1
|
Bailey DM, Bain AR, Hoiland RL, Barak OF, Drvis I, Stacey BS, Iannetelli A, Davison GW, Dahl RH, Berg RMG, MacLeod DB, Dujic Z, Ainslie PN. Severe hypoxaemic hypercapnia compounds cerebral oxidative-nitrosative stress during extreme apnoea: Implications for cerebral bioenergetic function. J Physiol 2024; 602:5659-5684. [PMID: 38348606 DOI: 10.1113/jp285555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/16/2024] [Indexed: 11/01/2024] Open
Abstract
We examined the extent to which apnoea-induced extremes of oxygen demand/carbon dioxide production impact redox regulation of cerebral bioenergetic function. Ten ultra-elite apnoeists (six men and four women) performed two maximal dry apnoeas preceded by normoxic normoventilation, resulting in severe end-apnoea hypoxaemic hypercapnia, and hyperoxic hyperventilation designed to ablate hypoxaemia, resulting in hyperoxaemic hypercapnia. Transcerebral exchange of ascorbate radicals (by electron paramagnetic resonance spectroscopy) and nitric oxide metabolites (by tri-iodide chemiluminescence) were calculated as the product of global cerebral blood flow (by duplex ultrasound) and radial arterial (a) to internal jugular venous (v) concentration gradients. Apnoea duration increased from 306 ± 62 s during hypoxaemic hypercapnia to 959 ± 201 s in hyperoxaemic hypercapnia (P ≤ 0.001). Apnoea generally increased global cerebral blood flow (all P ≤ 0.001) but was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose (P = 0.015-0.044). This was associated with a general net cerebral output (v > a) of ascorbate radicals that was greater in hypoxaemic hypercapnia (P = 0.046 vs. hyperoxaemic hypercapnia) and coincided with a selective suppression in plasma nitrite uptake (a > v) and global cerebral blood flow (P = 0.034 to <0.001 vs. hyperoxaemic hypercapnia), implying reduced consumption and delivery of nitric oxide consistent with elevated cerebral oxidative-nitrosative stress. In contrast, we failed to observe equidirectional gradients consistent with S-nitrosohaemoglobin consumption and plasma S-nitrosothiol delivery during apnoea (all P ≥ 0.05). Collectively, these findings highlight a key catalytic role for hypoxaemic hypercapnia in cerebral oxidative-nitrosative stress. KEY POINTS: Local sampling of blood across the cerebral circulation in ultra-elite apnoeists determined the extent to which severe end-apnoea hypoxaemic hypercapnia (prior normoxic normoventilation) and hyperoxaemic hypercapnia (prior hyperoxic hyperventilation) impact free radical-mediated nitric oxide bioavailability and global cerebral bioenergetic function. Apnoea generally increased the net cerebral output of free radicals and suppressed plasma nitrite consumption, thereby reducing delivery of nitric oxide consistent with elevated oxidative-nitrosative stress. The apnoea-induced elevation in global cerebral blood flow was insufficient to prevent a reduction in the cerebral metabolic rates of oxygen and glucose. Cerebral oxidative-nitrosative stress was greater during hypoxaemic hypercapnia compared with hyperoxaemic hypercapnia and coincided with a lower apnoea-induced elevation in global cerebral blood flow, highlighting a key catalytic role for hypoxaemia. This applied model of voluntary human asphyxia might have broader implications for the management and treatment of neurological diseases characterized by extremes of oxygen demand and carbon dioxide production.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, ON, Canada
| | - Ryan L Hoiland
- Department of Anaesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, West 12th Avenue, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Otto F Barak
- Department of Integrative Physiology, School of Medicine, University of Split, Split, Croatia
- Department of Sports Medicine, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Ivan Drvis
- School of Kinesiology, University of Zagreb, Zagreb, Croatia
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Angelo Iannetelli
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
| | - Gareth W Davison
- Department of Exercise Biochemistry and Physiology, Sport and Exercise Science Research Institute, Ulster University Belfast, United Kingdom of Great Britain and Northern Ireland, Ulster, UK
| | - Rasmus H Dahl
- Department of Radiology, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ronan M G Berg
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - David B MacLeod
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Zeljko Dujic
- Department of Integrative Physiology, School of Medicine, University of Split, Split, Croatia
| | - Philip N Ainslie
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK
- School of Health and Exercise Sciences, Faculty of Health and Social Development, Center for Heart Lung and Vascular Health, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
2
|
Carr JMJR, Hoiland RL, Fernandes IA, Schrage WG, Ainslie PN. Recent insights into mechanisms of hypoxia-induced vasodilatation in the human brain. J Physiol 2024; 602:5601-5618. [PMID: 37655827 DOI: 10.1113/jp284608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 09/02/2023] Open
Abstract
The cerebral vasculature manages oxygen delivery by adjusting arterial blood in-flow in the face of reductions in oxygen availability. Hypoxic cerebral vasodilatation, and the associated hypoxic cerebral blood flow reactivity, involve many vascular, erythrocytic and cerebral tissue mechanisms that mediate elevations in cerebral blood flow via micro- and macrovascular dilatation. This contemporary review focuses on in vivo human work - with reference to seminal preclinical work where necessary - on hypoxic cerebrovascular reactivity, particularly where recent advancements have been made. We provide updates with the following information: in humans, hypoxic cerebral vasodilatation is partially mediated via a - likely non-obligatory - combination of: (1) nitric oxide synthases, (2) deoxygenation-coupled S-nitrosothiols, (3) potassium channel-related vascular smooth muscle hyperpolarization, and (4) prostaglandin mechanisms with some contribution from an interrelationship with reactive oxygen species. And finally, we discuss the fact that, due to the engagement of deoxyhaemoglobin-related mechanisms, reductions in O2 content via haemoglobin per se seem to account for ∼50% of that seen with hypoxic cerebral vasodilatation during hypoxaemia. We further highlight the issue that methodological impediments challenge the complete elucidation of hypoxic cerebral reactivity mechanisms in vivo in healthy humans. Future research is needed to confirm recent advancements and to reconcile human and animal findings. Further investigations are also required to extend these findings to address questions of sex-, heredity-, age-, and disease-related differences. The final step is to then ultimately translate understanding of these mechanisms into actionable, targetable pathways for the prevention and treatment of cerebral vascular dysfunction and cerebral hypoxic brain injury.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for Researching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor A Fernandes
- Department of Health and Kinesiology, Purdue University, Indiana, USA
| | - William G Schrage
- Department of Kinesiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
Brochu P, Ménard J, Haddad S. Cardiopulmonary parameters and organ blood flows for workers expressed in terms of VO2 for use in physiologically based toxicokinetic modeling. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:307-335. [PMID: 34991435 DOI: 10.1080/15287394.2021.2006845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Minute ventilation rates (VE), alveolar ventilation rates (VA), cardiac outputs (Q), liver blood flow (LBF) and kidneys blood flows (KBF) for physiologically based toxicokinetic modeling and occupational health risk assessment in active workers have apparently not been determined. Minute energy expenditure rates (E) and oxygen consumption rates (VO2) in workers during exertions and their aggregate daytime activities are obtained by using open-circuit wearable devices for indirect calorimetry measurements and the doubly labeled water method respectively. Hundreds of E (in kcal/min) and VO2 (in L of O2/min) were previously reported for workers. The oxygen uptake factors of 0.2059 ± 0.0019 and 0.2057 ± 0.0018 L of O2/kcal during postprandial and fasting phases respectively enabled conversion of E into VO2. Equations determined in this study based upon more than 25 000 published measurements enable the calculation of 15 parameters in the same worker only by using the VO2 reflecting workload. These parameters, notably VE, VA, VE/VO2 VA/Q, Q, LBF and KBF were found to be interrelated. Altering one of these changes the order of magnitude of the others. Q, LBF and KBF decrease when supine adults at rest switch to an upright position. This effect of gravity diminished when VO2 increased. The fall in LBF and KBF during exertion might enhance muscle blood flow as reported previously. Taken together these equations and data may improve the accuracy of physiologically based toxicokinetic modeling as well as occupational health assessment studies in active workers exposed to xenobiotics.List of main abbreviations: AVOD: arterioveinous oxygen content difference.BMI: body mass index (in kg/m2).BSA: body surface area (in m2).BTPS: body temperature and saturated with water vapor.Bw: body weight (in kg).E: minute energy expenditure rate (in kcal/min).FGE: organ blood flow factor for the gravitational effect on blood circulation.H: oxygen uptake factor, volume of oxygen (at STPD) consumed to produce 1 kcal of energy expended.KBF: kidneys blood flow (in ml/min).LBF: liver blood flow (in ml/min).PBF: liver or kidneys blood flows expressed in terms of percentages (in %) of Qsup C values: namely PBF = (LBF or KBF/Qsup C) x 100.Q: cardiac output (in L/min or ml/min).Qsup C: cardiac output for the cohort of males or females in supination (in ml/min).STPD: standard temperature and pressure, dry air.sup: values measured when adults are in the supine position.up: values measured when adults are in the upright position.VDphys: physiological dead space at BTPS (in L).VT: tidal volume at BTPS (in L).VA: alveolar ventilation rate at BTPS (in L/min).VA/Q: ventilation-perfusion ratio (unitless).VE: minute ventilation rate at BTPS (in L/min).VO2: oxygen consumption rate (i.e. the oxygen uptake) at STPD (in L/min).VQ: ventilatory equivalent for VO2 (VE at BTPS /VO2 at STPD).
