1
|
Lian Y, Lai X, Wu C, Wang L, Shang J, Zhang H, Jia S, Xing W, Liu H. The roles of neutrophils in cardiovascular diseases. Front Cardiovasc Med 2025; 12:1526170. [PMID: 40176832 PMCID: PMC11961988 DOI: 10.3389/fcvm.2025.1526170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The immune response plays a vital role in the development of cardiovascular diseases (CVDs). As a crucial component of the innate immune system, neutrophils are involved in the initial inflammatory response following cardiovascular injury, thereby inducing subsequent damage and promoting recovery. Neutrophils exert their functional effects in tissues through various mechanisms, including activation and the formation of neutrophil extracellular traps (NETs). Once activated, neutrophils are recruited to the site of injury, where they release inflammatory mediators and cytokines. This study discusses the main mechanisms associated with neutrophil activity and proposes potential new therapeutic targets. In this review, we systematically summarize the diverse phenotypes of neutrophils in disease regulatory mechanisms, different modes of cell death, and focus on the relevance of neutrophils to various CVDs, including atherosclerosis, acute coronary syndrome, myocardial ischemia/reperfusion injury, hypertension, atrial fibrillation, heart failure, and viral myocarditis. Finally, we also emphasize the preclinical/clinical translational significance of neutrophil-targeted strategies.
Collapse
Affiliation(s)
- Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Huairou Hospital, Beijing, China
| | - Li Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JuJu Shang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Heyi Zhang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sihan Jia
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongxu Liu
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Guan X, Li H, Zhang L, Zhi H. Mechanisms of mitochondrial damage-associated molecular patterns associated with inflammatory response in cardiovascular diseases. Inflamm Res 2025; 74:18. [PMID: 39806203 DOI: 10.1007/s00011-025-01993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart. In cardiovascular illnesses, mitochondrial homeostasis is disrupted, accompanied by structural and functional impairments. During mitochondrial stress or injury, mitochondrial damage-associated molecular patterns (mtDAMPs), such as mitochondrial DNA, cardiolipin, N-formyl peptide, and adenosine triphosphate, are released to activate pattern recognition receptors and trigger immunological responses. Inflammatory responses mediated by mtDAMPs substantially contribute to the pathophysiology of cardiovascular illnesses. In this review, we discuss the molecular mechanisms by which different mtDAMPs control the inflammatory response, address the pathological consequences of mtDAMPs in inducing or exacerbating the inflammatory response in CVDs, and summarize potential therapeutic targets in relevant experimental studies. Preventing or reducing mtDAMP release may play a role in CVD progression by alleviating the inflammatory response.
Collapse
Affiliation(s)
- Xiuju Guan
- School of Graduate Studies, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Haitao Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China
| | - Lijuan Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| | - Hongwei Zhi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Köhler D, Leiss V, Beichert L, Killinger S, Grothe D, Kushwaha R, Schröter A, Roslan A, Eggstein C, Focken J, Granja T, Devanathan V, Schittek B, Lukowski R, Weigelin B, Rosenberger P, Nürnberg B, Beer-Hammer S. Targeting Gα i2 in neutrophils protects from myocardial ischemia reperfusion injury. Basic Res Cardiol 2024; 119:717-732. [PMID: 38811421 PMCID: PMC11461587 DOI: 10.1007/s00395-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Neutrophils are not only involved in immune defense against infection but also contribute to the exacerbation of tissue damage after ischemia and reperfusion. We have previously shown that genetic ablation of regulatory Gαi proteins in mice has both protective and deleterious effects on myocardial ischemia reperfusion injury (mIRI), depending on which isoform is deleted. To deepen and analyze these findings in more detail the contribution of Gαi2 proteins in resident cardiac vs circulating blood cells for mIRI was first studied in bone marrow chimeras. In fact, the absence of Gαi2 in all blood cells reduced the extent of mIRI (22,9% infarct size of area at risk (AAR) Gnai2-/- → wt vs 44.0% wt → wt; p < 0.001) whereas the absence of Gαi2 in non-hematopoietic cells increased the infarct damage (66.5% wt → Gnai2-/- vs 44.0% wt → wt; p < 0.001). Previously we have reported the impact of platelet Gαi2 for mIRI. Here, we show that infarct size was substantially reduced when Gαi2 signaling was either genetically ablated in neutrophils/macrophages using LysM-driven Cre recombinase (AAR: 17.9% Gnai2fl/fl LysM-Cre+/tg vs 42.0% Gnai2fl/fl; p < 0.01) or selectively blocked with specific antibodies directed against Gαi2 (AAR: 19.0% (anti-Gαi2) vs 49.0% (IgG); p < 0.001). In addition, the number of platelet-neutrophil complexes (PNCs) in the infarcted area were reduced in both, genetically modified (PNCs: 18 (Gnai2fl/fl; LysM-Cre+/tg) vs 31 (Gnai2fl/fl); p < 0.001) and in anti-Gαi2 antibody-treated (PNCs: 9 (anti-Gαi2) vs 33 (IgG); p < 0.001) mice. Of note, significant infarct-limiting effects were achieved with a single anti-Gαi2 antibody challenge immediately prior to vessel reperfusion without affecting bleeding time, heart rate or cellular distribution of neutrophils. Finally, anti-Gαi2 antibody treatment also inhibited transendothelial migration of human neutrophils (25,885 (IgG) vs 13,225 (anti-Gαi2) neutrophils; p < 0.001), collectively suggesting that a therapeutic concept of functional Gαi2 inhibition during thrombolysis and reperfusion in patients with myocardial infarction should be further considered.
