1
|
Ferrarotti I, Wencker M, Chorostowska-Wynimko J. Rare variants in alpha 1 antitrypsin deficiency: a systematic literature review. Orphanet J Rare Dis 2024; 19:82. [PMID: 38388492 PMCID: PMC10885523 DOI: 10.1186/s13023-024-03069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Alpha 1 Antitrypsin Deficiency (AATD) is a largely underrecognized genetic condition characterized by low Alpha 1 Antitrypsin (AAT) serum levels, resulting from variations in SERPINA1. Many individuals affected by AATD are thought to be undiagnosed, leading to poor patient outcomes. The Z (c.1096G > A; p.Glu366Lys) and S (c.863A > T; p.Glu288Val) deficiency variants are the most frequently found variants in AATD, with the Z variant present in most individuals diagnosed with AATD. However, there are many other less frequent variants known to contribute to lung and/or liver disease in AATD. To identify the most common rare variants associated with AATD, we conducted a systematic literature review with the aim of assessing AATD variation patterns across the world. METHODS A systematic literature search was performed to identify published studies reporting AATD/SERPINA1 variants. Study eligibility was assessed for the potential to contain relevant information, with quality assessment and data extraction performed on studies meeting all eligibility criteria. AATD variants were grouped by variant type and linked to the geographical region identified from the reporting article. RESULTS Of the 4945 articles identified by the search string, 864 contained useful information for this study. Most articles came from the United States, followed by the United Kingdom, Germany, Spain, and Italy. Collectively, the articles identified a total of 7631 rare variants and 216 types of rare variant across 80 counties. The F (c.739C > T; p.Arg247Cys) variant was identified 1,281 times and was the most reported known rare variant worldwide, followed by the I (c.187C > T; p.Arg63Cys) variant. Worldwide, there were 1492 Null/rare variants that were unidentified at the time of source article publication and 75 rare novel variants reported only once. CONCLUSION AATD goes far beyond the Z and S variants, suggesting there may be widespread underdiagnosis of patients with the condition. Each geographical region has its own distinctive variety of AATD variants and, therefore, comprehensive testing is needed to fully understand the true number and type of variants that exist. Comprehensive testing is also needed to ensure accurate diagnosis, optimize treatment strategies, and improve outcomes for patients with AATD.
Collapse
Affiliation(s)
- Ilaria Ferrarotti
- Centre for Diagnosis of Inherited Alpha-1 Antitrypsin Deficiency, Department of Internal Medicine and Therapeutics, Pneumology Unit, University of Pavia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | | | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| |
Collapse
|
2
|
Secretion of functional α1-antitrypsin is cell type dependent: Implications for intramuscular delivery for gene therapy. Proc Natl Acad Sci U S A 2022; 119:e2206103119. [PMID: 35901208 PMCID: PMC9351467 DOI: 10.1073/pnas.2206103119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Heterologous expression of proteins is used widely for the biosynthesis of biologics, many of which are secreted from cells. In addition, gene therapy and messenger RNA (mRNA) vaccines frequently direct the expression of secretory proteins to nonnative host cells. Consequently, it is crucial to understand the maturation and trafficking of proteins in a range of host cells including muscle cells, a popular therapeutic target due to the ease of accessibility by intramuscular injection. Here, we analyzed the production efficiency for α1-antitrypsin (AAT) in Chinese hamster ovary cells, commonly used for biotherapeutic production, and myoblasts (embryonic progenitor cells of muscle cells) and compared it to the production in the major natural cells, liver hepatocytes. AAT is a target protein for gene therapy to address pathologies associated with insufficiencies in native AAT activity or production. AAT secretion and maturation were most efficient in hepatocytes. Myoblasts were the poorest of the cell types tested; however, secretion of active AAT was significantly augmented in myoblasts by treatment with the proteostasis regulator suberoylanilide hydroxamic acid, a histone deacetylase inhibitor. These findings were extended and validated in myotubes (mature muscle cells) where AAT was transduced using an adeno-associated viral capsid transduction method used in gene therapy clinical trials. Overall, our study sheds light on a possible mechanism to enhance the efficacy of gene therapy approaches for AAT and, moreover, may have implications for the production of proteins from mRNA vaccines, which rely on the expression of viral glycoproteins in nonnative host cells upon intramuscular injection.
Collapse
|
3
|
Mornex JF, Balduyck M, Cuvelier A, Cottin V, Mal H. [Alpha1-antitrypsin deficiency: French guidelines… at last !]. Rev Mal Respir 2022; 39:575-577. [PMID: 35792000 DOI: 10.1016/j.rmr.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, F-69007 ; Lyon, France ; Centre de référence coordonnateur des maladies pulmonaires rares; Hospices civils de Lyon, service de pneumologie, hôpital Louis Pradel, 69500 Bron, France.
| | - M Balduyck
- CHU de Lille, centre de biologie pathologie, laboratoire de biochimie et biologie moléculaire HMNO ; faculté de pharmacie et EA 7364 RADEME, université de Lille, service de biochimie et biologie moléculaire, Lille, France
| | - A Cuvelier
- Service de pneumologie, oncologie thoracique et soins intensifs respiratoires, CHU de Rouen, Rouen ; Groupe de recherche sur le handicap ventilatoire et neurologique (GRHVN), université Normandie Rouen, Rouen, France
| | - V Cottin
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, F-69007 ; Lyon, France ; Centre de référence coordonnateur des maladies pulmonaires rares; Hospices civils de Lyon, service de pneumologie, hôpital Louis Pradel, 69500 Bron, France
| | - H Mal
- Service de pneumologie B, hôpital Bichat - Claude-Bernard, AP-HP Nord- Université Paris Cité ; Inserm U1152, Paris, France
| |
Collapse
|
4
|
Tubío-Pérez RA, Torres-Durán M, García-Rodríguez ME, Candal-Pedreira C, Rey-Brandariz J, Pérez-Ríos M, Barros-Dios J, Fernández-Villar A, Ruano-Raviña A. Alpha-1 antitrypsin deficiency and risk of lung cancer in never-smokers: a multicentre case–control study. BMC Cancer 2022; 22:81. [PMID: 35045822 PMCID: PMC8767679 DOI: 10.1186/s12885-022-09190-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Background Lung cancer (LC) is the most commonly diagnosed cancer and the leading cause of cancer-related death in both sexes worldwide. Although the principal risk factor in the western world is tobacco smoking, genetic factors, including alpha-1 antitrypsin deficiency (AATD), have been associated with increased risk. This study is the continuation of an earlier one published by the same group in 2015, aimed at analysing risk of LC in never-smokers, associated with carriers of the AATD genotype. Methods A multicentre case–control study was conducted in Spain across the period January 2011 to August 2019. Cases were non-smokers diagnosed with LC, and controls were composed of never-smoking individuals undergoing major non-cancer-related surgery. Data were collected on epidemiological characteristics, exposure to environmental tobacco smoke (ETS), residential radon levels, and alpha-1 antitrypsin (AAT) genotype. Results The study included 457 cases (42%) and 631 controls (58%), with a predominance of women (72,8%). The most frequent histological type was adenocarcinoma (77.5%), followed by squamous cell carcinoma (7.7%). No association of risk of LC was found with the status of AATD genotype carrier, both overall and broken down by age, sex, or exposure to ETS. Conclusions No risk association was found between being a carrier of an AAT deficiency genotype and LC among never-smokers. In order to establish the existence of an association, we consider it important to expand the studies in never smokers in different geographical areas as well as to include patients with previous chronic lung diseases to assess if it influences the risk.
Collapse
|
5
|
Living with the enemy: from protein-misfolding pathologies we know, to those we want to know. Ageing Res Rev 2021; 70:101391. [PMID: 34119687 DOI: 10.1016/j.arr.2021.101391] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/19/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Conformational diseases are caused by the aggregation of misfolded proteins. The risk for such pathologies develops years before clinical symptoms appear, and is higher in people with alpha-1 antitrypsin (AAT) polymorphisms. Thousands of people with alpha-1 antitrypsin deficiency (AATD) are underdiagnosed. Enemy-aggregating proteins may reside in these underdiagnosed AATD patients for many years before a pathology for AATD fully develops. In this perspective review, we hypothesize that the AAT protein could exert a new and previously unconsidered biological effect as an endogenous metal ion chelator that plays a significant role in essential metal ion homeostasis. In this respect, AAT polymorphism may cause an imbalance of metal ions, which could be correlated with the aggregation of amylin, tau, amyloid beta, and alpha synuclein proteins in type 2 diabetes mellitus (T2DM), Alzheimer's and Parkinson's diseases, respectively.
Collapse
|
6
|
Callea F, Francalanci P, Giovannoni I. Hepatic and Extrahepatic Sources and Manifestations in Endoplasmic Reticulum Storage Diseases. Int J Mol Sci 2021; 22:ijms22115778. [PMID: 34071368 PMCID: PMC8198767 DOI: 10.3390/ijms22115778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-1-antitrypsin (AAT) and fibrinogen are secretory acute phase reactant proteins. Circulating AAT and fibrinogen are synthesized exclusively in the liver. Mutations in the encoding genes result in conformational abnormalities of the two molecules that aggregate within the rough endoplasmic reticulum (RER) instead of being regularly exported. That results in AAT-deficiency (AATD) and in hereditary hypofibrinogenemia with hepatic storage (HHHS). The association of plasma deficiency and liver storage identifies a new group of pathologies: endoplasmic reticulum storage disease (ERSD).