Collapse
Affiliation(s)
- Pierre Brochu
- Department of Environmental and Occupational Health, ESPUM, Université de Montréal, Montreal, QC, Canada
| | - Jessie Ménard
- Department of Environmental and Occupational Health, ESPUM, Université de Montréal, Montreal, QC, Canada
- Centre for Public Health Research (CReSP), Université de Montréal, Montréal, QC, Canada
| | - Sami Haddad
- Department of Environmental and Occupational Health, ESPUM, Université de Montréal, Montreal, QC, Canada
- Centre for Public Health Research (CReSP), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Powers WJ, An H, Diringer MN. Cerebral Blood Flow and Metabolism. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
van der Ster BJP, Kim YS, Westerhof BE, van Lieshout JJ. Central Hypovolemia Detection During Environmental Stress-A Role for Artificial Intelligence? Front Physiol 2021; 12:784413. [PMID: 34975538 PMCID: PMC8715014 DOI: 10.3389/fphys.2021.784413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
The first step to exercise is preceded by the required assumption of the upright body position, which itself involves physical activity. The gravitational displacement of blood from the chest to the lower parts of the body elicits a fall in central blood volume (CBV), which corresponds to the fraction of thoracic blood volume directly available to the left ventricle. The reduction in CBV and stroke volume (SV) in response to postural stress, post-exercise, or to blood loss results in reduced left ventricular filling, which may manifest as orthostatic intolerance. When termination of exercise removes the leg muscle pump function, CBV is no longer maintained. The resulting imbalance between a reduced cardiac output (CO) and a still enhanced peripheral vascular conductance may provoke post-exercise hypotension (PEH). Instruments that quantify CBV are not readily available and to express which magnitude of the CBV in a healthy subject should remains difficult. In the physiological laboratory, the CBV can be modified by making use of postural stressors, such as lower body "negative" or sub-atmospheric pressure (LBNP) or passive head-up tilt (HUT), while quantifying relevant biomedical parameters of blood flow and oxygenation. Several approaches, such as wearable sensors and advanced machine-learning techniques, have been followed in an attempt to improve methodologies for better prediction of outcomes and to guide treatment in civil patients and on the battlefield. In the recent decade, efforts have been made to develop algorithms and apply artificial intelligence (AI) in the field of hemodynamic monitoring. Advances in quantifying and monitoring CBV during environmental stress from exercise to hemorrhage and understanding the analogy between postural stress and central hypovolemia during anesthesia offer great relevance for healthy subjects and clinical populations.
Collapse
Affiliation(s)
- Björn J. P. van der Ster
- Department of Internal Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yu-Sok Kim
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Internal Medicine, Medisch Centrum Leeuwarden, Leeuwarden, Netherlands
| | - Berend E. Westerhof
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Johannes J. van Lieshout
- Department of Internal Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, The Medical School, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
6
|
Brochu P, Ménard J, Marchand A, Haddad S. Cardiopulmonary values and organ blood flows before and during heat stress: data in nine subjects at rest in the upright position. Can J Physiol Pharmacol 2021; 99:1148-1158. [PMID: 34062083 DOI: 10.1139/cjpp-2021-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Physiological changes associated with thermoregulation can influence the kinetics of chemicals in the human body, such as alveolar ventilation (VA) and redistribution of blood flow to organs. In this study, the influence of heat stress on various physiological parameters was evaluated in nine male volunteers during sessions of exposure to wet blub globe temperatures (WBGT) of 21, 25 and 30°C for four hours. Skin and core temperatures and more than twenty cardiopulmonary parameters were measured. Liver, kidneys, brain, skin and muscles blood flows were also determined based on published measurements. Results show that most subjects (8 out of 9) have been affected by the inhalation of hot and dry air at the WBGT of 30°C. High respiratory rates, superficial tidal volumes and low VA values were notably observed. The skin blood flow has increased by 2.16-fold, whereas the renal blood flow and liver blood flow have decreased by about by 11 and 18% respectively. A complete set of key cardiopulmonary parameters in healthy male adults before and during heat stress was generated for use in PBPK modeling. A toxicokinetic studies are ongoing to evaluate the impact of heat stress on the absorption, biotransformation and excretion rates of volatile xenobiotics.
Collapse
Affiliation(s)
- Pierre Brochu
- Université de Montréal, 5622, Environmental and Occupational Health, School of Public Health, Montreal, Quebec, Canada;
| | - Jessie Ménard
- Université de Montréal, 5622, Environmental and Occupational Health, School of Public Health, Montreal, Quebec, Canada.,Centre for Public Health Research (CReSP), Montréal, Quebec, Canada;
| | - Axelle Marchand
- Université de Montréal, 5622, Environmental and Occupational Health, School of Public Health, Montreal, Quebec, Canada.,Centre for Public Health Research (CReSP), Montréal, Quebec, Canada;
| | - Sami Haddad
- Université de Montréal, 5622, Environmental and Occupational Health, School of Public Health, Montreal, Quebec, Canada.,Centre for Public Health Research (CReSP), Montréal, Quebec, Canada;
| |
Collapse
|
7
|
Roberts DR, Collins HR, Lee JK, Taylor JA, Turner M, Zaharchuk G, Wintermark M, Antonucci MU, Mulder ER, Gerlach DA, Asemani D, McGregor HR, Seidler RD. Altered cerebral perfusion in response to chronic mild hypercapnia and head-down tilt Bed rest as an analog for Spaceflight. Neuroradiology 2021; 63:1271-1281. [PMID: 33587162 DOI: 10.1007/s00234-021-02660-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/26/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Following prolonged stays on the International Space Station (ISS), some astronauts exhibit visual acuity changes, ophthalmological findings, and mildly elevated intracranial pressures as part of a novel process called spaceflight-associated neuro-ocular syndrome (SANS). To determine the pathophysiology of SANS, NASA conducted a multi-investigator study in which 11 healthy participants underwent head-down tilt bed rest, mimicking microgravity-induced cephalad fluid shifts, combined with elevated ambient CO2 levels similar to those on the ISS (HDT+CO2). As part of that study, we examined the effects of HDT+CO2 on cerebral perfusion. METHODS Using arterial spin labeling, we compared cerebral perfusion before, during, and after HDT+CO2 in participants who developed SANS (n = 5) with those who did not (n = 6). RESULTS All participants demonstrated a decrease in perfusion during HDT+CO2 (mean decrease of 25.1% at HDT7 and 16.2% at HDT29); however, the timing and degree of change varied between the groups. At day 7 of HDT+CO2, the SANS group experienced a greater reduction in perfusion than the non-SANS group (p =.05, 95% CI:-0.19 to 16.11, d=.94, large effect). Conversely, by day 29 of HDT+CO2, the SANS group had significantly higher perfusion (approaching their baseline) than the non-SANS group (p = .04, 95% CI:0.33 to 13.07, d=1.01, large effect). CONCLUSION Compared with baseline and recovery, HDT+CO2 resulted in reduced cerebral perfusion which varied based on SANS status. Further studies are needed to unravel the relative role of HDT vs hypercapnia, to determine if these perfusion changes are clinically relevant, and whether perfusion changes contribute to the development of SANS during spaceflight.