Collapse
Affiliation(s)
- David Köhler
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Lukas Beichert
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Simon Killinger
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Daniela Grothe
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Ragini Kushwaha
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Agnes Schröter
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Anna Roslan
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Jule Focken
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Tiago Granja
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Vasudharani Devanathan
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Multiscale Immunoimaging, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
4
|
Wendlinger S, Wohlfarth J, Siedel C, Kreft S, Kilian T, Junker S, Schmid L, Sinnberg T, Dischinger U, Heppt MV, Wistuba-Hamprecht K, Meier F, Erpenbeck L, Neubert E, Goebeler M, Gesierich A, Schrama D, Kosnopfel C, Schilling B. Susceptibility of Melanoma Cells to Targeted Therapy Correlates with Protection by Blood Neutrophils. Cancers (Basel) 2024; 16:1767. [PMID: 38730718 PMCID: PMC11083732 DOI: 10.3390/cancers16091767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Elevated levels of peripheral blood and tumor tissue neutrophils are associated with poorer clinical response and therapy resistance in melanoma. The underlying mechanism and the role of neutrophils in targeted therapy is still not fully understood. Serum samples of patients with advanced melanoma were collected and neutrophil-associated serum markers were measured and correlated with response to targeted therapy. Blood neutrophils from healthy donors and patients with advanced melanoma were isolated, and their phenotypes, as well as their in vitro functions, were compared. In vitro functional tests were conducted through nonadherent cocultures with melanoma cells. Protection of melanoma cell lines by neutrophils was assessed under MAPK inhibition. Blood neutrophils from advanced melanoma patients exhibited lower CD16 expression compared to healthy donors. In vitro, both healthy-donor- and patient-derived neutrophils prevented melanoma cell apoptosis upon dual MAPK inhibition. The effect depended on cell-cell contact and melanoma cell susceptibility to treatment. Interference with protease activity of neutrophils prevented melanoma cell protection during treatment in cocultures. The negative correlation between neutrophils and melanoma outcomes seems to be linked to a protumoral function of neutrophils. In vitro, neutrophils exert a direct protective effect on melanoma cells during dual MAPK inhibition. This study further hints at a crucial role of neutrophil-related protease activity in protection.
Collapse
Affiliation(s)
- Simone Wendlinger
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080 Würzburg, Germany
| | - Jonas Wohlfarth
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Claudia Siedel
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sophia Kreft
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, UK
| | - Teresa Kilian
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Sarah Junker
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Luisa Schmid
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, Department of Dermatology, University of Tübingen, 72076 Tübingen, Germany
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Ulrich Dischinger
- Department of Endocrinology and Diabetology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Markus V. Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Kilian Wistuba-Hamprecht
- Skin Cancer Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 68167 Mannheim, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, 01307 Dresden, Germany
| | - Luise Erpenbeck
- Department of Dermatology, University of Münster, 48149 Münster, Germany
| | - Elsa Neubert
- Leiden Academic Centre for Drug Research, Leiden University, 2333 Leiden, The Netherlands
- Department of Dermatology, Venereology and Allergology, University Medical Center, Göttingen University, 37075 Göttingen, Germany
| | - Matthias Goebeler
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Anja Gesierich
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - David Schrama
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
- Mildred Scheel Early Career Center Wuerzburg, University Hospital Wuerzburg, 97080 Würzburg, Germany
- Department of Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany
| | - Bastian Schilling
- Department of Dermatology, University Hospital Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
5
|
Huang M, Huiskes FG, de Groot NMS, Brundel BJJM. The Role of Immune Cells Driving Electropathology and Atrial Fibrillation. Cells 2024; 13:311. [PMID: 38391924 PMCID: PMC10886649 DOI: 10.3390/cells13040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Atrial fibrillation (AF) is the most common progressive cardiac arrhythmia worldwide and entails serious complications including stroke and heart failure. Despite decades of clinical research, the current treatment of AF is suboptimal. This is due to a lack of knowledge on the mechanistic root causes of AF. Prevailing theories indicate a key role for molecular and structural changes in driving electrical conduction abnormalities in the atria and as such triggering AF. Emerging evidence indicates the role of the altered atrial and systemic immune landscape in driving this so-called electropathology. Immune cells and immune markers play a central role in immune remodeling by exhibiting dual facets. While the activation and recruitment of immune cells contribute to maintaining atrial stability, the excessive activation and pronounced expression of immune markers can foster AF. This review delineates shifts in cardiac composition and the distribution of immune cells in the context of cardiac health and disease, especially AF. A comprehensive exploration of the functions of diverse immune cell types in AF and other cardiac diseases is essential to unravel the intricacies of immune remodeling. Usltimately, we delve into clinical evidence showcasing immune modifications in both the atrial and systemic domains among AF patients, aiming to elucidate immune markers for therapy and diagnostics.
Collapse
Affiliation(s)
- Mingxin Huang
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
- Department of Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| |
Collapse
|
6
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Huang X, Fan W, Sun J, Yang J, Zhang Y, Wang Q, Li P, Zhang Y, Zhang S, Li H, Wang J, Feng L, Zhao J, Chen L, Linbing Q. SARS-CoV-2 induces cardiomyocyte apoptosis and inflammation but can be ameliorated by ACE inhibitor Captopril. Antiviral Res 2023; 215:105636. [PMID: 37207821 DOI: 10.1016/j.antiviral.2023.105636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Although the clinical manifestation of COVID-19 is mainly respiratory symptoms, approximately 20% of patients suffer from cardiac complications. COVID-19 patients with cardiovascular disease have higher severity of myocardial injury and poor outcomes. The underlying mechanism of myocardial injury caused by SARS-CoV-2 infection remains unclear. Using a non-transgenic mouse model infected with Beta variant (B.1.351), we found that the viral RNA could be detected in lungs and hearts of infected mice. Pathological analysis showed thinner ventricular wall, disorganized and ruptured myocardial fiber, mild inflammatory infiltration, and mild epicardia or interstitial fibrosis in hearts of infected mice. We also found that SARS-CoV-2 could infect cardiomyocytes and produce infectious progeny viruses in human pluripotent stem cell-derived cardiomyocyte-like cells (hPSC-CMs). SARS-CoV-2 infection caused apoptosis, reduction of mitochondrial integrity and quantity, and cessation of beating in hPSC-CMs. In order to dissect the mechanism of myocardial injury caused by SARS-CoV-2 infection, we employed transcriptome sequencing of hPSC-CMs at different time points after viral infection. Transcriptome analysis showed robust induction of inflammatory cytokines and chemokines, up-regulation of MHC class I molecules, activation of apoptosis signaling and cell cycle arresting. These may cause aggravate inflammation, immune cell infiltration, and cell death. Furthermore, we found that Captopril (hypotensive drugs targeting ACE) treatment could alleviate SARS-CoV-2 induced inflammatory response and apoptosis in cardiomyocytes via inactivating TNF signaling pathways, suggesting Captopril may be beneficial for reducing COVID-19 associated cardiomyopathy. These findings preliminarily explain the molecular mechanism of pathological cardiac injury caused by SARS-CoV-2 infection, providing new perspectives for the discovery of antiviral therapeutics.
