1
|
Lu Y, Xu M, Dorrier CE, Zhang R, Mayer CT, Wagner D, McGavern DB, Hodes RJ. CD40 Drives Central Nervous System Autoimmune Disease by Inducing Complementary Effector Programs via B Cells and Dendritic Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2083-2092. [PMID: 36426970 PMCID: PMC10065987 DOI: 10.4049/jimmunol.2200439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/19/2022] [Indexed: 01/04/2023]
Abstract
Costimulatory CD40 plays an essential role in autoimmune diseases, including experimental autoimmune encephalomyelitis (EAE), a murine model of human multiple sclerosis (MS). However, how CD40 drives autoimmune disease pathogenesis is not well defined. Here, we used a conditional knockout approach to determine how CD40 orchestrates a CNS autoimmune disease induced by recombinant human myelin oligodendrocyte glycoprotein (rhMOG). We found that deletion of CD40 in either dendritic cells (DCs) or B cells profoundly reduced EAE disease pathogenesis. Mechanistically, CD40 expression on DCs was required for priming pathogenic Th cells in peripheral draining lymph nodes and promoting their appearance in the CNS. By contrast, B cell CD40 was essential for class-switched MOG-specific Ab production, which played a crucial role in disease pathogenesis. In fact, passive transfer of MOG-immune serum or IgG into mice lacking CD40 on B cells but not DCs reconstituted autoimmune disease, which was associated with inundation of the spinal cord parenchyma by Ig and complement. These data demonstrate that CD40 supports distinct effector programs in B cells and DCs that converge to drive a CNS autoimmune disease and identify targets for intervention.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Max Xu
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cayce E. Dorrier
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ray Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christian T. Mayer
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Wagner
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Dorian B. McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J. Hodes
- Experimental Immunology Branch, National Cancer Institute, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Aarts SABM, Seijkens TTP, van Dorst KJF, Dijkstra CD, Kooij G, Lutgens E. The CD40-CD40L Dyad in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Immunol 2017; 8:1791. [PMID: 29312317 PMCID: PMC5732943 DOI: 10.3389/fimmu.2017.01791] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
The CD40-CD40L dyad is an immune checkpoint regulator that promotes both innate and adaptive immune responses and has therefore an essential role in the development of inflammatory diseases, including multiple sclerosis (MS). In MS, CD40 and CD40L are expressed on immune cells present in blood and lymphoid organs, affected resident central nervous system (CNS) cells, and inflammatory cells that have infiltrated the CNS. CD40-CD40L interactions fuel the inflammatory response underlying MS, and both genetic deficiency and antibody-mediated inhibition of the CD40-CD40L dyad reduce disease severity in experimental autoimmune encephalomyelitis (EAE). Both proteins are therefore attractive therapeutic candidates to modulate aberrant inflammatory responses in MS. Here, we discuss the genetic, experimental and clinical studies on the role of CD40 and CD40L interactions in EAE and MS and we explore novel approaches to therapeutically target this dyad to combat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Suzanne A. B. M. Aarts
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Tom T. P. Seijkens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany
| | | | - Christine D. Dijkstra
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, Netherlands
| | - Esther Lutgens
- Department of Medical Biochemistry, Subdivision of Experimental Vascular Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU), Munich, Germany