Collapse
Affiliation(s)
- Donna R Roberts
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA. .,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Heather R Collins
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica K Lee
- German Aerospace Center (DLR, Institute of Aerospace Medicine), Cologne, Germany.,Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - James A Taylor
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew Turner
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Greg Zaharchuk
- Department of Radiology, Division of Neuroradiology, Stanford University, Stanford, CA, USA
| | - Max Wintermark
- Department of Radiology, Division of Neuroradiology, Stanford University, Stanford, CA, USA
| | - Michael U Antonucci
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Edwin R Mulder
- German Aerospace Center (DLR, Institute of Aerospace Medicine), Cologne, Germany
| | - Darius A Gerlach
- German Aerospace Center (DLR, Institute of Aerospace Medicine), Cologne, Germany
| | - Davud Asemani
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Heather R McGregor
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| | - Rachael D Seidler
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Germuska M, Chandler H, Okell T, Fasano F, Tomassini V, Murphy K, Wise R. A frequency-domain machine learning method for dual-calibrated fMRI mapping of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen consumption (CMRO 2). Front Artif Intell 2020; 3. [PMID: 32885165 PMCID: PMC7116003 DOI: 10.3389/frai.2020.00012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Magnetic resonance imaging (MRI) offers the possibility to non-invasively map the brain's metabolic oxygen consumption (CMRO2), which is essential for understanding and monitoring neural function in both health and disease. However, in depth study of oxygen metabolism with MRI has so far been hindered by the lack of robust methods. One MRI method of mapping CMRO2 is based on the simultaneous acquisition of cerebral blood flow (CBF) and blood oxygen level dependent (BOLD) weighted images during respiratory modulation of both oxygen and carbon dioxide. Although this dual-calibrated methodology has shown promise in the research setting, current analysis methods are unstable in the presence of noise and/or are computationally demanding. In this paper, we present a machine learning implementation for the multi-parametric assessment of dual-calibrated fMRI data. The proposed method aims to address the issues of stability, accuracy, and computational overhead, removing significant barriers to the investigation of oxygen metabolism with MRI. The method utilizes a time-frequency transformation of the acquired perfusion and BOLD-weighted data, from which appropriate feature vectors are selected for training of machine learning regressors. The implemented machine learning methods are chosen for their robustness to noise and their ability to map complex non-linear relationships (such as those that exist between BOLD signal weighting and blood oxygenation). An extremely randomized trees (ET) regressor is used to estimate resting blood flow and a multi-layer perceptron (MLP) is used to estimate CMRO2 and the oxygen extraction fraction (OEF). Synthetic data with additive noise are used to train the regressors, with data simulated to cover a wide range of physiologically plausible parameters. The performance of the implemented analysis method is compared to published methods both in simulation and with in-vivo data (n = 30). The proposed method is demonstrated to significantly reduce computation time, error, and proportional bias in both CMRO2 and OEF estimates. The introduction of the proposed analysis pipeline has the potential to not only increase the detectability of metabolic difference between groups of subjects, but may also allow for single subject examinations within a clinical context.
Collapse
Affiliation(s)
- Michael Germuska
- CUBRIC, Department of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Hannah Chandler
- CUBRIC, Department of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Thomas Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | | | - Valentina Tomassini
- CUBRIC, Department of Psychology, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom.,Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy
| | - Kevin Murphy
- CUBRIC, Department of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Richard Wise
- CUBRIC, Department of Psychology, Cardiff University, Cardiff, United Kingdom.,Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy.,Institute for Advanced Biomedical Technologies, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
9
|
Donahue MJ, Achten E, Cogswell PM, De Leeuw FE, Derdeyn CP, Dijkhuizen RM, Fan AP, Ghaznawi R, Heit JJ, Ikram MA, Jezzard P, Jordan LC, Jouvent E, Knutsson L, Leigh R, Liebeskind DS, Lin W, Okell TW, Qureshi AI, Stagg CJ, van Osch MJP, van Zijl PCM, Watchmaker JM, Wintermark M, Wu O, Zaharchuk G, Zhou J, Hendrikse J. Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease. J Cereb Blood Flow Metab 2018; 38:1391-1417. [PMID: 28816594 PMCID: PMC6125970 DOI: 10.1177/0271678x17721830] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/26/2017] [Accepted: 06/10/2017] [Indexed: 01/04/2023]
Abstract
Cerebrovascular disease (CVD) remains a leading cause of death and the leading cause of adult disability in most developed countries. This work summarizes state-of-the-art, and possible future, diagnostic and evaluation approaches in multiple stages of CVD, including (i) visualization of sub-clinical disease processes, (ii) acute stroke theranostics, and (iii) characterization of post-stroke recovery mechanisms. Underlying pathophysiology as it relates to large vessel steno-occlusive disease and the impact of this macrovascular disease on tissue-level viability, hemodynamics (cerebral blood flow, cerebral blood volume, and mean transit time), and metabolism (cerebral metabolic rate of oxygen consumption and pH) are also discussed in the context of emerging neuroimaging protocols with sensitivity to these factors. The overall purpose is to highlight advancements in stroke care and diagnostics and to provide a general overview of emerging research topics that have potential for reducing morbidity in multiple areas of CVD.
Collapse
Affiliation(s)
- Manus J Donahue
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA
| | - Eric Achten
- Department of Radiology and Nuclear Medicine, Universiteit Gent, Gent, Belgium
| | - Petrice M Cogswell
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Frank-Erik De Leeuw
- Radboud University, Nijmegen Medical Center, Donders Institute Brain Cognition & Behaviour, Center for Neuroscience, Department of Neurology, Nijmegen, The Netherlands
| | - Colin P Derdeyn
- Department of Radiology and Neurology, University of Iowa, Iowa City, IA, USA
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Audrey P Fan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Rashid Ghaznawi
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeremy J Heit
- Department of Radiology, Neuroimaging and Neurointervention Division, Stanford University, CA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Peter Jezzard
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Lori C Jordan
- Department of Pediatrics, Division of Pediatric Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Jouvent
- Department of Neurology, AP-HP, Lariboisière Hospital, Paris, France
| | - Linda Knutsson
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Richard Leigh
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Weili Lin
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas W Okell
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Adnan I Qureshi
- Department of Neurology, Zeenat Qureshi Stroke Institute, St. Cloud, MN, USA
| | - Charlotte J Stagg
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
| | | | - Peter CM van Zijl
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jennifer M Watchmaker
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Max Wintermark
- Department of Radiology, Neuroimaging and Neurointervention Division, Stanford University, CA, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Greg Zaharchuk
- Department of Radiology, Neuroimaging and Neurointervention Division, Stanford University, CA, USA
| | - Jinyuan Zhou
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeroen Hendrikse
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
10
|
Abstract
Gaining insights into brain oxygen metabolism has been one of the key areas of research in neurosciences. Extensive efforts have been devoted to developing approaches capable of providing measures of brain oxygen metabolism not only under normal physiological conditions but, more importantly, in various pathophysiological conditions such as cerebral ischemia. In particular, quantitative measures of cerebral metabolic rate of oxygen using positron emission tomography (PET) have been shown to be capable of discerning brain tissue viability during ischemic insults. However, the complex logistics associated with oxygen-15 PET have substantially hampered its wide clinical applicability. In contrast, magnetic resonance imaging (MRI)-based approaches have provided quantitative measures of cerebral oxygen metabolism similar to that obtained using PET. Given the wide availability, MRI-based approaches may have broader clinical impacts, particularly in cerebral ischemia, when time is a critical factor in deciding treatment selection. In this article, we review the pathophysiological basis of altered cerebral hemodynamics and oxygen metabolism in cerebral ischemia, how quantitative measures of cerebral metabolism were obtained using the Kety-Schmidt approach, the physical concepts of non-invasive oxygen metabolism imaging approaches, and, finally, clinical applications of the discussed imaging approaches.
