1
|
Tomassetti C, Insinga G, Gimigliano F, Morrione A, Giordano A, Giurisato E. Insights into CSF-1R Expression in the Tumor Microenvironment. Biomedicines 2024; 12:2381. [PMID: 39457693 PMCID: PMC11504891 DOI: 10.3390/biomedicines12102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The colony-stimulating factor 1 receptor (CSF-1R) plays a pivotal role in orchestrating cellular interactions within the tumor microenvironment (TME). Although the CSF-1R has been extensively studied in myeloid cells, the expression of this receptor and its emerging role in other cell types in the TME need to be further analyzed. This review explores the multifaceted functions of the CSF-1R across various TME cellular populations, including tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), dendritic cells (DCs), cancer-associated fibroblasts (CAFs), endothelial cells (ECs), and cancer stem cells (CSCs). The activation of the CSF-1R by its ligands, colony-stimulating factor 1 (CSF-1) and Interleukin-34 (IL-34), regulates TAM polarization towards an immunosuppressive M2 phenotype, promoting tumor progression and immune evasion. Similarly, CSF-1R signaling influences MDSCs to exert immunosuppressive functions, hindering anti-tumor immunity. In DCs, the CSF-1R alters antigen-presenting capabilities, compromising immune surveillance against cancer cells. CSF-1R expression in CAFs and ECs regulates immune modulation, angiogenesis, and immune cell trafficking within the TME, fostering a pro-tumorigenic milieu. Notably, the CSF-1R in CSCs contributes to tumor aggressiveness and therapeutic resistance through interactions with TAMs and the modulation of stemness features. Understanding the diverse roles of the CSF-1R in the TME underscores its potential as a therapeutic target for cancer treatment, aiming at disrupting pro-tumorigenic cellular crosstalk and enhancing anti-tumor immune responses.
Collapse
Affiliation(s)
- Caterina Tomassetti
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
| | - Gaia Insinga
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Francesca Gimigliano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (G.I.); (F.G.)
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Antonio Giordano
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy;
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Emanuele Giurisato
- Department of Biotechnology Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
2
|
Renz PF, Ghoshdastider U, Baghai Sain S, Valdivia-Francia F, Khandekar A, Ormiston M, Bernasconi M, Duré C, Kretz JA, Lee M, Hyams K, Forny M, Pohly M, Ficht X, Ellis SJ, Moor AE, Sendoel A. In vivo single-cell CRISPR uncovers distinct TNF programmes in tumour evolution. Nature 2024; 632:419-428. [PMID: 39020166 PMCID: PMC11306103 DOI: 10.1038/s41586-024-07663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/04/2024] [Indexed: 07/19/2024]
Abstract
The tumour evolution model posits that malignant transformation is preceded by randomly distributed driver mutations in cancer genes, which cause clonal expansions in phenotypically normal tissues. Although clonal expansions can remodel entire tissues1-3, the mechanisms that result in only a small number of clones transforming into malignant tumours remain unknown. Here we develop an in vivo single-cell CRISPR strategy to systematically investigate tissue-wide clonal dynamics of the 150 most frequently mutated squamous cell carcinoma genes. We couple ultrasound-guided in utero lentiviral microinjections, single-cell RNA sequencing and guide capture to longitudinally monitor clonal expansions and document their underlying gene programmes at single-cell transcriptomic resolution. We uncover a tumour necrosis factor (TNF) signalling module, which is dependent on TNF receptor 1 and involving macrophages, that acts as a generalizable driver of clonal expansions in epithelial tissues. Conversely, during tumorigenesis, the TNF signalling module is downregulated. Instead, we identify a subpopulation of invasive cancer cells that switch to an autocrine TNF gene programme associated with epithelial-mesenchymal transition. Finally, we provide in vivo evidence that the autocrine TNF gene programme is sufficient to mediate invasive properties and show that the TNF signature correlates with shorter overall survival of patients with squamous cell carcinoma. Collectively, our study demonstrates the power of applying in vivo single-cell CRISPR screening to mammalian tissues, unveils distinct TNF programmes in tumour evolution and highlights the importance of understanding the relationship between clonal expansions in epithelia and tumorigenesis.
Collapse
Affiliation(s)
- Peter F Renz
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Umesh Ghoshdastider
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Simona Baghai Sain
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Fabiola Valdivia-Francia
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ameya Khandekar
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Mark Ormiston
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Martino Bernasconi
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Clara Duré
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
- Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jonas A Kretz
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Minkyoung Lee
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Katie Hyams
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Merima Forny
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland
| | - Marcel Pohly
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Xenia Ficht
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Stephanie J Ellis
- Max Perutz Labs, Vienna BioCenter Campus (VBC), Vienna, Austria
- Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - Ataman Sendoel
- Institute for Regenerative Medicine (IREM), University of Zurich, Schlieren-Zurich, Switzerland.
| |
Collapse
|
3
|
Wang H, Wang X, Zhang X, Xu W. The promising role of tumor-associated macrophages in the treatment of cancer. Drug Resist Updat 2024; 73:101041. [PMID: 38198845 DOI: 10.1016/j.drup.2023.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Macrophages are important components of the immune system. Mature macrophages can be recruited to tumor microenvironment that affect tumor cell proliferation, invasion and metastasis, extracellular matrix remodeling, immune suppression, as well as chemotherapy resistance. Classically activated type I macrophages (M1) exhibited marked tumor killing and phagocytosis. Therefore, using macrophages for adoptive cell therapy has attracted attention and become one of the most effective strategies for cancer treatment. Through cytokines and/or chemokines, macrophage can inhibit myeloid cells recruitment, and activate anti-tumor and immune killing functions. Applying macrophages for anti-tumor delivery is one of the most promising approaches for cancer therapy. This review article introduces the role of macrophages in tumor development and drug resistance, and the possible clinical application of targeting macrophages for overcoming drug resistance and enhancing cancer therapeutics, as well as its challenges.
Collapse
Affiliation(s)
- Hongbin Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Surgical Oncology, Harbin Medical University Cancer Hospital, PR China.
