1
|
Strandmoe AL, Bremer J, Diercks GFH, Gostyński A, Ammatuna E, Pas HH, Wouthuyzen-Bakker M, Huls GA, Heeringa P, Laman JD, Horváth B. Beyond the skin: B cells in pemphigus vulgaris, tolerance and treatment. Br J Dermatol 2024; 191:164-176. [PMID: 38504438 DOI: 10.1093/bjd/ljae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Pemphigus vulgaris (PV) is a rare autoimmune bullous disease characterized by blistering of the skin and mucosa owing to the presence of autoantibodies against the desmosome proteins desmoglein 3 and occasionally in conjunction with desmoglein 1. Fundamental research into the pathogenesis of PV has revolutionized its treatment and outcome with rituximab, a B-cell-depleting therapy. The critical contribution of B cells to the pathogenesis of pemphigus is well accepted. However, the exact pathomechanism, mechanisms of onset, disease course and relapse remain unclear. In this narrative review, we provide an overview of the fundamental research progress that has unfolded over the past few centuries to give rise to current and emerging therapies. Furthermore, we summarize the multifaceted roles of B cells in PV, including their development, maturation and antibody activity. Finally, we explored how these various aspects of B-cell function contribute to disease pathogenesis and pave the way for innovative therapeutic interventions.
Collapse
Affiliation(s)
- Anne-Lise Strandmoe
- Departments of Medical Biology and Pathology
- Dermatology (Centre for Blistering Diseases)
| | | | - Gilles F H Diercks
- Departments of Medical Biology and Pathology
- Dermatology (Centre for Blistering Diseases)
| | - Antoni Gostyński
- Dermatology (Centre for Blistering Diseases)
- Department of Dermatology, Maastricht University Medical Centre, Maastricht, the Netherlands
| | | | | | - Marjan Wouthuyzen-Bakker
- Medical Microbiology and Infection Prevention; University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | | | | | - Jon D Laman
- Departments of Medical Biology and Pathology
| | | |
Collapse
|
2
|
Steinert L, Fuchs M, Sigmund AM, Didona D, Hudemann C, Möbs C, Hertl M, Hashimoto T, Waschke J, Vielmuth F. Desmosomal Hyper-adhesion Affects Direct Inhibition of Desmoglein Interactions in Pemphigus. J Invest Dermatol 2024:S0022-202X(24)00308-7. [PMID: 38677661 DOI: 10.1016/j.jid.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/06/2024] [Accepted: 03/02/2024] [Indexed: 04/29/2024]
Abstract
During differentiation, keratinocytes acquire a strong, hyper-adhesive state, where desmosomal cadherins interact calcium ion independently. Previous data indicate that hyper-adhesion protects keratinocytes from pemphigus vulgaris autoantibody-induced loss of intercellular adhesion, although the underlying mechanism remains to be elucidated. Thus, in this study, we investigated the effect of hyper-adhesion on pemphigus vulgaris autoantibody-induced direct inhibition of desmoglein (DSG) 3 interactions by atomic force microscopy. Hyper-adhesion abolished loss of intercellular adhesion and corresponding morphological changes of all pathogenic antibodies used. Pemphigus autoantibodies putatively targeting several parts of the DSG3 extracellular domain and 2G4, targeting a membrane-proximal domain of DSG3, induced direct inhibition of DSG3 interactions only in non-hyper-adhesive keratinocytes. In contrast, AK23, targeting the N-terminal extracellular domain 1 of DSG3, caused direct inhibition under both adhesive states. However, antibody binding to desmosomal cadherins was not different between the distinct pathogenic antibodies used and was not changed during acquisition of hyper-adhesion. In addition, heterophilic DSC3-DSG3 and DSG2-DSG3 interactions did not cause reduced susceptibility to direct inhibition under hyper-adhesive condition in wild-type keratinocytes. Taken together, the data suggest that hyper-adhesion reduces susceptibility to autoantibody-induced direct inhibition in dependency on autoantibody-targeted extracellular domain but also demonstrate that further mechanisms are required for the protective effect of desmosomal hyper-adhesion in pemphigus vulgaris.
Collapse
Affiliation(s)
- Letyfee Steinert
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael Fuchs
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna M Sigmund
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christoph Hudemann
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-Universität Marburg, Marburg, Germany
| | - Takashi Hashimoto
- Department of Dermatology, Graduate School of Medicine, Osaka City Metropolitan University, Osaka, Japan
| | - Jens Waschke
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Franziska Vielmuth
- Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
3
|
van Beek N, Eming R, Reuss A, Zillikens D, Sárdy M, Günther C, Kiritsi D, Benoit S, Beissert S, Gläser R, Gollnick H, Horváth ON, Pfeiffer C, Röcken M, Schauer F, Schreml S, Steinbrink K, Zink A, Schade-Brittinger C, Hertl M, Schmidt E. Efficacy and safety of adjuvant immunoadsorption in pemphigus vulgaris and pemphigus foliaceus (IA-Pem Study): a multicentre randomized controlled trial. Br J Dermatol 2024; 190:657-667. [PMID: 38133541 DOI: 10.1093/bjd/ljad489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Pemphigus vulgaris (PV) and pemphigus foliaceus (PF) are potentially life-threatening autoimmune blistering diseases. Treatment is based on long-term immunosuppression with high doses of glucocorticosteroids in combination with potentially corticosteroid-sparing agents and/or rituximab. Immunoadsorption (IA) has emerged as a fast-acting adjuvant treatment option. OBJECTIVES To assess the clinical efficacy of IA in addition to best medical treatment (BMT). METHODS We conducted a multicentre (26 centres from Germany and Austria) randomized controlled trial in 72 patients with newly diagnosed, relapsed or chronic active PV or PF (34 female patients and 38 male patients, aged 42-72 years) comparing BMT (prednisolone 1.0 mg kg-1 per day plus azathioprine or mycophenolate) with adjuvant IA (BMT + IA). Central 1 : 1 randomization was done at the coordinating centre for clinical trials (KKS Marburg). The primary endpoint was analysed using Kaplan-Meier and Cox regression methods. RESULTS The study was ended prematurely owing to safety concerns after random allocation of 72 patients to BMT + IA (n = 34) or BMT (n = 38). The primary endpoint, time to complete remission on therapy, was not significantly different for the two groups [hazard ratio (HR) 1.35, 95% confidence interval (CI) 0.68-2.69; P = 0.39]. The cumulative dose of prednisolone was significantly lower in the BMT + IA group compared with BMT alone (difference -1214, 95% CI -2225 to -70; P = 0.03). In a post hoc analysis, patients with more extensive PV/PF showed a tendency towards a shorter time to remission in the BMT + IA group compared with the BMT group (HR 1.87, P = 0.17 in patients with baseline Pemphigus Disease Area Index ≥ 15). While more adverse events were observed in patients in the BMT group (29 vs. 25), severe adverse events were more frequent in patients in the BMT + IA group (17 events in 10 patients vs. 11 events in 8 patients). CONCLUSIONS In this study, adjuvant IA did not demonstrate a shorter time to clinical remission, but a corticosteroid-sparing effect was observed. In patients with extensive PV/PF, post hoc analysis suggests that adjuvant IA may lead to earlier remission, but potential adverse events must be carefully weighed against the expected benefits.
Collapse
Affiliation(s)
- Nina van Beek
- Department of Dermatology, Allergology and Venereology
| | | | - Alexander Reuss
- Coordinating Center for Clinical Trials, Phillips University, Marburg, Germany
| | | | - Miklós Sárdy
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Claudia Günther
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Dimitra Kiritsi
- Department of Dermatology and Venereology, University Hospital Freiburg, Freiburg, Germany
| | - Sandrine Benoit
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Stefan Beissert
- Department of Dermatology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Regine Gläser
- Department of Dermatology, Venereology and Allergology, Christian-Albrechts University, Kiel, Germany
| | - Harald Gollnick
- Department of Dermatology and Venereology, Otto-von-Guericke University, Magdeburg, Germany
| | - Orsolya N Horváth
- Department of Dermatology and Allergy, University Hospital, LMU Munich, Munich, Germany
| | - Christiane Pfeiffer
- Department of Dermatology and Allergology, University Hospital Ulm, Ulm, Germany
| | - Martin Röcken
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Franziska Schauer
- Department of Dermatology and Venereology, University Hospital Freiburg, Freiburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, Regensburg, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Alexander Zink
- Department of Dermatology and Allergology, Technical University Munich, Munich, Germany
| | | | | | - Enno Schmidt
- Department of Dermatology, Allergology and Venereology
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
4
|
Dar SA, Das S, Hakami MA, Akhter N, Mustafa M, Jawed A, Bhattacharya SN, Banerjee BD, Ahmad A. Organochlorine pesticides disrupt T helper cell regulation and reduce IL-2 and IFN-γ favoring infection and production of autoantibodies among pemphigus patients. Toxicol In Vitro 2024; 95:105764. [PMID: 38101492 DOI: 10.1016/j.tiv.2023.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/19/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
The list of environmental factors that trigger autoimmune diseases in genetically susceptible individuals has grown in the recent years and is far from complete. The possible intervention of the environment in triggering these diseases is ever more perceived by the clinicians. This study investigated the effect of environmental factors like organochlorine pesticides (OCPs) on proportions of different T lymphocyte subsets and their cytokine secretion in-vitro among pemphigus patients, before and after specific immunosuppressive therapy. Higher levels of OCPs like β-HCH (isoform of hexachlorohexane), α-endosulfan (a form of endosulfan) and p,p΄-DDE (a metabolite of o,p'-dichlorodiphenyltrichloroethane) were observed in the blood of pemphigus patients as compared to healthy controls. HCH and DDT exposure caused specific reduction in CD8+CD45RA+ and CD4+CD25+ T lymphocyte subpopulations in these patient PBMCs. A strong reduction in Th1 (IL-2 and IFN-γ) cytokines upon exposure to these OCPs in-vitro was also observed. These findings indicate that HCH and DDT have a significant impact on Th1 lymphocytes. Impaired production of these cytokines might favor infections and production of autoantibodies. We therefore speculate that the systemic absorption of the pesticide after the topical contact may be one of the factors triggering the immunological mechanism among pemphigus patients.
