1
|
From Genetics to Clinical Implications: A Study of 675 Dutch Osteogenesis Imperfecta Patients. Biomolecules 2023; 13:biom13020281. [PMID: 36830650 PMCID: PMC9953243 DOI: 10.3390/biom13020281] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable connective tissue disorder that causes bone fragility due to pathogenic variants in genes responsible for the synthesis of type I collagen. Efforts to classify the high clinical variability in OI led to the Sillence classification. However, this classification only partially takes into account extraskeletal manifestations and the high genetic variability. Little is known about the relation between genetic variants and phenotype as of yet. The aim of the study was to create a clinically relevant genetic stratification of a cohort of 675 Dutch OI patients based on their pathogenic variant types and to provide an overview of their respective medical care demands. The clinical records of 675 OI patients were extracted from the Amsterdam UMC Genome Database and matched with the records from Statistics Netherlands (CBS). The patients were categorized based on their harbored pathogenic variant. The information on hospital admissions, outpatient clinic visits, medication, and diagnosis-treatment combinations (DTCs) was compared between the variant groups. OI patients in the Netherlands appear to have a higher number of DTCs, outpatient clinic visits, and hospital admissions when compared to the general Dutch population. Furthermore, medication usage seems higher in the OI cohort in comparison to the general population. The patients with a COL1A1 or COL1A2 dominant negative missense non-glycine substitution appear to have a lower health care need compared to the other groups, and even lower than patients with COL1A1 or COL1A2 haploinsufficiency. It would be useful to include the variant type in addition to the Sillence classification when categorizing a patient's phenotype.
Collapse
|
2
|
Satoh C, Kondoh T, Shimizu H, Kinoshita A, Mishima H, Nishimura G, Miyazaki M, Okano K, Kumai Y, Yoshiura KI. Brothers with novel compound heterozygous mutations in COL27A1 causing dental and genital abnormalities. Eur J Med Genet 2020; 64:104125. [PMID: 33359165 DOI: 10.1016/j.ejmg.2020.104125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/17/2020] [Indexed: 01/15/2023]
Abstract
COL27A1 encodes a collagen type XXVII alpha 1 chain. It is the product of this gene that provides the structural support of connective tissue and is reported to be the causative gene of Steel syndrome (OMIM #615155). The primary symptoms of patients with this defect are consistent with systemic bone disease; however, recent reports note findings of intellectual disability and hearing loss. In this study, we identified novel COL27A1 compound heterozygous variants in two brothers with rhizomelia and congenital hip dislocation as well as dental and genital abnormalities that have not yet been reported in Steel syndrome. This variant, of maternal origin, caused an amino acid substitution of arginine for glycine, c.2026G>C or p.G676R, in the collagen helix domain, which is assumed to damage the structure of the helix. The paternally transmitted variant, c.2367G>A, is located at the 3' end of exon 12, and cDNA analysis revealed a splicing alteration. These novel, compound heterozygous COL27A1 variants might indicate an association of the gene with tooth and genital abnormalities.
Collapse
Affiliation(s)
- Chisei Satoh
- Department of Otolaryngology-Head and Neck Surgery, Unit of Translation Medicine, Japan; Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tatsuro Kondoh
- Division of Developmental Disabilities, Misakaenosono Mutsumi Developmental, Medical and Welfare Center, Isahaya, Japan
| | - Hitomi Shimizu
- Department of Pediatrics, Saiseikai Nagasaki Hospital, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | | | - Kunihiko Okano
- Department of Orthopaedic Surgery, Nagasaki Prefectural Center for Handicapped Children, Isahaya, Japan
| | - Yoshihiko Kumai
- Department of Otolaryngology-Head and Neck Surgery, Unit of Translation Medicine, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
3
|
Belbin GM, Odgis J, Sorokin EP, Yee MC, Kohli S, Glicksberg BS, Gignoux CR, Wojcik GL, Van Vleck T, Jeff JM, Linderman M, Schurmann C, Ruderfer D, Cai X, Merkelson A, Justice AE, Young KL, Graff M, North KE, Peters U, James R, Hindorff L, Kornreich R, Edelmann L, Gottesman O, Stahl EE, Cho JH, Loos RJ, Bottinger EP, Nadkarni GN, Abul-Husn NS, Kenny EE. Genetic identification of a common collagen disease in puerto ricans via identity-by-descent mapping in a health system. eLife 2017; 6:25060. [PMID: 28895531 PMCID: PMC5595434 DOI: 10.7554/elife.25060] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 08/09/2017] [Indexed: 11/16/2022] Open
Abstract
Achieving confidence in the causality of a disease locus is a complex task that often requires supporting data from both statistical genetics and clinical genomics. Here we describe a combined approach to identify and characterize a genetic disorder that leverages distantly related patients in a health system and population-scale mapping. We utilize genomic data to uncover components of distant pedigrees, in the absence of recorded pedigree information, in the multi-ethnic BioMe biobank in New York City. By linking to medical records, we discover a locus associated with both elevated genetic relatedness and extreme short stature. We link the gene, COL27A1, with a little-known genetic disease, previously thought to be rare and recessive. We demonstrate that disease manifests in both heterozygotes and homozygotes, indicating a common collagen disorder impacting up to 2% of individuals of Puerto Rican ancestry, leading to a better understanding of the continuum of complex and Mendelian disease. Diseases often run in families. These disease are frequently linked to changes in DNA that are passed down through generations. Close family members may share these disease-causing mutations; so may distant relatives who inherited the same mutation from a common ancestor long ago. Geneticists use a method called linkage mapping to trace a disease found in multiple members of a family over generations to genetic changes in a shared ancestor. This allows scientists to pinpoint the exact place in the genome the disease-causing mutation occurred. Using computer algorithms, scientists can apply the same technique to identify mutations that distant relatives inherited from a common ancestor. Belbin et al. used this computational technique to identify a mutation that may cause unusually short stature or bone and joint problems in up to 2% of people of Puerto Rican descent. In the experiments, the genomes of about 32,000 New Yorkers who have volunteered to participate in the BioMe Biobank and their health records were used to search for genetic changes linked to extremely short stature. The search revealed that people who inherited two copies of this mutation from their parents were likely to be extremely short or to have bone and joint problems. People who inherited one copy had an increased likelihood of joint or bone problems. This mutation affects a gene responsible for making a form of protein called collagen that is important for bone growth. The analysis suggests the mutation first arose in a Native American ancestor living in Puerto Rico around the time that European colonization began. The mutation had previously been linked to a disorder called Steel syndrome that was thought to be rare. Belbin et al. showed this condition is actually fairly common in people whose ancestors recently came from Puerto Rico, but may often go undiagnosed by their physicians. The experiments emphasize the importance of including diverse populations in genetic studies, as studies of people of predominantly European descent would likely have missed the link between this disease and mutation.
Collapse
Affiliation(s)
- Gillian Morven Belbin
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Jacqueline Odgis
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Elena P Sorokin
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Muh-Ching Yee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, United States
| | - Sumita Kohli
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Benjamin S Glicksberg
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Harris Center for Precision Wellness, Icahn School of Medicine at Mt Sinai, New York, United States
| | - Christopher R Gignoux
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Genevieve L Wojcik
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Tielman Van Vleck
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Janina M Jeff
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Michael Linderman
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Claudia Schurmann
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Douglas Ruderfer
- Broad Institute, Cambridge, United States.,Division of Psychiatric Genomics, Icahn School of Medicine at Mt Sinai, New York, United States.,Center for Statistical Genetics, Icahn School of Medicine at Mt Sinai, New York, United States
| | - Xiaoqiang Cai
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Amanda Merkelson
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Anne E Justice
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kristin L Young
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Misa Graff
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, United States.,Department of Epidemiology, University of Washington School of Public Health, Seattle, United States
| | - Regina James
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, United States
| | - Lucia Hindorff
- National Human Genome Research Institute, National Institutes of Health, Bethesda, United States
| | - Ruth Kornreich
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Lisa Edelmann
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Omri Gottesman
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eli Ea Stahl
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Harris Center for Precision Wellness, Icahn School of Medicine at Mt Sinai, New York, United States.,Broad Institute, Cambridge, United States
| | - Judy H Cho
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Ruth Jf Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Erwin P Bottinger
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Girish N Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Noura S Abul-Husn
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, United States.,Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, United States.,The Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, United States.,Center for Statistical Genetics, Icahn School of Medicine at Mt Sinai, New York, United States
| |
Collapse
|
4
|
Schneppenheim J, Scharfenberg F, Lucius R, Becker-Pauly C, Arnold P. Meprin β and BMP-1 are differentially regulated by CaCl 2. Cell Calcium 2017; 65:8-13. [PMID: 28365001 DOI: 10.1016/j.ceca.2017.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 01/13/2023]
Abstract
The two metalloproteases meprin β and bone morphogenetic protein 1 (BMP-1) are both members of the astacin protease family. They share specificity for negatively charged residues around the scissile bond and they are expressed in overlapping compartments of the human body. One important proteolytic substrate they share is pro-collagen I. Ablation of one of the two proteases however leads to different collagen I associated phenotypes in vivo. Over the last years calcium emerged as a regulator for the proteolytic activity of both enzymes. For meprin β a reduction and for BMP-1 an increase in activity was reported under increasing calcium concentrations. Here we revisit different compartments that rely on pro-collagen I maturation and explore the crystal structure of both proteases to highlight possible calcium binding sites. With this we aim to emphasize a to date underestimated regulator that influences both proteases.