Collapse
Affiliation(s)
- Xiaohan Huang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wenxia Fan
- Guangzhou Laboratory, Guangzhou, 510320, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jiaqing Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou Laboratory, Guangzhou, 510320, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Qian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Pingchao Li
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Heying Li
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jianhua Wang
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Guangzhou Laboratory, Guangzhou, 510320, China.
| | - Qu Linbing
- State Key Laboratory of Respiratory Disease, Guangdong Laboratory of Computational Biomedicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
8
|
Heck-Swain KL, Koeppen M. The Intriguing Role of Hypoxia-Inducible Factor in Myocardial Ischemia and Reperfusion: A Comprehensive Review. J Cardiovasc Dev Dis 2023; 10:jcdd10050215. [PMID: 37233182 DOI: 10.3390/jcdd10050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) play a crucial role in cellular responses to low oxygen levels during myocardial ischemia and reperfusion injury. HIF stabilizers, originally developed for treating renal anemia, may offer cardiac protection in this context. This narrative review examines the molecular mechanisms governing HIF activation and function, as well as the pathways involved in cell protection. Furthermore, we analyze the distinct cellular roles of HIFs in myocardial ischemia and reperfusion. We also explore potential therapies targeting HIFs, emphasizing their possible benefits and limitations. Finally, we discuss the challenges and opportunities in this research area, underscoring the need for continued investigation to fully realize the therapeutic potential of HIF modulation in managing this complex condition.
Collapse
Affiliation(s)
- Ka-Lin Heck-Swain
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| | - Michael Koeppen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tuebingen, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Cell Adhesion Molecules in Schizophrenia Patients with Metabolic Syndrome. Metabolites 2023; 13:metabo13030376. [PMID: 36984816 PMCID: PMC10058418 DOI: 10.3390/metabo13030376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Metabolic syndrome (MetS) is a common comorbidity of schizophrenia and significantly shortens life expectancy of the patients. Intercellular (ICAM), vascular (VCAM), and neural (NCAM) cell adhesion molecules (CAMs) mediate neuroinflammatory processes, and their soluble forms (e.g., sICAM) in plasma are present in parallel with their cell-bound forms. In this study, their serum levels were examined in 211 white Siberian patients with paranoid schizophrenia (82 patients with and 129 without MetS according to the 2005 International Diabetes Federation criteria). Serum levels of CAMs were determined with Magpix and Luminex 200 (Luminex, Austin, TX, USA) using xMAP Technology. The level of sICAM-1 was significantly higher and that of sVCAM-1 significantly lower in patients with MetS compared to patients without MetS. Levels of NCAM did not differ between the groups. More pronounced Spearman’s correlations between CAMs, age, duration of schizophrenia, and body–mass index were observed among patients without MetS than among patients with MetS. Our results are consistent with MetS’s being associated with endothelial dysfunction along with other components of inflammation. Through these endothelial components of peripheral inflammatory processes, MetS might induce intracerebral neuroinflammatory changes, but further investigation is needed to confirm this.
Collapse
|
10
|
Liu C, Liu Y, Chen H, Yang X, Lu C, Wang L, Lu J. Myocardial injury: where inflammation and autophagy meet. BURNS & TRAUMA 2023; 11:tkac062. [PMID: 36873283 PMCID: PMC9977361 DOI: 10.1093/burnst/tkac062] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/23/2022] [Indexed: 03/04/2023]
Abstract
Autophagy is a highly conserved bulk degradation mechanism that degrades damaged organelles, aged proteins and intracellular contents to maintain the homeostasis of the intracellular microenvironment. Activation of autophagy can be observed during myocardial injury, during which inflammatory responses are strongly triggered. Autophagy can inhibit the inflammatory response and regulate the inflammatory microenvironment by removing invading pathogens and damaged mitochondria. In addition, autophagy may enhance the clearance of apoptotic and necrotic cells to promote the repair of damaged tissue. In this paper, we briefly review the role of autophagy in different cell types in the inflammatory microenvironment of myocardial injury and discuss the molecular mechanism of autophagy in regulating the inflammatory response in a series of myocardial injury conditions, including myocardial ischemia, ischemia/reperfusion injury and sepsis cardiomyopathy.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510080, China
| | - Yanjiao Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Xiaofei Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510080, China
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 51080, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
11
|
Song BY, Chen C, Xu WH, Cong BL, Guo ZY, Zhao ZH, Cui L, Zhang YH. Gender Differences in the Correlations Between Immune Cells and Organ Damage Indexes of Acute Myocardial Infarction Patients. Vasc Health Risk Manag 2022; 18:839-850. [DOI: 10.2147/vhrm.s374157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/12/2022] [Indexed: 12/03/2022] Open
|
12
|
You Z, Huang X, Xiang Y, Dai J, Jiang J, Xu J. Molecular feature of neutrophils in immune microenvironment of muscle atrophy. J Cell Mol Med 2022; 26:4658-4665. [PMID: 35899367 PMCID: PMC9443939 DOI: 10.1111/jcmm.17495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 12/16/2022] Open
Abstract
Homeostasis in skeletal muscle is sustained by the balance of functional and physical interactions between muscle and myofibre microenvironment. Various factors, such as ageing, disuse and denervation, tip the balance and induce skeletal muscle atrophy. Skeletal muscle atrophy, which involves complex physiological and biochemical changes, is accompanied by adverse outcomes and even increased mortality. Multiple studies have investigated the role of neutrophils in atrophied skeletal muscles; however, neutrophil intrusion in muscle is still a polemical knot. As technical obstacles have been overcome, people have gradually discovered new functions of neutrophils. The classical view of neutrophils is no longer applicable to their biological characteristics. To date, no clear association between the hidden injurious effect of neutrophil intrusion and muscle atrophy has been convincingly proven. Throughout this review, we have discussed the neutrophil activities that mediate muscle atrophy for distinct disease occurrences. Hopefully, this review will help both clinicians and researchers of skeletal muscle atrophy with relevant targets to further explore efficient medical interventions and treatments.