Collapse
Affiliation(s)
- Francesco Callea
- Bugando Medical Centre, Department of Molecular Histopathology, Catholic University Health Allied Sciences, Mwanza P.O. Box 1464, Tanzania
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Paola Francalanci
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Isabella Giovannoni
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
| |
Collapse
|
7
|
Belchamber KBR, Walker EM, Stockley RA, Sapey E. Monocytes and Macrophages in Alpha-1 Antitrypsin Deficiency. Int J Chron Obstruct Pulmon Dis 2020; 15:3183-3192. [PMID: 33311976 PMCID: PMC7725100 DOI: 10.2147/copd.s276792] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a genetic condition characterised by low circulating levels of alpha-1 antitrypsin (AAT), a serine proteinase inhibitor. The most common deficiency variants are the S and Z mutations, which cause the accumulation of misfolded AAT in hepatocytes resulting in endoplasmic reticular stress and insufficient release of AAT into the circulation (<11μmol/L). This leads to liver disease, as well as an increased risk of emphysema due to unopposed proteolytic activity of neutrophil-derived serine proteinases in the lungs. AATD has been traditionally viewed as an inflammatory disorder caused directly by a proteinase-antiproteinase imbalance in the lung, but increasing evidence suggests that low AAT levels may affect other cellular functions. Recently, AAT polymers have been identified in both monocytes and macrophages from AATD patients and evidence is building that these cells may also play a role in the development of AATD lung disease. Alveolar macrophages are phagocytic cells that are important in the lung immune response but are also implicated in driving inflammation. This review explores the potential implications of monocyte and macrophage involvement in non-liver AAT synthesis and the pathophysiology of AATD lung disease.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Eloise M Walker
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Robert A Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Clinical Research Facility Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
8
|
|
9
|
α1-Antitrypsin Polymerizes in Alveolar Macrophages of Smokers With and Without α1-Antitrypsin Deficiency. Chest 2018; 154:607-616. [DOI: 10.1016/j.chest.2018.04.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/05/2018] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
|
10
|
Stiles KM, Sondhi D, Kaminsky SM, De BP, Rosenberg JB, Crystal RG. Intrapleural Gene Therapy for Alpha-1 Antitrypsin Deficiency-Related Lung Disease. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2018; 5:244-257. [PMID: 30723782 DOI: 10.15326/jcopdf.5.4.2017.0160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) manifests primarily as early-onset emphysema caused by the destruction of the lung by neutrophil elastase due to low amounts of the serine protease inhibitor alpha-1 antitrypsin (AAT). The current therapy involves weekly intravenous infusions of AAT-derived from pooled human plasma that is efficacious, yet costly. Gene therapy applications designed to provide constant levels of the AAT protein are currently under development. The challenge is for gene therapy to provide sufficient amounts of AAT to normalize the inhibitor level and anti-neutrophil elastase capacity in the lung. One strategy involves administration of an adeno-associated virus (AAV) gene therapy vector to the pleural space providing both local and systemic production of AAT to reach consistent therapeutic levels. This review focuses on the strategy, advantages, challenges, and updates for intrapleural administration of gene therapy vectors for the treatment of AATD.
Collapse
Affiliation(s)
- Katie M Stiles
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York.,KMS and DS contributed equally to this review
| | - Dolan Sondhi
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York.,KMS and DS contributed equally to this review
| | - Stephen M Kaminsky
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Bishnu P De
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Jonathan B Rosenberg
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
11
|
Bao W, He F, Gao J, Meng F, Zou H, Luo B. Alpha-1-antitrypsin: a novel predictor for long-term recovery of chronic disorder of consciousness. Expert Rev Mol Diagn 2018; 18:307-313. [PMID: 29419340 DOI: 10.1080/14737159.2018.1438192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The aim of this manuscript was to explore the molecular basis and identify novel biomarkers for the diagnosis and prognosis of patients with chronic disorder of consciousness. METHODS A coupled isobaric tag for relative and absolute quantitation-based approach was used to screen differentially expressed proteins (DEPs) between patients with chronic disorder of consciousness and healthy individuals. Candidate proteins were identified and measured. The Coma Recovery Scale-Revised (CRS-R) score was used to quantify the severity, and long-term recovery was assessed by Glasgow Outcome Scale (GOS). RESULTS Between patients and controls, a total of 77 DEPs were identified. Based on the DEPs, a network containing 50 nodes and 207 edges was built, and alpha-1-antitrypsin was marked as the hub protein. The results indicated that alpha-1-antitrypsin correlated with the CRS-R score with a correlation coefficient of 0.631, and an outcome at 12 months (8.5 ± 2.1 ng/ml in patients with GOS 1-2 vs. 6.8 ± 1.6 ng/ml in those with GOS 3-5, p = 0.002). CONCLUSIONS The data confirm the diagnostic and prognostic potential of alpha-1-antitrypsin in chronic disorder of consciousness, which may contribute to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Wangxiao Bao
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Fangping He
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Jian Gao
- b Department of Rehabilitation , Hangzhou Hospital of Zhejiang CAPR , Hangzhou , China
| | - Fanxia Meng
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| | - Hai Zou
- c Department of Cardiology , Zhejiang Provincial People's Hospital , Hangzhou , PR China.,d People's Hospital of Hangzhou Medical College , Hangzhou , China
| | - Benyan Luo
- a Department of Neurology, First Affiliated Hospital, Collaborative Innovation Center for Brain Science , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
12
|
Krotova K, Marek GW, Wang RL, Aslanidi G, Hoffman BE, Khodayari N, Rouhani FN, Brantly ML. Alpha-1 Antitrypsin-Deficient Macrophages Have Increased Matriptase-Mediated Proteolytic Activity. Am J Respir Cell Mol Biol 2017; 57:238-247. [PMID: 28362108 DOI: 10.1165/rcmb.2016-0366oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency-associated emphysema is largely attributed to insufficient inhibition of neutrophil elastase released from neutrophils. Correcting AAT levels using augmentation therapy only slows disease progression, and that suggests a more complex process of lung destruction. Because alveolar macrophages (Mɸ) express AAT, we propose that the expression and intracellular accumulation of mutated Z-AAT (the most common mutation) compromises Mɸ function and contributes to emphysema development. Extracellular matrix (ECM) degradation is a hallmark of emphysema pathology. In this study, Mɸ from individuals with Z-AAT (Z-Mɸ) have greater proteolytic activity on ECM than do normal Mɸ. This abnormal Z-Mɸ activity is not abrogated by supplementation with exogenous AAT and is likely the result of cellular dysfunction induced by intracellular accumulation of Z-AAT. Using pharmacologic inhibitors, we show that several classes of proteases are involved in matrix degradation by Z-Mɸ. Importantly, compared with normal Mɸ, the membrane-bound serine protease, matriptase, is present in Z-Mɸ at higher levels and contributes to their proteolytic activity on ECM. In addition, we identified matrix metalloproteinase (MMP)-14, a membrane-anchored metalloproteinase, as a novel substrate for matriptase, and showed that matriptase regulates the levels of MMP-14 on the cell surface. Thus, high levels of matriptase may contribute to increased ECM degradation by Z-Mɸ, both directly and through MMP-14 activation. In summary, the expression of Z-AAT in Mɸ confers increased proteolytic activity on ECM. This proteolytic activity is not rescued by exogenous AAT supplementation and could thus contribute to augmentation resistance in AAT deficiency-associated emphysema.
Collapse
Affiliation(s)
- Karina Krotova
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - George W Marek
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Rejean L Wang
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - George Aslanidi
- 2 Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Brad E Hoffman
- 2 Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Nazli Khodayari
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Farshid N Rouhani
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| | - Mark L Brantly
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, and
| |
Collapse
|
13
|
Hazari YM, Bashir A, Habib M, Bashir S, Habib H, Qasim MA, Shah NN, Haq E, Teckman J, Fazili KM. Alpha-1-antitrypsin deficiency: Genetic variations, clinical manifestations and therapeutic interventions. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:14-25. [PMID: 28927525 DOI: 10.1016/j.mrrev.2017.03.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 02/08/2023]
Abstract
Alpha-1-antitrypsin (AAT) is an acute phase secretory glycoprotein that inhibits neutrophil proteases like elastase and is considered as the archetype of a family of structurally related serine-protease inhibitors termed serpins. Serum AAT predominantly originates from liver and increases three to five fold during host response to tissue injury and inflammation. The AAT deficiency is unique among the protein-misfolding diseases in that it causes target organ injury by both loss-of-function and gain-of-toxic function mechanisms. Lack of its antiprotease activity is associated with premature development of pulmonary emphysema and loss-of-function due to accumulation of resultant aggregates in chronic obstructive pulmonary disease (COPD). This' in turn' markedly reduces the amount of AAT that is available to protect lungs against proteolytic attack by the enzyme neutrophil elastase. The coalescence of AAT deficiency, its reduced efficacy, and cigarette smoking or poor ventilation conditions have devastating effect on lung function. On the other hand, the accumulation of retained mutant proteins in the endoplasmic reticulum of hepatocytes in a polymerized form rather than secreted into the blood in its monomeric form is associated with chronic liver disease and predisposition to hepatocellular carcinoma (HCC) by gain- of- toxic function. Liver injury resulting from this gain-of-toxic function mechanism in which mutant AAT retained in the ER initiates a series of pathologic events, eventually culminating at liver cirrhosis and HCC. Here in this review, we underline the structural, genetic, polymorphic, biochemical and pathological advances made in the field of AAT deficiency and further comprehensively emphasize on the therapeutic interventions available for the patient.