Collapse
Affiliation(s)
- Weili Lin
- 1 Biomedical Research Imaging Center and Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,2 Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William J Powers
- 2 Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
11
|
Trofimov AO, Kalentyev G, Voennov O, Yuriev M, Agarkova D, Trofimova S, Grigoryeva V. The Cerebrovascular Resistance in Combined Traumatic Brain Injury with Intracranial Hematomas. ACTA NEUROCHIRURGICA SUPPLEMENT 2018; 126:25-28. [DOI: 10.1007/978-3-319-65798-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
|
12
|
Rasmussen P, Widmer M, Hilty MP, Hug M, Sørensen H, Ogoh S, Sato K, Secher NH, Maggiorini M, Lundby C. Thermodilution-determined Internal Jugular Venous Flow. Med Sci Sports Exerc 2017; 49:661-668. [PMID: 27861273 DOI: 10.1249/mss.0000000000001143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Cerebral blood flow (CBF) increases ~20% during whole body exercise although a Kety-Schmidt-determined CBF is reported to remain stable; a discrepancy that could reflect evaluation of arterial vs. internal jugular venous (IJV) flow and/or that CBF is influenced by posture. Here we test the hypothesis that IJV flow, as determined by retrograde thermodilution increases during exercise when body position is maintained. METHODS Introducing retrograde thermodilution, IJV flow was measured in eight healthy humans at supine and upright rest and during exercise in normoxia and hypoxia with results compared with changes in ultrasound-derived IJV flow and middle cerebral artery mean velocity (MCA Vmean). RESULTS Thermodilution determined IJV flow was in reasonable agreement with values established in a phantom (R = 0.59, P < 0.0001) and correlated to the ultrasound-derived IJV flow (n = 7; Kendall τ, 0.28; P = 0.036). When subjects stood up, IJV blood flow decreased by 9% ± 13% (mean ± SD) (219 ± 57 to 191 ± 73 mL·min; P < 0.0001) and the influence of body position was maintained during exercise (P < 0.0001). Exercise increased both IJV flow and MCA Vmean (P = 0.019 and P = 0.012, respectively) and the two responses were similar (P = 0.50). During hypoxia, however, only MCA Vmean responded with a further increase (P < 0.0001). CONCLUSIONS As determined by retrograde thermodilution, IJV flow seems little sensitive to hypoxia, but does demonstrate the about 15% reduction in CBF when humans are upright and, provided that body position is maintained, also the increase in CBF during whole body exercise.
Collapse
Affiliation(s)
- Peter Rasmussen
- 1Zurich Center of Integrative Human Physiology, University of Zurich, SWITZERLAND; 2Institute of Human Movement Sciences and Sport, ETH Zurich, SWITZERLAND; 3Medical Intensive Care Unit, University Hospital of Zurich, SWITZERLAND; 4Department of Anesthesia, The Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, DENMARK; 5Department of Biomedical Engineering, Toyo University, Tokyo, JAPAN; and 6Research Institute of Physical Fitness, Japan Women's College of Physical Education, Tokyo, JAPAN
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cerebral Blood Flow and Metabolism. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Brooks GA, Martin NA. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment. Front Neurosci 2015; 8:408. [PMID: 25709562 PMCID: PMC4321351 DOI: 10.3389/fnins.2014.00408] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/23/2014] [Indexed: 01/04/2023] Open
Abstract
Because it is the product of glycolysis and main substrate for mitochondrial respiration, lactate is the central metabolic intermediate in cerebral energy substrate delivery. Our recent studies on healthy controls and patients following traumatic brain injury (TBI) using [6,6-(2)H2]glucose and [3-(13)C]lactate, along with cerebral blood flow (CBF) and arterial-venous (jugular bulb) difference measurements for oxygen, metabolite levels, isotopic enrichments and (13)CO2 show a massive and previously unrecognized mobilization of lactate from corporeal (muscle, skin, and other) glycogen reserves in TBI patients who were studied 5.7 ± 2.2 days after injury at which time brain oxygen consumption and glucose uptake (CMRO2 and CMRgluc, respectively) were depressed. By tracking the incorporation of the (13)C from lactate tracer we found that gluconeogenesis (GNG) from lactate accounted for 67.1 ± 6.9%, of whole-body glucose appearance rate (Ra) in TBI, which was compared to 15.2 ± 2.8% (mean ± SD, respectively) in healthy, well-nourished controls. Standard of care treatment of TBI patients in state-of-the-art facilities by talented and dedicated heath care professionals reveals presence of a catabolic Body Energy State (BES). Results are interpreted to mean that additional nutritive support is required to fuel the body and brain following TBI. Use of a diagnostic to monitor BES to provide health care professionals with actionable data in providing nutritive formulations to fuel the body and brain and achieve exquisite glycemic control are discussed. In particular, the advantages of using inorganic and organic lactate salts, esters and other compounds are examined. To date, several investigations on brain-injured patients with intact hepatic and renal functions show that compared to dextrose + insulin treatment, exogenous lactate infusion results in normal glycemia.
Collapse
Affiliation(s)
- George A. Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, BerkeleyBerkeley, CA, USA
| | - Neil A. Martin
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los AngelesLos Angeles, CA, USA
| |
Collapse
|
15
|
Joshi YB, Praticò D. The 5-lipoxygenase pathway: oxidative and inflammatory contributions to the Alzheimer's disease phenotype. Front Cell Neurosci 2015; 8:436. [PMID: 25642165 PMCID: PMC4294160 DOI: 10.3389/fncel.2014.00436] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/02/2014] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common, and, arguably, one of the most-well studied, neurodegenerative conditions. Several decades of investigation have revealed that amyloid-β and tau proteins are critical pathological players in this condition. Genetic analyses have revealed specific mutations in the cellular machinery that produces amyloid-β, but these mutations are found in only a small fraction of patients with the early-onset variant of AD. In addition to development of amyloid-β and tau pathology, oxidative damage and inflammation are consistently found in the brains of these patients. The 5-lipoxygenase protein enzyme (5LO) and its downstream leukotriene metabolites have long been known to be important modulators of oxidation and inflammation in other disease states. Recent in vivo evidence using murine knock-out models has implicated the 5LO pathway, which also requires the 5LO activating protein (FLAP), in the molecular pathology of AD, including the metabolism of amyloid-β and tau. In this manuscript, we will provide an overview of 5LO and FLAP, discussing their involvement in biochemical pathways relevant to AD pathogenesis. We will also discuss how the 5LO pathway contributes to the molecular and behavioral insults seen in AD and provide an assessment of how targeting these proteins could lead to therapeutics relevant not only for AD, but also other related neurodegenerative conditions.