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, PR China; Otolaryngology Major Disease Research Key Laboratory of Hunan Province, PR China
| | - Wanhai Xu
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, PR China; Heilongjiang Key Laboratory of Scientific Research in Urology, Harbin Medical University, PR China; Department of Urology, Harbin Medical University Cancer Hospital, PR China.
| |
Collapse
|
4
|
Claeys W, Verhaege D, Van Imschoot G, Van Wonterghem E, Van Acker L, Amelinck L, De Ponti FF, Scott C, Geerts A, Van Steenkiste C, Van Hoecke L, Vandenbroucke RE. Limitations of PLX3397 as a microglial investigational tool: peripheral and off-target effects dictate the response to inflammation. Front Immunol 2023; 14:1283711. [PMID: 38077359 PMCID: PMC10703484 DOI: 10.3389/fimmu.2023.1283711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Microglia, the resident macrophages of the central nervous system (CNS), play a critical role in CNS homeostasis and neuroinflammation. Pexidartinib (PLX3397), a colony-stimulating factor 1 (CSF1) receptor inhibitor, is widely used to deplete microglia, offering flexible options for both long-term depletion and highly versatile depletion-repopulation cycles. However, the potential impact of PLX3397 on peripheral (immune) cells remains controversial. Until now, the microglia-specificity of this type of compounds has not been thoroughly evaluated, particularly in the context of peripherally derived neuroinflammation. Our study addresses this gap by examining the effects of PLX3397 on immune cells in the brain, liver, circulation and bone marrow, both in homeostasis and systemic inflammation models. Intriguingly, we demonstrate that PLX3397 treatment not only influences the levels of tissue-resident macrophages, but also affects circulating and bone marrow immune cells beyond the mononuclear phagocyte system (MPS). These alterations in peripheral immune cells disrupt the response to systemic inflammation, consequently impacting the phenotype irrespective of microglial depletion. Furthermore, we observed that a lower dose of PLX3397, which does not deplete microglia, demonstrates similar (non-)MPS effects, both in the periphery and the brain, but fails to fully replicate the peripheral alterations seen in the higher doses, questioning lower doses as a 'peripheral control' strategy. Overall, our data highlight the need for caution when interpreting studies employing this compound, as it may not be suitable for specific investigation of microglial function in the presence of systemic inflammation.
Collapse
Affiliation(s)
- Wouter Claeys
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Daan Verhaege
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Griet Van Imschoot
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Elien Van Wonterghem
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Lore Van Acker
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Amelinck
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Federico F. De Ponti
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB–UGent Center for Inflammation Research, Ghent, Belgium
| | - Charlotte Scott
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB–UGent Center for Inflammation Research, Ghent, Belgium
| | - Anja Geerts
- Department of Internal Medicine and Paediatrics, Hepatology Research Unit, Ghent University, Ghent, Belgium
- Liver Research Center Ghent, Ghent University, Ghent University Hospital, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Ghent University Hospital, Ghent, Belgium
| | - Christophe Van Steenkiste
- Antwerp University, Department of Gastroenterology and Hepatology, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| | - Lien Van Hoecke
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Roosmarijn E. Vandenbroucke
- Barriers in Inflammation, VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Kitamura T. Tumour-associated macrophages as a potential target to improve natural killer cell-based immunotherapies. Essays Biochem 2023; 67:1003-1014. [PMID: 37313600 PMCID: PMC10539946 DOI: 10.1042/ebc20230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/15/2023]
Abstract
Adoptive transfer of natural killer (NK) cells has been proposed as a novel immunotherapy for malignant tumours resistant to current therapeutic modalities. Several clinical studies have demonstrated that the NK cell-infusion is well tolerated without severe side effects and shows promising results in haematological malignancies. However, patients with malignant solid tumours do not show significant responses to this therapy. Such disappointing results largely arise from the inefficient delivery of infused NK cells and the impairment of their functions in the tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are the most abundant stromal cells in the TME of most solid tumours, and a high TAM density correlates with poor prognosis of cancer patients. Although our knowledge of the interactions between TAMs and NK cells is limited, many studies have indicated that TAMs suppress NK cell cytotoxicity against cancer cells. Therefore, blockade of TAM functions can be an attractive strategy to improve NK cell-based immunotherapies. On the other hand, macrophages are reported to activate NK cells under certain circumstances. This essay presents our current knowledge about mechanisms by which macrophages regulate NK cell functions and discusses possible therapeutic approaches to block macrophage-mediated NK cell suppression.
Collapse
Affiliation(s)
- Takanori Kitamura
- MRC Centre for Reproductive Health, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom
| |
Collapse
|
6
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
7
|
Gorvel L, Olive D. Tumor associated macrophage in HPV + tumors: Between immunosuppression and inflammation. Semin Immunol 2023; 65:101671. [PMID: 36459926 DOI: 10.1016/j.smim.2022.101671] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022]
Abstract
Over the past few decades, with the rise of immunotherapies, tumor infiltrating immune cells were increasingly investigated. Indeed, they may represent biomarkers for patient outcome prediction, they may bear immune checkpoint markers that can be targeted by therapeutic antibodies and mechanistic studies may reveal how to tweak their activation profile so that we can re-direct them towards tumor cells. Macrophages possess a central place in tissue homeostasis for tissue remodeling and cleaning, transformed cell elimination, phagocytosis and regulation of inflammation via cytokine production. All these functions allow the discovery of approaches to target Tumor Associated Macrophages (TAMs) using immunotherapies. Indeed, TAMs express known immune checkpoint markers such as PD-L1, CD40, Sirp-α and markers such as CD163, CD204, TREM2, TREM1 associated with prognosis. In the context of therapies TAM may participate to antibody dependent cell phagocytosis (ADCP) thanks to FCγ-Receptors. Here, we will review the recent literature on TAMs in the specific context of HPV+ tumors. Indeed, HPV infection of mucosal tissue may lead to head and neck, cervical, penile, anal and vaginal cancers. HPV+ tumors exhibit a higher immune cell infiltrate, which relies on inflammation, immunosuppression and anti-viral response. In this context, and considering the many functions on macrophages, we will show the versatility of TAMs in a tumor microenvironment with viral infection features.