Collapse
Affiliation(s)
| | - Arif Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mudasir Habib
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Samirul Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Huma Habib
- The Islamia College of Science & Commerce, Srinagar, Jammu and Kashmir, India
| | - M Abul Qasim
- Department of Chemistry, Indiana University Purdue University Fort Wayne, IN, USA
| | - Naveed Nazir Shah
- Department of Chest Medicine, Government Medical College, Srinagar, Jammu and Kashmir, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Jeffrey Teckman
- Department of Pediatrics, Saint Louis University, St Louis, MO, USA
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
14
|
Zhu G, Lee HJ. Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosens Bioelectron 2016; 89:959-963. [PMID: 27816594 DOI: 10.1016/j.bios.2016.09.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/09/2016] [Accepted: 09/23/2016] [Indexed: 12/25/2022]
Abstract
A novel sandwich-type biosensor was developed for the electrochemical detection of α-1 antitrypsin (AAT, a recognized biomarker for Alzheimer's disease). The biosensor was composed of 3, 4, 9, 10-perylene tetracarboxylic acid/carbon nanotubes (PTCA-CNTs) as a sensing platform and alkaline phosphatase-labeled AAT antibody functionalized silver nanoparticles (ALP-AAT Ab-Ag NPs) as a signal enhancer. CNTs offer high surface area and good electrical conductivity. Importantly, Ag NPs could increase the amount of ALP on the sensing surface and the ALP could dephosphorylate 4-amino phenyl phosphate (APP) enzymatically to produce electroactive species 4-aminophenol (AP). For detecting AAT based on the sandwich-type biosensor, the results show that the peak current value of AP using ALP-AAT Ab-Ag NPs as signal enhancer is much higher than that by using ALP-AAT Ab bioconjugate (without Ag NPs), the biosensor exhibited desirable performance for AAT determination with a wide linearity in the range from 0.05 to 20.0pM and a low detection limit of 0.01pM. Finally, the developed sensor was successfully applied to the analysis of AAT concentration in serum samples.
Collapse
Affiliation(s)
- Gangbing Zhu
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city 41566, Republic of Korea.
| |
Collapse
|
15
|
Akbar MA, Cao JJ, Lu Y, Nardo D, Chen MJ, Elshikha AS, Ahamed R, Brantly M, Holliday LS, Song S. Alpha-1 Antitrypsin Gene Therapy Ameliorates Bone Loss in Ovariectomy-Induced Osteoporosis Mouse Model. Hum Gene Ther 2016; 27:679-86. [DOI: 10.1089/hum.2016.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - Jay J. Cao
- USDA, ARS Grand Fork Human Nutrition Research Center, Grand Fork, North Dakota
| | - Yuanqing Lu
- Department of Medicine, University of Florida, Gainesville, Florida
| | - David Nardo
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | - Mong-Jen Chen
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | - Ahmed S. Elshikha
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | - Rubina Ahamed
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | - Mark Brantly
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Sihong Song
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| |
Collapse
|
16
|
Chiuchiolo MJ, Crystal RG. Gene Therapy for Alpha-1 Antitrypsin Deficiency Lung Disease. Ann Am Thorac Soc 2016; 13 Suppl 4:S352-69. [PMID: 27564673 PMCID: PMC5059492 DOI: 10.1513/annalsats.201506-344kv] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/28/2015] [Indexed: 12/16/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency, characterized by low plasma levels of the serine protease inhibitor AAT, is associated with emphysema secondary to insufficient protection of the lung from neutrophil proteases. Although AAT augmentation therapy with purified AAT protein is efficacious, it requires weekly to monthly intravenous infusion of AAT purified from pooled human plasma, has the risk of viral contamination and allergic reactions, and is costly. As an alternative, gene therapy offers the advantage of single administration, eliminating the burden of protein infusion, and reduced risks and costs. The focus of this review is to describe the various strategies for AAT gene therapy for the pulmonary manifestations of AAT deficiency and the state of the art in bringing AAT gene therapy to the bedside.
Collapse
Affiliation(s)
- Maria J Chiuchiolo
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Cornell Medical College, New York, New York
| |
Collapse
|
17
|
Hennawy MG, Elhosseiny NM, Sultan H, Abdelfattah W, Akl Y, Sabry NA, Attia AS. The effect of α 1-antitrypsin deficiency combined with increased bacterial loads on chronic obstructive pulmonary disease pharmacotherapy: A prospective, parallel, controlled pilot study. J Adv Res 2016; 7:1019-1028. [PMID: 27857848 PMCID: PMC5106446 DOI: 10.1016/j.jare.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 02/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by α1-antitrypsin deficiency (AATD) genetic susceptibility and exacerbated by infection. The current pilot study aimed at studying the combined effect of AATD and bacterial loads on the efficacy of COPD conventional pharmacotherapy. Fifty-nine subjects (29 controls and 30 COPD patients) were tested for genetic AATD and respiratory function. The bacterial loads were determined to the patients’ group who were then given a long acting beta-agonist and corticosteroid inhaler for 6 months. Nineteen percent of the studied group were Pi∗MZ (heterozygote deficiency variant), Pi∗S (5%) (milder deficiency variant), Pi∗ZZ (10%) (the most common deficiency variant), and Pi∗Mmalton (2%) (very rare deficiency variant). The patients’ sputum contained from 0 to 8 × 108 CFU/mL pathogenic bacteria. The forced vital capacity (FVC6) values of the AAT non-deficient group significantly improved after 3 and 6 months. Patients lacking AATD and pathogenic bacteria showed significant improvement in forced expiratory volume (FEV1), FEV1/FVC6, FVC6, and 6 min walk distance (6MWD) after 6 months. However, patients with AATD and pathogenic bacteria showed only significant improvement in FEV1 and FEV1/FVC6. The findings of this pilot study highlight for the first time the role of the combined AATD and pathogenic bacterial loads on the efficacy of COPD treatment.
Collapse
Affiliation(s)
- Marwa G Hennawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Hussein Sultan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wael Abdelfattah
- Department of Chest Diseases and Allergy, Faculty of Medicine, Ain Shams University, Cairo 11539, Egypt
| | - Yousry Akl
- Department of Chest Diseases and Allergy, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Nirmeen A Sabry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
18
|
Vignaud H, Cullin C, Bouchecareilh M. [Alpha-1 antitrypsin deficiency: A model of alteration of protein homeostasis or proteostasis]. Rev Mal Respir 2015; 32:1059-71. [PMID: 26386628 DOI: 10.1016/j.rmr.2015.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the ninth leading cause of death in France and is predicted to become the third leading cause of worldwide morbidity and mortality by 2020. Risk factors for COPD include exposure to tobacco, dusts and chemicals, asthma and alpha-1 antitrypsin deficiency. This genetic disease, significantly under-diagnosed and under-recognized, affects 1 in 2500 live births and is an important cause of lung and, occasionally, liver disease. Alpha-1 antitrypsin deficiency is a pathology of proteostasis-mediated protein folding and trafficking pathways. To date, there are only palliative therapeutic approaches for the symptoms associated with this hereditary disorder. Therefore, a more detailed understanding is required of the folding and trafficking biology governing alpha-1 antitrypsin biogenesis and its response to drugs. Here, we review the cell biological, biochemical and biophysical properties of alpha-1 antitrypsin and its variants, and we suggest that alpha-1 antitrypsin deficiency is an example of cell autonomous and non-autonomous challenges to proteostasis. Finally, we review emerging strategies that may be used to enhance the proteostasis system and protect the lung from alpha-1 antitrypsin deficiency.
Collapse
Affiliation(s)
- H Vignaud
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille-Saint-Saëns, 33077 Bordeaux cedex, France
| | - C Cullin
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille-Saint-Saëns, 33077 Bordeaux cedex, France
| | - M Bouchecareilh
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille-Saint-Saëns, 33077 Bordeaux cedex, France.
| |
Collapse
|
19
|
The Role of Serine Proteases and Antiproteases in the Cystic Fibrosis Lung. Mediators Inflamm 2015; 2015:293053. [PMID: 26185359 PMCID: PMC4491392 DOI: 10.1155/2015/293053] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/08/2015] [Indexed: 12/05/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is an inherited condition with an incidence rate of approximately 1 in 2500 new born babies. CF is characterized as chronic infection of the lung which leads to inflammation of the airway. Sputum from CF patients contains elevated levels of neutrophils and subsequently elevated levels of neutrophil serine proteases. In a healthy individual these proteases aid in the phagocytic process by degrading microbial peptides and are kept in homeostatic balance by cognate antiproteases. Due to the heavy neutrophil burden associated with CF the high concentration of neutrophil derived proteases overwhelms cognate antiproteases. The general effects of this protease/antiprotease imbalance are impaired mucus clearance, increased and self-perpetuating inflammation, and impaired immune responses and tissue. To restore this balance antiproteases have been suggested as potential therapeutics or therapeutic targets. As such a number of both endogenous and synthetic antiproteases have been trialed with mixed success as therapeutics for CF lung disease.