Collapse
Affiliation(s)
- Sajad Ahmad Dar
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi 110095, India; Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia.
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi 110095, India
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Al- Quwayiyah 19254, Riyadh, Saudi Arabia
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Mohammad Mustafa
- Scientific Research Centre, Prince Sultan Military Medical City, Riyadh 12486, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Sambit Nath Bhattacharya
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi 110095, India
| | - Basu Dev Banerjee
- Department of Biochemistry, University College of Medical Sciences (University of Delhi) & Guru Teg Bahadur Hospital, Delhi 110095, India
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
5
|
Trier NH, Houen G. Antibody Cross-Reactivity in Auto-Immune Diseases. Int J Mol Sci 2023; 24:13609. [PMID: 37686415 PMCID: PMC10487534 DOI: 10.3390/ijms241713609] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Autoimmunity is defined by the presence of antibodies and/or T cells directed against self-components. Although of unknown etiology, autoimmunity commonly is associated with environmental factors such as infections, which have been reported to increase the risk of developing autoimmune diseases. Occasionally, similarities between infectious non-self and self-tissue antigens may contribute to immunological cross-reactivity in autoimmune diseases. These reactions may be interpreted as molecular mimicry, which describes cross-reactivity between foreign pathogens and self-antigens that have been reported to cause tissue damage and to contribute to the development of autoimmunity. By focusing on the nature of antibodies, cross-reactivity in general, and antibody-antigen interactions, this review aims to characterize the nature of potential cross-reactive immune reactions between infectious non-self and self-tissue antigens which may be associated with autoimmunity but may not actually be the cause of disease onset.
Collapse
Affiliation(s)
- Nicole Hartwig Trier
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
| | - Gunnar Houen
- Department of Neurology, Rigshospitalet Glostrup, Valdemar Hansens Vej 1-23, 2600 Glostrup, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
6
|
Eichkorn RA, Schmidt MF, Walter E, Hertl M, Baron JM, Waschke J, Yazdi AS. Innate immune activation as cofactor in pemphigus disease manifestation. Front Immunol 2022; 13:898819. [PMID: 35928825 PMCID: PMC9343989 DOI: 10.3389/fimmu.2022.898819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Molecular mechanisms underlying auto-antibody-induced acantholysis in pemphigus vulgaris are subject of current research to date. To decipher the discrepancy between ubiquitous antibody binding to the epidermal desmosomes, but discontinuous disease manifestation, we were able to identify Ultraviolet A (UVA) as a cofactor for acantholysis. UVA induces interleukin (IL)-1 secretion in keratinocytes, mirroring innate immune system activation. In an in vitro keratinocyte dissociation assay increased fragmentation was observed when UVA was added to anti-Desmoglein 3 Immunoglobulins (anti-Dsg3 IgG). These results were confirmed in skin explants where UVA enhanced anti-Dsg3-mediated loss of epidermal adhesion. The UVA-mediated effect was blocked in vitro by the pan-caspase-inhibitor zVAD-fmk. Thus, we introduce UVA as a caspase-dependent exogenous cofactor for acantholysis which suggests that local innate immune responses largely contribute to overt clinical blister formation upon autoantibody binding to epidermal cells in pemphigus vulgaris.
Collapse
Affiliation(s)
- Ramona A. Eichkorn
- Department of Dermatology, Eberhard Karl University of Tuebingen, Tuebingen, Germany
| | - Morna F. Schmidt
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
| | - Elias Walter
- Department I, Institute of Anatomy and Cell Biology, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University of Marburg, Marburg, Germany
| | - Jens Malte Baron
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
| | - Jens Waschke
- Department I, Institute of Anatomy and Cell Biology, Ludwig Maximilian University of Munich (LMU), Munich, Germany
| | - Amir S. Yazdi
- Department of Dermatology, Eberhard Karl University of Tuebingen, Tuebingen, Germany
- Department of Dermatology, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
- *Correspondence: Amir S. Yazdi,
| |
Collapse
|
7
|
Egu DT, Schmitt T, Waschke J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front Immunol 2022; 13:884067. [PMID: 35720332 PMCID: PMC9205406 DOI: 10.3389/fimmu.2022.884067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune bullous skin disease caused primarily by autoantibodies (PV-IgG) against the desmosomal adhesion proteins desmoglein (Dsg)1 and Dsg3. PV patient lesions are characterized by flaccid blisters and ultrastructurally by defined hallmarks including a reduction in desmosome number and size, formation of split desmosomes, as well as uncoupling of keratin filaments from desmosomes. The pathophysiology underlying the disease is known to involve several intracellular signaling pathways downstream of PV-IgG binding. Here, we summarize our studies in which we used transmission electron microscopy to characterize the roles of signaling pathways in the pathogenic effects of PV-IgG on desmosome ultrastructure in a human ex vivo skin model. Blister scores revealed inhibition of p38MAPK, ERK and PLC/Ca2+ to be protective in human epidermis. In contrast, inhibition of Src and PKC, which were shown to be protective in cell cultures and murine models, was not effective for human skin explants. The ultrastructural analysis revealed that for preventing skin blistering at least desmosome number (as modulated by ERK) or keratin filament insertion (as modulated by PLC/Ca2+) need to be ameliorated. Other pathways such as p38MAPK regulate desmosome number, size, and keratin insertion indicating that they control desmosome assembly and disassembly on different levels. Taken together, studies in human skin delineate target mechanisms for the treatment of pemphigus patients. In addition, ultrastructural analysis supports defining the specific role of a given signaling molecule in desmosome turnover at ultrastructural level.
Collapse
|
8
|
Hiermaier M, Kugelmann D, Radeva MY, Didona D, Ghoreschi K, Farzan S, Hertl M, Waschke J. Pemphigus Foliaceus Autoantibodies Induce Redistribution Primarily of Extradesmosomal Desmoglein 1 in the Cell Membrane. Front Immunol 2022; 13:882116. [PMID: 35634274 PMCID: PMC9134081 DOI: 10.3389/fimmu.2022.882116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
The autoimmune dermatosis pemphigus foliaceus (PF) is predominantly caused by IgG autoantibodies against the desmosomal cadherin desmoglein (Dsg) 1. The exact mechanisms that lead to the characteristic epidermal blistering are not yet fully understood. In the present study, we used a variety of biophysical methods to examine the fate of membrane-bound Dsg1 after incubation with PF patients' IgG. Dispase-based dissociation assays confirmed that PF-IgG used for this study reduced intercellular adhesion in a manner dependent on phospholipase C (PLC)/Ca2+ and extracellular signal-regulated kinase (ERK) 1/2 signaling. Atomic force microscopy (AFM) revealed that Dsg1 binding on single molecule level paralleled effects on keratinocyte adhesion under the different conditions. Stimulated emission depletion (STED) super-resolution microscopy was used to investigate the localization of Dsg1 after PF-IgG incubation for 24 h. Under control conditions, Dsg1 was found to be in part co-localized with desmoplakin and thus inside of desmosomes as well as extra-desmosomal along the cell border. Incubation with PF-IgG reduced the extra-desmosomal Dsg1 fraction. In line with this, fluorescence recovery after photobleaching (FRAP) experiments demonstrated a strongly reduced mobility of Dsg1 in the cell membrane after PF-IgG treatment indicating remaining Dsg1 molecules were primarily located inside desmosomes. Mechanistically, experiments confirmed the involvement of PLC/Ca2+ since inhibition of PLC or 1,4,5-trisphosphate (IP3) receptor to reduce cytosolic Ca2+ reverted the effects of PF-IgG on Dsg1 intra-membrane mobility and localization. Taken together, our findings suggest that during the first 24 h PF-IgG induce redistribution predominantly of membrane-bound extradesmosomal Dsg1 in a PLC/Ca2+ dependent manner whereas Dsg1-containing desmosomes remain.
Collapse
Affiliation(s)
- Matthias Hiermaier
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, München, Germany
| | - Daniela Kugelmann
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, München, Germany
| | - Mariya Y. Radeva
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, München, Germany
| | - Dario Didona
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Dermatology, University Medical Center, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Solimani Farzan
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | - Jens Waschke
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, München, Germany
| |
Collapse
|
9
|
Lim YL, Bohelay G, Hanakawa S, Musette P, Janela B. Autoimmune Pemphigus: Latest Advances and Emerging Therapies. Front Mol Biosci 2022; 8:808536. [PMID: 35187073 PMCID: PMC8855930 DOI: 10.3389/fmolb.2021.808536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Pemphigus represents a group of rare and severe autoimmune intra-epidermal blistering diseases affecting the skin and mucous membranes. These painful and debilitating diseases are driven by the production of autoantibodies that are mainly directed against the desmosomal adhesion proteins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1). The search to define underlying triggers for anti-Dsg-antibody production has revealed genetic, environmental, and possible vaccine-driven factors, but our knowledge of the processes underlying disease initiation and pathology remains incomplete. Recent studies point to an important role of T cells in supporting auto-antibody production; yet the involvement of the myeloid compartment remains unexplored. Clinical management of pemphigus is beginning to move away from broad-spectrum immunosuppression and towards B-cell-targeted therapies, which reduce many patients’ symptoms but can have significant side effects. Here, we review the latest developments in our understanding of the predisposing factors/conditions of pemphigus, the underlying pathogenic mechanisms, and new and emerging therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Yen Loo Lim
- Department of Dermatology, National Skin Centre, Singapore
| | - Gerome Bohelay
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Sho Hanakawa
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Philippe Musette
- Department of Dermatology and INSERM U1125, Avicenne Hospital, Bobigny, France
| | - Baptiste Janela
- A*STAR Skin Research Labs (ASRL), Agency for Science, Technology and Research (A*STAR), Singapore
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research (A*STAR), Singapore
- Singapore Immunology network, Agency for Science, Technology and Research (A*STAR), Singapore
- *Correspondence: Baptiste Janela,
| |
Collapse
|
10
|
Malik AM, Tupchong S, Huang S, Are A, Hsu S, Motaparthi K. An Updated Review of Pemphigus Diseases. Medicina (B Aires) 2021; 57:medicina57101080. [PMID: 34684117 PMCID: PMC8540565 DOI: 10.3390/medicina57101080] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 01/19/2023] Open
Abstract
Clinicians may encounter a variety of skin conditions that present with vesiculobullous lesions in their everyday practice. Pemphigus vulgaris, pemphigus foliaceus, IgA pemphigus, and paraneoplastic pemphigus represent the spectrum of autoimmune bullous dermatoses of the pemphigus family. The pemphigus family of diseases is characterized by significant morbidity and mortality. Considering the risks associated with a delayed diagnosis or misdiagnosis and the potential for overlap in clinical features and treatment, evaluation for suspected pemphigus disease often requires thorough clinical assessment and laboratory testing. Diagnosis is focused on individual biopsies for histopathology and direct immunofluorescence. Additional laboratory methods used for diagnosis include indirect immunofluorescence and enzyme-linked immunosorbent assay. Recent advancements, including anti-CD20 therapy, have improved the efficacy and reduced the morbidity of pemphigus treatment. This contribution presents updates on the pathophysiology, clinical features, diagnostic work-up, and medical management of pemphigus. Improved strategies for diagnosis and clinical assessment are reviewed, and newer treatment options are discussed.