Collapse
Affiliation(s)
- Laurent Gorvel
- Tumor immunology laboratory, IBISA immunomonitoring platform, Cancer Research Center of Marseille, Marseille, France.
| | - Daniel Olive
- Tumor immunology laboratory, IBISA immunomonitoring platform, Cancer Research Center of Marseille, Marseille, France
| |
Collapse
|
8
|
Combined single-cell RNA-seq and bulk RNA-seq to analyze the expression and role of TREM2 in bladder cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:23. [PMID: 36445493 DOI: 10.1007/s12032-022-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Currently, reprogramming macrophages has emerged as one of the most promising therapeutic strategies in cancer treatment. Many studies have found that myeloid trigger receptor-2 (TREM2) is mainly expressed on tumor-associated macrophages (TAMs), and targeting TREM2 promotes reprogramming of TAMs and enhances the immunotherapeutic effect of tumors. Nevertheless, the expression and role of TREM2 in different tumor tissues are still controversial. For example, some studies have found that TREM2 can also be expressed on tumor cells and exert pro-tumor functions. It has also been found that TREM2 expression can inhibit tumorigenesis and progression. In fact, there are still no relevant studies on the expression and role of TREM2 in bladder cancer (BLCA). Therefore, the present study combined single-cell RNA-seq and bulk RNA-seq to analyze the expression, role, and molecular mechanism of TREM2 in BLCA. We found that TREM2 was predominantly expressed on TAMs in BLCA, followed by tumor epithelial cells. This finding could be useful for further exploration of the role and mechanism of TREM2. Moreover, TREM2 expression correlates with clinical progression and immunotherapy efficacy, and is an important predictor of prognosis for BLCA patients. Not only that, we also found that TREM2 may exert its effects by promoting epithelial mesenchymal transition (EMT) and T-cell exhaustion. TREM2+ TAMs may play an important pro-tumor role through PTN, ANGPTL, and VISFATIN pathways. In conclusion, our study found that TREM2 is not only a predictor of BLCA prognosis, but also a potential therapeutic target for BLCA.
Collapse
|
9
|
Firdaus F, Kuchakulla M, Qureshi R, Dulce RA, Soni Y, Van Booven DJ, Shah K, Masterson T, Rosete OJ, Punnen S, Hare JM, Ramasamy R, Arora H. S-nitrosylation of CSF1 receptor increases the efficacy of CSF1R blockage against prostate cancer. Cell Death Dis 2022; 13:859. [PMID: 36209194 PMCID: PMC9547886 DOI: 10.1038/s41419-022-05289-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
Abstract
Sustained oxidative stress in castration-resistant prostate cancer (CRPC) cells potentiates the overall tumor microenvironment (TME). Targeting the TME using colony-stimulating factor 1 receptor (CSF1R) inhibition is a promising therapy for CRPC. However, the therapeutic response to sustained CSF1R inhibition (CSF1Ri) is limited as a monotherapy. We hypothesized that one of the underlying causes for the reduced efficacy of CSF1Ri and increased oxidation in CRPC is the upregulation and uncoupling of endothelial nitric oxide synthase (NOS3). Here we show that in high-grade PCa human specimens, NOS3 abundance positively correlates with CSF1-CSF1R signaling and remains uncoupled. The uncoupling diminishes NOS3 generation of sufficient nitric oxide (NO) required for S-nitrosylation of CSF1R at specific cysteine sites (Cys 224, Cys 278, and Cys 830). Exogenous S-nitrosothiol administration (with S-nitrosoglutathione (GSNO)) induces S-nitrosylation of CSF1R and rescues the excess oxidation in tumor regions, in turn suppressing the tumor-promoting cytokines which are ineffectively suppressed by CSF1R blockade. Together these results suggest that NO administration could act as an effective combinatorial partner with CSF1R blockade against CRPC. In this context, we further show that exogenous NO treatment with GSNOR successfully augments the anti-tumor ability of CSF1Ri to effectively reduce the overall tumor burden, decreases the intratumoral percentage of anti-inflammatory macrophages, myeloid-derived progenitor cells and increases the percentage of pro-inflammatory macrophages, cytotoxic T lymphocytes, and effector T cells, respectively. Together, these findings support the concept that the NO-CSF1Ri combination has the potential to act as a therapeutic agent that restores control over TME, which in turn could improve the outcomes of PCa patients.
Collapse
Affiliation(s)
- Fakiha Firdaus
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manish Kuchakulla
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rehana Qureshi
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Raul Ariel Dulce
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yash Soni
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Derek J Van Booven
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Khushi Shah
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thomas Masterson
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Omar Joel Rosete
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Sanoj Punnen
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Joshua M Hare
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Medicine, Cardiology Division, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ranjith Ramasamy
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Himanshu Arora
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL, USA.
- John P Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA.
- The Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
10
|
Fan T, Kuang G, Long R, Han Y, Wang J. The overall process of metastasis: From initiation to a new tumor. Biochim Biophys Acta Rev Cancer 2022; 1877:188750. [PMID: 35728735 DOI: 10.1016/j.bbcan.2022.188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Metastasis-a process that involves the migration of cells from the primary site to distant organs-is the leading cause of cancer-associated death. Improved technology and in-depth research on tumors have furthered our understanding of the various mechanisms involved in tumor metastasis. Metastasis is initiated by cancer cells of a specific phenotype, which migrate with the assistance of extracellular components and metastatic traits conferred via epigenetic regulation while modifying their behavior in response to the complex and dynamic human internal environment. In this review, we have summarized the general steps involved in tumor metastasis and their characteristics, incorporating recent studies and topical issues, including epithelial-mesenchymal transition, cancer stem cells, neutrophil extracellular traps, pre-metastatic niche, extracellular vesicles, and dormancy. Several feasible treatment directions have also been summarized. In addition, the correlation between cancer metastasis and lifestyle factors, such as obesity and circadian rhythm, has been illustrated.