Collapse
Affiliation(s)
| | | | - Ralph Lucius
- Anatomical Institute, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | | | - Philipp Arnold
- Anatomical Institute, Otto-Hahn-Platz 8, 24118 Kiel, Germany.
| |
Collapse
|
5
|
Wu B, Wang Y, Xiao F, Butcher JT, Yutzey KE, Zhou B. Developmental Mechanisms of Aortic Valve Malformation and Disease. Annu Rev Physiol 2017; 79:21-41. [DOI: 10.1146/annurev-physiol-022516-034001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Yidong Wang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
| | - Feng Xiao
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| | - Jonathan T. Butcher
- Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853;
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio 45229;
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York 10461;
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 China
| |
Collapse
|
6
|
Jeanne M, Jorgensen J, Gould DB. Molecular and Genetic Analyses of Collagen Type IV Mutant Mouse Models of Spontaneous Intracerebral Hemorrhage Identify Mechanisms for Stroke Prevention. Circulation 2015; 131:1555-65. [PMID: 25753534 DOI: 10.1161/circulationaha.114.013395] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/26/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Collagen type IV alpha1 (COL4A1) and alpha2 (COL4A2) form heterotrimers critical for vascular basement membrane stability and function. Patients with COL4A1 or COL4A2 mutations suffer from diverse cerebrovascular diseases, including cerebral microbleeds, porencephaly, and fatal intracerebral hemorrhage (ICH). However, the pathogenic mechanisms remain unknown, and there is a lack of effective treatment. METHODS AND RESULTS Using Col4a1 and Col4a2 mutant mouse models, we investigated the genetic complexity and cellular mechanisms underlying the disease. We found that Col4a1 mutations cause abnormal vascular development, which triggers small-vessel disease, recurrent hemorrhagic strokes, and age-related macroangiopathy. We showed that allelic heterogeneity, genetic context, and environmental factors such as intense exercise or anticoagulant medication modulated disease severity and contributed to phenotypic heterogeneity. We found that intracellular accumulation of mutant collagen in vascular endothelial cells and pericytes was a key triggering factor of ICH. Finally, we showed that treatment of mutant mice with a US Food and Drug Administration-approved chemical chaperone resulted in a decreased collagen intracellular accumulation and a significant reduction in ICH severity. CONCLUSIONS Our data are the first to show therapeutic prevention in vivo of ICH resulting from Col4a1 mutation and imply that a mechanism-based therapy promoting protein folding might also prevent ICH in patients with COL4A1 and COL4A2 mutations.
Collapse
Affiliation(s)
- Marion Jeanne
- From Departments of Ophthalmology and Anatomy, Institute for Human Genetics, University of California, San Francisco (UCSF)
| | - Jeff Jorgensen
- From Departments of Ophthalmology and Anatomy, Institute for Human Genetics, University of California, San Francisco (UCSF)
| | - Douglas B Gould
- From Departments of Ophthalmology and Anatomy, Institute for Human Genetics, University of California, San Francisco (UCSF).
| |
Collapse
|
7
|
Wang X, Pei Y, Dou J, Lu J, Li J, Lv Z. Identification of a novel COL1A1 frameshift mutation, c.700delG, in a Chinese osteogenesis imperfecta family. Genet Mol Biol 2014; 38:1-7. [PMID: 25983617 PMCID: PMC4415561 DOI: 10.1590/s1415-475738120130336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 08/09/2014] [Indexed: 11/21/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a family of genetic disorders associated with bone
loss and fragility. Mutations associated with OI have been found in genes encoding
the type I collagen chains. People with OI type I often produce insufficient α1-chain
type I collagen because of frameshift, nonsense, or splice site mutations in
COL1A1 or COL1A2. This report is of a Chinese
daughter and mother who had both experienced two bone fractures. Because skeletal
fragility is predominantly inherited, we focused on identifying mutations in
COL1A1 and COL1A2 genes. A novel mutation in
COL1A1, c.700delG, was detected by genomic DNA sequencing in the
mother and daughter, but not in their relatives. The identification of this mutation
led to the conclusion that they were affected by mild OI type I. Open reading frame
analysis indicated that this frameshift mutation would truncate α1-chain type I
collagen at residue p263 (p.E234KfsX264), while the wild-type protein would contain
1,464 residues. The clinical data were consistent with the patients’ diagnosis of
mild OI type I caused by haploinsufficiency of α1-chain type I collagen. Combined
with previous reports, identification of the novel mutation
COL1A1-c.700delG in these patients suggests that
additional genetic and environmental factors may influence the severity of OI.
Collapse
Affiliation(s)
- Xiran Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China ; Department of Cadre's Ward, The Second Artillery General Hospital Chinese PLA, Beijing, China
| | - Yu Pei
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Jingtao Dou
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Juming Lu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Jian Li
- Department of Elderly Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Zhaohui Lv
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Gillis E, Van Laer L, Loeys BL. Genetics of thoracic aortic aneurysm: at the crossroad of transforming growth factor-β signaling and vascular smooth muscle cell contractility. Circ Res 2013; 113:327-40. [PMID: 23868829 DOI: 10.1161/circresaha.113.300675] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aortic aneurysm, including both abdominal aortic aneurysm and thoracic aortic aneurysm, is the cause of death of 1% to 2% of the Western population. This review focuses only on thoracic aortic aneurysms and dissections. During the past decade, the genetic contribution to the pathogenesis of thoracic aortic aneurysms and dissections has revealed perturbed extracellular matrix signaling cascade interactions and deficient intracellular components of the smooth muscle contractile apparatus as the key mechanisms. Based on the study of different Marfan mouse models and the discovery of several novel thoracic aortic aneurysm genes, the involvement of the transforming growth factor-β signaling pathway has opened unexpected new avenues. Overall, these discoveries have 3 important consequences. First, the pathogenesis of thoracic aortic aneurysms and dissections is better understood, although some controversy still exists. Second, the management strategies for the medical and surgical treatment of thoracic aortic aneurysms and dissections are becoming increasingly gene-tailored. Third, the pathogenetic insights have delivered new treatment options that are currently being investigated in large clinical trials.
Collapse
Affiliation(s)
- Elisabeth Gillis
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Belgium
| | | | | |
Collapse
|
9
|
Skeletal diseases caused by mutations that affect collagen structure and function. Int J Biochem Cell Biol 2013; 45:1556-67. [DOI: 10.1016/j.biocel.2013.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
10
|
Abstract
The mature heart valves are made up of highly organized extracellular matrix (ECM) and valve interstitial cells (VICs) surrounded by an endothelial cell layer. The ECM of the valves is stratified into elastin-, proteoglycan-, and collagen-rich layers that confer distinct biomechanical properties to the leaflets and supporting structures. Signaling pathways have critical functions in primary valvulogenesis as well as the maintenance of valve structure and function over time. Animal models provide powerful tools to study valve development and disease processes. Valve disease is a significant public health problem, and increasing evidence implicates aberrant developmental mechanisms underlying pathogenesis. Further studies are necessary to determine regulatory pathway interactions underlying valve pathogenesis in order to generate new avenues for novel therapeutics.
Collapse
Affiliation(s)
- Robert B Hinton
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Ohio 45229, USA
| | | |
Collapse
|
11
|
Cheng H, Rashid S, Yu Z, Yoshizumi A, Hwang E, Brodsky B. Location of glycine mutations within a bacterial collagen protein affects degree of disruption of triple-helix folding and conformation. J Biol Chem 2011; 286:2041-6. [PMID: 21071452 PMCID: PMC3023501 DOI: 10.1074/jbc.m110.153965] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 10/06/2010] [Indexed: 11/06/2022] Open
Abstract
The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.