Collapse
Affiliation(s)
- Zongqi You
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Xinying Huang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Yaoxian Xiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junxi Dai
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Junjian Jiang
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China
| | - Jianguang Xu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Hand Reconstruction, Ministry of Health, Shanghai, China.,Shanghai Key Laboratory of Peripheral Nerve and Microsurgery, Shanghai, China.,School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Moise N, Friedman A. A mathematical model of immunomodulatory treatment in myocardial infarction. J Theor Biol 2022; 544:111122. [DOI: 10.1016/j.jtbi.2022.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
|
14
|
Secretome of Stressed Peripheral Blood Mononuclear Cells Alters Transcriptome Signature in Heart, Liver, and Spleen after an Experimental Acute Myocardial Infarction: An In Silico Analysis. BIOLOGY 2022; 11:biology11010116. [PMID: 35053121 PMCID: PMC8772778 DOI: 10.3390/biology11010116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022]
Abstract
Simple Summary Acute myocardial infarction is characterized by impaired coronary blood flow, which leads to cardiac ischemia and, ultimately, compromised heart function. Damage and cellular responses are not limited to the non-perfused area, but rather affect the entire heart, as well as distal organs, such as the liver and spleen. We found that the therapeutic secretome of stressed white blood cells improved short-term and long-term cardiac performance in a porcine infarction model. In order to unravel the molecular events governing secretome-mediated tissue regeneration, we performed transcriptional analyses of the non-perfused, transition, and perfused heart, as well as the liver and spleen 24 h after myocardial infarction. We observed a highly tissue-specific effect of the secretome and, except for the transition zone, a uniform downregulation of pro-inflammatory factors and pathways. Simultaneously, the secretome strongly promoted the expression of genes that are essential for heart function in the non-perfused area. In the liver and spleen, different metabolic processes were induced. Together, our data suggest several plausible mechanisms by which the secretome improves heart function after cardiac ischemia. Deepening our understanding of the molecular processes identified here might uncover further pharmacologic strategies aiming at delimiting adverse cardiac remodeling and sequelae after myocardial infarction. Abstract Acute myocardial infarction (AMI) is a result of cardiac non-perfusion and leads to cardiomyocyte necrosis, inflammation, and compromised cardiac performance. Here, we showed that the secretome of γ-irradiated peripheral blood mononuclear cells (PBMCsec) improved heart function in a porcine AMI model and displayed beneficial long- and short-term effects. As an AMI is known to strongly affect gene regulation of the ischemia non-affected heart muscle and distal organs, we employed a transcriptomics approach to further study the immediate molecular events orchestrated using the PBMCsec in myocardium, liver, and spleen 24 h post ischemia. In the infarcted area, the PBMCsec mainly induced genes that were essential for cardiomyocyte function and simultaneously downregulated pro-inflammatory genes. Interestingly, genes associated with pro-inflammatory processes were activated in the transition zone, while being downregulated in the remote zone. In the liver, we observed a pronounced inhibition of immune responses using the PBMCsec, while genes involved in urea and tricarboxylic cycles were induced. The spleen displayed elevated lipid metabolism and reduced immunological processes. Together, our study suggested several types of pharmacodynamics by which the PBMCsec conferred immediate cardioprotection. Furthermore, our data supported the assumption that an AMI significantly affects distal organs, suggesting that a holistic treatment of an AMI, as achieved by PBMCsec, might be highly beneficial.
Collapse
|
15
|
Edlinger C, Paar V, Kheder SH, Krizanic F, Lalou E, Boxhammer E, Butter C, Dworok V, Bannehr M, Hoppe UC, Kopp K, Lichtenauer M. Endothelialization and Inflammatory Reactions After Intracardiac Device Implantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1401:1-22. [DOI: 10.1007/5584_2022_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Sansonetti M, De Windt LJ. Non-coding RNAs in cardiac inflammation: key drivers in the pathophysiology of heart failure. Cardiovasc Res 2021; 118:2058-2073. [PMID: 34097013 DOI: 10.1093/cvr/cvab192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/04/2021] [Indexed: 12/15/2022] Open
Abstract
Heart failure is among the most progressive diseases and a leading cause of morbidity. Despite several advances in cardiovascular therapies, pharmacological treatments are limited to relieve symptoms without curing cardiac injury. Multiple observations point to the involvement of immune cells as key drivers in the pathophysiology of heart failure. In particular, there is a growing recognition that heart failure is related to a prolonged and insufficiently repressed inflammatory response leading to molecular, cellular, and functional cardiac alterations. Over the last decades, non-coding RNAs are recognized as prominent mediators of the cardiac inflammation, affecting the function of several immune cells. In the current review, we explore the contribution of the diverse immune cells in the progression of heart failure, revealing mechanistic functions for non-coding RNAs in cardiac immune cells as a new and exciting field of investigation.