Collapse
Affiliation(s)
- Tianyue Fan
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Guicheng Kuang
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Runmin Long
- Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yunwei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Jing Wang
- Department of Blood Transfusion, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
11
|
Larroquette M, Guegan JP, Besse B, Cousin S, Brunet M, Le Moulec S, Le Loarer F, Rey C, Soria JC, Barlesi F, Bessede A, Scoazec JY, Soubeyran I, Italiano A. Spatial transcriptomics of macrophage infiltration in non-small cell lung cancer reveals determinants of sensitivity and resistance to anti-PD1/PD-L1 antibodies. J Immunother Cancer 2022; 10:jitc-2021-003890. [PMID: 35618288 PMCID: PMC9125754 DOI: 10.1136/jitc-2021-003890] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) having immunosuppressive properties are one of the most abundant immune cells in the tumor microenvironment (TME). Preclinical studies have highlighted the potential role of TAMs in resistance to immune checkpoint blockers (ICBs). Here, we investigated the predictive value of TAM infiltration in patients with non-small cell lung cancer (NSCLC) treated with ICBs and characterized their transcriptomic profiles. METHODS Tumor samples were collected from 152 patients with NSCLC before ICB treatment onset. After immunohistochemical staining and image analysis, the correlation between CD163+ cell infiltration and survival was analyzed. Spatial transcriptomic analyses were performed using the NanoString GeoMx Immune Pathways assay to compare the gene expression profile of tumors with high or low levels of CD163+ cell infiltration and to identify determinants of response to ICBs in tumors with high CD163+ infiltration. RESULTS Low intratumoral CD163+ cell infiltration was associated with longer progression-free survival (PFS; HR 0.61, 95% CI 0.40 to 0.94, p=0.023) and overall survival (OS; HR 0.48, 95% CI 0.28 to 0.80, p=0.004) under ICB treatment. Spatial transcriptomic profiles of 16 tumors revealed the upregulation of ITGAM, CD27, and CCL5 in tumors with high CD163+ cell infiltration. Moreover, in tumors with high macrophage infiltration, the upregulation of genes associated with the interferon-γ signaling pathway and the M1 phenotype was associated with better responses under immunotherapy. Surprisingly, we found also a significantly higher expression of CSF1R in the tumors of responders. Analysis of three independent data sets confirmed that high CSF1R expression was associated with an increased durable clinical benefit rate (47% vs 6%, p=0.004), PFS (median 10.89 months vs 1.67 months, p=0.001), and OS (median 23.11 months vs 2.66 months, p<0.001) under ICB treatment. CONCLUSIONS Enrichment of TAMs in the TME of NSCLC is associated with resistance to immunotherapy regardless of the programmed death ligand 1 status and is driven by upregulation of CD27, ITGAM, and CCL5 gene expression within the tumor compartment. Our transcriptomic analyses identify new potential targets to alter TAM recruitment/polarization and highlight the complexity of the CSF1R pathway, which may not be a suitable target to improve ICB efficacy.
Collapse
Affiliation(s)
- Mathieu Larroquette
- Department of Medecine, Institut Bergonié, Bordeaux, France
- Faculty of Medecine, University of Bordeaux, Bordeaux, France
| | | | - Benjamin Besse
- Department of Medecine, Gustave Roussy, Villejuif, France
| | - Sophie Cousin
- Department of Medecine, Institut Bergonié, Bordeaux, France
| | - Maxime Brunet
- Department of Medecine, Institut Bergonié, Bordeaux, France
- Faculty of Medecine, University of Bordeaux, Bordeaux, France
| | | | | | | | | | | | | | | | | | - Antoine Italiano
- Department of Medecine, Institut Bergonié, Bordeaux, France
- Faculty of Medecine, University of Bordeaux, Bordeaux, France
- DITEP, Gustave Roussy, Villejuif, France
| |
Collapse
|
12
|
Leveraging macrophages for cancer theranostics. Adv Drug Deliv Rev 2022; 183:114136. [PMID: 35143894 DOI: 10.1016/j.addr.2022.114136] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
Abstract
As fundamental immune cells in innate and adaptive immunity, macrophages engage in a double-edged relationship with cancer. Dissecting the character of macrophages in cancer development facilitates the emergence of macrophages-based new strategies that encompass macrophages as theranostic targets/tools of interest for treating cancer. Herein, we provide a concise overview of the mixed roles of macrophages in cancer pathogenesis and invasion as a foundation for the review discussions. We survey the latest progress on macrophage-based cancer theranostic strategies, emphasizing two major strategies, including targeting the endogenous tumor-associated macrophages (TAMs) and engineering the adoptive macrophages to reverse the immunosuppressive environment and augment the cancer theranostic efficacy. We also discuss and provide insights on the major challenges along with exciting opportunities for the future of macrophage-based cancer theranostic approaches.
Collapse
|
13
|
Loss of the intracellular enzyme QPCTL limits chemokine function and reshapes myeloid infiltration to augment tumor immunity. Nat Immunol 2022; 23:568-580. [DOI: 10.1038/s41590-022-01153-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/10/2022] [Indexed: 12/24/2022]
|
14
|
Prasad M, Zorea J, Jagadeeshan S, Shnerb AB, Mathukkada S, Bouaoud J, Michon L, Novoplansky O, Badarni M, Cohen L, Yegodayev KM, Tzadok S, Rotblat B, Brezina L, Mock A, Karabajakian A, Fayette J, Cohen I, Cooks T, Allon I, Dimitstein O, Joshua B, Kong D, Voronov E, Scaltriti M, Carmi Y, Conde-Lopez C, Hess J, Kurth I, Morris LGT, Saintigny P, Elkabets M. MEK1/2 inhibition transiently alters the tumor immune microenvironment to enhance immunotherapy efficacy against head and neck cancer. J Immunother Cancer 2022; 10:jitc-2021-003917. [PMID: 35292516 PMCID: PMC8928405 DOI: 10.1136/jitc-2021-003917] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2022] [Indexed: 11/05/2022] Open
Abstract
Background Although the mitogen-activated protein kinases (MAPK) pathway is hyperactive in head and neck cancer (HNC), inhibition of MEK1/2 in HNC patients has not shown clinically meaningful activity. Therefore, we aimed to characterize the effect of MEK1/2 inhibition on the tumor microenvironment (TME) of MAPK-driven HNC, elucidate tumor-host interaction mechanisms facilitating immune escape on treatment, and apply rationale-based therapy combination immunotherapy and MEK1/2 inhibitor to induce tumor clearance. Methods Mouse syngeneic tumors and xenografts experiments were used to analyze tumor growth in vivo. Single-cell cytometry by time of flight, flow cytometry, and tissue stainings were used to profile the TME in response to trametinib (MEK1/2 inhibitor). Co-culture of myeloid-derived suppressor cells (MDSC) with CD8+ T cells was used to measure immune suppression. Overexpression of colony-stimulating factor-1 (CSF-1) in tumor cells was used to show the effect of tumor-derived CSF-1 on sensitivity to trametinib and anti-programmed death- 1 (αPD-1) in mice. In HNC patients, the ratio between CSF-1 and CD8A was measured to test the association with clinical benefit to αPD-1 and αPD-L1 treatment. Results Using preclinical HNC models, we demonstrated that treatment with trametinib delays HNC initiation and progression by reducing tumor cell proliferation and enhancing the antitumor immunity of CD8+ T cells. Activation of CD8+ T cells by supplementation with αPD-1 antibody eliminated tumors and induced an immune memory in the cured mice. Mechanistically, an early response to trametinib treatment sensitized tumors to αPD-1-supplementation by attenuating the expression of tumor-derived CSF-1, which reduced the abundance of two CSF-1R+CD11c+ MDSC populations in the TME. In contrast, prolonged treatment with trametinib abolished the antitumor activity of αPD-1, because tumor cells undergoing the epithelial to mesenchymal transition in response to trametinib restored CSF-1 expression and recreated an immune-suppressive TME. Conclusion Our findings provide the rationale for testing the trametinib/αPD-1 combination in HNC and highlight the importance of sensitizing tumors to αPD-1 by using MEK1/2 to interfere with the tumor–host interaction. Moreover, we describe the concept that treatment of cancer with a targeted therapy transiently induces an immune-active microenvironment, and supplementation of immunotherapy during this time further activates the antitumor machinery to cause tumor elimination.