Collapse
Affiliation(s)
- Haiming Cheng
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Shayan Rashid
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Zhuoxin Yu
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Ayumi Yoshizumi
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Eileen Hwang
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | - Barbara Brodsky
- From the Department of Biochemistry, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| |
Collapse
|
12
|
Lee KH, Kuczera K, Banaszak Holl MM. The severity of osteogenesis imperfecta: A comparison to the relative free energy differences of collagen model peptides. Biopolymers 2010; 95:182-93. [DOI: 10.1002/bip.21552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Rauch F, Lalic L, Roughley P, Glorieux FH. Genotype-phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur J Hum Genet 2010; 18:642-7. [PMID: 20087402 DOI: 10.1038/ejhg.2009.242] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable disorder with bone fragility that is often associated with short stature, tooth abnormalities (dentinogenesis imperfecta), and blue sclera. The most common mutations associated with OI result from the substitution for glycine by another amino acid in the triple helical domain of either the alpha1 or the alpha2 chain of collagen type I. In this study, we compared the results of genotype analysis and clinical examination in 161 OI patients (median age: 13 years) who had glycine mutations in the triple helical domain of alpha1(I) (n=67) or alpha2(I) (n=94). Serine substitutions were the most frequently encountered type of mutation in both chains. Compared with patients with serine substitutions in alpha2(I) (n=40), patients with serine substitutions in alpha1(I) (n=42) on average were shorter (median height z-score -6.0 vs -3.4; P=0.005), indicating that alpha1(I) mutations cause a more severe phenotype. Height correlated with the location of the mutation in the alpha2(I) chain but not in the alpha1(I) chain. Patients with mutations affecting the first 120 amino acids at the amino-terminal end of the collagen type I triple helix had blue sclera but did not have dentinogenesis imperfecta. Among patients from different families sharing the same mutation, about 90 and 75% were concordant for dentinogenesis imperfecta and blue sclera, respectively. These data should be useful to predict disease phenotype in newly diagnosed OI patients.
Collapse
Affiliation(s)
- Frank Rauch
- Genetics Unit, Shriners Hospital for Children, Montreal, QC, Canada.
| | | | | | | |
Collapse
|
14
|
Hasegawa K, Kataoka K, Inoue M, Seino Y, Morishima T, Tanaka H. Impaired pyridinoline cross-link formation in patients with osteogenesis imperfecta. J Bone Miner Metab 2008; 26:394-9. [PMID: 18600407 DOI: 10.1007/s00774-007-0827-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 10/30/2007] [Indexed: 10/21/2022]
Abstract
Patients with osteogenesis imperfecta (OI) show various degrees of bone fragility. Nevertheless, details of the mechanisms causing bone fragility remain unclear. We hypothesized that differences in pyridinoline cross-link formation at the N-and C-termini in type I collagen molecules partly contribute to bone fragility of OI. To verify this hypothesis, urinary N and C terminal telopeptides of type I collagen (uNTx and ubetaCTx, respectively) and urinary hydroxyproline (uHyp) were measured using second morning void urine samples obtained from OI patients and healthy control children. Ratios of uNTx and ubetaTx to uHyp (uNTx/uHyp and ubetaCTx/uHyp, respectively) of OI patients and healthy normal control children were analyzed. Ratios of uNTx to ubetaCTx (uNTx/ubetaCTx) were also analyzed. In OI patients, uNTx and ubetaCTx were lower than in healthy control children. Also, uNTx/uHyp and ubetaCTx/uHyp were significantly lower than in healthy children. Among OI patients, uNTx/uHyp and uNTx/ubetaCTx of type III OI were significantly lower than of either type I or type IV OI. These results show that pyridinoline cross-link formation is lower than in healthy control children and that pyridinoline cross-link formation at the N-and C-termini in type I collagen molecules might be differently disrupted in OI patients according to the severity of OI.
Collapse
Affiliation(s)
- Kosei Hasegawa
- Department of Pediatrics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Gundersen RY, Vaagenes P, Breivik T, Fonnum F, Opstad PK. Glycine--an important neurotransmitter and cytoprotective agent. Acta Anaesthesiol Scand 2005; 49:1108-16. [PMID: 16095452 DOI: 10.1111/j.1399-6576.2005.00786.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Glycine, the simplest of the amino acids, is an essential component of important biological molecules, a key substance in many metabolic reactions, the major inhibitory neurotransmitter in the spinal cord and brain stem, and an anti-inflammatory, cytoprotective, and immune modulating substance. MATERIAL AND METHODS Based on available literature, we discuss some of the important biological properties of glycine. In addition, we describe some clinical disorders where glycine plays a central role, either as an essential structural element, or through its metabolism or receptors. RESULTS The past few years have witnessed a broadening of glycine research. The traditional prime interest in aspects related to its role as an inhibitory neurotransmitter in the central nervous system has been expanded to equally emphasize other organs and tissues. With the demonstration of glycine-gated chloride channels on neurons in the central nervous system, on most leukocytes, and subsequently on other cells as well, a unifying mechanism of action accounting for many of the widespread effects of glycine has been found. CONCLUSIONS Glycine is a simple, easily available, and inexpensive substance with few and innocuous side-effects. The diversity of biological activities is well documented in the literature. Despite this, glycine has only gained a modest place in clinical medicine.
Collapse
Affiliation(s)
- R Y Gundersen
- Norwegian Defence Research Establishment, Division of Protection, Kjeller, Norway.
| | | | | | | | | |
Collapse
|
16
|
Mundlos S, Chan D, Weng YM, Sillence DO, Cole WG, Bateman JF. Multiexon deletions in the type I collagen COL1A2 gene in osteogenesis imperfecta type IB. Molecules containing the shortened alpha2(I) chains show differential incorporation into the bone and skin extracellular matrix. J Biol Chem 1996; 271:21068-74. [PMID: 8702873 DOI: 10.1074/jbc.271.35.21068] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Osteogenesis imperfecta (OI) type IB is a rare subset of the mildest form of OI, clinically characterized by moderate bone fragility, blue sclera, and dentinogenesis imperfecta. Cultured skin fibroblasts from two unrelated individuals (OI-197 and OI-165) with the typical features of OI type IB produced shortened alpha2(I) chains. Reverse transcription-polymerase chain reaction of the alpha2(I)-cDNA revealed deletions in the triple helical domain of 5 exons (exons 7-11) in OI-197, and 8 exons (exons 10-17) in OI-165. This exon skipping was caused by genomic deletions in one allele of COL1A2 with the breakpoints located in introns 6 and 11 in OI-197, and introns 9 and 17 in OI-165. The secretion and deposition of the mutant collagen into the matrix was measured in vitro in cultures of skin fibroblasts and bone osteoblasts, grown in the presence of ascorbic acid to induce collagen matrix formation and maturation, as well as in collagen extracts from skin and bone. The secretion of mutant collagen was impaired and long term cultures of fibroblasts showed that the mutant collagen was not incorporated into the mature collagenous matrix produced in vitro by skin fibroblasts from both patients. Likewise, the shortened alpha2(I) chain was not demonstrable in skin extracts. In contrast, bone extracts from OI-197 showed the presence of the mutant collagen. This incorporation of the abnormal collagen into the mature matrix was also demonstrated in long term cultures of the patient's osteoblasts. The deposition of the mutant collagen by bone osteoblasts but not by skin fibroblasts demonstrates a tissue specificity in the incorporation of mutant collagen into the matrix which may explain the primary involvement of bone and not skin in these patients.
Collapse
Affiliation(s)
- S Mundlos
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Mackay K, Raghunath M, Superti-Furga A, Steinmann B, Dalgleish R. Ehlers-Danlos syndrome type IV caused by Gly400Glu, Gly595Cys and Gly1003Asp substitutions in collagen III: clinical features, biochemical screening, and molecular confirmation. Clin Genet 1996; 49:286-95. [PMID: 8884076 DOI: 10.1111/j.1399-0004.1996.tb03790.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Three patients with Ehlers-Danlos syndrome type IV (EDS IV) and biochemical evidence of structural defects in collagen III were investigated for mutations within the collagen III gene (COL3A1). Single strand conformation polymorphism analysis of alpha 1 (III) cDNA indicated the presence of different heterozygous sequence changes in each of the patients. Nucleotide sequencing revealed mutations leading to the substitution of glycine 400 with glutamic acid, glycine 595 with cysteine, and glycine 1003 with aspartic acid. EDS IV is a life-threatening disorder which, as the clinical histories of our patients and their families show, still often escapes diagnosis. Biochemical and molecular studies can clarify the diagnosis and help provide appropriate management and counselling.