| |
Collapse
|
3
|
Xu Y, Yang E, Huang Q, Ni W, Kong C, Liu G, Li G, Su H, Wang H. PPE57 induces activation of macrophages and drives Th1-type immune responses through TLR2. J Mol Med (Berl) 2015; 93:645-62. [PMID: 25586105 DOI: 10.1007/s00109-014-1243-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 01/10/2023]
Abstract
UNLABELLED Proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) are related proteins exclusive to Mycobacteria that play diverse roles in modulating critical innate immune pathways. In this study, we observed that the PPE57 protein is associated with the cell wall and is exposed on the cell surface. PPE57 enhances Mycobacterium spp. entering into macrophages and plays a role in macrophage phagocytosis. To explore the underlying mechanism, we demonstrated that PPE57 is able to recognise Toll-like receptor 2 (TLR2) and further induce macrophage activation by augmenting the expression of several cell surface molecules (CD40, CD80, CD86 and MHC class II) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-12p40) within macrophages. These molecules are involved in the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signalling pathways. We demonstrated that PPE57 effectively polarises T cells to secrete interferon (IFN)-γ and IL-2 and to up-regulate CXCR3 expression in vivo and in vitro, suggesting that this protein may contribute to Th1 polarisation during the immune response. Moreover, recombinant Bacillus Calmette-Guérin (BCG) over-expressing PPE57 could provide better protective efficacy against Mycobacterium tuberculosis challenge compared with BCG. Taken together, our data provides several pieces of evidence that PPE57 may regulate innate and adaptive immunity by interacting with TLR2. These findings indicate that PPE57 protein is a potential antigen for the rational design of an efficient vaccine against M. tuberculosis. KEY MESSAGES PPE57 is located on the cell surface and enhances mycobacterium entry into macrophage. PPE57 interacts directly with TLR2 on macrophages. PPE57 plays a key role in the activation of macrophages in a TLR2-dependent manner. PPE57 induces a Th1 immune response via TLR2-mediated macrophage functions. Recombinant BCG over-expressing PPE57 could improve protective efficacy against M. tuberculosis.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, No. 220 Handan Road, Shanghai, 200433, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
The selective M-CSF receptor tyrosine kinase inhibitor Ki20227 suppresses experimental autoimmune encephalomyelitis. J Neuroimmunol 2008; 195:73-80. [DOI: 10.1016/j.jneuroim.2008.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 01/16/2008] [Accepted: 01/29/2008] [Indexed: 11/24/2022]
|
6
|
The 'short' history of regulatory B cells. Trends Immunol 2007; 29:34-40. [PMID: 18289504 DOI: 10.1016/j.it.2007.10.004] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/22/2007] [Accepted: 10/24/2007] [Indexed: 10/22/2022]
Abstract
The maintenance of tolerance is the sine qua non of a sophisticated regulatory apparatus to prevent or dampen overzealous immune responses. In addition to the ability of B cells to prime and activate the immune system, B cells with regulatory function (Bregs) have been identified in experimental models of autoimmunity, infections, and cancer, supporting the notion that, similar to regulatory T cells (Tregs), Breg-mediated suppression is an important means for the maintenance of peripheral tolerance. This regulatory function appears to be directly mediated by the production of IL-10 and/or TGFbeta and by the ability of B cells to interact with pathogenic T cells to inhibit harmful immune responses. The identification of their existence is of great relevance to the understanding of autoimmune diseases and to the development of new therapeutic strategies.