Collapse
Affiliation(s)
- Manu Prasad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sankar Jagadeeshan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avital B Shnerb
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sooraj Mathukkada
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jebrane Bouaoud
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France
| | - Lucas Michon
- Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France
| | - Ofra Novoplansky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mai Badarni
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Limor Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ksenia M Yegodayev
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sapir Tzadok
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Barak Rotblat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Libor Brezina
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andreas Mock
- Department of Medical Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Translational Medical Oncology, NCT Heidelberg, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Andy Karabajakian
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon 69373, France
| | - Jérôme Fayette
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon 69373, France
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Irit Allon
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Institute of Pathology, Barzilai University Medical Center, Ashkelon, Israel
| | - Orr Dimitstein
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otolaryngology-Head & Neck Surgery, Soroka University Medical Center, Beer-Sheva, Israel
| | - Benzion Joshua
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Department of Otorhinolaryngology and Head & Neck Surgery, Barzilai Medical Center, Ashkelon, Israel
| | - Dexin Kong
- School of Pharmaceutical Sciences, Tianjin Medical University, Tianjin, China
| | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| | - Yaron Carmi
- Department of Pathology, Tel Aviv University, Tel Aviv, Israel
| | - Cristina Conde-Lopez
- Division of Radiooncology-Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.,Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ina Kurth
- Division of Radiooncology-Radiobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Luc G T Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pierre Saintigny
- Department of Translational Medicine Oncology, Centre Léon Bérard, Lyon 69373, France.,Univ Lyon, Université Claude Bernard Lyon, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon 69373, France.,Department of Medical Oncology, Centre Léon Bérard, Lyon 69373, France
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel .,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
15
|
Xiang C, Fan C, Lu Q, Liu M, Lu H, Feng C, Wu Y, Wu B, Li H, Tang W. Interfering with alternatively activated macrophages by CSF-1R inhibition exerts therapeutic capacity on allergic airway inflammation. Biochem Pharmacol 2022; 198:114952. [PMID: 35149050 DOI: 10.1016/j.bcp.2022.114952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE Allergic asthma is a chronic inflammatory disorder with airway hyperresponsiveness and tissue remodeling as the main pathological characteristics. The etiology of asthma is relatively complicated, involving genetic susceptibility, epigenetic regulation, environmental factors, and immune imbalance. Colony stimulating factor 1 receptor (CSF-1R), highly expressed in myeloid monocytes, plays an important role in regulating inflammation. However, the pathological role of CSF-1R and the therapeutic effects of CSF-1R inhibitor in allergic airway inflammation remain indistinct. METHODS The house dust mite (HDM)-triggered allergic airway inflammation model was conducted to fully uncover the efficacies of CSF-1R inhibition, as illustrated by histopathological examinations, biochemical analysis, ELISA, RT-PCR, Western blotting assay, immunofluorescence, and flow cytometry. Furthermore, bone marrow-derived macrophages (BMDMs) were differentiated and polarized upon IL-4/IL-13 induction to clarify the underlying mechanisms of CSF-1R inhibition. RESULTS Herein, we presented that the expression of CSF-1R was increased in HDM-induced experimental asthma and inhibition of CSF-1R displayed dramatic effects on the disease severity of asthma, referring to suppressing the secretion of allergic mediators, dysfunction of airway epithelium, and infiltration of inflammatory cells. Furthermore, CSF-1R inhibitor could markedly restrain the polarization and expression of transcriptional factors of alternatively activated macrophages (AAMs) in the presence of IL-4/IL-13 and reduce the recruitment of CSF-1R-dominant macrophages, both in acute and chronic allergic airway inflammation model. CONCLUSION Collectively, our findings demonstrated the molecular pathological mechanism of CSF-1R in allergic airway diseases and suggested that targeting CSF-1R might be an alternative intervention strategy on the homeostasis of airway immune microenvironment in asthma.
Collapse
Affiliation(s)
- Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Fan
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Qiukai Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moting Liu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yanwei Wu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bing Wu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
16
|
Zhou J, Zhang S, Guo C. Crosstalk between macrophages and natural killer cells in the tumor microenvironment. Int Immunopharmacol 2021; 101:108374. [PMID: 34824036 DOI: 10.1016/j.intimp.2021.108374] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022]
Abstract
The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.
Collapse
Affiliation(s)
- Jingping Zhou
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Shaolong Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Changying Guo
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
17
|
Osborn G, Stavraka C, Adams R, Sayasneh A, Ghosh S, Montes A, Lacy KE, Kristeleit R, Spicer J, Josephs DH, Arnold JN, Karagiannis SN. Macrophages in ovarian cancer and their interactions with monoclonal antibody therapies. Clin Exp Immunol 2021; 209:4-21. [PMID: 35020853 PMCID: PMC9307234 DOI: 10.1093/cei/uxab020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Abstract
The unmet clinical need for effective treatments in ovarian cancer has yet to be addressed using monoclonal antibodies (mAbs), which have largely failed to overcome tumour-associated immunosuppression, restrict cancer growth, and significantly improve survival. In recent years, experimental mAb design has moved away from solely targeting ovarian tumours and instead sought to modulate the wider tumour microenvironment (TME). Tumour-associated macrophages (TAMs) may represent an attractive therapeutic target for mAbs in ovarian cancer due to their high abundance and close proximity to tumour cells and their active involvement in facilitating several pro-tumoural processes. Moreover, the expression of several antibody crystallisable fragment (Fc) receptors and broad phenotypic plasticity of TAMs provide opportunities to modulate TAM polarisation using mAbs to promote anti-tumoural phenotypes. In this review, we discuss the role of TAMs in ovarian cancer TME and the emerging strategies to target the contributions of these cells in tumour progression through the rationale design of mAbs.