Collapse
Affiliation(s)
- K Mackay
- Department of Genetics, University of Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
18
|
Lamandé SR, Chessler SD, Golub SB, Byers PH, Chan D, Cole WG, Sillence DO, Bateman JF. Endoplasmic reticulum-mediated quality control of type I collagen production by cells from osteogenesis imperfecta patients with mutations in the pro alpha 1 (I) chain carboxyl-terminal propeptide which impair subunit assembly. J Biol Chem 1995; 270:8642-9. [PMID: 7721766 DOI: 10.1074/jbc.270.15.8642] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A heterozygous single base change in exon 49 of COL1A1, which converted the codon for pro alpha 1(I) carboxyl-terminal propeptide residue 94 from tryptophan (TGG) to cysteine (TGT) was identified in a baby with lethal osteogenesis imperfecta (OI64). The C-propeptide mutations in OI64 and in another lethal osteogenesis imperfecta cell strain (OI26), which has a frameshift mutation altering the sequence of the carboxyl-terminal half of the propeptide (Bateman, J. F., Lamande, S. R., Dahl, H.-H. M., Chan, D., Mascara, T. and Cole, W. G. (1989) J. Biol. Chem. 264, 10960-10964), disturbed procollagen folding and retarded the formation of disulfide-linked trimers. Although assembly was delayed, the presence of slowly migrating, overmodified alpha 1(I) and alpha 2(I) chains indicated that mutant pro alpha 1(I) could associate with normal pro alpha 1(I) and pro alpha 2(I) to form pepsin-resistant triple-helical molecules, a proportion of which were secreted. Further evidence of the aberrant folding of mutant procollagen in OI64 and OI26 was provided by experiments demonstrating that the endoplasmic reticulum resident molecular chaperone BiP, which binds to malfolded proteins, was specifically bound to type I procollagen and was coimmunoprecipitated in the osteogenesis imperfecta cells but not control cells. Experiments with brefeldin A, which inhibits protein export from the endoplasmic reticulum, demonstrated that unassembled mutant pro alpha 1(I) chains were selectively degraded within the endoplasmic reticulum resulting in reduced collagen production by the osteogenesis imperfecta cells. This biosynthetic deficiency was reflected in the inability of OI64 and OI26 cells to produce a substantial in vitro collagenous matrix when grown in the continuous presence of ascorbic acid to allow collagen matrix formation. Both these carboxyl-terminal propeptide mutants showed a marked reduction in collagen accumulation to 20% (or less) of control cultures, comparable to the reduced collagen content of tissues from OI26.
Collapse
Affiliation(s)
- S R Lamandé
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gomez-Lira M, Sangalli A, Pignatti PF, Digilio MC, Giannotti A, Carnevale E, Mottes M. Determination of a new collagen type I alpha 2 gene point mutation which causes a Gly640 Cys substitution in osteogenesis imperfecta and prenatal diagnosis by DNA hybridisation. J Med Genet 1994; 31:965-8. [PMID: 7891382 PMCID: PMC1016701 DOI: 10.1136/jmg.31.12.965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The molecular defect responsible for a sporadic case of extremely severe (type II/III) osteogenesis imperfecta was investigated. The mutation site was localised in the collagen type I pro alpha 2 mRNA molecules produced by the proband's skin fibroblasts by chemical cleavage of mismatch in heteroduplex nucleic acids. Reverse transcription-polymerase chain reaction DNA amplification, followed by cloning and sequencing, showed heterozygosity for a G to T transversion in the first nucleotide of exon 37 of the COL1A2 gene, which led to a cysteine for glycine substitution at position 640 of the triple helical domain. This newly characterised mutation is localised in a domain which contains several milder mutations, confirming that glycine substitutions within the alpha 2(I) chain do not follow a linear gradient pattern for genotype to phenotype correlations. In a subsequent pregnancy, absence of the G2327T mutation in the fetus was shown by allele specific oligonucleotide hybridisation to the trophoblast derived fibroblast mRNA after reverse transcription and in vitro amplification. (The nucleotide number assigned to the mutant base was inferred from the numbering system devised by the Osteogenesis Imperfecta Analysis Consortium (The OIAC Newsletter, 1 April 1994).)
Collapse
Affiliation(s)
- M Gomez-Lira
- Istituto di Biologia e Genetica, Università di Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Willing MC, Deschenes SP, Scott DA, Byers PH, Slayton RL, Pitts SH, Arikat H, Roberts EJ. Osteogenesis imperfecta type I: molecular heterogeneity for COL1A1 null alleles of type I collagen. Am J Hum Genet 1994; 55:638-47. [PMID: 7942841 PMCID: PMC1918287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Osteogenesis imperfecta (OI) type I is the mildest form of inherited brittle-bone disease. Dermal fibroblasts from most affected individuals produce about half the usual amount of type I procollagen, as a result of a COL1A1 "null" allele. Using PCR amplification of genomic DNA from affected individuals, followed by denaturing gradient gel electrophoresis (DGGE) and SSCP, we identified seven different COL1A1 gene mutations in eight unrelated families with OI type I. Three families have single nucleotide substitutions that alter 5' donor splice sites; two of these unrelated families have the same mutation. One family has a point mutation, in an exon, that creates a premature termination codon, and four have small deletions or insertions, within exons, that create translational frameshifts and new termination codons downstream of the mutation sites. Each mutation leads to both marked reduction in steady-state levels of mRNA from the mutant allele and a quantitative decrease in type I procollagen production. Our data demonstrate that different molecular mechanisms that have the same effect on type I collagen production result in the same clinical phenotype.
Collapse
Affiliation(s)
- M C Willing
- Department of Pediatrics, University of Iowa, Iowa City 52242
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kitoh H, Oki T, Arao K, Nogami H. Bone dysplasia in a child born to parents with osteogenesis imperfecta and pseudoachondroplasia. AMERICAN JOURNAL OF MEDICAL GENETICS 1994; 51:187-90. [PMID: 8074142 DOI: 10.1002/ajmg.1320510302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report on a boy born to a mother with pseudoachondroplasia and a father with osteogenesis imperfecta (Sillence type III). At birth, the boy was found to have osteogenesis imperfecta type III. Although clinical findings of pseudoachondroplasia were not manifested at the age of 8 months, roentgenographic findings showed characteristics of pseudoachondroplasia in addition to those of osteogenesis imperfecta. He died of respiratory distress at age 15 months.
Collapse
Affiliation(s)
- H Kitoh
- Central Hospital, Aichi Prefectural Colony, Japan
| | | | | | | |
Collapse
|
22
|
Virdi AS, Loughlin JA, Irven CM, Goodship J, Sykes BC. Mutation screening by a combination of biotin-SSCP and direct sequencing. Hum Genet 1994; 93:287-90. [PMID: 8125479 DOI: 10.1007/bf00212024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have developed a mutation detection strategy that combines single strand conformational polymorphism (SSCP) analysis of one strand of a double-stranded amplification product with direct sequencing of the other. Using this strategy, which we find economical of both time and resources, we have identified a G to A transition, which substitutes a serine for glycine residue at position 862 in the major helix of the alpha 1 chain of Type I collagen. We use this mutation, which causes a lethal form of osteogenesis imperfecta, to illustrate the technique.