Collapse
|
20
|
Schuller S, Sergeant K, Renaut J, Callanan JJ, Scaife C, Nally JE. Comparative proteomic analysis of lung tissue from guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) reveals a decrease in abundance of host proteins involved in cytoskeletal and cellular organization. J Proteomics 2015; 122:55-72. [PMID: 25818725 DOI: 10.1016/j.jprot.2015.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/20/2015] [Accepted: 03/08/2015] [Indexed: 12/17/2022]
Abstract
UNLABELLED Leptospiral pulmonary haemorrhage syndrome (LPHS) is a particularly severe form of leptospirosis. LPHS is increasingly recognized in both humans and animals and is characterized by rapidly progressive intra-alveolar haemorrhage leading to high mortality. The pathogenic mechanisms of LPHS are poorly understood which hampers the application of effective treatment regimes. In this study a 2-D guinea pig proteome lung map was created and used to investigate the pathogenic mechanisms of LPHS. Comparison of lung proteomes from infected and non-infected guinea pigs via differential in-gel electrophoresis revealed highly significant differences in abundance of proteins contained in 130 spots. Acute phase proteins were the largest functional group amongst proteins with increased abundance in LPHS lung tissue, and likely reflect a local and/or systemic host response to infection. The observed decrease in abundance of proteins involved in cytoskeletal and cellular organization in LPHS lung tissue further suggests that infection with pathogenic Leptospira induces changes in the abundance of host proteins involved in cellular architecture and adhesion contributing to the dramatically increased alveolar septal wall permeability seen in LPHS. BIOLOGICAL SIGNIFICANCE The recent completion of the complete genome sequence of the guinea pig (Cavia porcellus) provides innovative opportunities to apply proteomic technologies to an important animal model of disease. In this study, the comparative proteomic analysis of lung tissue from experimentally infected guinea pigs with leptospiral pulmonary haemorrhage syndrome (LPHS) revealed a decrease in abundance of proteins involved in cellular architecture and adhesion, suggesting that loss or down-regulation of cytoskeletal and adhesion molecules plays an important role in the pathogenesis of LPHS. A publically available guinea pig lung proteome map was constructed to facilitate future pulmonary proteomics in this species.
Collapse
Affiliation(s)
- Simone Schuller
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland; Vetsuisse Faculty University of Bern, Länggassstrasse 128, 3012 Bern, Switzerland.
| | - Kjell Sergeant
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation" (ERIN) department, 41, rue du Brill, 4422 Belvaux, Luxembourg
| | - Jenny Renaut
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation" (ERIN) department, 41, rue du Brill, 4422 Belvaux, Luxembourg
| | - John J Callanan
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland; Conway Institute for Biomolecular & Biomedical Research, Belfield, Dublin 4, Ireland; Ross University School of Veterinary Medicine, St Kitts and Nevis, West Indies
| | - Caitriona Scaife
- Conway Institute for Biomolecular & Biomedical Research, Belfield, Dublin 4, Ireland
| | - Jarlath E Nally
- University College Dublin, School of Veterinary Medicine, Belfield, Dublin 4, Ireland; Conway Institute for Biomolecular & Biomedical Research, Belfield, Dublin 4, Ireland; Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, Department of Agriculture, Ames, IA 50010, USA
| |
Collapse
|
21
|
Abstract
Alpha-1-antitrypsin (α1AT) deficiency is a genetic disorder that manifests as pulmonary emphysema and liver cirrhosis. α1AT deficiency is the most common genetic cause of liver disease in children and also an underappreciated cause of liver disease in adults. The prevalence in the general population in Western Europe is approximately 1 in 2,000. The most common and severe deficiency allele is the Z variant (two alleles mutated). This variant is characterized by the accumulation of Z-α1AT polymers in the endoplasmic reticulum of hepatocytes leading to cell death and to a severe reduction of α1AT in the serum. The latter results in a loss of its antiprotease activity and its ability to protect lung tissue. Thus far, there are only very limited therapeutic options in α1AT deficiency. A more detailed understanding of the biology governing α1AT biogenesis is required in order to identify new pharmacological agents and biomarkers. This review will present current knowledge on α1AT deficiency and focus on recent discoveries and new strategies in the treatment of this disease.
Collapse
Affiliation(s)
- Marion Bouchecareilh
- Institut de biochimie et génétique cellulaires, CNRS UMR 5095, université de Bordeaux, 1, rue Camille Saint-Saëns, 33077 Bordeaux, France
| |
Collapse
|
22
|
Pini L, Tiberio L, Venkatesan N, Bezzi M, Corda L, Luisetti M, Ferrarotti I, Malerba M, Lomas DA, Janciauskiene S, Vizzardi E, Modina D, Schiaffonati L, Tantucci C. The role of bronchial epithelial cells in the pathogenesis of COPD in Z-alpha-1 antitrypsin deficiency. Respir Res 2014; 15:112. [PMID: 25218041 PMCID: PMC4177581 DOI: 10.1186/s12931-014-0112-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Alpha-1 antitrypsin is the main inhibitor of neutrophil elastase in the lung. Although it is principally synthesized by hepatocytes, alpha-1 antitrypsin is also secreted by bronchial epithelial cells. Gene mutations can lead to alpha-1 antitrypsin deficiency, with the Z variant being the most clinically relevant due to its propensity to polymerize. The ability of bronchial epithelial cells to produce Z-variant protein and its polymers is unknown. METHODS Experiments using a conformation-specific antibody were carried out on M- and Z-variant-transfected 16HBE cells and on bronchial biopsies and ex vivo bronchial epithelial cells from Z and M homozygous patients. In addition, the effect of an inflammatory stimulus on Z-variant polymer formation, elicited by Oncostatin M, was investigated. Comparisons of groups were performed using t-test or ANOVA. Non-normally distributed data were assessed by Mann-Whitney U test or the Kruskal-Wallis test, where appropriate. A P value of < 0.05 was considered to be significant. RESULTS Alpha-1 antitrypsin polymers were found at a higher concentration in the culture medium of ex vivo bronchial epithelial cells from Z-variant homozygotes, compared with M-variant homozygotes (P < 0.01), and detected in the bronchial epithelial cells and submucosa of patient biopsies. Oncostatin M significantly increased the expression of alpha-1 antitrypsin mRNA and protein (P < 0.05), and the presence of Z-variant polymers in ex vivo cells (P < 0.01). CONCLUSIONS Polymers of Z-alpha-1 antitrypsin form in bronchial epithelial cells, suggesting that these cells may be involved in the pathogenesis of lung emphysema and in bronchial epithelial cell dysfunction.