Collapse
|
7
|
Obregon D, Hou H, Bai Y, Nikolic WV, Mori T, Luo D, Zeng J, Ehrhart J, Fernandez F, Morgan D, Giunta B, Town T, Tan J. CD40L disruption enhances Abeta vaccine-mediated reduction of cerebral amyloidosis while minimizing cerebral amyloid angiopathy and inflammation. Neurobiol Dis 2007; 29:336-53. [PMID: 18055209 DOI: 10.1016/j.nbd.2007.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/31/2007] [Accepted: 09/19/2007] [Indexed: 12/24/2022] Open
Abstract
Amyloid-beta (Abeta) immunization efficiently reduces amyloid plaque load and memory impairment in transgenic mouse models of Alzheimer's disease (AD). Active Abeta immunization has also yielded favorable results in a subset of AD patients. However, a small percentage of patients developed severe aseptic meningoencephalitis associated with brain inflammation and infiltration of T-cells. We have shown that blocking the CD40-CD40 ligand (L) interaction mitigates Abeta-induced inflammatory responses and enhances Abeta clearance. Here, we utilized genetic and pharmacologic approaches to test whether CD40-CD40L blockade could enhance the efficacy of Abeta(1-42) immunization, while limiting potentially damaging inflammatory responses. We show that genetic or pharmacologic interruption of the CD40-CD40L interaction enhanced Abeta(1-42) immunization efficacy to reduce cerebral amyloidosis in the PSAPP and Tg2576 mouse models of AD. Potentially deleterious pro-inflammatory immune responses, cerebral amyloid angiopathy (CAA) and cerebral microhemorrhage were reduced or absent in these combined approaches. Pharmacologic blockade of CD40L decreased T-cell neurotoxicity to Abeta-producing neurons. Further reduction of cerebral amyloidosis in Abeta-immunized PSAPP mice completely deficient for CD40 occurred in the absence of Abeta immunoglobulin G (IgG) antibodies or efflux of Abeta from brain to blood, but was rather correlated with anti-inflammatory cytokine profiles and reduced plasma soluble CD40L. These results suggest CD40-CD40L blockade promotes anti-inflammatory cellular immune responses, likely resulting in promotion of microglial phagocytic activity and Abeta clearance without generation of neurotoxic Abeta-reactive T-cells. Thus, combined approaches of Abeta immunotherapy and CD40-CD40L blockade may provide for a safer and more effective Abeta vaccine.
Collapse
Affiliation(s)
- D Obregon
- Neuroimmunology Laboratory, Institute for Research in Psychiatry, Department of Psychiatry and Behavioral Medicine, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
McCandless EE, Klein RS. Molecular targets for disrupting leukocyte trafficking during multiple sclerosis. Expert Rev Mol Med 2007; 9:1-19. [PMID: 17637110 DOI: 10.1017/s1462399407000397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractAutoimmune diseases of the central nervous system (CNS) involve the migration of abnormal numbers of self-directed leukocytes across the blood–brain barrier that normally separates the CNS from the immune system. The cardinal lesion associated with neuroinflammatory diseases is the perivascular infiltrate, which comprises leukocytes that have traversed the endothelium and have congregated in a subendothelial space between the endothelial-cell basement membrane and the glial limitans. The exit of mononuclear cells from this space can be beneficial, as when virus-specific lymphocytes enter the CNS for pathogen clearance, or might induce CNS damage, such as in the autoimmune disease multiple sclerosis when myelin-specific lymphocytes invade and induce demyelinating lesions. The molecular mechanisms involved in the movement of lymphocytes through these compartments involve multiple signalling pathways between these cells and the microvasculature. In this review, we discuss adhesion, costimulatory, cytokine, chemokine and signalling molecules involved in the dialogue between lymphocytes and endothelial cells that leads to inflammatory infiltrates within the CNS, and the targeting of these molecules as therapies for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Erin E McCandless
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
9
|
Kel J, Oldenampsen J, Luca M, Drijfhout JW, Koning F, Nagelkerken L. Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:272-80. [PMID: 17200200 PMCID: PMC1762692 DOI: 10.2353/ajpath.2007.060335] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have previously shown that immunization with a mannosylated myelin peptide in complete adjuvant induces tolerance instead of disease in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis. In this report we demonstrate that treatment with a soluble mannosylated epitope of proteolipid protein (M-PLP(139-151)) significantly inhibits disease mediated by autoreactive myelin-specific T cells during EAE. Treatment with M-PLP(139-151), applied in different EAE models, significantly reduced the incidence of disease and the severity of clinical symptoms. Delayed-type hypersensitivity responses were abolished after peptide treatment, emphasizing the impact on peripheral T-cell reactivity. Histological analysis of spinal cord tissue from mice treated with M-PLP(139-151) revealed the presence of only few macrophages and T cells. Moreover, little expression of interferon-gamma, interleukin-23, or major histocompatibility complex class II antigen was detected. Immune modulation by M-PLP(139-151) was primarily antigen-specific because an irrelevant mannosylated peptide showed no significant effect on delayed-type hypersensitivity responses or on the course of EAE. Therefore, mannosylated antigens may represent a novel therapeutic approach for antigen-specific modulation of autoreactive T cells in vivo.