Collapse
Affiliation(s)
- Ali M. Malik
- College of Medicine, University of Florida, Gainesville, FL 32606, USA; (A.M.M.); (A.A.)
| | - Sarah Tupchong
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Simo Huang
- Department of Dermatology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (S.H.); (S.H.)
| | - Abhirup Are
- College of Medicine, University of Florida, Gainesville, FL 32606, USA; (A.M.M.); (A.A.)
| | - Sylvia Hsu
- Department of Dermatology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (S.H.); (S.H.)
| | - Kiran Motaparthi
- Department of Dermatology, College of Medicine, University of Florida, Gainesville, FL 32606, USA
- Correspondence:
| |
Collapse
|
11
|
Analysis of the Specificity of Auto-Reactive Antibodies to Individual Fragments of the Extracellular Domain of Desmoglein 3 in Patients with Pemphigus Vulgaris. Bull Exp Biol Med 2021; 171:475-479. [PMID: 34542752 DOI: 10.1007/s10517-021-05254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 10/20/2022]
Abstract
A method for the analysis of the epitope specificity of auto-reactive antibodies to desmoglein 3 (Dsg3) using competitive ELISA has been developed. It is based on a two-stage solid-phase ELISA with initial "depletion" of auto-reactive antibodies against the studied epitope and subsequent quantitative assessment of antibodies against full-length extracellular domain Dsg3. The proposed approach for assessing the specificity of the autoimmune response in patients with pemphigus vulgaris can provide in the future the possibility to personalize the therapy using plasmapheresis by preliminary selection of the antigenic composition of the extracorporeal immunosorbent.
Collapse
|
12
|
Zou Y, Yuan H, Zhou S, Zhou Y, Zheng J, Zhu H, Pan M. The Pathogenic Role of CD4+ Tissue-Resident Memory T Cells Bearing T Follicular Helper-Like Phenotype in Pemphigus Lesions. J Invest Dermatol 2021; 141:2141-2150. [DOI: 10.1016/j.jid.2021.01.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/27/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
|
13
|
Huang Y, Jedličková H, Cai Y, Rehman A, Gammon L, Ahmad US, Uttagomol J, Parkinson EK, Fortune F, Wan H. Oxidative Stress-Mediated YAP Dysregulation Contributes to the Pathogenesis of Pemphigus Vulgaris. Front Immunol 2021; 12:649502. [PMID: 33968042 PMCID: PMC8098436 DOI: 10.3389/fimmu.2021.649502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 11/15/2022] Open
Abstract
Pemphigus Vulgaris (PV) is a life-threatening autoimmune disease manifested with blisters in the skin and mucosa and caused by autoantibodies against adhesion protein desmoglein-3 (Dsg3) expressed in epithelial membrane linings of these tissues. Despite many studies, the pathogenesis of PV remains incompletely understood. Recently we have shown Dsg3 plays a role in regulating the yes-associated protein (YAP), a co-transcription factor and mechanical sensor, and constraining reactive oxygen species (ROS). This study investigated the effect of PV sera as well as the anti-Dsg3 antibody AK23 on these molecules. We detected elevated YAP steady-state protein levels in PV cells surrounding blisters and perilesional regions and in keratinocytes treated with PV sera and AK23 with concomitant transient ROS overproduction. Cells treated with hydrogen peroxide also exhibited augmented nuclear YAP accompanied by reduction of Dsg3 and α-catenin, a negative regulator of YAP. As expected, transfection of α-catenin-GFP plasmid rendered YAP export from the nucleus evoked by hydrogen peroxide. In addition, suppression of total YAP was observed in hydrogen peroxide treated cells exposed to antioxidants with enhanced cell-cell adhesion being confirmed by decreased fragmentation in the dispase assay compared to hydrogen peroxide treatment alone. On the other hand, the expression of exogenous YAP disrupted intercellular junction assembly. In contrast, YAP depletion resulted in an inverse effect with augmented expression of junction assembly proteins, including Dsg3 and α-catenin capable of abolishing the effect of AK23 on Dsg3 expression. Finally, inhibition of other kinase pathways, including p38MAPK, also demonstrated suppression of YAP induced by hydrogen peroxide. Furthermore, antioxidant treatment of keratinocytes suppressed PV sera-induced total YAP accumulation. In conclusion, this study suggests that oxidative stress coupled with YAP dysregulation attributes to PV blistering, implying antioxidants may be beneficial in the treatment of PV.
Collapse
Affiliation(s)
- Yunying Huang
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Hana Jedličková
- Department of Dermatology, St. Anna University Hospital, Brno, Czechia
| | - Yang Cai
- CB Joint MHNCRL, Hospital and School of Stomatology, Guizhou Medical University, Guiyang, China
| | - Ambreen Rehman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Luke Gammon
- Phenotypic Screening Facility, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Jutamas Uttagomol
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Eric Kenneth Parkinson
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Farida Fortune
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| |
Collapse
|
14
|
Skin-Associated B Cells in the Pathogenesis of Cutaneous Autoimmune Diseases-Implications for Therapeutic Approaches. Cells 2020; 9:cells9122627. [PMID: 33297481 PMCID: PMC7762338 DOI: 10.3390/cells9122627] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022] Open
Abstract
B lymphocytes are crucial mediators of systemic immune responses and are known to be substantial in the pathogenesis of autoimmune diseases with cutaneous manifestations. Amongst them are lupus erythematosus, dermatomyositis, systemic sclerosis and psoriasis, and particularly those driven by autoantibodies such as pemphigus and pemphigoid. However, the concept of autoreactive skin-associated B cells, which may reside in the skin and locally contribute to chronic inflammation, is gradually evolving. These cells are believed to differ from B cells of primary and secondary lymphoid organs and may provide additional features besides autoantibody production, including cytokine expression and crosstalk to autoreactive T cells in an antigen-presenting manner. In chronically inflamed skin, B cells may appear in tertiary lymphoid structures. Those abnormal lymph node-like structures comprise a network of immune and stromal cells possibly enriched by vascular structures and thus constitute an ideal niche for local autoimmune responses. In this review, we describe current considerations of different B cell subsets and their assumed role in skin autoimmunity. Moreover, we discuss traditional and B cell-associated approaches for the treatment of autoimmune skin diseases, including drugs targeting B cells (e.g., CD19- and CD20-antibodies), plasma cells (e.g., proteasome inhibitors, CXCR4 antagonists), activated pathways (such as BTK- and PI3K-inhibitors) and associated activator molecules (BLyS, APRIL).
Collapse
|
15
|
Cheraghlou S, Levy LL. Fixed drug eruptions, bullous drug eruptions, and lichenoid drug eruptions. Clin Dermatol 2020; 38:679-692. [PMID: 33341201 DOI: 10.1016/j.clindermatol.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug reactions are among the most common reasons for inpatient dermatology consultation. These reactions are important to identify because discontinuation of the offending agent may lead to disease remission. With the rising use of immunomodulatory and targeted therapeutics in cancer care and the increased incidence in associated reactions to these drugs, the need for accurate identification and treatment of such eruptions has led to the development of the "oncodermatology" subspecialty of dermatology. Immunobullous drug reactions are a dermatologic urgency, with patients often losing a significant proportion of their epithelial barrier; early diagnosis is critical in these cases to prevent complications and worsening disease. Lichenoid drug reactions have myriad causes and can take several months to occur, often leading to difficulties identifying the offending drug. Fixed drug eruptions can often mimic other systemic eruptions, such as immunobullous disease and Stevens-Johnson syndrome, and must be differentiated from them for effective therapy to be initiated. We review the clinical features, pathogenesis, and treatment of immunobullous, fixed, and lichenoid drug reactions with attention to key clinical features and differential diagnosis.
Collapse
Affiliation(s)
| | - Lauren L Levy
- Private Practice, New York, New York, USA; Private Practice, Westport, Connecticut, USA.
| |
Collapse
|
16
|
Shiokawa M, Kodama Y, Sekiguchi K, Kuwada T, Tomono T, Kuriyama K, Yamazaki H, Morita T, Marui S, Sogabe Y, Kakiuchi N, Matsumori T, Mima A, Nishikawa Y, Ueda T, Tsuda M, Yamauchi Y, Sakuma Y, Maruno T, Uza N, Tsuruyama T, Mimori T, Seno H, Chiba T. Laminin 511 is a target antigen in autoimmune pancreatitis. Sci Transl Med 2019; 10:10/453/eaaq0997. [PMID: 30089633 DOI: 10.1126/scitranslmed.aaq0997] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/28/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022]
Abstract
Autoimmune pancreatitis (AIP), a major manifestation of immunoglobulin G4-related disease (IgG4-RD), is an immune-mediated disorder, but the target autoantigens are still unknown. We previously reported that IgG in patients with AIP induces pancreatic injuries in mice by binding the extracellular matrix (ECM). In the current study, we identified an autoantibody against laminin 511-E8, a truncated laminin 511, one of the ECM proteins, in patients with AIP. Anti-laminin 511-E8 IgG was present in 26 of 51 AIP patients (51.0%), but only in 2 of 122 controls (1.6%), by enzyme-linked immunosorbent assay. Because truncated forms of other laminin family members in other organs have been reported, we confirmed that truncated forms of laminin 511 also exist in human and mouse pancreas. Histologic studies with patient pancreatic tissues showed colocalization of patient IgG and laminin 511. Immunization of mice with human laminin 511-E8 induced antibodies and pancreatic injury, fulfilling the pathologic criteria for human AIP. Four of 25 AIP patients without laminin 511-E8 antibodies had antibodies against integrin α6β1, a laminin 511 ligand. AIP patients with laminin 511-E8 antibodies exhibited distinctive clinical features, as the frequencies of malignancies or allergic diseases were significantly lower in patients with laminin 511-E8 antibodies than in those without. The discovery of these autoantibodies should aid in the understanding of AIP pathophysiology and possibly improve the diagnosis of AIP.