Collapse
Affiliation(s)
- Laura Pini
- />Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Laura Tiberio
- />Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | | | - Michela Bezzi
- />Bronchoscopy Department of Spedali Civili di Brescia, Brescia, Italy
| | - Luciano Corda
- />Internal Medicine Department of Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio Luisetti
- />Department of Respiratory Medicine, Policlinico S. Matteo, University of Pavia, Pavia, Italy
| | - Ilaria Ferrarotti
- />Department of Respiratory Medicine, Policlinico S. Matteo, University of Pavia, Pavia, Italy
| | - Mario Malerba
- />Internal Medicine Department of Spedali Civili di Brescia, Brescia, Italy
| | - David A Lomas
- />Faculty of Medical Sciences, University College London, London, UK
| | | | - Enrico Vizzardi
- />Unit of Cardiologic Medicine, Department of Medical and Surgical Sciences, University of Brescia, Brescia, Italy
| | - Denise Modina
- />Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Luisa Schiaffonati
- />Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Claudio Tantucci
- />Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
23
|
Phase I/II Study of Intrapleural Administration of a Serotype rh.10 Replication-Deficient Adeno-Associated Virus Gene Transfer Vector Expressing the Human α1-Antitrypsin cDNA to Individuals with α1-Antitrypsin Deficiency. HUM GENE THER CL DEV 2014; 25:112-33. [DOI: 10.1089/humc.2014.2513] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
24
|
McCarthy C, Saldova R, Wormald MR, Rudd PM, McElvaney NG, Reeves EP. The Role and Importance of Glycosylation of Acute Phase Proteins with Focus on Alpha-1 Antitrypsin in Acute and Chronic Inflammatory Conditions. J Proteome Res 2014; 13:3131-43. [DOI: 10.1021/pr500146y] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Cormac McCarthy
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| | - Radka Saldova
- NIBRT
GlycoScience Group, The National Institute for Bioprocessing Research
and Training, University College Dublin, Dublin 4, Ireland
| | - Mark R Wormald
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, U.K
| | - Pauline M. Rudd
- NIBRT
GlycoScience Group, The National Institute for Bioprocessing Research
and Training, University College Dublin, Dublin 4, Ireland
| | - Noel G. McElvaney
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| | - Emer P. Reeves
- Respiratory
Research Division, Royal College of Surgeons in Ireland, Beaumont
Hospital, Dublin 9, Ireland
| |
Collapse
|
25
|
Pi*Z heterozygous alpha-1 antitrypsin states accelerate parenchymal but not biliary cirrhosis. Eur J Gastroenterol Hepatol 2014; 26:412-7. [PMID: 24518491 DOI: 10.1097/meg.0000000000000061] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The degree to which heterozygous forms of alpha-1 antitrypsin (A1AT), principally MZ, causes liver disease is uncertain. If heterozygosity is a relevant cofactor, over-representation in patients with end-stage liver disease would be predicted. We therefore assessed the prevalence and disease-related distribution of A1AT heterozygosity in the largest cohort to date for this purpose. METHODS We retrospectively analysed 1036 patients assessed for liver transplantation at our unit between 2003 and 2010. A1AT heterozygotes were identified on the basis of isoelectric focusing and/or histology, showing A1AT globule deposition consistent with an abnormal phenotype. RESULTS Z-allele frequency was the highest in patients with nonalcoholic steatohepatitis (NASH) cirrhosis (20.3%), followed by patients with 'other parenchymal' diseases (11.9%), alcohol-related liver disease (9.9%), autoimmune disease (8.6%), hepatitis C (6.1%), hepatitis B (3.0%) and biliary disease (1.9%). Compared with the heterozygote frequency in the general European population of 9.0%, the heterozygote frequency was significantly higher among patients with NASH cirrhosis (P≤0.0001) and lower in the biliary subgroup (P=0.004). The prevalence of MZ heterozygosity was significantly increased in cirrhosis because of both alcohol (9.9%) and NASH (17.3%) compared with the general European population (2.8%; P<0.0001). CONCLUSION Accumulation of misfolded A1AT aggregates appears to accelerate progression, in which the hepatocyte is the key injured cell. Heterozygous A1AT states worsen prognosis, particularly in NASH and alcohol-related cirrhosis, and should be identified at presentation. In cases in which genetic screening is not readily available, a low threshold for isoelectric focusing and routine specific histochemical staining of liver biopsy specimens are warranted to identify these patients.
Collapse
|
26
|
Siri D, Farah H, Hogarth DK. Distinguishing alpha1-antitrypsin deficiency from asthma. Ann Allergy Asthma Immunol 2013; 111:458-64. [PMID: 24267358 DOI: 10.1016/j.anai.2013.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/28/2013] [Accepted: 09/23/2013] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To explore the relations that exist between α1-antitrypsin deficiency (AATD) and asthma and to evaluate practices for screening patients with asthma for this genetically determined condition in the context of current guidelines. DATA SOURCES English-language articles were selected from a PubMed search using combinations of the following search terms: alpha1-antitrypsin, screening, and asthma. STUDY SELECTIONS Studies to be included in this review were based on the authors' expert opinions. RESULTS Asthma and AATD are 2 distinct conditions yet they can coexist. Although AATD has a variable symptomatology and some patients may be asymptomatic, many can present with symptoms that are similar to those of asthma, such as dyspnea, wheezing, cough, and mucus production, which can cause confusion at diagnosis. A simple genetic test exists for AATD, which is a single-gene disorder, and the American Thoracic Society and European Respiratory Society guidelines recommend the screening of patients with asthma who exhibit chronic airflow obstruction. Patients with AATD are seen by internal medicine, family medicine, allergy, and pulmonary clinicians, yet there is a generalized lack of awareness of testing among all specialties. This leads to a delayed diagnosis for patients with AATD, typically by 8.3 years. CONCLUSION A greater awareness of AATD among clinicians who regularly manage patients with asthma symptoms could increase diagnosis rates, thus optimizing interventions and management strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Dareen Siri
- Springfield Clinic LLP, Springfield, Illinois.
| | | | | |
Collapse
|
27
|
Ryter SW, Cloonan SM, Choi AMK. Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells 2013; 36:7-16. [PMID: 23708729 PMCID: PMC3887921 DOI: 10.1007/s10059-013-0140-8] [Citation(s) in RCA: 245] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a dynamic process by which cytosolic material, including organelles, proteins, and pathogens, are sequestered into membrane vesicles called autophagosomes, and then delivered to the lysosome for degradation. By recycling cellular components, this process provides a mechanism for adaptation to starvation. The regulation of autophagy by nutrient signals involves a complex network of proteins that include mammalian target of rapamycin, the class III phosphatidylinositol-3 kinase/Beclin 1 complex, and two ubiquitin-like conjugation systems. Additionally, autophagy, which can be induced by multiple forms of chemical and physical stress, including endoplasmic reticulum stress, and hypoxia, plays an integral role in the mammalian stress response. Recent studies indicate that, in addition to bulk assimilation of cytosol, autophagy may proceed through selective pathways that target distinct cargoes to autophagosomes. The principle homeostatic functions of autophagy include the selective clearance of aggregated protein to preserve proteostasis, and the selective removal of dysfunctional mitochondria (mitophagy). Additionally, autophagy plays a central role in innate and adaptive immunity, with diverse functions such as regulation of inflammatory responses, antigen presentation, and pathogen clearance. Autophagy can preserve cellular function in a wide variety of tissue injury and disease states, however, maladaptive or pro-pathogenic outcomes have also been described. Among the many diseases where autophagy may play a role include proteopathies which involve aberrant accumulation of proteins (e.g., neurodegenerative disorders), infectious diseases, and metabolic disorders such as diabetes and metabolic syndrome. Targeting the autophagy pathway and its regulatory components may eventually lead to the development of therapeutics.
Collapse
Affiliation(s)
- Stefan W Ryter
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
28
|
Mizumura K, Cloonan SM, Haspel JA, Choi AMK. The emerging importance of autophagy in pulmonary diseases. Chest 2013; 142:1289-1299. [PMID: 23131937 DOI: 10.1378/chest.12-0809] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Important cellular processes such as inflammation, apoptosis, differentiation, and proliferation confer critical roles in the pathogenesis of human diseases. In the past decade, an emerging process named "autophagy" has generated intense interest in both biomedical research and clinical medicine. Autophagy is a regulated cellular pathway for the turnover of organelles and proteins by lysosomal-dependent processing. Although autophagy was once considered a bulk degradation event, research shows that autophagy selectively degrades specific proteins, organelles, and invading bacteria, a process termed "selective autophagy." It is increasingly clear that autophagy is directly relevant to clinical disease, including pulmonary disease. This review outlines the principal components of the autophagic process and discusses the importance of autophagy and autophagic proteins in pulmonary diseases from COPD, α1-antitrypsin deficiency, pulmonary hypertension, acute lung injury, and cystic fibrosis to respiratory infection and sepsis. Finally, we examine the dual nature of autophagy in the lung, which has both protective and deleterious effects resulting from adaptive and maladaptive responses, and the challenge this duality poses for designing autophagy-based diagnostic and therapeutic targets in lung disease.
Collapse
Affiliation(s)
- Kenji Mizumura
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA; Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA.
| |
Collapse
|
29
|
Wang Y, He Y, Abraham B, Rouhani FN, Brantly ML, Scott DE, Reed JL. Cytosolic, autocrine alpha-1 proteinase inhibitor (A1PI) inhibits caspase-1 and blocks IL-1β dependent cytokine release in monocytes. PLoS One 2012; 7:e51078. [PMID: 23226468 PMCID: PMC3511367 DOI: 10.1371/journal.pone.0051078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
Rationale Activation state-dependent secretion of alpha-1 proteinase inhibitor (A1PI) by monocytes and macrophages was first reported in 1985. Since then, monocytes and tissue macrophages have emerged as key sentinels of infection and tissue damage via activation of self-assembling pattern recognition receptors (inflammasomes), which trigger inflammation and cell death in a caspase-1 dependent process. These studies examine the relationship between A1PI expression in primary monocytes and monocytic cell lines, and inflammatory cytokine expression in response to inflammasome directed stimuli. Methods IL-1 β expression was examined in lung macrophages expressing wild type A1PI (A1PI-M) or disease-associated Z isoform A1PI (A1PI-Z). Inflammatory cytokine release was evaluated in THP-1 monocytic cells or THP-1 cells lacking the inflammasome adaptor ASC, transfected with expression vectors encoding A1PI-M or A1PI-Z. A1PI-M was localized within monocytes by immunoprecipitation in hypotonic cell fractions. Cell-free titration of A1PI-M was performed against recombinant active caspase-1 in vitro. Results IL-1 β expression was elevated in lung macrophages expressing A1PI-Z. Overexpression of A1PI-M in THP-1 monocytes reduced secretion of IL-1β and TNF-α. In contrast, overexpression of A1PI-Z enhanced IL-1β and TNF- α secretion in an ASC dependent manner. A1PI-Z-enhanced cytokine release was inhibited by a small molecule caspase-1 inhibitor but not by high levels of exogenous wtA1PI. Cytosolic localization of A1PI-M in monocytes was not diminished with microtubule-inhibiting agents. A1PI-M co-localized with caspase-1 in gel-filtered cytoplasmic THP-1 preparations, and was co-immunoprecipitated with caspase 1 from nigericin-stimulated THP-1 cell lysate. Plasma-derived A1PI inhibited recombinant caspase-1 mediated conversion of a peptide substrate in a dose dependent manner. Conclusions Our results suggest that monocyte/macrophage-expressed A1PI-M antagonizes IL-1β secretion possibly via caspase-1 inhibition, a function which disease-associated A1PI-Z may lack. Therapeutic approaches which limit inflammasome responses in patients with A1PI deficiency, in combination with A1PI augmentation, may provide additional respiratory tissue-sparing benefits.