Collapse
Affiliation(s)
- Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Chara Stavraka
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.,Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Rebecca Adams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Ahmad Sayasneh
- Department of Gynecological Oncology, Surgical Oncology Directorate, Guy's and St Thomas' NHS Foundation Trust, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Sharmistha Ghosh
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ana Montes
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom
| | - Rebecca Kristeleit
- Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.,Cancer Centre at Guy's, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom.,School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - James N Arnold
- School of Cancer & Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, United Kingdom.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, United Kingdom
| |
Collapse
|
18
|
Antimetastatic defense by CD8 + T cells. Trends Cancer 2021; 8:145-157. [PMID: 34815204 DOI: 10.1016/j.trecan.2021.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is an intricate process whereby tumor cells migrate from the primary tumor, survive in the circulation, seed distal organs, and proliferate to create metastatic foci. CD8+ T cells can detect and eliminate tumor cells. Research on CD8+ T cell-dependent antitumor immunity has classically focused on its role in the primary tumor. There is increasing evidence, however, that CD8+ T cells have unique antimetastatic functions in various steps of the metastatic cascade. Here, we review the mechanisms whereby CD8+ T cells control metastatic lesions. We discuss their role in each step of metastasis, metastatic dormancy, and metastatic clonal evolution as well as the consequent clinical repercussions.
Collapse
|
19
|
Mattiola I. Immune Circuits to Shape Natural Killer Cells in Cancer. Cancers (Basel) 2021; 13:cancers13133225. [PMID: 34203391 PMCID: PMC8267947 DOI: 10.3390/cancers13133225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Natural killer (NK) cells are circulating innate lymphocytes endowed with antitumoral functions. NK cells are the innate counterpart of effector T cells and among the first cells responding to infections and tumors. In this review, the immune circuits regulating the NK cell antitumoral functions and the possible strategies to shape natural killing in cancer will be discussed. Abstract Natural killer (NK) cells are innate lymphoid cells playing an important role in anti-cancer immunity. NK cells are efficient in controlling the spreading of metastasis but are not very powerful in fighting against primary tumors. The NK cell capability to infiltrate and persist in the tumor microenvironment and to exert their antitumoral functions is often limited by tumor escape mechanisms. These tumor-mediated strategies not only induce NK cell tolerance but also interfere with the NK cell-dependent immune networking. This review will provide an overview of the tumor escape mechanisms impacting NK cells, identify the immune circuits regulating the NK cell-dependent antitumor immunity and revise the emerging therapeutic approaches to unleash NK cells in cancer.
Collapse
Affiliation(s)
- Irene Mattiola
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany;
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10117 Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
20
|
Conventional NK cells and tissue-resident ILC1s join forces to control liver metastasis. Proc Natl Acad Sci U S A 2021; 118:2026271118. [PMID: 34183415 DOI: 10.1073/pnas.2026271118] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The liver is a major metastatic target organ, and little is known about the role of immunity in controlling hepatic metastases. Here, we discovered that the concerted and nonredundant action of two innate lymphocyte subpopulations, conventional natural killer cells (cNKs) and tissue-resident type I innate lymphoid cells (trILC1s), is essential for antimetastatic defense. Using different preclinical models for liver metastasis, we found that trILC1 controls metastatic seeding, whereas cNKs restrain outgrowth. Whereas the killing capacity of trILC1s was not affected by the metastatic microenvironment, the phenotype and function of cNK cells were affected in a cancer type-specific fashion. Thus, individual cancer cell lines orchestrate the emergence of unique cNK subsets, which respond differently to tumor-derived factors. Our findings will contribute to the development of therapies for liver metastasis involving hepatic innate cells.
Collapse
|
21
|
Disruption of CSF-1R signaling inhibits growth of AML with inv(16). Blood Adv 2021; 5:1273-1277. [PMID: 33651098 DOI: 10.1182/bloodadvances.2020003125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/28/2021] [Indexed: 12/20/2022] Open
Abstract
Key Points
Human inv(16) AML cells express CSF-1R and are exposed to CSF-1 in vivo. Inhibition of CSF-1R signaling reduces viability of inv(16) AML cells in vitro and in therapeutic settings in humanized mice in vivo.
Collapse
|
22
|
Güç E, Pollard JW. Redefining macrophage and neutrophil biology in the metastatic cascade. Immunity 2021; 54:885-902. [PMID: 33979586 DOI: 10.1016/j.immuni.2021.03.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/08/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Tumor cells metastasize to distant organs through a complex series of events that are driven by tumor intrinsic and extrinsic factors. In particular, non-malignant stromal cells, including immune cells, modify tumor metastatic behavior. Of these cells, tumor-associated innate immune cells, particularly macrophages and neutrophils, suppress the cytotoxic activity of innate and adaptive killer cells and interact with tumor cells to promote their growth and malignancy. These findings in mouse cancer models suggest that targeting these sub-populations of immune cells holds therapeutic promise in treating metastatic disease. In this review, we describe the origin and role of the macrophages, neutrophils, and their progenitors in the metastatic cascade and suggest strategies that might enhance cancer therapy.
Collapse
Affiliation(s)
- Esra Güç
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Carnevalli LS, Ghadially H, Barry ST. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment. Front Immunol 2021; 12:633685. [PMID: 33953710 PMCID: PMC8092119 DOI: 10.3389/fimmu.2021.633685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/29/2021] [Indexed: 01/21/2023] Open
Abstract
Immunotherapy has transformed cancer treatment by promoting durable clinical responses in a proportion of patients; however, treatment still fails in many patients. Innate immune cells play a key role in the response to immunotherapy. Crosstalk between innate and adaptive immune systems drives T-cell activation but also limits immunotherapy response, as myeloid cells are commonly associated with resistance. Hence, innate cells have both negative and positive effects within the tumor microenvironment (TME), and despite investment in early clinical trials targeting innate cells, they have seen limited success. Suppressive myeloid cells facilitate metastasis and immunotherapy resistance through TME remodeling and inhibition of adaptive immune cells. Natural killer (NK) cells, in contrast, secrete inflammatory cytokines and directly kill transformed cells, playing a key immunosurveillance role in early tumor development. Myeloid and NK cells show reciprocal crosstalk, influencing myeloid cell functional status or antigen presentation and NK effector function, respectively. Crosstalk between myeloid cells and the NK immune network in the TME is especially important in the context of therapeutic intervention. Here we discuss how myeloid and NK cell interactions shape anti-tumor responses by influencing an immunosuppressive TME and how this may influence outcomes of treatment strategies involving drugs that target myeloid and NK cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Cell Communication/drug effects
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunotherapy
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
Collapse
Affiliation(s)
| | | | - Simon T. Barry
- Early Oncology, Research and Development, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
24
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
25
|
Tallón de Lara P, Castañón H, Vermeer M, Núñez N, Silina K, Sobottka B, Urdinez J, Cecconi V, Yagita H, Movahedian Attar F, Hiltbrunner S, Glarner I, Moch H, Tugues S, Becher B, van den Broek M. CD39 +PD-1 +CD8 + T cells mediate metastatic dormancy in breast cancer. Nat Commun 2021; 12:769. [PMID: 33536445 PMCID: PMC7859213 DOI: 10.1038/s41467-021-21045-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
Some breast tumors metastasize aggressively whereas others remain dormant for years. The mechanism governing metastatic dormancy remains largely unknown. Through high-parametric single-cell mapping in mice, we identify a discrete population of CD39+PD-1+CD8+ T cells in primary tumors and in dormant metastasis, which is hardly found in aggressively metastasizing tumors. Using blocking antibodies, we find that dormancy depends on TNFα and IFNγ. Immunotherapy reduces the number of dormant cancer cells in the lungs. Adoptive transfer of purified CD39+PD-1+CD8+ T cells prevents metastatic outgrowth. In human breast cancer, the frequency of CD39+PD-1+CD8+ but not total CD8+ T cells correlates with delayed metastatic relapse after resection (disease-free survival), thus underlining the biological relevance of CD39+PD-1+CD8+ T cells for controlling experimental and human breast cancer. Thus, we suggest that a primary breast tumor could prime a systemic, CD39+PD-1+CD8+ T cell response that favors metastatic dormancy in the lungs.