Collapse
Affiliation(s)
- Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yuzo Kodama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Teruko Tomono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Katsutoshi Kuriyama
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Hajime Yamazaki
- Department of Healthcare Epidemiology, School of Public Health in the Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yuko Sogabe
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Nobuyuki Kakiuchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Atsushi Mima
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tatsuki Ueda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Yojiro Sakuma
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Tsuneyo Mimori
- Department of Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.,Kansai Electric Power Hospital, Osaka 553-0003, Japan
| |
Collapse
|
17
|
Cho A, Caldara AL, Ran NA, Menne Z, Kauffman RC, Affer M, Llovet A, Norwood C, Scanlan A, Mantus G, Bradley B, Zimmer S, Schmidt T, Hertl M, Payne AS, Feldman R, Kowalczyk AP, Wrammert J. Single-Cell Analysis Suggests that Ongoing Affinity Maturation Drives the Emergence of Pemphigus Vulgaris Autoimmune Disease. Cell Rep 2019; 28:909-922.e6. [PMID: 31340153 PMCID: PMC6684256 DOI: 10.1016/j.celrep.2019.06.066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/22/2019] [Accepted: 06/18/2019] [Indexed: 11/29/2022] Open
Abstract
Pemphigus vulgaris (PV) is an autoimmune disease characterized by blistering sores on skin and mucosal membranes, caused by autoantibodies primarily targeting the cellular adhesion protein, desmoglein-3 (Dsg3). To better understand how Dsg3-specific autoantibodies develop and cause disease in humans, we performed a cross-sectional study of PV patients before and after treatment to track relevant cellular responses underlying disease pathogenesis, and we provide an in-depth analysis of two patients by generating a panel of mAbs from single Dsg3-specific memory B cells (MBCs). Additionally, we analyzed a paired sample from one patient collected 15-months prior to disease diagnosis. We find that Dsg3-specific MBCs have an activated phenotype and show signs of ongoing affinity maturation and clonal selection. Monoclonal antibodies (mAbs) with pathogenic activity primarily target epitopes in the extracellular domains EC1 and EC2 of Dsg3, though they can also bind to the EC4 domain. Combining antibodies targeting different epitopes synergistically enhances in vitro pathogenicity.
Collapse
Affiliation(s)
- Alice Cho
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Amber L Caldara
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nina A Ran
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zach Menne
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert C Kauffman
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Maurizio Affer
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexandra Llovet
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Carson Norwood
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Aaron Scanlan
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Grace Mantus
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bridget Bradley
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Stephanie Zimmer
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University, Marburg, Germany
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ron Feldman
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University, Atlanta, GA, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jens Wrammert
- Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
18
|
Porro AM, Hans Filho G, Santi CG. Consensus on the treatment of autoimmune bullous dermatoses: pemphigus vulgaris and pemphigus foliaceus - Brazilian Society of Dermatology. An Bras Dermatol 2019; 94:20-32. [PMID: 31166407 PMCID: PMC6544031 DOI: 10.1590/abd1806-4841.2019940206] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/30/2019] [Indexed: 02/08/2023] Open
Abstract
Pemphigus are intraepidermal autoimmune bullous dermatoses that occur with
lesions on the skin and / or mucous membranes. The most frequent types are
pemphigus vulgaris and pemphigus foliaceus (classic and endemic). This consensus
aims to present a complete and updated review of the treatment of these two more
frequent forms of pemphigus, based on the literature and the personal experience
of the authors. In moderate and severe cases of pemphigus vulgaris and
foliaceus, systemic corticosteroid therapy (prednisone or prednisolone) is the
treatment of choice. Adjuvant drugs, usually immunosuppressive drugs
(azathioprine, mycophenolate mofetil, methotrexate, cyclophosphamide) may be
prescribed as corticosteroid sparers in refractory cases or with
contraindications to corticosteroids to minimize side effects. In severe and
nonresponsive cases, corticosteroids in the form of intravenous pulse therapy,
immunoglobulin and plasmapheresis / immunoadsorption can be administered.
Immunobiological drugs, particularly rituximab, appear as a promising
alternative. For milder cases, smaller doses of oral corticosteroid, dapsone and
topical corticosteroids are options. At the end flowcharts are presented as
suggestions for a therapeutic approach for patients with pemphigus vulgaris and
pemphigus foliaceus.
Collapse
Affiliation(s)
- Adriana Maria Porro
- Department of Dermatology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Günter Hans Filho
- Dermatology Service, Hospital Universitário Maria Aparecida Pedrossian, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Claudia Giuli Santi
- Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
19
|
Chernyavsky A, Amber KT, Agnoletti AF, Wang C, Grando SA. Synergy among non-desmoglein antibodies contributes to the immunopathology of desmoglein antibody-negative pemphigus vulgaris. J Biol Chem 2019; 294:4520-4528. [PMID: 30692201 PMCID: PMC6433052 DOI: 10.1074/jbc.ra118.006743] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/23/2019] [Indexed: 11/06/2022] Open
Abstract
Pemphigus vulgaris (PV) is a potentially lethal mucocutaneous blistering disease characterized by IgG autoantibodies (AuAbs) binding to epidermal keratinocytes and inducing this devastating disease. Here, we observed that non-desmoglein (Dsg) AuAbs in the sera of patients with Dsg1/3 AuAb-negative acute PV are pathogenic, because IgGs from these individuals induced skin blistering in neonatal mice caused by suprabasal acantholysis. Serum levels of AuAbs to desmocollin 3 (Dsc3), M3 muscarinic acetylcholine receptor (M3AR), and secretory pathway Ca2+/Mn2+-ATPase isoform 1 (SPCA1) correlated with the disease stage of PV. Moreover, AuAb absorption on recombinant Dsc3, M3AR, or SPCA1 both prevented skin blistering in the passive transfer of AuAbs model of PV in BALB/c mice and significantly decreased the extent of acantholysis in a neonatal mouse skin explant model. Although acantholytic activities of each of these immunoaffinity-purified AuAbs could not induce a PV-like phenotype, their mixture produced a synergistic effect manifested by a positive Nikolskiy sign in the skin of neonatal mice. The downstream signaling of all pathogenic non-Dsg AuAbs involved p38 mitogen-activated protein kinase (MAPK)-mediated phosphorylation and elevation of cytochrome c release and caspase 9 activity. Anti-Dsc3 and anti-SPCA1 AuAbs also activated SRC proto-oncogene, nonreceptor tyrosine kinase (SRC). Of note, although a constellation of non-Dsg AuAbs apparently disrupted epidermal integrity, elimination of a single pathogenic AuAb could prevent keratinocyte detachment and blistering. Therefore, anti-Dsg1/3 AuAb-free PV can be a model for elucidating the roles of non-Dsg antigen-specific AuAbs in the physiological regulation of keratinocyte cell-cell adhesion and blister development.
Collapse
Affiliation(s)
| | - Kyle T Amber
- From the Departments of Dermatology and
- the Department of Dermatology, University of Illinois, Chicago, Illinois 60607
| | - Arianna F Agnoletti
- From the Departments of Dermatology and
- the DISSAL Section of Dermatology, San Martino Policlinic Hospital, 16132 Genoa, Italy, and
| | - Candice Wang
- the College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766
| | - Sergei A Grando
- From the Departments of Dermatology and
- Biological Chemistry and
- the Institute for Immunology, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
20
|
Hans-Filho G, Aoki V, Bittner NRH, Bittner GC. Fogo selvagem: endemic pemphigus foliaceus. An Bras Dermatol 2018; 93:638-650. [PMID: 30156612 PMCID: PMC6106655 DOI: 10.1590/abd1806-4841.20188235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/07/2018] [Indexed: 11/22/2022] Open
Abstract
Fogo selvagem or endemic pemphigus foliaceus is an autoimmune acantholytic anti-cadherin bullous disease that primarily affects seborrheic areas, which might disseminate. Brazil has the world's largest number of patients, mainly in the Central-West region, but the disease has also been reported in other South American countries. It affects young people and adults who have been exposed to rural areas, with occurrence of familial cases. Anti-desmoglein-1 autoantibodies are directed against desmosomal structures, with loss of adhesion of the upper layers of the epidermis, causing superficial blisters. The etiology is multifactorial and includes genetic, immune, and environmental factors, highlighting hematophagous insect bites; drug-related factors are occasionally involved. Flaccid blisters readily rupture to yield erosive-crusty lesions that sometimes resemble seborrheic dermatitis, actinic keratosis, and chronic cutaneous lupus erythematosus. The clinical presentation varies from localized to disseminated lesions. Clinical suspicion should be confirmed with histopathological and immunofluorescence tests, among others. The progression is usually chronic, and therapy varies according to clinical presentation, but generally requires systemic corticosteroid therapy associated with adjuvant immunosuppressive treatment to decrease the adverse effects of corticosteroids. Once the disease is under control, many patients remain stable on low-dose medication, and a significant proportion achieve remission.