Collapse
Affiliation(s)
- Yash B. Joshi
- Department of Pharmacology and Center for Translational Medicine, Temple University School of MedicinePhiladelphia, PA, USA
| | - Domenico Praticò
- Department of Pharmacology and Center for Translational Medicine, Temple University School of MedicinePhiladelphia, PA, USA
| |
Collapse
|
16
|
Scientific Opinion on the essential composition of total diet replacements for weight control. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3957] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Trofimov AO, Kalent'ev GV, Agarkova DI. Cerebrovascular resistance in patients with severe combined traumatic brain injury. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2015; 79:28-33. [PMID: 26528610 DOI: 10.17116/neiro201579528-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Cerebrovascular resistance is an important parameter of the microcirculation. The main objective of cerebrovascular resistance is to maintain the constancy of cerebral blood flow and protect downstream vessels when changing perfusion pressure. The purpose of the study was to assess cerebrovascular resistance (CVR) in patients with severe combined traumatic brain injury (CTBI) with and without intracranial hematomas (IHs). MATERIAL AND METHODS We analyzed treatment outcomes in 70 patients with severe CTBI (42 males and 28 females). The mean age was 35.5 ± 14.8 years (min 15 years; max 73 years). All patients were divided into 2 groups, depending on the presence of intracranial hemorrhage. The first group included 34 patients without IH, and the second group included 36 patients with epidural (6), subdural (26), and multiple (4) hematomas. The GCS score was 10.4 ± 2.6 in the first group and 10.6 ± 2.8 in the second group. The ISS severity injury score was 32 ± 8 in the first group and 31 ± 11 in the second group. All patients were operated on within the first 3 days, with 30 (83.3%) patients being operated on during the first day. Perfusion computed tomography (PCT) of the brain was performed within 1-14 days after TBI in the first group and within 2-8 days after surgical evacuation of hematoma in the second group. After PCT, the mean arterial pressure was measured, and the blood flow rate in the middle cerebral artery was determined using transcranial dopplerography. Cerebrovascular resistance was calculated using the formula modificated by P. Scheinberg. Comparisons between the groups were performed using the Student t-test and χ² criterion. RESULTS The mean CVR values in each group (both with and without hematomas) were statistically significantly higher than the mean normal value of this parameter. Intergroup comparison of CVR values demonstrated a statistically significant increase in the CVR level in group 2 on the side of removed hematoma compared to group 1 (p=0.037). CVR in the perifocal zone of removed hematoma remained significantly higher compared to the symmetrical zone of the contralateral hemisphere (p=0.0009). CONCLUSION Cerebrovascular resistance in patients with combined traumatic brain injury is significantly increased compared to the normal value. Cerebrovascular resistance in the perifocal zone after evacuation of hematoma in patients with multiple injury remains significantly increased compared to the symmetrical zone in the contralateral hemisphere.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Brain Hemorrhage, Traumatic/diagnosis
- Brain Hemorrhage, Traumatic/physiopathology
- Brain Injuries/diagnosis
- Brain Injuries/physiopathology
- Cerebrovascular Circulation/physiology
- Female
- Glasgow Coma Scale
- Hematoma, Epidural, Cranial/diagnosis
- Hematoma, Epidural, Cranial/physiopathology
- Humans
- Image Processing, Computer-Assisted
- Male
- Middle Aged
- Multiple Trauma/diagnosis
- Multiple Trauma/physiopathology
- Tomography, X-Ray Computed
- Ultrasonography, Doppler, Transcranial
- Vascular Resistance/physiology
- Young Adult
Collapse
Affiliation(s)
- A O Trofimov
- The N.A. Semashko Nizhny Novgorod Regional Hospital
| | | | - D I Agarkova
- The N.A. Semashko Nizhny Novgorod Regional Hospital
| |
Collapse
|
18
|
Neidlin M, Steinseifer U, Kaufmann TAS. A multiscale 0-D/3-D approach to patient-specific adaptation of a cerebral autoregulation model for computational fluid dynamics studies of cardiopulmonary bypass. J Biomech 2014; 47:1777-83. [PMID: 24746017 DOI: 10.1016/j.jbiomech.2014.03.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 10/25/2022]
Abstract
Neurological complication often occurs during cardiopulmonary bypass (CPB). One of the main causes is hypoperfusion of the cerebral tissue affected by the position of the cannula tip and diminished cerebral autoregulation (CA). Recently, a lumped parameter approach could describe the baroreflex, one of the main mechanisms of cerebral autoregulation, in a computational fluid dynamics (CFD) study of CPB. However, the cerebral blood flow (CBF) was overestimated and the physiological meaning of the variables and their impact on the model was unknown. In this study, we use a 0-D control circuit representation of the Baroreflex mechanism, to assess the parameters with respect to their physiological meaning and their influence on CBF. Afterwards the parameters are transferred to 3D-CFD and the static and dynamic behavior of cerebral autoregulation is investigated. The parameters of the baroreflex mechanism can reproduce normotensive, hypertensive and impaired autoregulation behavior. Further on, the proposed model can mimic the effects of anesthetic agents and other factors controlling dynamic CA. The CFD simulations deliver similar results of static and dynamic CBF as the 0-D control circuit. This study shows the feasibility of a multiscale 0-D/3-D approach to include patient-specific cerebral autoregulation into CFD studies.
Collapse
Affiliation(s)
- Michael Neidlin
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| | - Tim A S Kaufmann
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
19
|
Immink RV, Pott FC, Secher NH, van Lieshout JJ. Hyperventilation, cerebral perfusion, and syncope. J Appl Physiol (1985) 2013; 116:844-51. [PMID: 24265279 DOI: 10.1152/japplphysiol.00637.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review summarizes evidence in humans for an association between hyperventilation (HV)-induced hypocapnia and a reduction in cerebral perfusion leading to syncope defined as transient loss of consciousness (TLOC). The cerebral vasculature is sensitive to changes in both the arterial carbon dioxide (PaCO2) and oxygen (PaO2) partial pressures so that hypercapnia/hypoxia increases and hypocapnia/hyperoxia reduces global cerebral blood flow. Cerebral hypoperfusion and TLOC have been associated with hypocapnia related to HV. Notwithstanding pronounced cerebrovascular effects of PaCO2 the contribution of a low PaCO2 to the early postural reduction in middle cerebral artery blood velocity is transient. HV together with postural stress does not reduce cerebral perfusion to such an extent that TLOC develops. However when HV is combined with cardiovascular stressors like cold immersion or reduced cardiac output brain perfusion becomes jeopardized. Whether, in patients with cardiovascular disease and/or defect, cerebral blood flow cerebral control HV-induced hypocapnia elicits cerebral hypoperfusion, leading to TLOC, remains to be established.
Collapse
Affiliation(s)
- R V Immink
- Laboratory for Clinical Cardiovascular Physiology, Department of Anatomy, Embryology, and Physiology, AMC Center for Heart Failure Research, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
20
|
Ciuti G, Righi D, Forzoni L, Fabbri A, Pignone AM. Differences between internal jugular vein and vertebral vein flow examined in real time with the use of multigate ultrasound color Doppler. AJNR Am J Neuroradiol 2013; 34:2000-4. [PMID: 23721896 DOI: 10.3174/ajnr.a3557] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The hypothesis that MS could be provoked by a derangement of the blood outflow from the brain has been largely discredited. In part, it was because data on the normal pattern of outflow are scarce and obtained with different methods. The aim of this study was to evaluate the normal pattern of outflow for the vertebral and internal jugular veins in healthy subjects with multigate color Doppler. MATERIALS AND METHODS Twenty-five volunteers were studied to assess vessel area, mean velocity, and flow for the vertebral and internal jugular veins in the supine and sitting positions. RESULTS In the sitting position, flow decreases, both in vertebral veins and internal jugular veins, as the total vessel area decreases (from 0.46 ± 0.57 to 0.09 ± 0.08 cm(2)), even if the mean velocity increases (from 12.58 ± 10.19 to 24.14 ± 17.60 cm/s). Contrary to what happens to the blood inflow, outflow in the supine position, through vertebral and internal jugular veins, is more than twice the outflow in the sitting position (739.80 ± 326.32 versus 278.24 ± 207.94 mL/min). In the sitting position, on application of very low pressure to the skin with the sonography probe, internal jugular veins rarely appear to occlude. A pronounced difference of diameter between internal jugular veins was present in approximately one-third of subjects. CONCLUSIONS Our results support the view that other outflow pathways, like the vertebral plexus, play a major role in the normal physiology of brain circulation and must be assessed to obtain a complete picture of blood outflow.
Collapse
Affiliation(s)
- G Ciuti
- From SOD Medicina Interna ad Orientamento all'Alta Complessità Assistenziale 3, Dipartimento di Medicina Interna e di Urgenza
| | | | | | | | | |
Collapse
|
21
|
Cerebral hypoperfusion modifies the respiratory chemoreflex during orthostatic stress. Clin Sci (Lond) 2013; 125:37-44. [PMID: 23330653 DOI: 10.1042/cs20120335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 01/03/2013] [Accepted: 01/21/2013] [Indexed: 01/13/2023]
Abstract
The respiratory chemoreflex is known to be modified during orthostatic stress although the underlying mechanisms remain to be established. To determine the potential role of cerebral hypoperfusion, we examined the relationship between changes in MCA V(mean) (middle cerebral artery mean blood velocity) and ˙VE (pulmonary minute ventilation) from supine control to LBNP (lower body negative pressure; −45mmHg) at different CO(2) levels (0, 3.5 and 5% CO(2)). The regression line of the linear relationship between ˙V(E) and PETCO(2) (end-tidal CO(2)) shifted leftwards during orthostatic stress without any change in sensitivity (1.36+− 0.27 l/min per mmHg at supine to 1.06+− 0.21 l/min per mmHg during LBNP; P=0.087). In contrast, the relationship between MCA V(mean) and PETCO(2) was not shifted by LBNP-induced changes in PETCO2. However, changes in ˙V(E) from rest to LBNP were more related to changes in MCA V(mean) than changes in PETCO(2). These findings demonstrate for the first time that postural reductions in CBF (cerebral blood flow) modified the central respiratory chemoreflex by moving its operating point. An orthostatically induced decrease in CBF probably attenuated the ‘washout’ of CO(2) from the brain causing hyperpnoea following activation of the central chemoreflex.