Collapse
Affiliation(s)
- A S Virdi
- University of Oxford, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, UK
| | | | | | | | | |
Collapse
|
23
|
Chessler S, Wallis G, Byers P. Mutations in the carboxyl-terminal propeptide of the pro alpha 1(I) chain of type I collagen result in defective chain association and produce lethal osteogenesis imperfecta. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46833-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Valli M, Rossi A, Forlino A, Tenni R, Cetta G. Extracellular matrix deposition in cultured dermal fibroblasts from four probands affected by osteogenesis imperfecta. MATRIX (STUTTGART, GERMANY) 1993; 13:275-80. [PMID: 8412984 DOI: 10.1016/s0934-8832(11)80022-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Type I procollagen biosynthesis and matrix deposition were studied in cultured fibroblasts of four probands affected by Osteogenesis Imperfecta and in whom the mutations have been characterized. The mutations along the triple helix altered all biochemical parameters considered, i.e. thermal stability, kinetics of procollagen secretion and rate of maturation from procollagen to collagen. The biochemical findings were peculiar for each case considered, but there was no correlation between biochemical parameters and clinical phenotype. In all our probands, regardless of the clinical severity, mutant chains appeared in the insoluble matrix formed by fibroblasts cultured in the presence of dextran sulfate. The densitometric scanning revealed a relative increased amount of fibronectin, suggesting that the matrix contained a lower quantity of type I collagen. Furthermore, the amount of mutant chains found in the insoluble fraction was clearly less than expected, considering that 75% of new synthesized trimers are abnormal. Therefore, in the presence of a mutation, the protein available for extracellular matrix formation is reduced and the mutant trimers incorporated in the matrix probably interfere with normal fibril performance. The abnormal fibril morphology has a dramatic effect in bone, interfering presumably with a correct mineral deposition and interactions with non/collagenous bone proteins.
Collapse
Affiliation(s)
- M Valli
- Dipartimento di Biochimica, University of Pavia, Italy
| | | | | | | | | |
Collapse
|
25
|
Wallis GA, Sykes B, Byers PH, Mathew CG, Viljoen D, Beighton P. Osteogenesis imperfecta type III: mutations in the type I collagen structural genes, COL1A1 and COL1A2, are not necessarily responsible. J Med Genet 1993; 30:492-6. [PMID: 8100856 PMCID: PMC1016423 DOI: 10.1136/jmg.30.6.492] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Most forms of osteogenesis imperfecta are caused by dominant mutations in either of the two genes, COL1A1 and COL1A2, that encode the pro alpha 1(I) and pro alpha 2(I) chains of type I collagen, respectively. However, a severe, autosomal recessive form of OI type III with a comparatively high frequency has been recognised in the black populations of southern Africa. We preformed linkage analyses in eight OI type III families using RFLPs associated with the COL1A1 and COL1A2 loci to determine whether mutations in the genes for type I collagen were responsible for this form of OI. Recombination between the OI phenotype and polymorphic markers at both loci was shown in three of the eight families investigated. The combined lod scores for the eight families were -10.6 for COL1A1 and -11.2 for COL1A2. Further, we examined the type I procollagen produced by skin fibroblast cultures derived from 15 affected and 12 unaffected subjects from the above eight families plus one further family. We found no evidence for defects in the synthesis, structure, secretion, or post-translational modification of the chains of type I procollagen produced by any of the family members. These results suggest that mutations within or near the type I collagen structural genes are not responsible for this form of OI.
Collapse
Affiliation(s)
- G A Wallis
- Department of Biochemistry and Molecular Biology, University of Manchester, UK
| | | | | | | | | | | |
Collapse
|
26
|
Molyneux K, Starman BJ, Byers PH, Dalgleish R. A single amino acid deletion in the alpha 2(I) chain of type I collagen produces osteogenesis imperfecta type III. Hum Genet 1993; 90:621-8. [PMID: 8444468 DOI: 10.1007/bf00202479] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
RNase A protection analysis was used in the search for the cause of a non-lethal osteogenesis imperfecta (OI) phenotype (Sillence type III). Cleavage of the hybrid formed between a normal alpha 2(I) sequence and RNA isolated from the patient indicated the presence of a mismatch. The position of the mismatch was determined and the corresponding area of COL1A2 was amplified using the polymerase chain reaction. Sequencing of cloned amplified DNA revealed the deletion, which was not present in either parent, of the final three bases of exon 19 in one of the patient's two COL1A2 alleles. The deletion results in the loss of amino acid 255 (a valine encoded by the last codon of exon 19) of the triple helical region of half of the alpha 2(I) collagen chains but does not disrupt the splicing of the heterogeneous nuclear RNA (hnRNA). This provides further evidence that OI type III may result from autosomal dominant mutations rather than only from autosomal recessive mutations as had previously been believed.
Collapse
Affiliation(s)
- K Molyneux
- Department of Genetics, University of Leicester, UK
| | | | | | | |
Collapse
|
27
|
Marini JC, Lewis MB, Chen K. Moderately severe osteogenesis imperfecta associated with substitutions of serine for glycine in the alpha 1(I) chain of type I collagen. AMERICAN JOURNAL OF MEDICAL GENETICS 1993; 45:241-5. [PMID: 8456809 DOI: 10.1002/ajmg.1320450217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have examined the type I collagen protein, RNA, and cDNA of 2 children with moderately severe (type IV) osteogenesis imperfecta (OI). They have in common a non-lethal form of OI with ambulatory potential, overmodification of type I collagen protein, and a substitution of serine for glycine in the collagen chain produced by one alpha 1(I) allele. The first child (Marini et al.: J Biol Chem 264:11893-11900, 1989) is now 7 years old, with the height of a 3-year-old. Her course includes significant remodeling of lower long bones and 4 femur fractures. She walks independently. A mishmatch was detected in her alpha 1(I) mRNA using RNA/RNA hybrids; it was demonstrated to be due to a G-->A point mutation in one allele of alpha 1(I), resulting in the substitution of serine for glycine 832. The second child is now 6 1/2 years old, with the height of 1 1/2-year-old. Her history includes significant bowing of femurs and tibias, 6 femur fractures, S-curve scoliosis, compression of all lumbar vertebrae, and limited short-distance walking with braces. Her alpha 1(I) mRNA has also been studied by RNA hybrid analysis; there is a single G-->A change in one alpha 1(I) allele causing the substitution of serine for gly 352. Both children have moderately severe OI. However, the serine substitution at gly 352 is associated with a more severe phenotype then is the serine substitution at gly 832. Compared to substitutions described in other cases of OI, the serine 352 is located in the middle of a cluster of cysteine substitutions associated with non-lethal OI.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J C Marini
- Unit on Connective Tissue Disorders, Human Genetics Branch, NICHD, NIH, Bethesda, Maryland 20892
| | | | | |
Collapse
|
28
|
Bächinger HP, Morris NP, Davis JM. Thermal stability and folding of the collagen triple helix and the effects of mutations in osteogenesis imperfecta on the triple helix of type I collagen. AMERICAN JOURNAL OF MEDICAL GENETICS 1993; 45:152-62. [PMID: 8456797 DOI: 10.1002/ajmg.1320450204] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Osteogenesis imperfecta (OI) is an inherited disease in which 90% of the cases result from mutations in the 2 genes, pro alpha 1 and pro alpha 2, coding for type I collagen. Type I collagen is a trimeric molecule, (alpha 1)2 alpha 2, which is dominated both structurally and functionally by the 300 nm triple-helical domain. Most OI mutations occur in this domain and almost all point mutations result in the substitution of other amino acids for the obligate glycine which occurs at every third residue. The phenotypic effects of these mutations are frequently attributed in part to alterations in the stability and rate of folding of the triple helix. In order to better understand the relationship between glycine substitutions and stability we review current concepts of the forces governing triple helical stability, denaturational and predenaturational unfolding, and the techniques of measuring stability. From observations on the stability of several collagen types as well as synthetic tripeptides, we present a model for stability based on the contribution of individual and neighboring tripeptide units to the local stability. Although in preliminary form, this empirical model can account for the observed shifts in the Tm of many of the point mutations described. The folding of the triple helix is reviewed. The involvement of peptidyl prolyl cis-trans isomerase in this process in vivo is demonstrated by the inhibition of collagen folding in fibroblasts by cyclosporin A. An hypothesis based on the relationship between the thermal stability at the site of mutation and the propensity for renucleation of folding is proposed.