Collapse
Affiliation(s)
- Yonggang Wang
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Yong He
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Bindu Abraham
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Farshid N. Rouhani
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mark L. Brantly
- Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Dorothy E. Scott
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Jennifer L. Reed
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Gu Y, Lee HM, Simon SR, Golub LM. Chemically modified tetracycline-3 (CMT-3): A novel inhibitor of the serine proteinase, elastase. Pharmacol Res 2011; 64:595-601. [DOI: 10.1016/j.phrs.2011.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
A novel model and molecular therapy for Z alpha-1 antitrypsin deficiency. Mamm Genome 2011; 23:241-9. [PMID: 22076419 DOI: 10.1007/s00335-011-9370-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
Abstract
Animal models that closely resemble human disease can present a challenge. Particularly so in alpha-1 antitrypsin deficiency (α(1)ATD), as the mouse alpha-1 antitrypsin (α(1)AT) cluster encodes five highly related genes compared with the one in humans. The mouse PI2 homologue is closest to the α(1)AT human gene. We have changed the equivalent mouse site that results in the Z variant in man (Glu342Lys) and made both the "M" and "Z" mouse PI2 α(1)AT proteins. We have tested the ability of a small-molecular-weight compound CG to alleviate polymerisation of these mouse α(1)AT proteins as it has been shown to reduce aggregates of Z α(1)AT in man. We found that (1) CG specifically reduces the formation of polymers of recombinant mouse "Z" protein but not "M" protein; (2) whereas there is significantly more α(1)AT secreted from Chinese Hamster Ovary cells transfected with the mouse "M" α(1)AT gene than with the "Z" (20.8 ± 3.9 and 6.7 ± 3.6, respectively; P < 0.005), CG increased the α(1)AT levels secreted from "Z" cells (21.2 ± 0.01) to that of "M" (20.2 ± 0.02). The data support the concept that the murine "Z" gene is a potential model for the study of α(1)ATD and that mice expressing this gene would be relevant for testing treatments in vivo.
Collapse
|
32
|
Kelly E, Greene CM, Carroll TP, McElvaney NG, O’Neill SJ. Alpha-1 antitrypsin deficiency. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.rmedc.2011.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Quinn DJ, Weldon S, Taggart CC. Antiproteases as therapeutics to target inflammation in cystic fibrosis. Open Respir Med J 2010; 4:20-31. [PMID: 20448835 PMCID: PMC2864511 DOI: 10.2174/1874306401004020020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/29/2009] [Accepted: 10/30/2009] [Indexed: 11/22/2022] Open
Abstract
Cystic Fibrosis (CF) is the most common fatal inherited disease of Caucasians, affecting about 1 in 3000 births. Patients with CF have a recessive mutation in the gene encoding the CF transmembrane conductance regulator (CFTR). CFTR is expressed in the epithelium of many organs throughout the exocrine system, however, inflammation and damage of the airways as a result of persistent progressive endobronchial infection is a central feature of CF. The inflammatory response to infection brings about a sustained recruitment of neutrophils to the site of infection. These neutrophils release various pro-inflammatory compounds including proteases, which when expressed at aberrant levels can overcome the endogenous antiprotease defence mechanisms of the lung. Unregulated, these proteases can exacerbate inflammation and result in the degradation of structural proteins and tissue damage leading to bronchiectasis and loss of respiratory function. Other host-derived and bacterial proteases may also contribute to the inflammation and lung destruction observed in the CF lung. Antiprotease strategies to dampen the excessive inflammatory response and concomitant damage to the airways remains an attractive therapeutic option for CF patients.
Collapse
Affiliation(s)
| | | | - Clifford C Taggart
- Centre for Infection and Immunity, Whitla Medical Building, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland
| |
Collapse
|
34
|
Kelly E, Greene CM, Carroll TP, McElvaney NG, O'Neill SJ. Alpha-1 antitrypsin deficiency. Respir Med 2010; 104:763-72. [PMID: 20303723 DOI: 10.1016/j.rmed.2010.01.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 01/22/2010] [Accepted: 01/24/2010] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To review the topic of alpha-1 antitrypsin (AAT) deficiency. METHOD Narrative literature review. RESULTS Much work has been carried out on this condition with many questions being answered but still further questions remain. DISCUSSION AND CONCLUSIONS AAT deficiency is an autosomal co-dominantly inherited disease which affects the lungs and liver predominantly. The clinical manifestations, prevalence, genetics, molecular pathophysiology, screening and treatment recommendations are summarised in this review.
Collapse
Affiliation(s)
- Emer Kelly
- Department of Respiratory Research, Royal College of Surgeons in Ireland, Beaumont Hospital, Education Research Building, Beaumont Road, Dublin, Ireland.
| | | | | | | | | |
Collapse
|
35
|
Carroll TP, Greene CM, O'Connor CA, Nolan AM, O'Neill SJ, McElvaney NG. Evidence for unfolded protein response activation in monocytes from individuals with alpha-1 antitrypsin deficiency. THE JOURNAL OF IMMUNOLOGY 2010; 184:4538-46. [PMID: 20228200 DOI: 10.4049/jimmunol.0802864] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hereditary disorder alpha-1 antitrypsin (AAT) deficiency results from mutations in the SERPINA1 gene and presents with emphysema in young adults and liver disease in childhood. The most common form of AAT deficiency occurs because of the Z mutation, causing the protein to fold aberrantly and accumulate in the endoplasmic reticulum (ER). This leads to ER stress and contributes significantly to the liver disease associated with the condition. In addition to hepatocytes, AAT is also synthesized by monocytes, neutrophils, and epithelial cells. In this study we show for the first time that the unfolded protein response (UPR) is activated in quiescent monocytes from ZZ individuals. Activating transcription factor 4, X-box binding protein 1, and a subset of genes involved in the UPR are increased in monocytes from ZZ compared with MM individuals. This contributes to an inflammatory phenotype with ZZ monocytes exhibiting enhanced cytokine production and activation of the NF-kappaB pathway when compared with MM monocytes. In addition, we demonstrate intracellular accumulation of AAT within the ER of ZZ monocytes. These are the first data showing that Z AAT protein accumulation induces UPR activation in peripheral blood monocytes. These findings change the current paradigm regarding lung inflammation in AAT deficiency, which up until now was derived from the protease-anti-protease hypothesis, but which now must include the exaggerated inflammatory response generated by accumulated aberrantly folded AAT in circulating blood cells.
Collapse
Affiliation(s)
- Tomás P Carroll
- Respiratory Research Division, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland.
| | | | | | | | | | | |
Collapse
|
36
|
Hashemi M, Mehrabifar H, Daliri M, Ghavami S. Adenosine deaminase activity, trypsin inhibitory capacity and total antioxidant capacity in psoriasis. J Eur Acad Dermatol Venereol 2010; 24:329-34. [DOI: 10.1111/j.1468-3083.2009.03416.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Kurzius-Spencer M, Foster K, Littau S, Richey KJ, Clark BM, Sherrill D, Boitano S, Caruso DM, Burgess JL. Tracheobronchial protease inhibitors, body surface area burns, and mortality in smoke inhalation. J Burn Care Res 2010; 30:824-31. [PMID: 19692916 DOI: 10.1097/bcr.0b013e3181b47ee8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objective of this study was to assess tracheobronchial protease inhibitor concentrations longitudinally and determine whether initial concentrations predict subsequent lung injury and mortality in intubated burn victims. Tracheobronchial suction fluid was collected every 2 hours for 36 hours. Alpha-1-antitrypsin (AAT), secretory leukocyte peptidase inhibitor (SLPI), alpha-2-macroglobulin (A2M), and cell and differential counts were assayed. Partial pressure of oxygen in arterial blood/fraction of inspired oxygen (PaO2/FIO2) and peak airway pressure (PAP) were recorded for 72 hours. Standard statistics were used to evaluate cross-sectional relationships; random coefficient (mixed) models were used to evaluate temporal trends in marker concentrations and relation to clinical outcomes. Among 29 patients, 24 (83%) developed hypoxemia (PaO2/FIO2 <200); six died within 2 weeks. When adjusted for gender, age, %TBSA burn, and positive end-expiratory pressure setting, A2M (P = .007) and neutrophils (P = .032) increased linearly during 36 hours, and SLPI decreased (P = .038). Initial SLPI concentration was a negative predictor of maximum PAP (P = .009). None of the markers predicted longitudinal change in PaO2/FIO2. Mean levels of AAT and A2M in initial samples were significantly lower in patients with >35% TBSA burn (P = .010 and .033, respectively), when compared with patients with less severe burns. However, patients with increased A2M in combination with >35% TBSA burn had a 6-fold (95% CI: 1.8-20) increased relative risk of death. Tracheobronchial AAT and A2M levels were significantly lower in patients with more severe burns and increased over time. Initial SLPI levels predicted subsequent PAP. Increased early A2M in combination with extensive burn predicted early mortality.