Collapse
|
22
|
Abstract
The respiratory chemoreflex is known to be modified during orthostatic stress although the underlying mechanisms remain to be established. To determine the potential role of cerebral hypoperfusion, we examined the relationship between changes in MCA Vmean (middle cerebral artery mean blood velocity) and V̇E (pulmonary minute ventilation) from supine control to LBNP (lower body negative pressure; −45mmHg) at different CO2 levels (0, 3.5 and 5% CO2). The regression line of the linear relationship between V̇E and PETCO2 (end-tidal CO2) shifted leftwards during orthostatic stress without any change in sensitivity (1.36±0.27 l/min per mmHg at supine to 1.06±0.21 l/min per mmHg during LBNP; P=0.087). In contrast, the relationship between MCA Vmean and PETCO2 was not shifted by LBNP-induced changes in PETCO2. However, changes in V̇E from rest to LBNP were more related to changes in MCA Vmean than changes in PETCO2. These findings demonstrate for the first time that postural reductions in CBF (cerebral blood flow) modified the central respiratory chemoreflex by moving its operating point. An orthostatically induced decrease in CBF probably attenuated the ‘washout’ of CO2 from the brain causing hyperpnoea following activation of the central chemoreflex.
Collapse
|
23
|
Seifert T, Secher NH. Sympathetic influence on cerebral blood flow and metabolism during exercise in humans. Prog Neurobiol 2011; 95:406-26. [PMID: 21963551 DOI: 10.1016/j.pneurobio.2011.09.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/13/2011] [Accepted: 09/19/2011] [Indexed: 11/26/2022]
Abstract
This review focuses on the possibility that autonomic activity influences cerebral blood flow (CBF) and metabolism during exercise in humans. Apart from cerebral autoregulation, the arterial carbon dioxide tension, and neuronal activation, it may be that the autonomic nervous system influences CBF as evidenced by pharmacological manipulation of adrenergic and cholinergic receptors. Cholinergic blockade by glycopyrrolate blocks the exercise-induced increase in the transcranial Doppler determined mean flow velocity (MCA Vmean). Conversely, alpha-adrenergic activation increases that expression of cerebral perfusion and reduces the near-infrared determined cerebral oxygenation at rest, but not during exercise associated with an increased cerebral metabolic rate for oxygen (CMRO(2)), suggesting competition between CMRO(2) and sympathetic control of CBF. CMRO(2) does not change during even intense handgrip, but increases during cycling exercise. The increase in CMRO(2) is unaffected by beta-adrenergic blockade even though CBF is reduced suggesting that cerebral oxygenation becomes critical and a limited cerebral mitochondrial oxygen tension may induce fatigue. Also, sympathetic activity may drive cerebral non-oxidative carbohydrate uptake during exercise. Adrenaline appears to accelerate cerebral glycolysis through a beta2-adrenergic receptor mechanism since noradrenaline is without such an effect. In addition, the exercise-induced cerebral non-oxidative carbohydrate uptake is blocked by combined beta 1/2-adrenergic blockade, but not by beta1-adrenergic blockade. Furthermore, endurance training appears to lower the cerebral non-oxidative carbohydrate uptake and preserve cerebral oxygenation during submaximal exercise. This is possibly related to an attenuated catecholamine response. Finally, exercise promotes brain health as evidenced by increased release of brain-derived neurotrophic factor (BDNF) from the brain.
Collapse
Affiliation(s)
- Thomas Seifert
- Department of Anaesthesia and The Copenhagen Muscle Research Centre, Rigshospitalet 2041, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
24
|
Beloiartsev A, Theilen H. [Surgery in the sitting position : anesthesiological considerations]. Anaesthesist 2011; 60:863-77. [PMID: 21898185 DOI: 10.1007/s00101-011-1920-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Surgical interventions in the sitting position are intended to optimize surgical conditions by reducing bleeding in the operation field and improving the surgical approach. There are, however, some potentially life-threatening risks associated with surgery in the sitting position. Of these risks, air embolism is one of the most serious complications and should be detected immediately in order to initiate specific countermeasures. In addition to standard monitoring procedures, transthoracic Doppler ultrasound and transesophageal echocardiography are valuable methods used to detect the presence of air in the vasculature. If an air embolism becomes apparent, further targeted measures are needed to prevent or aggressively treat the progression of potentially life-threatening consequences.
Collapse
Affiliation(s)
- A Beloiartsev
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsklinik Carl-Gustav-Carus, TU-Dresden, Deutschland
| | | |
Collapse
|
25
|
Abstract
Although the close regional coupling of resting cerebral blood flow (CBF) with both cerebral metabolic rate of oxygen (CMRO(2)) and cerebral metabolic rate of glucose (CMRglc) within individuals is well documented, there are few data regarding the coupling between whole brain flow and metabolism among different subjects. To investigate the metabolic control of resting whole brain CBF, we performed multivariate analysis of hemispheric CMRO(2), CMRglc, and other covariates as predictors of resting CBF among 23 normal humans. The univariate analysis showed that only CMRO(2) was a significant predictor of CBF. The final multivariate model contained two additional terms in addition to CMRO(2): arterial oxygen content and oxygen extraction fraction. Notably, arterial plasma glucose concentration and CMRglc were not included in the final model. Our data demonstrate that the metabolic factor controlling hemispheric CBF in the normal resting brain is CMRO(2) and that CMRglc does not make a contribution. Our findings provide evidence for compartmentalization of brain metabolism into a basal component in which CBF is coupled to oxygen metabolism and an activation component in which CBF is controlled by another mechanism.
Collapse
|
26
|
|
27
|
|
28
|
Abstract
Investigation of the interplay between the cerebral circulation and brain cellular function is fundamental to understanding both the pathophysiology and treatment of stroke. Currently, PET is the only technique that provides accurate, quantitative in vivo regional measurements of both cerebral circulation and cellular metabolism in human subjects. We review normal human cerebral blood flow and metabolism and human PET studies of ischemic stroke, carotid artery disease, vascular dementia, intracerebral hemorrhage and aneurysmal subarachnoid hemorrhage and discuss how these studies have added to our understanding of the pathophysiology of human cerebrovascular disease.
Collapse
Affiliation(s)
- William J. Powers
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Allyson R. Zazulia
- Departments of Neurology and Radiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
29
|
Immink RV, Truijen J, Secher NH, Van Lieshout JJ. Transient influence of end-tidal carbon dioxide tension on the postural restraint in cerebral perfusion. J Appl Physiol (1985) 2009; 107:816-23. [DOI: 10.1152/japplphysiol.91198.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the upright position, cerebral blood flow is reduced, maybe because arterial carbon dioxide partial pressure (PaCO2) decreases. We evaluated the time-dependent influence of a reduction in PaCO2, as indicated by the end-tidal Pco2 tension (PetCO2), on cerebral perfusion during head-up tilt. Mean arterial pressure, cardiac output, middle cerebral artery mean flow velocity (MCA Vmean), and dynamic cerebral autoregulation at supine rest and 70° head-up tilt were determined during free breathing and with PetCO2 clamped to the supine level. The postural changes in central hemodynamic variables were equivalent, and the cerebrovascular autoregulatory capacity was not significantly affected by tilt or by clamping PetCO2. In the first minute of tilt, the decline in MCA Vmean (10 ± 4 vs. 3 ± 4 cm/s; mean ± SE; P < 0.05) and PetCO2 (6.8 ± 4.3 vs. 1.7 ± 1.6 Torr; P < 0.05) was larger during spontaneous breathing than during isocapnic tilt. However, after 2 min in the head-up position, the reduction in MCA Vmean was similar (7 ± 5 vs. 6 ± 3 cm/s), although the spontaneous decline in PetCO2 was maintained ( P < 0.05 vs. isocapnic tilt). These results suggest that the potential contribution of PaCO2 to the postural reduction in MCA Vmean is transient, leaving the mechanisms for the sustained restrain in MCA Vmean to be identified.