Collapse
Affiliation(s)
- H P Bächinger
- Shriners Hospital for Crippled Children, Research Department, Portland, OR 97201
| | | | | |
Collapse
|
29
|
Constantinou-Deltas CD, Ladda RL, Prockop DJ. Somatic cell mosaicism: another source of phenotypic heterogeneity in nuclear families with osteogenesis imperfecta. AMERICAN JOURNAL OF MEDICAL GENETICS 1993; 45:246-51. [PMID: 8456810 DOI: 10.1002/ajmg.1320450218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the genes coding for the pro alpha 1 and pro alpha 2 chains of type I procollagen have been found in many patients with osteogenesis imperfecta (OI), a heritable disorder of connective tissue. The severity of the disease varies between families and even among members of the same family. This phenotypic variability covers a spectrum extending from very mild forms that cannot be easily detected to perinatally lethal forms. One explanation for this phenotypic variability is the nature of the mutation in the type I procollagen genes. Another explanation is mosaicism. Here we report on 2 families with propositi who have OI, whereas their mothers had a milder form of the disease. In one family, the molecular defect was previously shown to be a substitution of alpha 1(904) by cysteine [Constantinou et al., 1990]. The biochemical phenotype was characterized by significant post-translational overmodification of the mutated type 1 collagen molecules which also had a 3-4 degrees C decrease in their thermal unfolding. Also, secretion of the procollagen into the culture media was delayed. In the second family, the proposita's muscle fibroblasts synthesized and secreted type I procollagen molecules that were highly over-modified along the entire length of their triple-helical domain. Cells from the mother also synthesized normal and over-modified protein, although the amount of over-modified protein was less than that synthesized by her daughter's cells. The exact molecular defect has not yet been defined.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C D Constantinou-Deltas
- Department of Biochemistry and Molecular Biology, Jefferson Institute of Molecular Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
30
|
Wenstrup RJ, Lever LW, Phillips CL, Quarles LD. Mutations in the COL1A2 gene of type I collagen that result in nonlethal forms of osteogenesis imperfecta. AMERICAN JOURNAL OF MEDICAL GENETICS 1993; 45:228-32. [PMID: 8456807 DOI: 10.1002/ajmg.1320450215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Although virtually all mutations that result in osteogenesis imperfecta (OI) affect the genes that encode the chains of type I procollagen, the effects of mutations in the COL1A2 gene have received less attention than those in the COL1A1 gene. We have characterized mutations in 4 families that give rise to different OI phenotypes. In three families substitutions of glycine residues by cysteine in the triple helical domain (a single example at position 259 and 2 families in which substitution of glycine at 646 by cysteine) have been identified, and in the fourth a G for A transition at position +4 in intron 33 led to use of an alternative splice site and inclusion of 6 amino acids (val-gly-arg-ile-leu-phe) between residues 585 and 586 of the normal triple helix. The relation between position of substitution of glycine by cysteine in the COL1A2 gene does not follow the pattern developed in the COL1A1 gene. To determine how COL1A2 mutations produce OI phenotypes, we have produced a full-length mouse cDNA into which we plan to place mutations and examine their effects in stably transfected osteogenic cells and in transgenic animals.
Collapse
Affiliation(s)
- R J Wenstrup
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| | | | | | | |
Collapse
|
31
|
Wirtz MK, Rao VH, Glanville RW, Labhard ME, Pretorius PJ, de Vries WN, de Wet WJ, Hollister DW. A cysteine for glycine substitution at position 175 in an alpha 1 (I) chain of type I collagen produces a clinically heterogeneous form of osteogenesis imperfecta. Connect Tissue Res 1993; 29:1-11. [PMID: 8339541 DOI: 10.3109/03008209309061961] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The molecular basis for Osteogenesis Imperfecta in a large kindred with a highly variable phenotype was identified by sequencing the mutant pro alpha 1 (I) protein, cDNA and genomic DNA from the proband. Fibroblasts from different affected individuals all synthesize both normal Type I procollagen molecules and abnormal Type I procollagen molecules in which one or both pro alpha 1 (I) chain(s) contain a cysteine residue within the triple helical domain. Protein studies of the proband localized the mutant cysteine residue to the alpha 1 (I) CB 8 peptide. We now report that cysteine has replaced glycine at triple helical residue 175 disrupting the invariant Gly-X-Y structural motif required for perfect triple helix formation. The consequences include post-translational overmodification, decreased thermal stability, and delayed secretion of mutant molecules. The highly variable phenotype in the present kindred cannot be explained solely on the basis of the cysteine for glycine substitution but will require further exploration.
Collapse
Affiliation(s)
- M K Wirtz
- Department of Ophthalmology, Oregon Health Sciences University, Portland 97201
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Mottes M, Gomez Lira MM, Valli M, Scarano G, Lonardo F, Forlino A, Cetta G, Pignatti PF. Paternal mosaicism for a COL1A1 dominant mutation (alpha 1 Ser-415) causes recurrent osteogenesis imperfecta. Hum Mutat 1993; 2:196-204. [PMID: 8364588 DOI: 10.1002/humu.1380020308] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe a dominant point mutation in the COL1A1 gene causing extremely severe osteogenesis imperfecta (OI type II/III) which was detected in the dermal fibroblasts of a proband, diagnosed by ultrasonography at 24 weeks of gestation. Type I collagen secretion was reduced and pro alpha 1(I) chains were overmodified. The mutation was localised in one COL1A1 allele by chemical cleavage of mismatched bases in normal cDNA/proband's mRNA heteroduplexes, and identified by cloning and sequencing. A G-to-A transition which causes the substitution of Gly-415 with serine in the alpha 1(I) triple helical domain was found. The same mutation was detected in the father's spermatozoa and lymphocytes. Mosaicism in the father's germline explains the occurrence in the family of two additional OI pregnancies, which were documented by X-ray and ultrasound investigations.
Collapse
Affiliation(s)
- M Mottes
- Istituto di Scienze Biologiche, Università di Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Cohn DH, Zhang X, Byers PH. Homology-mediated recombination between type I collagen gene exons results in an internal tandem duplication and lethal osteogenesis imperfecta. Hum Mutat 1993; 2:21-7. [PMID: 8097422 DOI: 10.1002/humu.1380020105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
It has been proposed that the structure of the exons that encode the triple helical domain of the fibrillar collagen genes arose by repeated tandem duplication of an ancestral unit exon. Because these exons encode a repeat motif [(Gly-X-Y)n], sequence homology between exons may have driven the recombinational process. We have characterized a tandem duplication mutation within a COL1A1 allele of type I collagen from an infant with the lethal form of osteogenesis imperfecta. The structure of the mutation is consistent with the occurrence of an unequal crossover within a 15 base pair region of sequence identity between exons 14 and 17 of the COL1A1 gene. The recombination produced a new 81 base pair 17/14 hybrid exon and complete duplication of exons 15 and 16. The sequence implies duplication of 60 amino acid residues within the triple helical domain with preservation of the Gly-X-Y repeat. These data suggest that a recombinational mechanism that explains the hypothetical evolutionary process is active in cells, but the lethal effect of this mutation raises questions about the role of these events in creating new structures for polymeric proteins.
Collapse
Affiliation(s)
- D H Cohn
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | | | | |
Collapse
|
34
|
Lightfoot S, Holmes D, Brass A, Grant M, Byers P, Kadler K. Type I procollagens containing substitutions of aspartate, arginine, and cysteine for glycine in the pro alpha 1 (I) chain are cleaved slowly by N-proteinase, but only the cysteine substitution introduces a kink in the molecule. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)74071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
35
|
Incorporation of type I collagen molecules that contain a mutant alpha 2(I) chain (Gly580–>Asp) into bone matrix in a lethal case of osteogenesis imperfecta. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50063-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
36
|
An amino acid substitution (Gly853–>Glu) in the collagen alpha 1(II) chain produces hypochondrogenesis. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)41703-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
37
|
Willing MC, Pruchno CJ, Atkinson M, Byers PH. Osteogenesis imperfecta type I is commonly due to a COL1A1 null allele of type I collagen. Am J Hum Genet 1992; 51:508-15. [PMID: 1353940 PMCID: PMC1682712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023] Open
Abstract
Dermal fibroblasts from most individuals with osteogenesis imperfecta (OI) type I produce about half the normal amount of type I procollagen, as a result of decreased synthesis of one of its constituent chains, pro alpha 1 (I). To test the hypothesis that decreased synthesis of pro alpha (I) chains results from mutations in the COL1A1 gene, we used primer extension with nucleotide-specific chain termination to measure the contribution of individual COL1A1 alleles to the mRNA pool in fibroblasts from affected individuals. A polymorphic MnlI restriction endonuclease site in the 3'-untranslated region of COL1A1 was used to distinguish the transcripts of the two alleles in heterozygous individuals. Twenty-three individuals from 21 unrelated families were studied. In each case there was marked diminution in steady-state mRNA levels from one COL1A1 allele. Loss of an allele through deletion or rearrangement was not the cause of the diminished COL1A1 mRNA levels. Primer extension with nucleotide-specific chain termination allows identification of the mutant COL1A1 allele in cell strains that are heterozygous for an expressed polymorphism. It is applicable to sporadic cases, to small families, and to large families in whom key individuals are uninformative at the polymorphic sites used in linkage analysis, making it a useful adjunct to the biochemical screening of collagenous proteins for OI.