Collapse
Affiliation(s)
- Margaret Kurzius-Spencer
- University of Arizona Mel and Enid Zuckerman College of Public Health, Community, Environment and Policy Division, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Topic A, Juranic Z, Jelic S, Magazinovic IG. Polymorphism of alpha-1-antitrypsin in hematological malignancies. Genet Mol Biol 2009; 32:716-9. [PMID: 21637443 PMCID: PMC3036898 DOI: 10.1590/s1415-47572009005000085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/17/2009] [Indexed: 12/26/2022] Open
Abstract
Alpha-1-antitrypsin (AAT) or serine protease inhibitor A1 (SERPINA1) is an important serine protease inhibitor in humans. The main physiological role of AAT is to inhibit neutrophil elastase (NE) released from triggered neutrophils, with an additional lesser role in the defense against damage inflicted by other serine proteases, such as cathepsin G and proteinase 3. Although there is a reported association between AAT polymorphism and different types of cancer, this association with hematological malignancies (HM) is, as yet, unknown. We identified AAT phenotypes by isoelectric focusing (in the pH 4.2-4.9 range) in 151 serum samples from patients with HM (Hodgkins lymphomas, non-Hodgkins lymphomas and malignant monoclonal gammopathies). Healthy blood-donors constituted the control group (n = 272). The evaluated population of patients as well as the control group, were at Hardy-Weinberg equilibrium for the AAT gene (χ2 = 4.42, d.f.11, p = 0.96 and χ2 = 4.71, d.f.11, p = 0.97, respectively). There was no difference in the frequency of deficient AAT alleles (Pi Z and Pi S) between patients and control. However, we found a significantly higher frequency of PiM1M1 homozygote and PiM1 allele in HM patients than in control (for phenotype: f = 0.5166 and 0.4118 respectively, p = 0.037; for allele: f = 0.7020 and 0.6360 respectively, p = 0.05). In addition, PiM homozygotes in HM-patients were more numerous than in controls (59% and 48%, respectively, p = 0.044). PiM1 alleles and PiM1 homozygotes are both associated with hematological malignancies, although this is considered a functionally normal AAT variant.
Collapse
Affiliation(s)
- Aleksandra Topic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade Serbia
| | | | | | | |
Collapse
|
39
|
Vernooy JHJ, Reynaert N, Wolfs TGAM, Cloots RHE, Haegens A, de Vries B, Dentener MA, Buurman WA, Wouters EM. RAPID PULMONARY EXPRESSION OF ACUTE-PHASE REACTANTS AFTER LOCAL LIPOPOLYSACCHARIDE EXPOSURE IN MICE IS FOLLOWED BY AN INTERLEUKIN-6 MEDIATED SYSTEMIC ACUTE-PHASE RESPONSE. Exp Lung Res 2009; 31:855-71. [PMID: 16684717 DOI: 10.1080/01902140600611645] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This study investigated local and systemic innate immune responses in lipopolysaccharide (LPS)-induced lung inflammation in mice. Intratracheal LPS exposure resulted in increased pulmonary mRNA expression for acute-phase reactants (APRs) alpha(1)-antitrypsin (alpha(1)-AT), alpha(1)-acid glycoprotein (AGP), and LPS-binding protein (LBP) from 4 hours post exposure. Although pulmonary serum amyloid P component (SAP) mRNA was not increased, systemic levels of SAP, AGP, and LBP were elevated from 24 hours post exposure. Systemic APRs increase was associated with hepatic mRNA expression. As in vivo neutralization of interleukin (IL)-6, but not tumor necrosis factor (TNF)-alpha, fully ablated hepatic APR mRNA expression, IL-6 may act as signaling molecule between lung and liver. In conclusion, pulmonary LPS exposure induced rapid APR expression in lung, which precedes IL-6-mediated systemic elevation of APRs associated with hepatic APRs expression.
Collapse
Affiliation(s)
- Juanita H J Vernooy
- Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Department of Respiratory Medicine, University Hospital Maastricht, Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
The alpha-1-antitrypsin gene promoter in human A549 lung derived cells, and a novel transcription initiation site. Int J Biochem Cell Biol 2008; 41:1157-64. [PMID: 19010440 DOI: 10.1016/j.biocel.2008.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 10/17/2008] [Accepted: 10/22/2008] [Indexed: 11/20/2022]
Abstract
Alpha-1-antitrypsin (AAT), also called serine proteinase inhibitor A1 (Serpin A1), is the most abundant serpin in human plasma. A major physiological role of AAT is to protect the lung from the destructive effects of excess uninhibited neutrophil elastase. During inflammation, circulating levels of AAT may increase twofold-to-threefold as part of the acute-phase response. The liver is the main contributor to this increase. However, local synthesis may provide an important mechanism for controlling neutrophil elastase activity at sites of inflammation, and previous studies have shown a marked increase in production after cytokine stimulation. In the current study we report a distinct transcription initiation site for AAT expression in the lung alveolar epithelial cell line A549, which is located nine bases upstream of the previously mapped full-length monocyte transcription start-site, and show using site-directed mutagenesis that two Sp1 sites and a putative TATA box are functional. EMSA experiments provide evidence for Sp1 and Sp3 binding to these two Sp1 sites. We have also mapped the minimal promoter region and a cell-specific element essential for expression in A549 cells, both of which reside in an 865bp fragment upstream of the transcription start-site. Understanding the mechanisms of AAT gene regulation in a lung-derived cell line has important implications for understanding the control of localised lung tissue damage which occurs as a result of excess proteolytic activity.
Collapse
|
41
|
PERLMUTTER DAVIDH. IFNβ2/IL-6 Is One of Several Cytokines That Modulate Acute Phase Gene Expression in Human Hepatocytes and Human Macrophagesa. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.1989.tb24025.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
42
|
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency is a genetic disorder that leads to early-onset emphysema. Recently, exogenous supplementation of the enzyme has become a therapeutic alternative. OBJECTIVE To review the role of so-called augmentation therapy with pooled human plasma alpha-1 antitrypsin as a specific treatment for emphysema caused by alpha-1 antitrypsin deficiency. METHODS The authors performed a Medline (1966 - 2007) search with the keywords 'alpha-1 antitrypsin deficiency' and 'therapy'. The authors focused on articles regarding biochemical and clinical efficacy. RESULTS/CONCLUSION Augmentation therapy has been shown to raise antiprotease serum and epithelial lining fluid levels above the 'protective threshold' value. Evidence suggests that this approach slows the decline in lung function, could reduce infection rates, might enhance survival, and is well tolerated. Questions about the cost-effectiveness of this therapy remain.
Collapse
Affiliation(s)
- Gustavo A Heresi
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
43
|
McNab GL, Ahmad A, Mistry D, Stockley RA. Modification of gene expression and increase in alpha1-antitrypsin (alpha1-AT) secretion after homologous recombination in alpha1-AT-deficient monocytes. Hum Gene Ther 2008; 18:1171-7. [PMID: 17937578 DOI: 10.1089/hum.2007.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Small DNA fragments (SDFs) including normal M and alpha(1)-antitrypsin deficiency (alpha(1)-ATD) Z sequences were generated and transfected into peripheral blood monocytes from M subjects and Z alpha(1)-ATD patients. Untreated M and alpha(1)-ATD monocytes secreted 32 +/- 1.1 and 23 +/- 1.4 ng of alpha(1)-AT per 10(6) monocytes over 24 hr. After tumor necrosis factor (TNF)-alpha stimulation, the alpha(1)-AT secretion from M monocytes increased significantly to 50 +/- 2.1 ng/10(6) over 24 hr (p = 0.0004), whereas there was no change in secreted alpha(1)-AT from TNF-alpha-stimulated alpha(1)-ATD monocytes. However, after Z SDF transfection, M monocytes failed to increase alpha (1)-AT secretion in response to TNF-alpha stimulation. Transfecting alpha (1)-ATD monocytes with the M SDF resulted in a significant increase in alpha(1)-AT secretion (p = 0.03) after TNF-alpha stimulation to 55 +/- 2.7 ng/10(6) cells. Monocytes from a further 13 alpha(1)-ATD patients constitutively produced alpha(1)-AT after the first 24 hr. Transfection with either transfection reagent alone or with Z SDF slightly increased alpha (1)-AT secretion over the subsequent 24 hr. However, M SDF transfection significantly increased alpha(1)-AT secretion further, compared with untreated or sham transfection. Untreated, transfection reagent-treated, and Z SDF-transfected alpha(1)-ATD monocytes generated polymerase chain reaction products from Z primers. M SDF-treated alpha(1)-ATD monocytes generated bands with M primers, indicating the generation of a corrected transcript. In conclusion, the defective gene can be corrected in alpha(1)-ATD monocytes with SDFs, and treatment is associated with an increase in alpha(1)-AT secretion. The development of this methodology to repair the gene defect in hepatocytes should have beneficial effects on secretion, thereby protecting both the lung and liver.