Collapse
Affiliation(s)
- Marida Sansonetti
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| | - Leon J De Windt
- Department of Molecular Genetics, Faculty of Science and Engineering; Faculty of Health, Medicine and Life Sciences; Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
17
|
George MJ, Jasmin NH, Cummings VT, Richard-Loendt A, Launchbury F, Woollard K, Turner-Stokes T, Garcia Diaz AI, Lythgoe M, Stuckey DJ, Hingorani AD, Gilroy DW. Selective Interleukin-6 Trans-Signaling Blockade Is More Effective Than Panantagonism in Reperfused Myocardial Infarction. JACC Basic Transl Sci 2021; 6:431-443. [PMID: 34095633 PMCID: PMC8165121 DOI: 10.1016/j.jacbts.2021.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022]
Abstract
Interleukin (IL)-6 is an emerging therapeutic target in myocardial infarction (MI). IL-6 has 2 distinct signaling pathways: trans-signaling, which mediates inflammation, and classic signaling, which also has anti-inflammatory effects. The novel recombinant fusion protein sgp130Fc achieves exclusive trans-signaling blockade, whereas anti-IL-6 antibodies (Abs) result in panantagonism. In a rat model of reperfused MI, sgp130Fc, but not anti-IL-6-Ab, attenuated neutrophil and macrophage infiltration into the myocardium, reduced infarct size, and preserved cardiac function 28 days after MI. These data demonstrate the efficacy of exclusive IL-6 trans-signaling blockade and support further investigation of sgp130Fc as a potential novel therapy in MI.
Collapse
Key Words
- AAR, area at risk
- Ab, antibody
- CCL, C-C motif chemokine ligand
- CMR, cardiac magnetic resonance
- CXCL, C-X-C motif ligand
- ICAM-1, intercellular adhesion molecule 1
- IL, interleukin
- IS, infarct size
- LGE, late-gadolinium enhancement
- LVEF, left ventricular ejection fraction
- MHC, major histocompatibility complex
- MI, myocardial infarction
- NSTEMI, non–ST-segment-elevation MI
- RCAEC, rat coronary artery endothelial cell
- STEMI, ST-segment-elevation MI
- TCZ, tocilizumab
- Trop-T, troponin T
- c-caspase-3, cleaved caspase-3
- inflammation
- interleukin-6
- myocardial infarction
- reperfusion
- sIL-6R, soluble IL-6 receptor
Collapse
Affiliation(s)
- Marc Jonathan George
- Department of Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
- Department of Clinical Pharmacology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Nur Hayati Jasmin
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine, University College London, London, United Kingdom
| | - Valerie Taylor Cummings
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine, University College London, London, United Kingdom
| | - Angela Richard-Loendt
- Department of Neuropathology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- UCL IQPath, Institute of Neurology, University College London, London, United Kingdom
| | - Francesca Launchbury
- UCL IQPath, Institute of Neurology, University College London, London, United Kingdom
| | - Kevin Woollard
- Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tabitha Turner-Stokes
- Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ana Isabel Garcia Diaz
- Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mark Lythgoe
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine, University College London, London, United Kingdom
| | - Daniel James Stuckey
- Centre for Advanced Biomedical Imaging (CABI), Division of Medicine, University College London, London, United Kingdom
| | - Aroon Dinesh Hingorani
- Department of Clinical Pharmacology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
- Centre for Translational Genomics, Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Derek William Gilroy
- Department of Clinical Pharmacology, Division of Medicine, University College London, London, United Kingdom
| |
Collapse
|
18
|
Vujic A, Koo ANM, Prag HA, Krieg T. Mitochondrial redox and TCA cycle metabolite signaling in the heart. Free Radic Biol Med 2021; 166:287-296. [PMID: 33675958 DOI: 10.1016/j.freeradbiomed.2021.02.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are essential signaling organelles that regulate a broad range of cellular processes and thereby heart function. Multiple mechanisms participate in the communication between mitochondria and the nucleus that maintain cardiomyocyte homeostasis, including mitochondrial reactive oxygen species (ROS) and metabolic shifts in TCA cycle metabolite availability. An increased rate of ROS generation can cause irreversible damage to the cell and proposed to be a leading cause of many pathologies, including accelerated aging and heart disease. Myocardial impairments are also characterised by specific coordinated metabolic changes and dysregulated inflammatory responses. Hence, the mitochondrial respiratory chain is an important mediator between health and disease in the heart. This review will first outline the sources of ROS in the heart, mitochondrial metabolite dynamics, and provide an overview of their implications for heart disease. In addition, we will concentrate our discussion around current cardioprotective strategies relevant to mitochondrial ROS. Thorough understanding of mitochondrial signaling and the complex interplay with vital signaling pathways in the heart might allow us to develop novel therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Ana Vujic
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Amy N M Koo
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Hiran A Prag
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, CB2 0XY, UK
| | - Thomas Krieg
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
19
|
Translational insights from single-cell technologies across the cardiovascular disease continuum. Trends Cardiovasc Med 2021; 32:127-135. [PMID: 33667644 DOI: 10.1016/j.tcm.2021.02.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. The societal health burden it represents can be reduced by taking preventive measures and developing more effective therapies. Reaching these goals, however, requires a better understanding of the pathophysiological processes leading to and occurring in the diseased heart. In the last 5 years, several biological advances applying single-cell technologies have enabled researchers to study cardiovascular diseases with unprecedented resolution. This has produced many new insights into how specific cell types change their gene expression level, activation status and potential cellular interactions with the development of cardiovascular disease, but a comprehensive overview of the clinical implications of these findings is lacking. In this review, we summarize and discuss these recent advances and the promise of single-cell technologies from a translational perspective across the cardiovascular disease continuum, covering both animal and human studies, and explore the future directions of the field.