Collapse
|
30
|
Kim YS, Bogert LWJ, Immink RV, Harms MPM, Colier WNJM, van Lieshout JJ. Effects of aging on the cerebrovascular orthostatic response. Neurobiol Aging 2009; 32:344-53. [PMID: 19356825 DOI: 10.1016/j.neurobiolaging.2009.02.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/16/2009] [Accepted: 02/21/2009] [Indexed: 11/30/2022]
Abstract
When healthy subjects stand up, it is associated with a reduction in cerebral blood velocity and oxygenation although cerebral autoregulation would be considered to prevent a decrease in cerebral perfusion. Aging is associated with a higher incidence of falls, and in the elderly falls may occur particularly during the adaptation to postural change. This study evaluated the cerebrovascular adaptation to postural change in 15 healthy younger (YNG) vs. 15 older (OLD) subjects by recordings of the near-infrared spectroscopy-determined cerebral oxygenation (cO₂Hb) and the transcranial Doppler-determined mean middle cerebral artery blood velocity (MCA V(mean)). In OLD (59 (52-65) years) vs. YNG (29 (27-33) years), the initial postural decline in mean arterial pressure (-52 ± 3% vs. -67 ± 3%), cO₂Hb (-3.4 ± 2.5 μmoll(-1) vs. -5.3 ± 1.7 μmoll(-1)) and MCA V(mean) (-16 ± 4% vs. -29 ± 3%) was smaller. The decline in MCA V(mean) was related to the reduction in MAP. During prolonged orthostatic stress, the decline in MCA V(mean)and cO(2)Hb in OLD remained smaller. We conclude that with healthy aging the postural reduction in cerebral perfusion becomes less prominent.
Collapse
Affiliation(s)
- Yu-Sok Kim
- Department of Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Gottstein U. Pharmacological studies of total cerebral blood flow in man with comments on the possibility of improving regional cerebral blood flow by drugs. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 2009; 14:136-41. [PMID: 5214086 DOI: 10.1111/j.1600-0404.1965.tb01971.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
32
|
Kim YS, Nur E, van Beers EJ, Truijen J, Davis SCAT, Biemond BJ, van Lieshout JJ. Dynamic cerebral autoregulation in homozygous Sickle cell disease. Stroke 2009; 40:808-14. [PMID: 19150866 DOI: 10.1161/strokeaha.108.531996] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Sickle cell disease (SCD) is associated with cerebral hyperperfusion and an increased risk of stroke. Also, both recurrent microvascular obstruction and chronic hemolysis affect endothelial function, potentially interfering with systemic and cerebral blood flow control. We addressed the question whether cerebrovascular control in patients with SCD is affected and related to hemolysis. METHODS Systemic and cerebrovascular control were studied in 18 patients with SCD and 10 healthy subjects. Dynamic cerebral autoregulation was evaluated by transfer function analysis assessing the relationship between mean cerebral blood flow velocity and mean arterial pressure. RESULTS Normal baroreflex sensitivity and postural cardiovascular reflex responses indicated integrity of systemic cardiovascular control. In the low- (0.07 to 0.15 Hz) frequency region, mean arterial pressure variability was comparable for both groups, but a larger mean cerebral blood flow velocity variability in SCD (6.1 [4.6 to 7.0] versus 4.2 [2.6 to 5.2] [cm x s(-1)](2) x Hz(-1); P<0.05) indicated a reduced capacity to buffer the transfer of blood pressure surges to the cerebral tissue. Impairment of dynamic cerebrovascular control was confirmed by a reduced mean arterial pressure-to-mean cerebral blood flow velocity transfer function phase lead in SCD versus healthy subjects (32+/-17 degrees versus 50+/-19 degrees , P<0.05) that was unrelated to the severity of hemolysis. CONCLUSIONS In patients with SCD, dynamic cerebral autoregulation is impaired but appears unrelated to hemolysis.
Collapse
Affiliation(s)
- Yu-Sok Kim
- Department of Internal Medicine, AMC Center for Heart Failure Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
33
|
Dynamic cerebral autoregulatory capacity is affected early in Type 2 diabetes. Clin Sci (Lond) 2008; 115:255-62. [PMID: 18348713 DOI: 10.1042/cs20070458] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes is associated with an increased risk of endothelial dysfunction and microvascular complications with impaired autoregulation of tissue perfusion. Both microvascular disease and cardiovascular autonomic neuropathy may affect cerebral autoregulation. In the present study, we tested the hypothesis that, in the absence of cardiovascular autonomic neuropathy, cerebral autoregulation is impaired in subjects with DM+ (Type 2 diabetes with microvascular complications) but intact in subjects with DM- (Type 2 diabetes without microvascular complications). Dynamic cerebral autoregulation and the steady-state cerebrovascular response to postural change were studied in subjects with DM+ and DM-, in the absence of cardiovascular autonomic neuropathy, and in CTRL (healthy control) subjects. The relationship between spontaneous changes in MCA V(mean) (middle cerebral artery mean blood velocity) and MAP (mean arterial pressure) was evaluated using frequency domain analysis. In the low-frequency region (0.07-0.15 Hz), the phase lead of the MAP-to-MCA V(mean) transfer function was 52+/-10 degrees in CTRL subjects, reduced in subjects with DM- (40+/-6 degrees ; P<0.01 compared with CTRL subjects) and impaired in subjects with DM+ (30+/-5 degrees ; P<0.01 compared with subjects with DM-), indicating less dampening of blood pressure oscillations by affected dynamic cerebral autoregulation. The steady-state response of MCA V(mean) to postural change was comparable for all groups (-12+/-6% in CTRL subjects, -15+/-6% in subjects with DM- and -15+/-7% in subjects with DM+). HbA(1c) (glycated haemoglobin) and the duration of diabetes, but not blood pressure, were determinants of transfer function phase. In conclusion, dysfunction of dynamic cerebral autoregulation in subjects with Type 2 diabetes appears to be an early manifestation of microvascular disease prior to the clinical expression of diabetic nephropathy, retinopathy or cardiovascular autonomic neuropathy.
Collapse
|
34
|
van Lieshout JJ, Secher NH. Point:Counterpoint: Sympathetic activity does/does not influence cerebral blood flow. Point: Sympathetic activity does influence cerebral blood flow. J Appl Physiol (1985) 2008; 105:1364-6. [PMID: 18583376 DOI: 10.1152/japplphysiol.90597.2008] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Johannes J van Lieshout
- Department of Internal Medicine, Medium Care Unit, AMC Center for Heart Failure Research, Academic Medical Center, University of Amerstdam, The Netherlands.
| | | |
Collapse
|
35
|
|
36
|
Rasmussen P, Dawson EA, Nybo L, van Lieshout JJ, Secher NH, Gjedde A. Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab 2007; 27:1082-93. [PMID: 17077816 DOI: 10.1038/sj.jcbfm.9600416] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain function requires oxygen and maintenance of brain capillary oxygenation is important. We evaluated how faithfully frontal lobe near-infrared spectroscopy (NIRS) follows haemoglobin saturation (SCap) and how calculated mitochondrial oxygen tension (PMitoO2) influences motor performance. Twelve healthy subjects (20 to 29 years), supine and seated, inhaled O2 air-mixtures (10% to 100%) with and without added 5% carbon dioxide and during hyperventilation. Two measures of frontal lobe oxygenation by NIRS (NIRO-200 and INVOS) were compared with capillary oxygen saturation (SCap) as calculated from the O2 content of brachial arterial and right internal jugular venous blood. At control SCap (78%+/-4%; mean+/-s.d.) was halfway between the arterial (98%+/-1%) and jugular venous oxygenation (SvO2; 61%+/-6%). Both NIRS devices monitored SCap (P<0.001) within approximately 5% as SvO2 increased from 39%+/-5% to 79%+/-7% with an increase in the transcranial ultrasound Doppler determined middle cerebral artery flow velocity from 29+/-8 to 65+/-15 cm/sec. When SCap fell below approximately 70% with reduced flow and inspired oxygen tension, PMitoO2 decreased (P<0.001) and brain lactate release increased concomitantly (P<0.001). Handgrip strength correlated with the measured (NIRS) and calculated capillary oxygenation values as well as with PMitoO2 (r>0.74; P<0.05). These results show that NIRS is an adequate cerebral capillary-oxygenation-level-dependent (COLD) measure during manipulation of cerebral blood flow or inspired oxygen tension, or both, and suggest that motor performance correlates with the frontal lobe COLD signal.