Collapse
Affiliation(s)
- Gillian L McNab
- Department of Respiratory Medicine, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | | | |
Collapse
|
44
|
Abstract
Alpha1-antitrypsin deficiency is a genetic disorder which contributes to the development of chronic obstructive pulmonary disease, bronchiectasis, liver cirrhosis and panniculitis. The discovery of alpha1-antitrypsin and its function as an antiprotease led to the protease-antiprotease hypothesis, which goes some way to explaining the pathogenesis of emphysema. This article will review the clinical features of alpha1-antitrypsin deficiency, the genetic mutations known to cause it, and how they do so at a molecular level. Specific treatments for the disorder based on this knowledge will be reviewed, including alpha1-antitrypsin replacement, gene therapy and possible future therapies, such as those based on stem cells.
Collapse
Affiliation(s)
- Alice M Wood
- Department of Medical Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
45
|
Abstract
Chronic obstructive pulmonary disease (COPD) is a condition which is characterized by irreversible airway obstruction due to narrowing of small airways, bronchiolitis, and destruction of the lung parenchyma, emphysema. It is the fourth most common cause of mortality in the world and is expected to be the third most common cause of death by 2020. The main cause of COPD is smoking but other exposures may be of importance. Exposure leads to airway inflammation in which a variety of cells are involved. Besides neutrophil granulocytes, macrophages and lymphocytes, airway epithelial cells are also of particular importance in the inflammatory process and in the development of emphysema. Cell trafficking orchestrated by chemokines and other chamoattractants, the proteinase-antiproteinase system, oxidative stress and airway remodelling are central processes associated with the development of COPD. Recently systemic effects of COPD have attracted attention and the importance of systemic inflammation has been recognized. This seems to have direct therapeutic implications as treatment with inhaled glucocorticosteroids has been shown to influence mortality. The increasing body of knowledge regarding the inflammatory mechanism in COPD will most likely have implications for future therapy and new drugs, specifically aimed at interaction with the inflammatory processes, are currently being developed.
Collapse
Affiliation(s)
- Kjell Larsson
- Unit of Lung and Allergy Research, National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
46
|
Scott CM, Kruse KB, Schmidt BZ, Perlmutter DH, McCracken AA, Brodsky JL. ADD66, a gene involved in the endoplasmic reticulum-associated degradation of alpha-1-antitrypsin-Z in yeast, facilitates proteasome activity and assembly. Mol Biol Cell 2007; 18:3776-87. [PMID: 17634286 PMCID: PMC1995736 DOI: 10.1091/mbc.e07-01-0034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Antitrypsin deficiency is a primary cause of juvenile liver disease, and it arises from expression of the "Z" variant of the alpha-1 protease inhibitor (A1Pi). Whereas A1Pi is secreted from the liver, A1PiZ is retrotranslocated from the endoplasmic reticulum (ER) and degraded by the proteasome, an event that may offset liver damage. To better define the mechanism of A1PiZ degradation, a yeast expression system was developed previously, and a gene, ADD66, was identified that facilitates A1PiZ turnover. We report here that ADD66 encodes an approximately 30-kDa soluble, cytosolic protein and that the chymotrypsin-like activity of the proteasome is reduced in add66Delta mutants. This reduction in activity may arise from the accumulation of 20S proteasome assembly intermediates or from qualitative differences in assembled proteasomes. Add66p also seems to be a proteasome substrate. Consistent with its role in ER-associated degradation (ERAD), synthetic interactions are observed between the genes encoding Add66p and Ire1p, a transducer of the unfolded protein response, and yeast deleted for both ADD66 and/or IRE1 accumulate polyubiquitinated proteins. These data identify Add66p as a proteasome assembly chaperone (PAC), and they provide the first link between PAC activity and ERAD.
Collapse
Affiliation(s)
- Craig M. Scott
- *Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | | | - Béla Z. Schmidt
- Department of Pediatrics, Cell Biology, and Physiology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - David H. Perlmutter
- Department of Pediatrics, Cell Biology, and Physiology, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Jeffrey L. Brodsky
- *Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
47
|
Nita IM, Serapinas D, Janciauskiene SM. α1-Antitrypsin regulates CD14 expression and soluble CD14 levels in human monocytes in vitro. Int J Biochem Cell Biol 2007; 39:1165-76. [PMID: 17448722 DOI: 10.1016/j.biocel.2007.02.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2006] [Revised: 02/23/2007] [Accepted: 02/26/2007] [Indexed: 11/24/2022]
Abstract
The recognition of bacterial lipopolysaccharide (LPS) is principally mediated by either membrane-bound or soluble form of the glycoprotein CD14 and CD14-associated signal transducer, toll-like receptor 4 (TLR4). Recent findings indicate that the serine protease inhibitor, alpha1-antitrypsin (AAT), may not only afford protection against proteolytic injury, but may also neutralize microbial activities and affect regulation of innate immunity. We postulated that AAT affects monocyte responses to LPS by regulating CD14 expression and soluble CD14 release. Here we show that a short-term (up to 2h) monocyte exposure to AAT alone or in combination with LPS leads to a remarkable induction of CD14 levels. In parallel, a short-term (2h) cell exposure to AAT/LPS significantly enhances LPS-induced NF kappaB (p50 and p65) activation in conjunction with increased TNFalpha, IL-1 beta and IL-8 release. In contrast, longer term incubation (18 h) of monocytes with combined AAT/LPS results in a significant reduction in expression of both CD14 and TLR4, inhibition of LPS-induced TNFalpha, IL-1 beta and IL-8 mRNA and protein expression. These findings provide evidence that AAT is an important regulator of CD14 expression and release in monocytes and suggest that AAT may be involved in LPS neutralization and prevention of over-activation of monocytes in vivo.
Collapse
Affiliation(s)
- Izabela M Nita
- Department of Clinical Sciences, Wallenberg Laboratory, University Hospital Malmö, Lund University, SE-20502 Malmö, Sweden
| | | | | |
Collapse
|
48
|
de la Roza C, Lara B, Vilà S, Miravitlles M. [Alpha1-antitrypsin deficiency: situation in Spain and development of a screening program]. Arch Bronconeumol 2006; 42:290-8. [PMID: 16827978 DOI: 10.1016/s1579-2129(06)60145-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies undertaken in Spain indicate that 9% of the general population aged between 40 and 70 years is affected by chronic obstructive pulmonary disease (COPD). Although tobacco smoke is the causative factor in more than 90% of cases, it is estimated that only 10% to 20% of smokers develop COPD. This may be explained by the existence of genetic or environmental factors that modulate the toxic effects of tobacco. The best known genetic factor is alpha1-antitrypsin deficiency, which is associated with an increased risk of developing pulmonary emphysema in smokers. The most recent guidelines from both the World Health Organization and the American Thoracic Society/European Respiratory Society recommend the establishment of screening programs for the detection of alpha1-antitrypsin deficiency in patients with COPD. This strategy is crucial in Spain, where the disease is under diagnosed, mainly due to a low index of suspicion among doctors.
Collapse
Affiliation(s)
- Cristian de la Roza
- Servicio de Neumología, Institut Clínic del Tórax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Red Respira RTIC 03/11 ISCIII, Hospital Clínic, Barcelona, España.
| | | | | | | |
Collapse
|
49
|
de la Roza C, Lara B, Vilà S, Miravitlles M. Déficit de alfa-1-antitripsina. Situación en España y desarrollo de un programa de detección de casos. Arch Bronconeumol 2006. [DOI: 10.1157/13089541] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Abstract
The S- and Z-deficiency alleles of alpha1-antitrypsin are found in more than 20% of some white populations. This high gene frequency suggests that these mutations confer a selective advantage, but the biologic mechanism of this has remained obscure. It is now well recognized that the S and Z alleles result in a conformational transition within the alpha1-antitrypsin molecule and the formation of polymers that are retained within the endoplasmic reticulum of hepatocytes. Polymers of mutant alpha1-antitrypsin can also form within the alveoli and small airways of the lung where they may drive the inflammation that underlies emphysema in individuals with alpha1-antitrypsin deficiency. This local production of polymers by mutant S and Z alpha1-antitrypsin may have also provided protection against infectious disease in the preantibiotic era by focusing and amplifying the inflammatory response to limit invasive respiratory and gastrointestinal infection. It is only since the discovery of antibiotics, the widespread adoption of smoking, and increased longevity that these protective, proinflammatory properties of alpha1-antitrypsin mutants have become detrimental to cause the emphysema and systemic inflammatory diseases associated with alpha1-antitrypsin deficiency.
Collapse
Affiliation(s)
- David A Lomas
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 2XY UK.
| |
Collapse
|