Collapse
|
20
|
Göbölös L, Rácz I, Hogan M, Remsey-Semmelweis E, Atallah B, AlMahmeed W, AlSindi F, Suri RM, Bhatnagar G, Tuzcu EM. The role of renin-angiotensin system activated phagocytes in the SARS-CoV-2 coronavirus infection. J Vasc Surg 2020; 73:1889-1897. [PMID: 33348007 PMCID: PMC7748976 DOI: 10.1016/j.jvs.2020.12.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Management of the pandemic caused by the novel coronavirus SARS-CoV-2 challenges both scientists and physicians to rapidly develop, and urgently assess, effective diagnostic tests and therapeutic interventions. The initial presentation of the disease in symptomatic patients is invariably respiratory, with dry cough being the main symptom, but an increasing number of reports reveal multiple-organ involvement. The aim of this review is to summarize the potential role of the renin-angiotensin system activated phagocytes in the pathogenesis of COVID-19 disease. METHODS Data for this review were identified by searches of PubMed and references from relevant articles using the search terms "SARS," "COVID-19," "renin-angiotensin-system," "phagocyte," "reactive free radical," "antioxidant," "ARDS," "thrombosis," "myocardial," "ischaemia," "reperfusion," "microvascular," and "ACE2." Abstracts and reports from meetings were not included in this work. Only articles published in English between 1976 and 2020 were reviewed. RESULTS The cellular target of SARS viruses is the angiotensin-converting enzyme 2, a critical regulating protein in the renin-angiotensin system. The elimination of this enzyme by the viral spike protein results in excessive activation of phagocytes, migration into the tissues via the high endothelial venules, and an oxidative burst. In the case of an overstimulated host immune response, not only devastating respiratory symptoms but even systemic or multiorgan involvement may be observed. CONCLUSIONS Early-stage medical interventions may assist in returning the exaggerated immune response to a normal range; however, some therapeutic delay might result in excessive tissue damages, occasionally mimicking a systemic disease with a detrimental outcome.
Collapse
Affiliation(s)
- Laszlo Göbölös
- Department of Cardiac Surgery, Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE.
| | - István Rácz
- Winramed Health Care Services Limited Company, Siófok, Hungary
| | - Maurice Hogan
- Departments of Cardiac Anesthesia and Intensive Care, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Ernő Remsey-Semmelweis
- Department of Cardiac Surgery, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - Bassam Atallah
- Department of Clinical Pharmacotherapy, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Wael AlMahmeed
- Department of Cardiology, Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Fahad AlSindi
- Department of Cardiology, Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Rakesh M Suri
- Department of Cardiac Surgery, Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Gopal Bhatnagar
- Department of Cardiac Surgery, Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Emin Murat Tuzcu
- Department of Cardiology, Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| |
Collapse
|
21
|
Baci D, Bosi A, Parisi L, Buono G, Mortara L, Ambrosio G, Bruno A. Innate Immunity Effector Cells as Inflammatory Drivers of Cardiac Fibrosis. Int J Mol Sci 2020; 21:E7165. [PMID: 32998408 PMCID: PMC7583949 DOI: 10.3390/ijms21197165] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Despite relevant advances made in therapies for cardiovascular diseases (CVDs), they still represent the first cause of death worldwide. Cardiac fibrosis and excessive extracellular matrix (ECM) remodeling are common end-organ features in diseased hearts, leading to tissue stiffness, impaired myocardial functional, and progression to heart failure. Although fibrosis has been largely recognized to accompany and complicate various CVDs, events and mechanisms driving and governing fibrosis are still not entirely elucidated, and clinical interventions targeting cardiac fibrosis are not yet available. Immune cell types, both from innate and adaptive immunity, are involved not just in the classical response to pathogens, but they take an active part in "sterile" inflammation, in response to ischemia and other forms of injury. In this context, different cell types infiltrate the injured heart and release distinct pro-inflammatory cytokines that initiate the fibrotic response by triggering myofibroblast activation. The complex interplay between immune cells, fibroblasts, and other non-immune/host-derived cells is now considered as the major driving force of cardiac fibrosis. Here, we review and discuss the contribution of inflammatory cells of innate immunity, including neutrophils, macrophages, natural killer cells, eosinophils and mast cells, in modulating the myocardial microenvironment, by orchestrating the fibrogenic process in response to tissue injury. A better understanding of the time frame, sequences of events during immune cells infiltration, and their action in the injured inflammatory heart environment, may provide a rationale to design new and more efficacious therapeutic interventions to reduce cardiac fibrosis.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Luca Parisi
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20122 Milan, Italy;
| | - Giuseppe Buono
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| | - Giuseppe Ambrosio
- Division of Cardiology, University of Perugia School of Medicine, 06123 Perugia, Italy;
| | - Antonino Bruno
- Unit of Immunology, IRCCS MultiMedica, 20138 Milan, Italy;
| |
Collapse
|
22
|
Thomas TP, Grisanti LA. The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Front Physiol 2020; 11:529075. [PMID: 33041853 PMCID: PMC7522448 DOI: 10.3389/fphys.2020.529075] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Heart failure is a leading cause of death worldwide. While there are multiple etiologies contributing to the development of heart failure, all cause result in impairments in cardiac function that is characterized by changes in cardiac remodeling and compliance. Fibrosis is associated with nearly all forms of heart failure and is an important contributor to disease pathogenesis. Inflammation also plays a critical role in the heart and there is a large degree of interconnectedness between the inflammatory and fibrotic response. This review discusses the cellular and molecular mechanisms contributing to inflammation and fibrosis and the interplay between the two.
Collapse
Affiliation(s)
- Toby P Thomas
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Laurel A Grisanti
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
23
|
Okyere AD, Tilley DG. Leukocyte-Dependent Regulation of Cardiac Fibrosis. Front Physiol 2020; 11:301. [PMID: 32322219 PMCID: PMC7156539 DOI: 10.3389/fphys.2020.00301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Cardiac fibrosis begins as an intrinsic response to injury or ageing that functions to preserve the tissue from further damage. Fibrosis results from activated cardiac myofibroblasts, which secrete extracellular matrix (ECM) proteins in an effort to replace damaged tissue; however, excessive ECM deposition leads to pathological fibrotic remodeling. At this extent, fibrosis gravely disturbs myocardial compliance, and ultimately leads to adverse outcomes like heart failure with heightened mortality. As such, understanding the complexity behind fibrotic remodeling has been a focal point of cardiac research in recent years. Resident cardiac fibroblasts and activated myofibroblasts have been proven integral to the fibrotic response; however, several findings point to additional cell types that may contribute to the development of pathological fibrosis. For one, leukocytes expand in number after injury and exhibit high plasticity, thus their distinct role(s) in cardiac fibrosis is an ongoing and controversial field of study. This review summarizes current findings, focusing on both direct and indirect leukocyte-mediated mechanisms of fibrosis, which may provide novel targeted strategies against fibrotic remodeling.