Collapse
Affiliation(s)
- Paulino Tallón de Lara
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
- Department of Medicine, Mount Sinai St. Luke's & Mount Sinai West, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Héctor Castañón
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Nicolás Núñez
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Karina Silina
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Bettina Sobottka
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Joaquín Urdinez
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Cutiss AG, Schlieren, Switzerland
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Farkhondeh Movahedian Attar
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Stefanie Hiltbrunner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
- Department of Hematology and Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Isabelle Glarner
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Holger Moch
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sònia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Zurich, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
- Comprehensive Cancer Center Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Zhang Y, Hughes KR, Raghani RM, Ma J, Orbach S, Jeruss JS, Shea LD. Cargo-free immunomodulatory nanoparticles combined with anti-PD-1 antibody for treating metastatic breast cancer. Biomaterials 2021; 269:120666. [PMID: 33461057 DOI: 10.1016/j.biomaterials.2021.120666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
The presence of immunosuppressive innate immune cells such as myeloid derived suppressor cells (MDSCs), Ly6C-high monocytes, and tumor-associated macrophages (TAMs) at a tumor can inhibit effector T cell and NK cell function. Immune checkpoint blockade using anti-PD-1 antibody aims to overcome the immune suppressive environment, yet only a fraction of patients responds. Herein, we test the hypothesis that cargo-free PLG nanoparticles administered intravenously can divert circulating immune cells from the tumor microenvironment to enhance the efficacy of anti-PD-1 immunotherapy in the 4T1 mouse model of metastatic triple-negative breast cancer. In vitro studies demonstrate that these nanoparticles decrease the expression of MCP-1 by 5-fold and increase the expression of TNF-α by more than 2-fold upon uptake by innate immune cells. Intravenous administration of particles results in internalization by MDSCs and monocytes, with particles detected in the liver, lung, spleen, and primary tumor. Nanoparticle delivery decreased the abundance of MDSCs in circulation and in the lung, the latter being the primary metastatic site. Combined with anti-PD-1 antibody, nanoparticles significantly slowed tumor growth and resulted in a survival benefit. Gene expression analysis by GSEA indicated inflammatory myeloid cell pathways were downregulated in the lung and upregulated in the spleen and tumor. Upregulation of extrinsic apoptotic pathways was also observed in the primary tumor. Collectively, these results demonstrate that cargo-free PLG nanoparticles can reprogram immune cell responses and alter the tumor microenvironment in vivo to overcome the local immune suppression attributed to myeloid cells and enhance the efficacy of anti-PD-1 therapy.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ravi M Raghani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jeffrey Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jacqueline S Jeruss
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lonnie D Shea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
27
|
Edwards SC, Hoevenaar WHM, Coffelt SB. Emerging immunotherapies for metastasis. Br J Cancer 2020; 124:37-48. [PMID: 33262520 PMCID: PMC7782509 DOI: 10.1038/s41416-020-01160-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/07/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Major advances in cancer immunotherapy have dramatically expanded the potential to manipulate immune cells in cancer patients with metastatic disease to counteract cancer spread and extend patient lifespan. One of the most successful types of immunotherapy is the immune checkpoint inhibitors, such as anti-CTLA-4 and anti-PD-1, that keep anti-tumour T cells active. However, not every patient with metastatic disease benefits from this class of drugs and patients often develop resistance to these therapies over time. Tremendous research effort is now underway to uncover new immunotherapeutic targets that can be used in patients who are refractory to anti-CTLA-4 or anti-PD-1 treatment. Here, we discuss results from experimental model systems demonstrating that modulating the immune response can negatively affect metastasis formation. We focus on molecules that boost anti-tumour immune cells and opportunities to block immunosuppression, as well as cell-based therapies with enhanced tumour recognition properties for solid tumours. We also present a list of challenges in treating metastatic disease with immunotherapy that must be considered in order to move laboratory observations into clinical practice and maximise patient benefit. ![]()
Collapse
Affiliation(s)
- Sarah C Edwards
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wilma H M Hoevenaar
- Cancer Research UK Beatson Institute, Glasgow, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Seth B Coffelt
- Cancer Research UK Beatson Institute, Glasgow, UK. .,Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
28
|
Lelios I, Cansever D, Utz SG, Mildenberger W, Stifter SA, Greter M. Emerging roles of IL-34 in health and disease. J Exp Med 2020; 217:133604. [PMID: 31940023 PMCID: PMC7062519 DOI: 10.1084/jem.20190290] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are part of the innate immune system and are present in every organ of the body. They fulfill critical roles in tissue homeostasis and development and are involved in various pathologies. An essential factor for the development, homeostasis, and function of mononuclear phagocytes is the colony stimulating factor-1 receptor (CSF-1R), which has two known ligands: CSF-1 and interleukin-34 (IL-34). While CSF-1 has been extensively studied, the biology and functions of IL-34 are only now beginning to be uncovered. In this review, we discuss recent advances of IL-34 biology in health and disease with a specific focus on mononuclear phagocytes.