Collapse
Affiliation(s)
- Junda Kel
- Business Unit Biomedical Research, TNO Quality of Life, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
10
|
Siffrin V, Brandt AU, Herz J, Zipp F. New insights into adaptive immunity in chronic neuroinflammation. Adv Immunol 2007; 96:1-40. [PMID: 17981203 DOI: 10.1016/s0065-2776(07)96001-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding the immune response in the central nervous system (CNS) is crucial for the development of new therapeutic concepts in chronic neuroinflammation, which differs considerably from other autoimmune diseases. Special immunologic properties of inflammatory processes in the CNS, which is often referred to as an immune privileged site, imply distinct features of CNS autoimmune disease in terms of disease initiation, perpetuation, and therapeutic accessibility. Furthermore, the CNS is a stress-sensitive organ with a low capacity for self-renewal and is highly prone to bystander damage caused by CNS inflammation. This leads to neuronal degeneration that contributes considerably to the phenotype of the disease. In this chapter, we discuss recent findings emphasizing the predominant role of the adaptive immune system in the pathogenesis of chronic neuroinflammation, that is, multiple sclerosis (MS) in patients and experimental autoimmune encephalomyelitis (EAE) in rodents. In addition, we report on efforts to translate these findings into clinical practice with the aim of developing selective treatment regimens.
Collapse
Affiliation(s)
- Volker Siffrin
- Cecilie-Vogt-Clinic for Molecular Neurology, Charité-Universitaetsmedizin Berlin, 10117 Berlin, Germany
| | | | | | | |
Collapse
|
11
|
Abstract
The CD154-CD40 ligand pair interaction plays a central role in both induction of the immune response and in immune effector functions. Indeed, many animal disease models and human autoimmune diseases have demonstrated a central role for CD154 expression. The expression of CD154 is very tightly regulated by the immune system through a number of non-redundant overlapping mechanisms that ensure its limited initial induction, along with its temporal maintenance and rapid elimination from the cell surface, and its functional neutralization by the release of soluble CD40. In this review, we discuss the current state of understanding of CD154 regulation during the activation of the immune system and describe numerous strategic mechanisms by which modulation of CD154-CD40 interactions may be applied to treat autoimmune disease.
Collapse
Affiliation(s)
- Laurence M Howard
- Department of Microbiology--Immunology, Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | |
Collapse
|
12
|
Guerkov REM, Targoni OS, Kreher CR, Boehm BO, Herrera MT, Tary-Lehmann M, Lehmann PV, Schwander SK. Detection of low-frequency antigen-specific IL-10-producing CD4(+) T cells via ELISPOT in PBMC: cognate vs. nonspecific production of the cytokine. J Immunol Methods 2003; 279:111-21. [PMID: 12969552 DOI: 10.1016/s0022-1759(03)00240-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-cell resolution cytokine ELISPOT assays are increasingly used to gain insights into clonal sizes of type 1 and type 2 effector T cell populations in vivo. However, ELISPOT assays permitting monitoring of regulatory IL-10-producing T cells have so far not been established. Unlike IFN-gamma, IL-2, IL-4, and IL-5 assays performed on PBMC in which the recall antigen-induced cytokine spots are T cell-derived, we show here that in such assays IL-10 is primarily monocyte-derived. T cell-derived IL-10 spots were 80 x 10(3) microm(2) in size, seven times larger than spots produced by monocytes, and B cells produced even smaller spots. Based on spot size gating and the use of B cells as APC, we have established test conditions that permit measurement of cognate IL-10 production by low-frequency antigen-specific T cells. IL-10-producing PPD-specific CD4(+) T cells were detected in frequencies comparable to IFN-gamma-secreting CD4(+) T cells in tuberculosis patients, but not in uninfected healthy control individuals. In contrast, IL-10-secreting CD4(+) T cells specific for a panel of recall antigens could not be detected in frequencies >1/100,000 in healthy individuals whose CD4(+) cells responded to these antigens with type 1 or type 2 cytokine production in the 1:100,000-1:1000 frequency range. Therefore, the induction of IL-10-producing T cells seems to be under tighter control than that of Th1/Th2 cells, apparently confined to states of chronic immune stimulation. Access to low-frequency immune monitoring of IL-10-producing T cells will provide new insights into the role of regulatory T cells in health and disease.