Collapse
Affiliation(s)
- Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
24
|
Barzyc A, Łysik W, Słyk J, Kuszewski M, Zarębiński M, Wojciechowska M, Cudnoch-Jędrzejewska A. Reperfusion injury as a target for diminishing infarct size. Med Hypotheses 2020; 137:109558. [PMID: 31958650 DOI: 10.1016/j.mehy.2020.109558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/15/2019] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
Therapies for preventing reperfusion injury (RI) have been widely studied. However, the attempts to transfer cardioprotective therapies for reducing RI from experiments into clinical practice have been so far unsuccessful. Pathophysiological mechanisms of RI are complicated and compose of many pathways e.g. hypercontracture-mediated sarcolemma rupture, mitochondrial permeability transition pore persistent opening, reactive oxygen species formation, inflammation and no-reflow phenomenon. Based on research, it cannot be determined which mechanism dominates, probably they cooperate with a domination of one or another in different clinical circumstances. Our hypothesis is, that only intervention that at the same time interferes with different (all?) pathways of RI may turn out to be effective in decreasing the final area of infarction.
Collapse
Affiliation(s)
- A Barzyc
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - W Łysik
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - J Słyk
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - M Kuszewski
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - M Zarębiński
- Independent Public Specialist Western Hospital John Paul II in Grodzisk Mazowiecki, Poland
| | - M Wojciechowska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland; Independent Public Specialist Western Hospital John Paul II in Grodzisk Mazowiecki, Poland.
| | - A Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
25
|
Valiente-Alandi I, Potter SJ, Salvador AM, Schafer AE, Schips T, Carrillo-Salinas F, Gibson AM, Nieman ML, Perkins C, Sargent MA, Huo J, Lorenz JN, DeFalco T, Molkentin JD, Alcaide P, Blaxall BC. Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation 2019; 138:1236-1252. [PMID: 29653926 DOI: 10.1161/circulationaha.118.034609] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased β1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Iñigo Valiente-Alandi
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Sarah J Potter
- Division of Reproductive Sciences (S.J.P., T.D.), Cincinnati Children's Hospital Medical Center
| | - Ane M Salvador
- Department of Integrative Physiology and Pathobiology, Tufts University Schools of Medicine, Boston, MA (A.M.S., F.C.-S., P.A.)
| | - Allison E Schafer
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Tobias Schips
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Francisco Carrillo-Salinas
- Department of Integrative Physiology and Pathobiology, Tufts University Schools of Medicine, Boston, MA (A.M.S., F.C.-S., P.A.)
| | - Aaron M Gibson
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | | | - Charles Perkins
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Michelle A Sargent
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Jiuzhou Huo
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - John N Lorenz
- Department of Molecular and Cellular Physiology (M.C.N., J.N.L., University of Cincinnati College of Medicine, OH
| | - Tony DeFalco
- Division of Reproductive Sciences (S.J.P., T.D.), Cincinnati Children's Hospital Medical Center
| | - Jeffery D Molkentin
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Pilar Alcaide
- Department of Integrative Physiology and Pathobiology, Tufts University Schools of Medicine, Boston, MA (A.M.S., F.C.-S., P.A.)
| | - Burns C Blaxall
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| |
Collapse
|
26
|
Wang Y, Sano S, Oshima K, Sano M, Watanabe Y, Katanasaka Y, Yura Y, Jung C, Anzai A, Swirski FK, Gokce N, Walsh K. Wnt5a-Mediated Neutrophil Recruitment Has an Obligatory Role in Pressure Overload-Induced Cardiac Dysfunction. Circulation 2019; 140:487-499. [PMID: 31170826 DOI: 10.1161/circulationaha.118.038820] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although the complex roles of macrophages in myocardial injury are widely appreciated, the function of neutrophils in nonischemic cardiac pathology has received relatively little attention. METHODS To examine the regulation and function of neutrophils in pressure overload-induced cardiac hypertrophy, mice underwent treatment with Ly6G antibody to deplete neutrophils and then were subjected to transverse aortic constriction. RESULTS Neutrophil depletion diminished transverse aortic constriction-induced hypertrophy and inflammation and preserved cardiac function. Myeloid deficiency of Wnt5a, a noncanonical Wnt, suppressed neutrophil infiltration to the hearts of transverse aortic constriction-treated mice and produced a phenotype that was similar to the neutropenic conditions. Conversely, mice overexpressing Wnt5a in myeloid cells displayed greater hypertrophic growth, inflammation, and cardiac dysfunction. Neutrophil depletion reversed the Wnt5a overexpression-induced cardiac pathology and eliminated differences in cardiac parameters between wild-type and myeloid-specific Wnt5a transgenic mice. CONCLUSIONS These findings reveal that Wnt5a-regulated neutrophil infiltration has a critical role in pressure overload-induced heart failure.
Collapse
Affiliation(s)
- Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (Y. Wang, S.S., M.S., Y.Y., C.J., K.W.).,The First Affiliated Hospital of Chongqing Medical University, People's Republic of China (Y. Wang)
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (Y. Wang, S.S., M.S., Y.Y., C.J., K.W.)
| | - Kosei Oshima
- Molecular Cardiology (K.O., Y.K.), Boston University School of Medicine, MA
| | - Miho Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (Y. Wang, S.S., M.S., Y.Y., C.J., K.W.)
| | - Yosuke Watanabe
- Whitaker Cardiovascular Institute, and Vascular Biology Section (Y. Watanabe), Boston University School of Medicine, MA
| | | | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (Y. Wang, S.S., M.S., Y.Y., C.J., K.W.)
| | - Changhee Jung
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (Y. Wang, S.S., M.S., Y.Y., C.J., K.W.).,Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea (C.J.)
| | - Atsushi Anzai
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston (A.A., F.K.S.)
