currently such targets. GPCRomics, the use of unbiased, hypothesis-generating methods [e.g., RNA-sequencing (RNA-seq)], with tissues and cell types to identify and quantify GPCR expression, has led to the discovery of previously unrecognized GPCRs that contribute to functional responses and pathophysiology and that may be therapeutic targets. The combination of GPCR expression data with validation studies (e.g., signaling and functional activities) provides opportunities for the discovery of disease-relevant GPCR targets and therapeutics. Here, we review insights from GPCRomic approaches, gaps in knowledge, and future directions by which GPCRomics can advance GPCR biology and the discovery of new GPCR-targeted drugs.
Collapse
Affiliation(s)
- Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Krishna Sriram
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew W Gorr
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shu Z Wiley
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander Michkov
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cristina Salmerón
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amy M Chinn
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Sayo A, Konishi H, Kobayashi M, Kano K, Kobayashi H, Hibi H, Aoki J, Kiyama H. GPR34 in spinal microglia exacerbates neuropathic pain in mice. J Neuroinflammation 2019; 16:82. [PMID: 30975169 PMCID: PMC6458787 DOI: 10.1186/s12974-019-1458-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Neuropathic pain is caused by sensory nerve injury, but effective treatments are currently lacking. Microglia are activated in the spinal dorsal horn after sensory nerve injury and contribute to neuropathic pain. Accordingly, molecules expressed by these cells are considered potential targets for therapeutic strategies. Our previous gene screening study using a mouse model of motor nerve injury showed that the G-protein-coupled receptor 34 gene (GPR34) is induced by nerve injury. Because GPR34 is now considered a microglia-enriched gene, we explored the possibility that it might be involved in microglial activation in the dorsal horn in a mouse model of neuropathic pain. Methods mRNA expression of GPR34 and pro-inflammatory molecules was determined by quantitative real-time PCR in wild-type and GPR34-deficient mice with L4 spinal nerve injury. In situ hybridization was used to identify GPR34 expression in microglia, and immunohistochemistry with the microglial marker Iba1 was performed to examine microglial numbers and morphology. Mechanical sensitivity was evaluated by the von Frey hair test. Liquid chromatography–tandem mass spectrometry quantified expression of the ligand for GPR34, lysophosphatidylserine (LysoPS), in the dorsal horn, and a GPR34 antagonist was intrathecally administrated to examine the effect of inhibiting LysoPS-GPR34 signaling on mechanical sensitivity. Results GPR34 was predominantly expressed by microglia in the dorsal horn after L4 nerve injury. There were no histological differences in microglial numbers or morphology between WT and GPR34-deficient mice. However, nerve injury-induced pro-inflammatory cytokine expression levels in microglia and pain behaviors were significantly attenuated in GPR34-deficient mice. Furthermore, the intrathecal administration of the GPR34 antagonist reduced neuropathic pain. Conclusions Inhibition of GPR34-mediated signal by GPR34 gene deletion reduced nerve injury-induced neuropathic pain by suppressing pro-inflammatory responses of microglia without affecting their morphology. Therefore, the suppression of GPR34 activity may have therapeutic potential for alleviating neuropathic pain. Electronic supplementary material The online version of this article (10.1186/s12974-019-1458-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Sayo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Masaaki Kobayashi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kuniyuki Kano
- Department of Molecular and Cellular Biochemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Hiroki Kobayashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Junken Aoki
- Department of Molecular and Cellular Biochemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
16
|
Alavi MS, Karimi G, Roohbakhsh A. The role of orphan G protein-coupled receptors in the pathophysiology of multiple sclerosis: A review. Life Sci 2019; 224:33-40. [PMID: 30904492 DOI: 10.1016/j.lfs.2019.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/19/2023]
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that are expressed in many organs and serve as important drug targets. A new subgroup, namely orphan GPCRs, comprising many of these receptors has been discovered. These receptors exhibit diverse physiological functions and have been considered in many neurological disorders including Alzheimer's disease, Parkinson's disease, and multiple sclerosis (MS). GPR17, GPR30, GPR37, GPR40, GPR50, GPR54, GPR56, GPR65, GPR68, GPR75, GPR84, GPR97, GPR109, GPR124, and GPR126 are orphan GPCRs that have been reported with considerable effects in the prevention and/or treatment of MS in preclinical studies. In the present article, we reviewed the most recent findings regarding the role of orphan GPCRs in the treatment of MS.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Combining Optical Approaches with Human Inducible Pluripotent Stem Cells in G Protein-Coupled Receptor Drug Screening and Development. Biomolecules 2018; 8:biom8040180. [PMID: 30567417 PMCID: PMC6315445 DOI: 10.3390/biom8040180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Drug discovery for G protein-coupled receptors (GPCRs) stands at an interesting juncture. Screening programs are slowly moving away from model heterologous cell systems such as human embryonic kidney (HEK) 293 cells to more relevant cellular, tissue and whole animal platforms. Investigators are now developing analytical approaches as means to undertake different aspects of drug discovery by scaling into increasingly more relevant models all the way down to the single cell level. Such approaches include cellular, tissue slice and whole animal models where biosensors that track signaling events and receptor conformational profiles can be used. Here, we review aspects of biosensor-based imaging approaches that might be used in inducible pluripotent stem cell (iPSC) and organoid models, and focus on how such models must be characterized in order to apply them in drug screening.
Collapse
|
18
|
Wang J, Wang X, Chen X, Lu S, Kuang Y, Fei J, Wang Z. Gpr97/Adgrg3 ameliorates experimental autoimmune encephalomyelitis by regulating cytokine expression. Acta Biochim Biophys Sin (Shanghai) 2018; 50:666-675. [PMID: 29860267 DOI: 10.1093/abbs/gmy060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis and its primary animal model, experimental autoimmune encephalomyelitis (EAE), are inflammatory diseases of the central nervous system (CNS) characterized by immune-mediated demyelination and neurodegeneration that may be mediated by inhibition of the nuclear factor-κB (NF-κB) signaling pathway. Gpr97, encoded by Adgrg3, has been reported to regulate the activity of NF-κB. In this study, using a previously established Adgrg3-knockout mouse model, we investigated the roles of Gpr97 in the development of autoimmune CNS disease in mice. We found a marked increase in the expression of Adgrg3 in spinal cords of mice with EAE. Adgrg3-deficient (Adgrg3-/-) mice with EAE exhibited increases in peak severity and the cumulative disease score compared with littermate controls, followed by a notable increase of leukocyte infiltration and more extensive demyelination. The percentages of Th1/Th17 cells in the CNS were significantly increased in Adgrg3-/- mice and accompanied by high levels of interleukin (IL)-6, interferon-γ, tumor necrosis factor-α, and IL-17. An in vitro culture assay verified that Gpr97 regulated proinflammatory cytokine production. Taken together, our results show that Gpr97 plays an important role in the development of EAE and may have a therapeutic potential for the treatment of CNS autoimmunity.
Collapse
Affiliation(s)
- Jinjin Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Xiyi Wang
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Xuejiao Chen
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, China
| | - Zhugang Wang
- Shanghai Research Center for Model Organisms, Shanghai, China
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine of Rui-Jin Hospital, Shanghai, China
| |
Collapse
|
19
|
Schöneberg T, Meister J, Knierim AB, Schulz A. The G protein-coupled receptor GPR34 - The past 20 years of a grownup. Pharmacol Ther 2018; 189:71-88. [PMID: 29684466 DOI: 10.1016/j.pharmthera.2018.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany.
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Alexander Bernd Knierim
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; Leipzig University Medical Center, IFB AdiposityDiseases, 04103 Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|