Collapse
Affiliation(s)
- Günter Hans-Filho
- Department Dermatology, Faculdade de Medicina, Universidade Federal
de Mato Grosso do Sul, Campo Grande (MS), Brazil
- Dermatology Service, Hospital Maria Aparecida Pedrossian,
Universidade Federal de Mato Grosso do Sul, Campo Grande (MS), Brazil
| | - Valéria Aoki
- Department of Dermatology, Faculdade de Medicina, Universidade de
São Paulo, São Paulo (SP), Brazil
| | - Nelise Ritter Hans Bittner
- Dermatology Service, Hospital Maria Aparecida Pedrossian,
Universidade Federal de Mato Grosso do Sul, Campo Grande (MS), Brazil
| | - Guilherme Canho Bittner
- Dermatology Service, Hospital Maria Aparecida Pedrossian,
Universidade Federal de Mato Grosso do Sul, Campo Grande (MS), Brazil
| |
Collapse
|
21
|
Sinha AA, Sajda T. The Evolving Story of Autoantibodies in Pemphigus Vulgaris: Development of the "Super Compensation Hypothesis". Front Med (Lausanne) 2018; 5:218. [PMID: 30155465 PMCID: PMC6102394 DOI: 10.3389/fmed.2018.00218] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022] Open
Abstract
Emerging data and innovative technologies are re-shaping our understanding of the scope and specificity of the autoimmune response in Pemphigus vulgaris (PV), a prototypical humorally mediated autoimmune skin blistering disorder. Seminal studies identified the desmosomal proteins Desmoglein 3 and 1 (Dsg3 and Dsg1), cadherin family proteins which function to maintain cell adhesion, as the primary targets of pathogenic autoAbs. Consequently, pathogenesis in PV has primarily considered to be the result of anti-Dsg autoAbs alone. However, accumulating data suggesting that anti-Dsg autoAbs by themselves cannot adequately explain the loss of cell-cell adhesion seen in PV, nor account for the disease heterogeneity exhibited across PV patients has spurred the notion that additional autoAb specificities may contribute to disease. To investigate the role of non-Dsg autoAbs in PV, an increasing number of studies have attempted to characterize additional targets of PV autoAbs. The recent advent of protein microarray technology, which allows for the rapid, highly sensitive, and multiplexed assessment of autoAb specificity has facilitated the comprehensive classification of the scope and specificity of the autoAb response in PV. Such detailed deconstruction of the autoimmune response in PV, beyond simply tracking anti-Dsg autoAbs, has provided invaluable new insights concerning disease mechanisms and enhanced disease classification which could directly translate into superior tools for prognostics and clinical management, as well as the development of novel, disease specific treatments.
Collapse
Affiliation(s)
- Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, United States
| | - Thomas Sajda
- Department of Dermatology, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
22
|
Xuan RR, Yang A, Murrell DF. New biochip immunofluorescence test for the serological diagnosis of pemphigus vulgaris and foliaceus: A review of the literature. Int J Womens Dermatol 2018; 4:102-108. [PMID: 29872685 PMCID: PMC5986232 DOI: 10.1016/j.ijwd.2017.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 12/19/2022] Open
Abstract
The immunoassays that are available for the serological diagnosis of the more common subtypes of autoimmune blistering diseases such as pemphigus vulgaris (PV) and pemphigus foliaceus (PF) include enzyme-linked immunosorbent assay (ELISA) testing to specific antigens desmoglein (Dsg)1 and Dsg3, direct immunofluorescence (DIF), indirect immunofluorescence (IIF), and immunoblotting. A review of the literature on the biochip assay was conducted. Six studies investigated the validity of a new biochip, mosaic-based, IIF test in patients with pemphigus and demonstrated its relatively high sensitivity and specificity (Dsg3: 97.62-100%, 99.6-100%; Dsg1: 90%, 100%) in comparison with ELISA (Dsg3: 81-100%, 94-100%; Dsg1: 69-100%, 61.1-100%), and/or IIF (PV: 75-100%, 91.8-100%; PF: 67-100%) using suitable substrates. So far, validation studies of the biochip have been conducted in four countries (Germany, Italy, Turkey, and Poland) but none in the southern hemisphere. Caucasian patients were recruited as normal controls for these studies; thus, the diagnostic value of the biochip remains uncertain in population groups of other ethnicities. A range of disease control patients were recruited including patients with linear immunoglobulin A dermatosis, psoriasis, discoid lupus erythematosus, lichen planus, and noninflammatory skin diseases (e.g., squamous cell carcinoma, basal cell carcinoma, and vascular leg ulcers). Prospective studies with control patients from a diverse range of ethnicities are needed to better validate the biochip.
Collapse
Affiliation(s)
- Rachel R Xuan
- Department of Dermatology, St George Hospital, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Anes Yang
- Department of Dermatology, St George Hospital, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| | - Dedee F Murrell
- Department of Dermatology, St George Hospital, Sydney, New South Wales, Australia.,University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Ahmed AR, Carrozzo M, Caux F, Cirillo N, Dmochowski M, Alonso AE, Gniadecki R, Hertl M, López-Zabalza MJ, Lotti R, Pincelli C, Pittelkow M, Schmidt E, Sinha AA, Sprecher E, Grando SA. Monopathogenic vs multipathogenic explanations of pemphigus pathophysiology. Exp Dermatol 2018; 25:839-846. [PMID: 27305362 DOI: 10.1111/exd.13106] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2016] [Indexed: 01/31/2023]
Abstract
This viewpoint highlights major, partly controversial concepts about the pathogenesis of pemphigus. The monopathogenic theory explains intra-epidermal blistering through the "desmoglein (Dsg) compensation" hypothesis, according to which an antibody-dependent disabling of Dsg 1- and/or Dsg 3-mediated cell-cell attachments of keratinocytes (KCs) is sufficient to disrupt epidermal integrity and cause blistering. The multipathogenic theory explains intra-epidermal blistering through the "multiple hit" hypothesis stating that a simultaneous and synchronized inactivation of the physiological mechanisms regulating and/or mediating intercellular adhesion of KCs is necessary to disrupt epidermal integrity. The major premise for a multipathogenic theory is that a single type of autoantibody induces only reversible changes, so that affected KCs can recover due to a self-repair. The damage, however, becomes irreversible when the salvage pathway and/or other cell functions are altered by a partnering autoantibody and/or other pathogenic factors. Future studies are needed to (i) corroborate these findings, (ii) characterize in detail patient populations with non-Dsg-specific autoantibodies, and (iii) determine the extent of the contribution of non-Dsg antibodies in disease pathophysiology.
Collapse
Affiliation(s)
- A Razzaque Ahmed
- Department of Dermatology of Tufts University and Center for Blistering Diseases, Boston, MA, USA
| | - Marco Carrozzo
- School of Dental Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Frédéric Caux
- Department of Dermatology, University Paris 13, Avicenne Hospital, APHP, Bobigny, France
| | - Nicola Cirillo
- Melbourne Dental School and Oral Health CRC, The University of Melbourne, Melbourne, Vic., Australia
| | - Marian Dmochowski
- Autoimmune Blistering Dermatoses Section, Department of Dermatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agustín España Alonso
- Department of Dermatology, School of Medicine, University Clinic of Navarra, University of Navarra, Navarra, Spain
| | - Robert Gniadecki
- Division of Dermatology, University of Alberta, Edmonton, AB, Canada
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University, Marburg, Germany
| | | | - Roberta Lotti
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Pincelli
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Mark Pittelkow
- Department of Dermatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Sergei A Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
24
|
Affiliation(s)
- Nicole A. Najor
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221
| |
Collapse
|
25
|
Pollmann R, Schmidt T, Eming R, Hertl M. Pemphigus: a Comprehensive Review on Pathogenesis, Clinical Presentation and Novel Therapeutic Approaches. Clin Rev Allergy Immunol 2018; 54:1-25. [DOI: 10.1007/s12016-017-8662-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Patel S, Miteva M. SnapshotDx Quiz: November 2017. J Invest Dermatol 2017; 137:e193. [PMID: 29055416 DOI: 10.1016/j.jid.2017.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shailee Patel
- Department of Dermatology and Cutaneous Surgery, University of Miami L. Miller School of Medicine
| | - Mariya Miteva
- Department of Dermatology and Cutaneous Surgery, University of Miami L. Miller School of Medicine.
| |
Collapse
|
27
|
Spindler V, Eming R, Schmidt E, Amagai M, Grando S, Jonkman MF, Kowalczyk AP, Müller EJ, Payne AS, Pincelli C, Sinha AA, Sprecher E, Zillikens D, Hertl M, Waschke J. Mechanisms Causing Loss of Keratinocyte Cohesion in Pemphigus. J Invest Dermatol 2017; 138:32-37. [PMID: 29037765 DOI: 10.1016/j.jid.2017.06.022] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/28/2022]
Abstract
The autoimmune blistering skin disease pemphigus is caused by IgG autoantibodies against desmosomal cadherins, but the precise mechanisms are in part a matter of controversial discussions. This review focuses on the currently existing models of the disease and highlights the relevance of desmoglein-specific versus nondesmoglein autoantibodies, the contribution of nonautoantibody factors, and the mechanisms leading to cell dissociation and blister formation in response to autoantibody binding. As the review brings together the majority of laboratories currently working on pemphigus pathogenesis, it aims to serve as a solid basis for further investigations for the entire field.
Collapse
Affiliation(s)
- Volker Spindler
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| | - Rüdiger Eming
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Enno Schmidt
- Department of Dermatology, University of Lübeck, Lübeck, Germany; Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Sergei Grando
- Institute for Immunology and Departments of Dermatology and Biological Chemistry, University of California, Irvine, California, USA
| | - Marcel F Jonkman
- Department of Dermatology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
| | - Andrew P Kowalczyk
- Departments of Cell Biology and Dermatology, Emory University, Atlanta, Georgia, USA
| | - Eliane J Müller
- Vetsuisse Faculty, Molecular Dermatology and Stem Cell Research, Institute of Animal Pathology, Bern, Switzerland; Vetsuisse Faculty, DermFocus, Bern, Switzerland; Department of Dermatology, University Hospital of Bern, Bern, Switzerland
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, University of Modena and Reggio Emilia, Modena, Italy
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Detlef Zillikens
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Michael Hertl
- Department of Dermatology, University of Marburg, Marburg, Germany
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
28
|
Das D, Anand V, Khandpur S, Sharma VK, Sharma A. T helper type 1 polarizing γδ T cells and Scavenger receptors contribute to the pathogenesis of Pemphigus vulgaris. Immunology 2017; 153:97-104. [PMID: 28815581 DOI: 10.1111/imm.12814] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/31/2017] [Accepted: 08/08/2017] [Indexed: 01/03/2023] Open
Abstract
γδ T cells and Scavenger receptors are key parts of the innate immune machinery, playing significant roles in regulating immune homeostasis at the epithelial surface. The roles of these immune components are not yet characterized for the autoimmune skin disorder Pemphigus vulgaris (PV). Phenotyping and frequency of γδ T cells estimated by flow cytometry have shown increased frequency of γδ T cells (6·7% versus 4·4%) producing interferon- γ (IFN-γ; 35·2% versus 26·68%) in the circulation of patients compared with controls. Dual cytokine-secreting (IFN-γ and interleukin-4) γδ T cells indicate the plasticity of these cells. The γδ T cells of patients with PV have shown higher cytotoxic potential and the higher frequency of γδ T cells producing IFN-γ shows T helper type 1 polarization. The increased expression of Scavenger receptors expression (CD36 and CD163) could be contributing to the elevated inflammatory environment and immune imbalance in this disease. Targeting the inflammatory γδ T cells and Scavenger receptors may pave the way for novel therapeutics.