Collapse
Affiliation(s)
- Peter Rasmussen
- Copenhagen Muscle Research Centre, Department of Anaesthesia, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Immink RV, Secher NH, Roos CM, Pott F, Madsen PL, van Lieshout JJ. The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2. Eur J Appl Physiol 2006; 96:609-14. [PMID: 16470413 DOI: 10.1007/s00421-006-0136-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2006] [Indexed: 11/28/2022]
Abstract
In the normocapnic range, middle cerebral artery mean velocity (MCA Vmean) changes approximately 3.5% per mmHg carbon-dioxide tension in arterial blood (PaCO2) and a decrease in PaCO2 will reduce the cerebral blood flow by vasoconstriction (the CO2 reactivity of the brain). When standing up MCA Vmean and the end-tidal carbon-dioxide tension (PETCO2) decrease, suggesting that PaCO2 contributes to the reduction in MCA Vmean. In a fixed body position, PETCO2 tracks changes in the PaCO2 but when assuming the upright position, cardiac output (Q) decreases and its distribution over the lung changes, while ventilation (VE) increases suggesting that PETCO2 decreases more than PaCO2. This study evaluated whether the postural reduction in PaCO2 accounts for the postural decline in MCA Vmean). From the supine to the upright position, VE, Q, PETCO2, PaCO2, MCA Vmean, and the near-infrared spectrophotometry determined cerebral tissue oxygenation (CO2Hb) were followed in seven subjects. When standing up, MCA Vmean (from 65.3+/-3.8 to 54.6+/-3.3 cm s(-1) ; mean +/- SEM; P<0.05) and cO2Hb (-7.2+/-2.2 micromol l(-1) ; P<0.05) decreased. At the same time, the VE/Q ratio increased 49+/-14% (P<0.05) with the postural reduction in PETCO2 overestimating the decline in PaCO2 (-4.8+/-0.9 mmHg vs. -3.0+/-1.1 mmHg; P<0.05). When assuming the upright position, the postural decrease in MCA Vmean seems to be explained by the reduction in PETCO2 but the small decrease in PaCO2 makes it unlikely that the postural decrease in MCA Vmean can be accounted for by the cerebral CO2 reactivity alone.
Collapse
Affiliation(s)
- R V Immink
- Department of Anesthesiology, Academic Medical Center, University of Amsterdam, 22700, 1100, DE, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Insel PA, Liljenquist JE, Tobin JD, Sherwin RS, Watkins P, Andres R, Berman M. Insulin control of glucose metabolism in man: a new kinetic analysis. J Clin Invest 2005; 55:1057-66. [PMID: 15959962 PMCID: PMC301852 DOI: 10.1172/jci108006] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Analyses of the control of glucose metabolism by insulin have been hampered by changes in bloog glucose concentration induced by insulin administration with resultant activation of hypoglycemic counterregulatory mechanisms. To eliminate such mechanisms, we have employed the glucose clamp technique which allows maintenance of fasting blood glucose concentration during and after the administration of insulin. Analyses of six studies performed in young healthy men in the postabsorptive state utilizing the concurrent administration of [14C]glucose and 1 mU/kg per min (40 mU/m2 per min) porcine insulin led to the development of kinetic models for insulin and for glucose. These models account quantitatively for the control of insulin on glucose utilization and on endogenous glucose production during nonsteady states. The glucose model, a parallel three-compartment model, has a central compartment (mass = 68 +/- 7 mg/kg; space of distribution = blood water volume) in rapid equilibrium with a smaller compartment (50 +/- 17 mg/kg) and in slow equilibrium with a larger compartment (96 +/-21 mg/kg). The total plasma equivalent space for the glucose system averaged 15.8 liters or 20.3% body weight. Two modes of glucose loss are introduced in the model. One is a zero-order loss (insulin and glucose independent) from blood to the central nervous system; its magnitude was estimated from published data. The other is an insulin-dependent loss, occurring from the rapidly equilibrating compartment and, in the basal period, is smaller than the insulin-independent loss. Endogenous glucose production averaged 1.74 mg/kg per min in the basal state and enters the central compartment directly. During the glucose clamp experiments plasma insulin levels reached a plateau of 95 +/-8 microU/ml. Over the entire range of insulin levels studied, glucose losses were best correlated with levels of insulin in a slowly equilibrating insulin compartment of a three-compartment insulin model. A proportional control by this compartment on glucose utilization was adequate to satisfy the observed data. Insulin also rapidly decreased the endogenous glucose production to 33% of its basal level (0.58 mg/kg per min), this suppression being maintained for at least 40 min after exogenous insulin infusion was terminated and after plasma insulin concentrations had returned to basal levels. The change in glucose utilization per unit change in insulin in the slowly equilibrating insulin compartment is proposed as a new measure for insulin sensitivity. This defines insulin effects more precisely than previously used measures, such as plasma glucose/plasma insulin concentration ratios. Glucose clamp studies and the modeling of the coupled kinetics of glucose and insulin offers a new and potentially valuable tool to the study of altered states of carbohydrate metabolism.
Collapse
|
40
|
|
41
|
ASSALI NS, KAPLAN SA, FOMON SJ, DOUGLASS RA, TADA Y. The effect of high spinal anesthesia on the renal hemodynamics and the excretion of electrolytes during osmotic diuresis in the hydropenic normal pregnant woman. J Clin Invest 2004; 30:916-24. [PMID: 14880619 PMCID: PMC436329 DOI: 10.1172/jci102512] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
42
|
Abstract
The results of studies utilizing the nitrous oxide technic for measuring cerebral blood flow have been reviewed and divided into three groups: (1) those in which cerebral blood flow and metabolism were normal, (2) those in which cerebral blood flow was increased, and (3) those in which cerebral blood flow and metabolism were decreased. The factors which apparently regulate and control cerebral blood flow and metabolism are reviewed and discussed.
Collapse
|
43
|
|
44
|
MYERS JD. Net splanchnic glucose production in normal man and in various disease states. J Clin Invest 2004; 29:1421-9. [PMID: 14794768 PMCID: PMC436186 DOI: 10.1172/jci102380] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
JAYNE HW, SCHEINBERG P, RICH M, BELLE MS. The effect of intravenous papaverine hydrochloride on the cerebral circulation. J Clin Invest 2004; 31:111-4. [PMID: 14907889 PMCID: PMC436390 DOI: 10.1172/jci102568] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
46
|
HAFKENSCHIEL JH, CRUMPTON CW, SHENKIN HA, MOYER JH, ZINTEL HA, WENDEL H, JEFFERS WA. The effects of twenty degree head-up tilt upon the cerebral circulation of patients with arterial hypertension before and after sympathectomy. J Clin Invest 2004; 30:793-8. [PMID: 14861300 PMCID: PMC436313 DOI: 10.1172/jci102494] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
47
|
HENRY JP, GAUER OH, KETY SS, KRAMER K. Factors maintaining cerebral circulation during gravitational stress. J Clin Invest 2004; 30:292-300. [PMID: 14824279 PMCID: PMC436259 DOI: 10.1172/jci102443] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
BENTINCK RC, GORDAN GS, ADAMS JE, ARNSTEIN LH, LEAKE TB. Effect of desoxycorticosterone glucoside upon cerebral blood flow and metabolism of human subjects. J Clin Invest 2004; 30:200-5. [PMID: 14814212 PMCID: PMC436245 DOI: 10.1172/jci102432] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
49
|
SCHIEVE JF, SCHEINBERG P, WILSON WP. The effect of adrenocorticotrophic hormone (ACTH) on cerebral blood flow and metabolism. J Clin Invest 2004; 30:1527-9. [PMID: 14897913 PMCID: PMC441325 DOI: 10.1172/jci102563] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
SCHEINBERG P, STEAD EA, BRANNON ES, WARREN JV. Correlative observations on cerebral metabolism and cardiac output in myxedema. J Clin Invest 2004; 29:1139-46. [PMID: 14774460 PMCID: PMC436156 DOI: 10.1172/jci102351] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|