Collapse
Affiliation(s)
- Iva Lelios
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dilay Cansever
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian G Utz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Wiebke Mildenberger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sebastian A Stifter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Kowal J, Kornete M, Joyce JA. Re-education of macrophages as a therapeutic strategy in cancer. Immunotherapy 2020; 11:677-689. [PMID: 31088236 DOI: 10.2217/imt-2018-0156] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tumor-associated macrophages (TAMs) can be educated within the tumor microenvironment to promote cancer development and progression. While TAM-targeted agents have largely focused on macrophage depletion as an anticancer strategy, it is becoming increasingly evident that TAM re-education may represent a more effective approach. In this perspective, we discuss different means to achieve TAM re-education, and review the beneficial effects of these strategies, particularly when combined with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Joanna Kowal
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
| | - Mara Kornete
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Switzerland
| |
Collapse
|
30
|
Abstract
New therapies that promote antitumour immunity have been recently developed. Most of these immunomodulatory approaches have focused on enhancing T-cell responses, either by targeting inhibitory pathways with immune checkpoint inhibitors, or by targeting activating pathways, as with chimeric antigen receptor T cells or bispecific antibodies. Although these therapies have led to unprecedented successes, only a minority of patients with cancer benefit from these treatments, highlighting the need to identify new cells and molecules that could be exploited in the next generation of immunotherapy. Given the crucial role of innate immune responses in immunity, harnessing these responses opens up new possibilities for long-lasting, multilayered tumour control.
Collapse
|
31
|
Lee-Chang C, Rashidi A, Miska J, Zhang P, Pituch KC, Hou D, Xiao T, Fischietti M, Kang SJ, Appin CL, Horbinski C, Platanias LC, Lopez-Rosas A, Han Y, Balyasnikova IV, Lesniak MS. Myeloid-Derived Suppressive Cells Promote B cell-Mediated Immunosuppression via Transfer of PD-L1 in Glioblastoma. Cancer Immunol Res 2019; 7:1928-1943. [PMID: 31530559 DOI: 10.1158/2326-6066.cir-19-0240] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/23/2019] [Accepted: 09/12/2019] [Indexed: 12/17/2022]
Abstract
The potent immunosuppression induced by glioblastoma (GBM) is one of the primary obstacles to finding effective immunotherapies. One hallmark of the GBM-associated immunosuppressive landscape is the massive infiltration of myeloid-derived suppressor cells (MDSC) and, to a lesser extent, regulatory T cells (Treg) within the tumor microenvironment. Here, we showed that regulatory B cells (Breg) are a prominent feature of the GBM microenvironment in both preclinical models and clinical samples. Forty percent of GBM patients (n = 60) scored positive for B-cell tumor infiltration. Human and mouse GBM-associated Bregs were characterized by immunosuppressive activity toward activated CD8+ T cells, the overexpression of inhibitory molecules PD-L1 and CD155, and production of immunosuppressive cytokines TGFβ and IL10. Local delivery of B cell-depleting anti-CD20 immunotherapy improved overall survival of animals (IgG vs. anti-CD20 mean survival: 18.5 vs. 33 days, P = 0.0001), suggesting a potential role of Bregs in GBM progression. We unveiled that GBM-associated MDSCs promoted regulatory B-cell function by delivering microvesicles transporting membrane-bound PD-L1, able to be up-taken by tumoral B cells. The transfer of functional PD-L1 via microvesicles conferred Bregs the potential to suppress CD8+ T-cell activation and acquisition of an effector phenotype. This work uncovered the role of B cells in GBM physiopathology and provides a mechanism by which the GBM microenvironment controls B cell-mediated immunosuppression.See related Spotlight on p. 1902.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Peng Zhang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Katarzyna C Pituch
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ting Xiao
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Mariafausta Fischietti
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Seong Jae Kang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christina L Appin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Leonidas C Platanias
- Department of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.,Medicine Service, Jesse Brown VA Medical Center, Chicago, Illinois
| | - Aurora Lopez-Rosas
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yu Han
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.
| |
Collapse
|
32
|
Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol 2019; 106:309-322. [PMID: 30776148 PMCID: PMC6658332 DOI: 10.1002/jlb.4ri0818-311r] [Citation(s) in RCA: 330] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Monocytes are innate immune cells of the mononuclear phagocyte system that have emerged as important regulators of cancer development and progression. Our understanding of monocytes has advanced from viewing these cells as a homogenous population to a heterogeneous system of cells that display diverse responses to different stimuli. During cancer, different monocyte subsets perform functions that contribute to both pro- and antitumoral immunity, including phagocytosis, secretion of tumoricidal mediators, promotion of angiogenesis, remodeling of the extracellular matrix, recruitment of lymphocytes, and differentiation into tumor-associated macrophages and dendritic cells. The ability of cancer to evade immune recognition and clearance requires protumoral signals to outweigh ongoing attempts by the host immune system to prevent tumor growth. This review discusses current understanding of monocyte heterogeneity during homeostasis, highlights monocyte functions in cancer progression, and describes monocyte-targeted therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Claire E. Olingy
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | - Huy Q. Dinh
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | | |
Collapse
|
33
|
Pathria P, Louis TL, Varner JA. Targeting Tumor-Associated Macrophages in Cancer. Trends Immunol 2019; 40:310-327. [DOI: 10.1016/j.it.2019.02.003] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/08/2023]
|
34
|
Blomberg OS, Spagnuolo L, de Visser KE. Immune regulation of metastasis: mechanistic insights and therapeutic opportunities. Dis Model Mech 2018; 11:11/10/dmm036236. [PMID: 30355585 PMCID: PMC6215427 DOI: 10.1242/dmm.036236] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Metastatic disease is the leading cause of death in cancer patients. Metastasis formation involves a cascade of events for which the underlying mechanisms are still poorly understood. During the metastatic cascade, cancer cells tightly interact with the immune system and they influence each other, both in the tumor microenvironment and systemically. The crosstalk between cancer and immune cells adds another layer of complexity to our understanding of metastasis formation, but at the same time opens new therapeutic opportunities for cancer patients. The intensifying development of immunotherapeutic strategies calls for a better understanding of immune regulation of metastasis in order to maximize the therapeutic benefit for patients with metastatic disease. In this Review and accompanying poster, we describe the main mechanisms of immune regulation of metastasis that have been reported to date, and present promising immunotherapeutic options that are currently available, or may become so in the near future, to tackle metastasis.
Collapse
Affiliation(s)
- Olga S Blomberg
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lorenzo Spagnuolo
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Tumor Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|