Collapse
Affiliation(s)
- Dayasagar Das
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vivek Anand
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sujay Khandpur
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - Vinod K Sharma
- Department of Dermatology, All India Institute of Medical Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
29
|
Maldonado M, Diaz LA, Prisayanh P, Yang J, Qaqish BF, Aoki V, Hans-Filho G, Rivitti EA, Culton DA, Qian Y. Divergent Specificity Development of IgG1 and IgG4 Autoantibodies in Endemic Pemphigus Foliaceus (Fogo Selvagem). Immunohorizons 2017; 1:71-80. [PMID: 28868524 DOI: 10.4049/immunohorizons.1700029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have shown that although the IgG response in fogo selvagem (FS) is mainly restricted to desmoglein (Dsg) 1, other keratinocyte cadherins are also targeted by FS patients and healthy control subjects living in the endemic region of Limão Verde, Brazil (endemic controls). Evaluating nonpathogenic IgG1 and pathogenic IgG4 subclass responses to desmosomal proteins may reveal important differences between pathogenic and nonpathogenic responses, and how these differences relate to the pathogenic IgG4 response and resultant FS. In this study, we tested by ELISA >100 sera from each FS patient, endemic control, and nonendemic control for IgG1 and IgG4 autoantibodies to keratinocyte cadherins besides Dsg1. IgG1 and IgG4 subclass responses in endemic controls are highly correlated between Dsg1 and other keratinocyte cadherins. This correlation persists in the IgG1 response among FS patients, but diminishes in IgG4 response, suggesting that IgG1 binds highly conserved linear epitopes among cadherins, whereas IgG4 binds mainly specific conformational epitopes on Dsg1. A confirmatory test comparing serum samples of 11 individuals before and after their FS onset substantiated our findings that IgG1 recognizes primarily linear epitopes on Dsg1 both before and after disease onset, whereas IgG4 recognizes primarily linear epitopes before disease onset, but recognizes more conformational epitopes on Dsg1 after the onset of disease. This study may provide a mechanism by which a specificity convergence of the IgG4 response to unique Dsg1 epitopes, most likely conformational pathogenic epitopes, leads to the onset of FS disease.
Collapse
Affiliation(s)
- Mike Maldonado
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Phillip Prisayanh
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jinsheng Yang
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Bahjat F Qaqish
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Valeria Aoki
- Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo, CEP-05403-002, Brazil
| | - Gunter Hans-Filho
- Departamento de Dermatologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79002212, Brazil
| | - Evandro A Rivitti
- Department of Dermatology, University of Sao Paulo Medical School, Sao Paulo, CEP-05403-002, Brazil
| | - Donna A Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ye Qian
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
30
|
Local inflammation exacerbates cutaneous manifestations in a murine autoimmune pemphigus model. J Allergy Clin Immunol 2017; 139:2026-2028.e5. [DOI: 10.1016/j.jaci.2016.12.959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/25/2016] [Accepted: 12/29/2016] [Indexed: 11/20/2022]
|
31
|
Abstract
Despite the rising incidence of autoimmunity, therapeutic options for patients with autoimmune disease still rely on decades-old immunosuppressive strategies that risk severe and potentially fatal complications. Thus, novel therapeutic approaches for autoimmune diseases are greatly needed in order to minimize treatment-related toxicity. Such strategies would ideally target only the autoreactive immune components to preserve beneficial immunity. Here, we review how several decades of basic, translational, and clinical research on the immunology of pemphigus vulgaris (PV), an autoantibody-mediated skin disease, have enabled the development of targeted immunotherapeutic strategies. We discuss research to elucidate the pathophysiology of PV and how the knowledge afforded by these studies has led to the preclinical and clinical testing of targeted approaches to neutralize autoantibodies, to induce antigen-specific tolerance, and to specifically eliminate autoreactive B cells in PV.
Collapse
|
32
|
Abstract
Rituximab, a monoclonal antibody targeting the B cell marker CD20, was initially approved in 1997 by the United States Food and Drug Administration (FDA) for the treatment of non-Hodgkin lymphoma. Since that time, rituximab has been FDA-approved for rheumatoid arthritis and vasculitides, such as granulomatosis with polyangiitis and microscopic polyangiitis. Additionally, rituximab has been used off-label in the treatment of numerous other autoimmune diseases, with notable success in pemphigus, an autoantibody-mediated skin blistering disease. The efficacy of rituximab therapy in pemphigus has spurred interest in its potential to treat other autoantibody-mediated diseases. This review summarizes the efficacy of rituximab in pemphigus and examines its off-label use in other select autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Nina A Ran
- Department of Dermatology, University of Pennsylvania, 1009 Biomedical Research Building, 421 Curie Boulevard, PA, USA
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, 1009 Biomedical Research Building, 421 Curie Boulevard, PA, USA
| |
Collapse
|
33
|
Cho MJ, Ellebrecht CT, Hammers CM, Mukherjee EM, Sapparapu G, Boudreaux CE, McDonald SM, Crowe JE, Payne AS. Determinants of VH1-46 Cross-Reactivity to Pemphigus Vulgaris Autoantigen Desmoglein 3 and Rotavirus Antigen VP6. THE JOURNAL OF IMMUNOLOGY 2016; 197:1065-73. [PMID: 27402694 DOI: 10.4049/jimmunol.1600567] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/03/2016] [Indexed: 01/08/2023]
Abstract
Shared VH1-46 gene usage has been described in B cells reacting to desmoglein 3 (Dsg3) in the autoimmune disease pemphigus vulgaris (PV), as well as B cells responding to rotavirus capsid protein VP6. In both diseases, VH1-46 B cells bearing few to no somatic mutations can recognize the disease Ag. This intriguing connection between an autoimmune response to self-antigen and an immune response to foreign Ag prompted us to investigate whether VH1-46 B cells may be predisposed to Dsg3-VP6 cross-reactivity. Focused testing of VH1-46 mAbs previously isolated from PV and rotavirus-exposed individuals indicates that cross-reactivity is rare, found in only one of seven VH1-46 IgG clonotypes. High-throughput screening of IgG B cell repertoires from two PV patients identified no additional cross-reactive clonotypes. Screening of IgM B cell repertoires from one non-PV and three PV patients identified specific cross-reactive Abs in one PV patient, but notably all six cross-reactive clonotypes used VH1-46. Site-directed mutagenesis studies indicate that amino acid residues predisposing VH1-46 Abs to Dsg3 reactivity reside in CDR2. However, somatic mutations only rarely promote Dsg3-VP6 cross-reactivity; most mutations abolish VP6 and/or Dsg3 reactivity. Nevertheless, functional testing identified two cross-reactive VH1-46 Abs that both disrupt keratinocyte adhesion and inhibit rotavirus replication, indicating the potential for VH1-46 Abs to have both pathologic autoimmune and protective immune functions. Taken together, these studies suggest that certain VH1-46 B cell populations may be predisposed to Dsg3-VP6 cross-reactivity, but multiple mechanisms prevent the onset of autoimmunity after rotavirus exposure.
Collapse
Affiliation(s)
- Michael Jeffrey Cho
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | - Eric M Mukherjee
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104
| | - Gopal Sapparapu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Crystal E Boudreaux
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA 24016
| | - Sarah M McDonald
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA 24016
| | - James E Crowe
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
34
|
Lanza A, Femiano F, De Rosa A, Cammarota M, Lanza M, Cirillo N. The N-Terminal Fraction of Desmoglein 3 Encompassing its Immunodominant Domain is Present in Human Serum: Implications for Pemphigus Vulgaris Autoimmunity. Int J Immunopathol Pharmacol 2016; 19:399-407. [PMID: 16831306 DOI: 10.1177/039463200601900216] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pemphigus vulgaris (PV) is considered as an autoimmune disease against a tissue-restricted antigen, desmoglein 3, a 130 kDa glycoprotein expressed by keratinocytes of skin and mucous membranes. Therefore, a breakdown of peripheral tolerance is generally invoked to explain this horror autotoxicus. The availability of a self-antigen and the strength of antigenic stimulation represent critical points in the regulation of immune system homeostasis. Our study shows for the first time that the immunodominant fraction of the PV self-antigen is present in sera of healthy individuals and patients as a circulating 30 kDa fragment (sDsg3). These findings provide a good explanation for the N-terminal specificity of antibody production and peptide recognition in PV patients by B and T cell, respectively. Moreover, the presence of the sDsg3 in human sera could allow to reconsider pemphigus as a disease against a circulating antigen; once produced, PV-autoantibodies also recognize the 130 kDa epidermal antigen desmoglein 3 on keratinocyte surface (kDsg3), thus triggering the acantholysis and the clinical manifestations of pemphigus.