Collapse
Affiliation(s)
- Robert E M Guerkov
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4943, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Howard LM, Neville KL, Haynes LM, Dal Canto MC, Miller SD. CD154 blockade results in transient reduction in Theiler's murine encephalomyelitis virus-induced demyelinating disease. J Virol 2003; 77:2247-50. [PMID: 12525660 PMCID: PMC140904 DOI: 10.1128/jvi.77.3.2247-2250.2003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transient CD154 blockade at the onset of Theiler's murine encephalomyelitis virus-induced demyelinating disease ameliorated disease progression for 80 days, reduced immune cell infiltration, and transiently increased viral loads in the central nervous system. Peripheral antiviral and autoimmune T-cell responses were normal, and disease severity returned to control levels by day 120.
Collapse
Affiliation(s)
- Laurence M Howard
- Departments of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
14
|
Howard LM, Dal Canto MC, Miller SD. Transient anti-CD154-mediated immunotherapy of ongoing relapsing experimental autoimmune encephalomyelitis induces long-term inhibition of disease relapses. J Neuroimmunol 2002; 129:58-65. [PMID: 12161021 DOI: 10.1016/s0165-5728(02)00175-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Relapsing experimental autoimmune encephalomyelitis (R-EAE) is a Th1-mediated central nervous system (CNS) autoimmune disease with pathology similar to that of relapsing-remitting multiple sclerosis. Among recent therapeutic approaches to prevent or treat relapsing disease is the strategic blockade of the CD154-CD40 ligand pair interactions. We have previously shown that CD154 blockade at the peak of acute disease can, in the short term, inhibit spontaneous disease relapse and this is at least partly associated with the inhibition of T cell effector function and blockade of inflammatory cell recruitment to and/or retention in the CNS. However, little is understood about the long-term effects of CD154 blockade in the inhibition of immune responses to encephalitogenic antigens. Here we demonstrate that transient anti-CD154 blockade of CD154-CD40 interactions at the peak of acute phase of R-EAE resulted in significant long-term inhibition (by >80%) of clinical relapses and that clinical disease in those mice that did relapse was reduced in duration and severity compared to control antibody-treated mice. Additionally, we show that this strategy permanently inhibits DTH responses of T cells specific for relapse-associated encephalitogenic epitopes. Thus, transient CD154 blockade during ongoing disease has a long-term therapeutic efficacy in preventing disease relapses.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Antibodies/therapeutic use
- CD40 Antigens/drug effects
- CD40 Antigens/immunology
- CD40 Ligand/drug effects
- CD40 Ligand/immunology
- Cells, Cultured
- Chemotaxis, Leukocyte/drug effects
- Chemotaxis, Leukocyte/immunology
- Cytokines/drug effects
- Cytokines/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Epitopes, T-Lymphocyte/drug effects
- Epitopes, T-Lymphocyte/immunology
- Female
- Immunotherapy/methods
- Lymph Nodes/cytology
- Lymph Nodes/drug effects
- Lymph Nodes/immunology
- Mice
- Mice, Inbred Strains
- Spleen/cytology
- Spleen/drug effects
- Spleen/immunology
- Th1 Cells/drug effects
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Laurence M Howard
- Department of Microbiology-Immunology and the Interdepartmental Immunobiology Center, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | | | |
Collapse
|