Collapse
Affiliation(s)
- M C Willing
- Department of Pediatrics, University of Iowa, Iowa City 52242
| | | | | | | |
Collapse
|
38
|
Bonaventure J, Cohen-Solal L, Lasselin C, Maroteaux P. A dominant mutation in the COL1A1 gene that substitutes glycine for valine causes recurrent lethal osteogenesis imperfecta. Hum Genet 1992; 89:640-6. [PMID: 1511982 DOI: 10.1007/bf00221955] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Type I collagen chains of a proband from a family with recurrent lethal osteogenesis imperfecta (OI) migrated as a doublet when submitted to gel electrophoresis. Cyanogen bromide (CNBr) peptide mapping demonstrated that the post-translational over-modifications were initiated in alpha 1ICB7. Chemical cleavage of cDNA-RNA heteroduplexes identified a mismatch in the alpha 1I cDNA; this mismatch was subsequently confirmed by sequencing a 249-bp fragment amplified by the polymerase chain reaction. A G to T transition in the second base of the first codon of exon 41 resulted in the substitution of glycine 802 by valine. This mutation impaired collagen secretion by dermal fibroblasts. The over-modified chains were retained intracellularly and melted at a lower temperature than normal chains. Collagen molecules synthesized by parental fibroblasts had a normal electrophoretic mobility, but hybridization of genomic DNA with allele-specific oligonucleotides revealed the presence of the mutant allele in the mother's leukocytes. The mutation was not detected in her fibroblasts consistent with the protein data. These results support the hypothesis that somatic and germ-line mosaicism in the phenotypically normal mother explain the recurrence of OI.
Collapse
Affiliation(s)
- J Bonaventure
- CNRS URA 584, Clinique Maurice Lamy, Hôpital des Enfants Malades, Paris, France
| | | | | | | |
Collapse
|
39
|
Mottes M, Sangalli A, Valli M, Gomez Lira M, Tenni R, Buttitta P, Pignatti PF, Cetta G. Mild dominant osteogenesis imperfecta with intrafamilial variability: the cause is a serine for glycine alpha 1(I) 901 substitution in a type-I collagen gene. Hum Genet 1992; 89:480-4. [PMID: 1634225 DOI: 10.1007/bf00219169] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The molecular defect responsible for a case of mild osteogenesis imperfecta (OI) with repeated femoral fractures was investigated. The proband and his mother, who presented minor OI signs but no bone fractures, were shown to produce normal and abnormal type-I procollagen molecules in their dermal fibroblasts. The molecular defect was localized in about half of the proband's pro alpha 1(I) mRNA molecules by chemical cleavage with piperidine of hydroxylamine-reacted mRNA:cDNA heteroduplexes. The corresponding region was reverse-transcribed and amplified by polymerase chain reaction (PCR). Cloning and sequencing of the amplified products revealed in both subjects a G-to-A transition in the first base of codon 901 of the alpha 1(I) triple helical domain, which led to a serine for glycine substitution. Allele-specific oligonucleotide hybridization to amplified genomic DNA from fibroblasts and leukocytes confirmed the heterozygous nature of both patients and proved the absence of mosaicism. The presence of the mutation was excluded in other healthy family members, who were reported to have bluish selerae. The mild phenotypic outcome of this newly characterized mutation contradicts previous findings on glycine substitutions in the C-terminal region of collagen triple helix, most of which caused lethal OI.
Collapse
Affiliation(s)
- M Mottes
- Istituto di Scienze Biologiche, University of Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chessler S, Byers P. Defective folding and stable association with protein disulfide isomerase/prolyl hydroxylase of type I procollagen with a deletion in the pro alpha 2(I) chain that preserves the Gly-X-Y repeat pattern. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42578-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
41
|
Beighton P, De Paepe A, Hall JG, Hollister DW, Pope FM, Pyeritz RE, Steinmann B, Tsipouras P. Molecular nosology of heritable disorders of connective tissue. AMERICAN JOURNAL OF MEDICAL GENETICS 1992; 42:431-48. [PMID: 1609825 DOI: 10.1002/ajmg.1320420406] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Beighton
- Department of Human Genetics, Medical School, University of Cape Town, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Cole WG, Patterson E, Bonadio J, Campbell PE, Fortune DW. The clinicopathological features of three babies with osteogenesis imperfecta resulting from the substitution of glycine by valine in the pro alpha 1 (I) chain of type I procollagen. J Med Genet 1992; 29:112-8. [PMID: 1613761 PMCID: PMC1015850 DOI: 10.1136/jmg.29.2.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The features of three babies with perinatal lethal osteogenesis imperfecta (OI II) resulting from substitutions of glycine by valine in the triple helical domain of the alpha 1(I) chain of type I collagen were studied. The babies were heterozygous for this substitution at residue 1006 in case 1 (OI35), 973 in case 2 (OI59), and 256 in case 3 (OI7B). OI35 had the most severe clinical form, OI IIC, with premature rupture of membranes, severe antepartum haemorrhage, stillbirth, severe short limbed dwarfism, and extreme osteoporosis. OI59 was a better formed baby but was also born prematurely as a result of premature rupture of membranes and severe antepartum haemorrhage. She had the radiographic features of OI IIA. OI7B was born at term and also had the radiographic features of OI IIA. Pathological examination of the skeletons of OI35 and OI59 showed grossly deficient intramembranous and endochondral ossification. Trabecular bone was sparse in the long bones and vertebrae. The trabeculae contained a cartilage core and an overlying layer of woven bone or osteoid. The diaphyses lacked cortical bone. The periosteal fibroblasts of OI35 contained grossly distended rough endoplasmic reticulum consistent with the 53% reduction in collagen secretion by cultured dermal fibroblasts. The aorta, skin, and lungs were hypoplastic in OI35 and OI59. The findings in this study show that glycine substitutions by valine in Gly-X-Y triplets, from glycine 256 to glycine 1006, of the triple helical domain of alpha 1(I) chains produce the OI II phenotype. The phenotype was most severe in the baby with the most carboxy-terminal substitution.
Collapse
Affiliation(s)
- W G Cole
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
43
|
Shapiro JR, Stover ML, Burn VE, McKinstry MB, Burshell AL, Chipman SD, Rowe DW. An osteopenic nonfracture syndrome with features of mild osteogenesis imperfecta associated with the substitution of a cysteine for glycine at triple helix position 43 in the pro alpha 1(I) chain of type I collagen. J Clin Invest 1992; 89:567-73. [PMID: 1737847 PMCID: PMC442889 DOI: 10.1172/jci115622] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations affecting the pro alpha 1(I) or pro alpha 2(I) collagen genes have been identified in each of the major clinical types of osteogenesis imperfecta. This study reports the presence of a heritable connective tissue disorder in a family with an osteopenic syndrome which has features of mild osteogenesis imperfecta but was considered idiopathic osteoporosis in the proband. At age 38, while still premenopausal, she was found to have osteopenia, short stature, hypermobile joints, mild hyperelastic skin, mild scoliosis, and blue sclerae. There was no history of vertebral or appendicular fracture. Hip and vertebral bone mineral density measurements were consistent with marked fracture risk. Delayed reduction SDS-PAGE of pepsin-digested collagens from dermal fibroblast cultures demonstrated an anomalous band migrating between alpha 1(I) and alpha 1(III). This band merged with the normal alpha-chains upon prereduction, indicating an unexpected cysteine residue. Cyanogen bromide peptide mapping suggested that the mutation was in the smaller NH2-terminal peptides. cDNA was reverse transcribed from mRNA and amplified by the polymerase chain reaction. A basepair mismatch between proband and control alpha 1(I) cDNA hybrids was detected by chemical cleavage with hydroxylamine:piperidine. The cysteine substitution was thus localized to alpha 1(I) exon 9 within the cyanogen bromide 4 peptide. Nucleotide sequence analysis localized a G----T point mutation in the first position of helical codon 43, replacing the expected glycine (GGT) residue with a cysteine (TGT). The prevalence of similar NH2-terminal mutations in subjects with this phenotype which clinically overlaps idiopathic osteoporosis remains to be determined.