Collapse
Affiliation(s)
- A Lanza
- Department of Odontostomatology, Division of Oral Medicine and Regional Center on Craniofacial Malformations-MRI, Second University of Naples, Via Luigi di Crecchio 7, 80138 Naples, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Stahley SN, Warren MF, Feldman RJ, Swerlick RA, Mattheyses AL, Kowalczyk AP. Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Tissue from Patients with Pemphigus Vulgaris. J Invest Dermatol 2016; 136:59-66. [PMID: 26763424 PMCID: PMC4730957 DOI: 10.1038/jid.2015.353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/29/2015] [Accepted: 08/17/2015] [Indexed: 12/19/2022]
Abstract
Pemphigus vulgaris (PV) is an autoimmune epidermal blistering disease in which autoantibodies (IgG) are directed against the desmosomal cadherin desmoglein 3 (Dsg3). In order to better understand how PV IgG alters desmosome morphology and function in vivo, PV patient biopsies were analyzed by structured illumination microscopy (SIM), a form of super-resolution fluorescence microscopy. In patient tissue, desmosomal proteins were aberrantly clustered and localized to PV IgG-containing endocytic linear arrays. Patient IgG also colocalized with markers for lipid rafts and endosomes. Additionally, steady-state levels of Dsg3 were decreased and desmosomes were reduced in size in patient tissue. Desmosomes at blister sites were occasionally split, with PV IgG decorating the extracellular faces of split desmosomes. Desmosome splitting was recapitulated in vitro by exposing cultured keratinocytes both to PV IgG and to mechanical stress, demonstrating that splitting at the blister interface in patient tissue is due to compromised desmosomal adhesive function. These findings indicate that Dsg3 clustering and endocytosis are associated with reduced desmosome size and adhesion defects in PV patient tissue. Further, this study reveals that super-resolution optical imaging is powerful approach for studying epidermal adhesion structures in normal and diseased skin.
Collapse
Affiliation(s)
- Sara N Stahley
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maxine F Warren
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ron J Feldman
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert A Swerlick
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Alexa L Mattheyses
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
36
|
Hammers CM, Stanley JR. Mechanisms of Disease: Pemphigus and Bullous Pemphigoid. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:175-97. [PMID: 26907530 DOI: 10.1146/annurev-pathol-012615-044313] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pemphigus and bullous pemphigoid are autoantibody-mediated blistering skin diseases. In pemphigus, keratinocytes in epidermis and mucous membranes lose cell-cell adhesion, and in pemphigoid, the basal keratinocytes lose adhesion to the basement membrane. Pemphigus lesions are mediated directly by the autoantibodies, whereas the autoantibodies in pemphigoid fix complement and mediate inflammation. In both diseases, the autoantigens have been cloned and characterized; pemphigus antigens are desmogleins (cell adhesion molecules in desmosomes), and pemphigoid antigens are found in hemidesmosomes (which mediate adhesion to the basement membrane). This knowledge has enabled diagnostic testing for these diseases by enzyme-linked immunosorbent assays and dissection of various pathophysiological mechanisms, including direct inhibition of cell adhesion, antibody-induced internalization of antigen, and cell signaling. Understanding these mechanisms of disease has led to rational targeted therapeutic strategies.
Collapse
Affiliation(s)
- Christoph M Hammers
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104; .,Department of Dermatology, University of Luebeck, D-23562 Luebeck, Germany;
| | - John R Stanley
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
37
|
Schmidt T, Willenborg S, Hünig T, Deeg CA, Sonderstrup G, Hertl M, Eming R. Induction of T regulatory cells by the superagonistic anti-CD28 antibody D665 leads to decreased pathogenic IgG autoantibodies against desmoglein 3 in a HLA-transgenic mouse model of pemphigus vulgaris. Exp Dermatol 2016; 25:293-8. [PMID: 26661498 DOI: 10.1111/exd.12919] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 01/22/2023]
Abstract
Pemphigus vulgaris (PV) is a potentially life-threatening autoimmune disease of the skin and mucous membranes. Its pathogenesis is based on IgG autoantibodies that target the desmosomal cadherins, desmoglein 3 (Dsg3) and desmoglein 1 (Dsg1) and induce intra-epidermal loss of adhesion. Although the PV pathogenesis is well-understood, therapeutic options are still limited to immunosuppressive drugs, particularly corticosteroids, which are associated with significant side effects. Dsg3-reactive T regulatory cells (Treg) have been previously identified in PV and healthy carriers of PV-associated HLA class II alleles. Ex vivo, Dsg3-specific Treg cells down-regulated the activation of pathogenic Dsg3-specific T-helper (Th) 2 cells. In this study, in a HLA-DRB1*04:02 transgenic mouse model of PV, peripheral Treg cells were modulated by the use of Treg-depleting or expanding monoclonal antibodies, respectively. Our findings show that, in vivo, although not statistically significant, Treg cells exert a clear down-regulatory effect on the Dsg3-driven T-cell response and, accordingly, the formation of Dsg3-specific IgG antibodies. These observations confirm the powerful immune regulatory functions of Treg cells and identify Treg cells as potential therapeutic modulators in PV.
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Willenborg
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Thomas Hünig
- Institute of Virology and Immunobiology, Department of Immunology, Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Cornelia A Deeg
- Department of Ophthalmology, Philipps-University Marburg, Marburg, Germany
| | - Grete Sonderstrup
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology and Allergology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
38
|
Di Zenzo G, Amber KT, Sayar BS, Müller EJ, Borradori L. Immune response in pemphigus and beyond: progresses and emerging concepts. Semin Immunopathol 2015; 38:57-74. [DOI: 10.1007/s00281-015-0541-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
39
|
Szabados H, Uray K, Majer Z, Silló P, Kárpáti S, Hudecz F, Bősze S. Characterization of desmoglein-3 epitope region peptides as synthetic antigens: analysis of their in vitro T cell stimulating efficacy, cytotoxicity, stability, and their conformational features. J Pept Sci 2015; 21:731-42. [PMID: 26250896 DOI: 10.1002/psc.2800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/05/2015] [Accepted: 06/13/2015] [Indexed: 11/09/2022]
Abstract
Desmoglein-3 (Dsg3) adhesion protein is the main target of autoantibodies and autoreactive T cells in Pemphigus vulgaris (PV) autoimmune skin disorder. Several mapping studies of Dsg3 T cell epitope regions were performed, and based on those data, we designed and synthesized four peptide series corresponding to Dsg3 T cell epitope regions. Each peptide series consists of a 17mer full-length peptide (Dsg3/189-205, Dsg3/206-222, Dsg3/342-358, and Dsg3/761-777) and its N-terminally truncated derivatives, resulting in 15 peptides altogether. The peptides were prepared on solid phase and were chemically characterized. In order to establish a structure-activity relationship, the solution conformation of the synthetic peptides has been investigated using electronic circular dichroism spectroscopy. The in vitro T cell stimulating efficacy of the peptides has been determined on peripheral blood mononuclear cells isolated from whole blood of PV patients and also from healthy donors. After 20 h of stimulation, the interferon (IFN)-γ content of the supernatants was measured by enzyme-linked immunosorbent assay. In the in vitro conditions, peptides were stable and non-cytotoxic. The in vitro IFN-γ production profile of healthy donors and PV patients, induced by peptides as synthetic antigens, was markedly different. The most unambiguous differences were observed after stimulation with 17mer peptide Dsg3/342-358, and three truncated derivatives from two other peptide series, namely, peptides Dsg3/192-205, Dsg3/763-777, and Dsg3/764-777. Comparative analysis of in vitro activity and the capability of oligopeptides to form ordered or unordered secondary structure showed that peptides bearing high solvent sensibility and backbone flexibility were the most capable to distinguish between healthy and PV donors.
Collapse
Affiliation(s)
- Hajnalka Szabados
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, PO Box 32 H-1518, Budapest, 112, Hungary
| | - Katalin Uray
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, PO Box 32 H-1518, Budapest, 112, Hungary
| | - Zsuzsa Majer
- Laboratory for Chiroptical Structure Analysis, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Pálma Silló
- Department of Dermatology, Venereology and Dermato-Oncology, Semmelweis University, Budapest, Hungary
| | - Sarolta Kárpáti
- Department of Dermatology, Venereology and Dermato-Oncology, Semmelweis University, Budapest, Hungary
| | - Ferenc Hudecz
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, PO Box 32 H-1518, Budapest, 112, Hungary.,Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, PO Box 32 H-1518, Budapest, 112, Hungary
| |
Collapse
|
40
|
Hoover H, Li J, Marchese J, Rothwell C, Borawoski J, Jeffery DA, Gaither LA, Finkel N. Quantitative Proteomic Verification of Membrane Proteins as Potential Therapeutic Targets Located in the 11q13 Amplicon in Cancers. J Proteome Res 2015; 14:3670-9. [PMID: 26151158 DOI: 10.1021/acs.jproteome.5b00508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor types can be defined cytologically by their regions of chromosomal amplification, which often results in the high expression of both mRNA and proteins of certain genes contained within the amplicon. An important strategy for defining therapeutically relevant targets in these situations is to ascertain which genes are amplified at the protein level and, concomitantly, are key drivers for tumor growth or maintenance. Furthermore, so-called passenger genes that are amplified with driver genes and a manifest on the cell surface can be attractive targets for an antibody-drug conjugate approach (ADC). We employed a tandem mass spectrometry proteomics approach using tumor cell lines to identify the cell surface proteins whose expression correlates with the 11q13 amplicon. The 11q13 amplicon is one of the most frequently amplified chromosomal regions in human cancer, being present in 45% of head and neck and oral squamous cell carcinoma (OSCC) and 13-21% of breast and liver carcinomas. Using a panel of tumor cell lines with defined 11q13 genomic amplification, we identified the membrane proteins that are differentially expressed in an 11q13 amplified cell line panel using membrane-enriched proteomic profiling. We found that DSG3, CD109, and CD14 were differentially overexpressed in head and neck and breast tumor cells with 11q13 amplification. The level of protein expression of each gene was confirmed by Western blot and FACS analysis. Because proteins with high cell surface expression on selected tumor cells could be potential antibody drug conjugate targets, we tested DSG3 and CD109 in antibody piggyback assays and validated that DSG3 and CD109 expression was sufficient to induce antibody internalization and cell killing in 11q13-amplified cell lines. Our results suggest that proteomic profiling using genetically stratified tumors can identify candidate antibody drug conjugate targets. Data are available via ProteomeXchange with the identifier PXD002486.
Collapse
Affiliation(s)
- Heather Hoover
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Jun Li
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Jason Marchese
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Christopher Rothwell
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Jason Borawoski
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Douglas A Jeffery
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - L Alex Gaither
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| | - Nancy Finkel
- Novartis Institutes for Biomedical Research , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
41
|
Abstract
Desmosomes are cell-cell junctions that mediate adhesion and couple the intermediate filament cytoskeleton to sites of cell-cell contact. This architectural arrangement integrates adhesion and cytoskeletal elements of adjacent cells. The importance of this robust adhesion system is evident in numerous human diseases, both inherited and acquired, which occur when desmosome function is compromised. This review focuses on autoimmune and infectious diseases that impair desmosome function. In addition, we discuss emerging evidence that desmosomal genes are often misregulated in cancer. The emphasis of our discussion is placed on the way in which human diseases can inform our understanding of basic desmosome biology and in turn, the means by which fundamental advances in the cell biology of desmosomes might lead to new treatments for acquired diseases of the desmosome.
Collapse
|
42
|
Sokol E, Kramer D, Diercks GFH, Kuipers J, Jonkman MF, Pas HH, Giepmans BNG. Large-Scale Electron Microscopy Maps of Patient Skin and Mucosa Provide Insight into Pathogenesis of Blistering Diseases. J Invest Dermatol 2015; 135:1763-1770. [PMID: 25789704 DOI: 10.1038/jid.2015.109] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/23/2015] [Accepted: 02/03/2015] [Indexed: 12/24/2022]
Abstract
Large-scale electron microscopy ("nanotomy") allows straight forward ultrastructural examination of tissue, cells, organelles, and macromolecules in a single data set. Such data set equals thousands of conventional electron microscopy images and is freely accessible (www.nanotomy.org). The software allows zooming in and out of the image from total overview to nanometer scale resolution in a 'Google Earth' approach. We studied the life-threatening human autoimmune blistering disease pemphigus, using nanotomy. The pathomechanism of cell-cell separation (acantholysis) that underlies the blistering is poorly understood. Ultrastructural examination of pemphigus tissue revealed previously unreported findings: (i) the presence of double-membrane structures between cells in all pemphigus types; (ii) the absence of desmosomes around spontaneous blisters in pemphigus foliaceus (PF); (iii) lower level blistering in PF when force induced; and (iv) intercellular widening at non-acantholytic cell layers. Thus, nanotomy delivers open-source electron microscopic maps of patient tissue, which can be analyzed for additional anomalies from any computer by experts from different fields.
Collapse
Affiliation(s)
- Ena Sokol
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands; Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Duco Kramer
- Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Gilles F H Diercks
- Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel F Jonkman
- Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendri H Pas
- Department of Dermatology, Center for Blistering Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
43
|
Laws PM, Heelan K, Al-Mohammedi F, Walsh S, Shear NH. Pemphigus herpetiformis: a case series and review of the literature. Int J Dermatol 2015; 54:1014-22. [DOI: 10.1111/ijd.12582] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Philip M. Laws
- Department of Medicine; University of Toronto; Toronto Ontario Canada
| | - Kara Heelan
- Department of Medicine; University of Toronto; Toronto Ontario Canada
| | | | - Scott Walsh
- Department of Medicine; University of Toronto; Toronto Ontario Canada
| | - Neil H. Shear
- Department of Medicine; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
44
|
Pan M, Zhu H, Xu R. Immune cellular regulation on autoantibody production in pemphigus. J Dermatol 2015; 42:11-7. [PMID: 25558947 DOI: 10.1111/1346-8138.12697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Meng Pan
- Department of Dermatology; Rui Jin Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Haiqin Zhu
- Department of Dermatology; Rui Jin Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| | - Renchao Xu
- Department of Dermatology; Rui Jin Hospital; School of Medicine; Shanghai Jiao Tong University; Shanghai China
| |
Collapse
|
45
|
The dual nature of interleukin-10 in pemphigus vulgaris. Cytokine 2014; 73:335-41. [PMID: 25464924 DOI: 10.1016/j.cyto.2014.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/05/2023]
Abstract
The immunomodulatory cytokine interleukin-10 (IL-10) plays beneficial but also potentially detrimental roles in inflammation, infection, and autoimmunity. Recent studies suggest a regulatory role for IL-10-expressing B cells in the autoimmune blistering disease pemphigus vulgaris. Here we review the studies on IL-10 in pemphigus vulgaris and discuss the potential pathophysiological significance of these findings in comparison to prior studies of IL-10 in other human conditions. A better understanding of the complex roles of IL-10 in immune regulation may improve our understanding of pemphigus pathogenesis and treatment.
Collapse
|
46
|
Carew B, Wagner G. Cutaneous pemphigus vulgaris with absence of desmoglein 1 autoantibodies. An example of the extended desmoglein compensation theory. Australas J Dermatol 2014; 55:292-5. [DOI: 10.1111/ajd.12154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/24/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Benjamin Carew
- Queensland Institute of Dermatology, Denman St; Greenslopes Queensland Australia
| | - Godfrey Wagner
- Queensland Institute of Dermatology, Denman St; Greenslopes Queensland Australia
| |
Collapse
|
47
|
Kitajima Y. 150(th) anniversary series: Desmosomes and autoimmune disease, perspective of dynamic desmosome remodeling and its impairments in pemphigus. ACTA ACUST UNITED AC 2014; 21:269-80. [PMID: 25078507 DOI: 10.3109/15419061.2014.943397] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Desmosomes are the most important intercellular adhering junctions that adhere two adjacent keratinocytes directly with desmosomal cadherins, that is, desmogleins (Dsgs) and desmocollins, forming an epidermal sheet. Recently, two cell-cell adhesion states of desmosomes, that is, "stable hyper-adhesion" and "dynamic weak-adhesion" conditions have been recognized. They are mutually reversible through cell signaling events involving protein kinase C (PKC), Src and epidermal growth factor receptor (EGFR) during Ca(2+)-switching and wound healing. This remodeling is impaired in pemphigus vulgaris (PV, an autoimmune blistering disease), caused by anti-Dsg3 antibodies. The antibody binding to Dsg3 activates PKC, Src and EGFR, linked to generation of dynamic weak-adhesion desmosomes, followed by p38MAPK-mediated endocytosis of Dsg3, resulting in the specific depletion of Dsg3 from desmosomes and acantholysis. A variety of pemphigus outside-in signaling may explain different clinical (non-inflammatory, inflammatory, and necrolytic) types of pemphigus. Pemphigus could be referred to a "desmosome-remodeling disease involving pemphigus IgG-activated outside-in signaling events".
Collapse
Affiliation(s)
- Yasuo Kitajima
- Department of Dermatology, Kizawa Memorial Hospital, Professor Emeritus Gifu University School of Medicine , Minokamo City, Gifu Prefecture , Japan
| |
Collapse
|
48
|
Cho MJ, Lo ASY, Mao X, Nagler AR, Ellebrecht CT, Mukherjee EM, Hammers CM, Choi EJ, Sharma PM, Uduman M, Li H, Rux AH, Farber SA, Rubin CB, Kleinstein SH, Sachais BS, Posner MR, Cavacini LA, Payne AS. Shared VH1-46 gene usage by pemphigus vulgaris autoantibodies indicates common humoral immune responses among patients. Nat Commun 2014; 5:4167. [PMID: 24942562 PMCID: PMC4120239 DOI: 10.1038/ncomms5167] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/20/2014] [Indexed: 12/13/2022] Open
Abstract
Pemphigus vulgaris (PV) is a potentially fatal blistering disease caused by autoantibodies (autoAbs) against desmoglein 3 (Dsg3). Here, we clone anti-Dsg3 antibodies (Abs) from four PV patients and identify pathogenic VH1-46 autoAbs from all four patients. Unexpectedly, VH1-46 autoAbs had relatively few replacement mutations. We reverted antibody somatic mutations to their germline sequences to determine the requirement of mutations for autoreactivity. Three of five VH1-46 germline-reverted Abs maintain Dsg3 binding, compared with zero of five non-VH1-46 germline-reverted Abs. Site-directed mutagenesis of VH1-46 Abs demonstrates that acidic amino-acid residues introduced by somatic mutation or heavy chain VDJ recombination are necessary and sufficient for Dsg3 binding. Our data suggest that VH1-46 autoantibody gene usage is commonly found in PV because VH1-46 Abs require few to no mutations to acquire Dsg3 autoreactivity, which may favour their early selection. Common VH gene usage indicates common humoral immune responses, even among unrelated patients.
Collapse
Affiliation(s)
- Michael Jeffrey Cho
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Agnes S Y Lo
- Division of Hematology-Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Xuming Mao
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Arielle R Nagler
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eric M Mukherjee
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christoph M Hammers
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eun-Jung Choi
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Preety M Sharma
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mohamed Uduman
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Hong Li
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ann H Rux
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sara A Farber
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Courtney B Rubin
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, and Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Bruce S Sachais
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marshall R Posner
- The Tisch Cancer Institute, Mount Sinai Medical Center, New York, New York 10029, USA
| | - Lisa A Cavacini
- The Tisch Cancer Institute, Mount Sinai Medical Center, New York, New York 10029, USA
| | - Aimee S Payne
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
49
|
Langenhan J, Dworschak J, Saschenbrecker S, Komorowski L, Schlumberger W, Stöcker W, Westermann J, Recke A, Zillikens D, Schmidt E, Probst C. Specific immunoadsorption of pathogenic autoantibodies in pemphigus requires the entire ectodomains of desmogleins. Exp Dermatol 2014; 23:253-9. [DOI: 10.1111/exd.12355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Jana Langenhan
- Institute of Experimental Immunology; Euroimmun AG; Lübeck Germany
| | - Jenny Dworschak
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | | | - Lars Komorowski
- Institute of Experimental Immunology; Euroimmun AG; Lübeck Germany
| | | | - Winfried Stöcker
- Institute of Experimental Immunology; Euroimmun AG; Lübeck Germany
| | | | - Andreas Recke
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | | | - Enno Schmidt
- Department of Dermatology; University of Lübeck; Lübeck Germany
| | - Christian Probst
- Institute of Experimental Immunology; Euroimmun AG; Lübeck Germany
| |
Collapse
|
50
|
Amber KT, Staropoli P, Shiman MI, Elgart GW, Hertl M. Autoreactive T cells in the immune pathogenesis of pemphigus vulgaris. Exp Dermatol 2013; 22:699-704. [DOI: 10.1111/exd.12229] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Kyle T. Amber
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Patrick Staropoli
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Michael I. Shiman
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - George W. Elgart
- Department of Dermatology and Cutaneous Surgery; University of Miami Miller School of Medicine; Miami FL USA
| | - Michael Hertl
- Department of Dermatology and Allergology; Philipps-Universität; Marburg Germany
| |
Collapse
|