Collapse
Affiliation(s)
- J R Shapiro
- Bone Metabolism Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | | | | | | | | | | | | |
Collapse
|
44
|
Edwards MJ, Wenstrup RJ, Byers PH, Cohn DH. Recurrence of lethal osteogenesis imperfecta due to parental mosaicism for a mutation in the COL1A2 gene of type I collagen. The mosaic parent exhibits phenotypic features of a mild form of the disease. Hum Mutat 1992; 1:47-54. [PMID: 1301191 DOI: 10.1002/humu.1380010108] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have determined that a man, ascertained because he fathered a child with lethal osteogenesis imperfecta (OI) with each of two partners, is mosaic in both his germline and somatic tissues for a mutation in the COL1A2 gene which encodes the pro alpha 2(I) chain of type I procollagen. His dermal fibroblasts were previously shown to synthesize a population of cysteine-containing alpha 2(I) chains that were posttranslationally overmodified. DNA sequence analysis of COL1A2 cDNAs demonstrated that the cysteine-containing chain resulted from a point mutation (G to T) in the first position of the codon for the glycine at residue 472 of the triple helical domain. Genomic DNA from the one available affected infant contained the mutant and normal COL1A2 alleles in equal proportion. Examination of DNA from several tissues of the father showed that the mutant allele was present in approximately 40% of his sperm, 80% of his lymphocytes, and nearly 100% of his dermal fibroblasts. Despite the high level of mosaicism detected in somatic tissues, the only phenotypic manifestation of OI in the proband was that he was shorter than his unaffected male relatives and had mild dentinogenesis imperfecta. Thermal stability of type I collagen molecules containing the substitution was decreased, but to a lesser extent than for a nonlethal cysteine for glycine substitution at residue 259 of alpha 2(I), indicating that this measure of molecular stability may be of limited use in explaining the pathogenesis of osteogenesis imperfecta.
Collapse
Affiliation(s)
- M J Edwards
- Ahmanson Department of Pediatrics, Steven Spielberg Pediatric Research Center, Cedars Sinai Medical Center, Los Angeles, California 90048
| | | | | | | |
Collapse
|
45
|
Bateman JF, Moeller I, Hannagan M, Chan D, Cole WG. Lethal perinatal osteogenesis imperfecta due to a type I collagen alpha 2(I) Gly to Arg substitution detected by chemical cleavage of an mRNA:cDNA sequence mismatch. Hum Mutat 1992; 1:55-62. [PMID: 1284475 DOI: 10.1002/humu.1380010109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A single base mismatch was detected by a chemical cleavage method in heteroduplexes formed between patient mRNA and a control collagen alpha 2(I) cDNA probe in a case of osteogenesis imperfecta type II. The region of the mRNA mismatch was amplified using the polymerase chain reaction, cloned and sequenced. A heterozygous point mutation of G to C at base pair 1,774 of the collagen alpha 2(I) mRNA resulted in the substitution of glycine with arginine at amino acid position 457 of the helix. Type I collagen of alpha 1(I)- and alpha 2(I)-chains from the patient migrated slowly on electrophoresis due to increased levels of posttranslational modification of lysine. The parents' fibroblast collagen did not contain the mRNA mismatch and the collagens showed normal electrophoretic behaviour. Two-dimensional electrophoresis of the CNBr peptides from the patient's collagen confirmed the excessive posttranslational modification of the alpha 1(I)- and alpha 2(I)-chains in the CNBr peptides N-terminal to the mutation due to disruption of the obligatory Gly-X-Y triplet repeat of the helix. The mutation led to reduced procollagen secretion and helix destabilization as evidenced by a decreased thermal stability. These data lend further support to the accumulating evidence that type I collagen alpha 2(I) glycine substitution mutations result in the same spectrum of clinical severity as those in the alpha 1(I)-chain.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J F Bateman
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
46
|
Nicholls AC, Oliver J, Renouf DV, Keston M, Pope FM. Substitution of cysteine for glycine at residue 415 of one allele of the alpha 1(I) chain of type I procollagen in type III/IV osteogenesis imperfecta. J Med Genet 1991; 28:757-64. [PMID: 1770532 PMCID: PMC1017111 DOI: 10.1136/jmg.28.11.757] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have examined the type I collagen in a patient with type III/IV osteogenesis imperfecta. Two forms of alpha 1(I) chain were produced, one normal and the other containing a cysteine residue within the triple helical domain of the molecule. Cysteine is not normally present in this domain of type I collagen. Peptide mapping experiments localised the mutation to peptide alpha 1(I)CB3 which spans residues 403 to 551 of the triple helix. Subsequent PCR amplification of cDNA covering this region followed by sequencing showed a G to T single base change in the GGC codon for glycine 415 generating TGC, the codon for cysteine. The effect of the mutation on the protein is to delay secretion from the cell, reduce the thermal stability of the molecule by 2 degrees C, and cause excessive post-translational modification of all chains in molecules containing one or more mutant alpha 1(I) chains. The clinical phenotype observed in this patient and the position of the mutation conform to the recent prediction of Starman et al that Gly----Cys mutations in the alpha 1(I) chain have a gradient of severity decreasing from the C-terminus to the N-terminus.
Collapse
Affiliation(s)
- A C Nicholls
- Dermatology Research Group, Clinical Research Centre, Harrow, Middlesex
| | | | | | | | | |
Collapse
|
47
|
Chan D, Cole W. Low basal transcription of genes for tissue-specific collagens by fibroblasts and lymphoblastoid cells. Application to the characterization of a glycine 997 to serine substitution in alpha 1(II) collagen chains of a patient with spondyloepiphyseal dysplasia. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98925-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Affiliation(s)
- P H Byers
- Department of Pathology, University of Washington, Seattle 98195
| | | | | |
Collapse
|
49
|
Cohen-Solal L, Bonaventure J, Maroteaux P. Dominant mutations in familial lethal and severe osteogenesis imperfecta. Hum Genet 1991; 87:297-301. [PMID: 1864604 DOI: 10.1007/bf00200907] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Four families presenting with familial osteogenesis imperfecta (OI) have been studied: 2 with the lethal type II and 2 with the severe type III form. Fibroblasts of the patients, all issue from non-consanguineous parents, produced normal and abnormal alpha(I) chains. These heterozygous mutations differentiate the recurrent forms from homozygous mutations characteristic of autosomal recessive forms. Although the identity of the mutations could not be determined, such recurrence of autosomal dominant OI is probably the result of germinal mosaicism in one of the parents. Biochemical results were consistent with a somatic mosaicism in the father's fibroblasts in one family. Moreover, our studies show that not only OI type II but also severe OI type III can arise from gonadal mosaicism. We discuss the importance of such a phenomenon for genetic counseling.
Collapse
Affiliation(s)
- L Cohen-Solal
- Laboratoire de Physiopathologie, URA 584 CNRS, Hôpital Necker, Paris, France
| | | | | |
Collapse
|
50
|
Bateman JF, Hannagan M, Chan D, Cole WG. Characterization of a type I collagen alpha 2(I) glycine-586 to valine substitution in osteogenesis imperfecta type IV. Detection of the mutation and prenatal diagnosis by a chemical cleavage method. Biochem J 1991; 276 ( Pt 3):765-70. [PMID: 2064612 PMCID: PMC1151070 DOI: 10.1042/bj2760765] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A chemical cleavage method for detecting mismatched bases in heteroduplexes formed between patient mRNA and control cDNA probes was employed to identify a single base mutation in a heterozygous case of osteogenesis imperfecta type IV. The parents' fibroblast mRNA did not contain the mutation. The region of the mRNA mismatch was amplified by using the polymerase chain reaction, cloned and sequenced. A point mutation of G to U at base-pair 2162 of the collagen alpha 2(I) mRNA resulted in the substitution of glycine by valine at amino acid position 586 of the helix. This substitution disrupted the critical Gly-Xaa-Yaa repeating unit of the collagen triple helix and resulted in helix destabilization, as evidenced by a decreased thermal stability. This local disturbance to helix propagation from the C-terminus to the N-terminus led to the overmodification of the collagen helix downstream towards the N-terminus. However, collagen secretion in vitro was normal, and the clinical phenotype probably resulted from the secretion into the extracellular matrix of the mutant collagen combined with a decrease in collagen production to 65% of control values. The rapid detection of the osteogenesis imperfecta mutation by using the chemical cleavage method afforded the opportunity to apply the technique to prenatal diagnosis in the next pregnancy of the mother of the osteogenesis imperfecta patient. The absence of a mismatched base in chorionic villus mRNA and control cDNA heteroduplexes indicated that the foetus did not carry the mutation, which was confirmed by the subsequent delivery of a normal baby.
Collapse
Affiliation(s)
- J F Bateman
- Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|