| | - Filip K Swirski
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston (A.A., F.K.S.)
| | - Noyan Gokce
- Cardiovascular Medicine (N.G.), Boston University School of Medicine, MA.,Cardiology, Boston Medical Center, MA (N.G.). Dr Watanabe is currently at the Department of Internal Medicine II, University of Yamanashi, Faculty of Medicine, Chuo, Yamanashi, Japan. Dr Katanasaka is currently at the Division of Molecular Medicine, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Japan. Dr Anzai is currently at the Department of Cardiology, Keio University, School of Medicine, Tokyo, Japan
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (Y. Wang, S.S., M.S., Y.Y., C.J., K.W.)
| |
Collapse
|
27
|
Fioranelli M, Bottaccioli AG, Bottaccioli F, Bianchi M, Rovesti M, Roccia MG. Stress and Inflammation in Coronary Artery Disease: A Review Psychoneuroendocrineimmunology-Based. Front Immunol 2018; 9:2031. [PMID: 30237802 PMCID: PMC6135895 DOI: 10.3389/fimmu.2018.02031] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 08/17/2018] [Indexed: 01/08/2023] Open
Abstract
Recent findings have deeply changed the current view of coronary heart disease, going beyond the simplistic model of atherosclerosis as a passive process involving cholesterol build-up in the subintimal space of the arteries until their final occlusion and/or thrombosis and instead focusing on the key roles of inflammation and the immune system in plaque formation and destabilization. Chronic inflammation is a typical hallmark of cardiac disease, worsening outcomes irrespective of serum cholesterol levels. Low-grade chronic inflammation correlates with higher incidence of several non-cardiac diseases, including depression, and chronic depression is now listed among the most important cardiovascular risk factors for poor prognosis among patients with myocardial infarction. In this review, we include recent evidence describing the immune and endocrine properties of the heart and their critical roles in acute ischaemic damage and in post-infarct myocardial remodeling. The importance of the central and autonomic regulation of cardiac functions, namely, the neuro-cardiac axis, is extensively explained, highlighting the roles of acute and chronic stress, circadian rhythms, emotions and the social environment in triggering acute cardiac events and worsening heart function and metabolism in chronic cardiovascular diseases. We have also included specific sections related to stress-induced myocardial ischaemia measurements and stress cardiomyopathy. The complex network of reciprocal interconnections between the heart and the main biological systems we have presented in this paper provides a new vision of cardiovascular science based on psychoneuroendocrineimmunology.
Collapse
Affiliation(s)
- Massimo Fioranelli
- Department of Nuclear Physics, Sub-Nuclear and Radiation, Guglielmo Marconi University, Rome, Italy
- Società Italiana di Psiconeuroendocrinoimmunologia, Rome, Italy
| | - Anna G. Bottaccioli
- Società Italiana di Psiconeuroendocrinoimmunologia, Rome, Italy
- Department of Internal Medicine, Sapienza University, Rome, Italy
| | - Francesco Bottaccioli
- Società Italiana di Psiconeuroendocrinoimmunologia, Rome, Italy
- Department of Clinical Medicine, University of l'Aquila, L'Aquila, Italy
- Department of Neurosciences “Rita Levi Montalcini”, University of Turin, Rome, Italy
| | - Maria Bianchi
- Department of Nuclear Physics, Sub-Nuclear and Radiation, Guglielmo Marconi University, Rome, Italy
| | - Miriam Rovesti
- Department of Dermatology, University of Parma, Parma, Italy
| | - Maria G. Roccia
- Department of Nuclear Physics, Sub-Nuclear and Radiation, Guglielmo Marconi University, Rome, Italy
| |
Collapse
|
28
|
Huang S, Frangogiannis NG. Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. Br J Pharmacol 2018; 175:1377-1400. [PMID: 29394499 PMCID: PMC5901181 DOI: 10.1111/bph.14155] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
In the infarcted heart, the damage-associated molecular pattern proteins released by necrotic cells trigger both myocardial and systemic inflammatory responses. Induction of chemokines and cytokines and up-regulation of endothelial adhesion molecules mediate leukocyte recruitment in the infarcted myocardium. Inflammatory cells clear the infarct of dead cells and matrix debris and activate repair by myofibroblasts and vascular cells, but may also contribute to adverse fibrotic remodelling of viable segments, accentuate cardiomyocyte apoptosis and exert arrhythmogenic actions. Excessive, prolonged and dysregulated inflammation has been implicated in the pathogenesis of complications and may be involved in the development of heart failure following infarction. Studies in animal models of myocardial infarction (MI) have suggested the effectiveness of pharmacological interventions targeting the inflammatory response. This article provides a brief overview of the cell biology of the post-infarction inflammatory response and discusses the use of pharmacological interventions targeting inflammation following infarction. Therapy with broad anti-inflammatory and immunomodulatory agents may also inhibit important repair pathways, thus exerting detrimental actions in patients with MI. Extensive experimental evidence suggests that targeting specific inflammatory signals, such as the complement cascade, chemokines, cytokines, proteases, selectins and leukocyte integrins, may hold promise. However, clinical translation has proved challenging. Targeting IL-1 may benefit patients with exaggerated post-MI inflammatory responses following infarction, not only by attenuating adverse remodelling but also by stabilizing the atherosclerotic plaque and by inhibiting arrhythmia generation. Identification of the therapeutic window for specific interventions and pathophysiological stratification of MI patients using inflammatory biomarkers and imaging strategies are critical for optimal therapeutic design.
Collapse
Affiliation(s)
- Shuaibo Huang
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology)Albert Einstein College of MedicineBronxNY10461USA
- Department of Cardiology, Changzheng HospitalSecond Military Medical UniversityShanghai200003China
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology)Albert Einstein College of MedicineBronxNY10461USA
| |
Collapse
|
29
|
Mitchell T, MacDonald JW, Srinouanpranchanh S, Bammler TK, Merillat S, Boldenow E, Coleman M, Agnew K, Baldessari A, Stencel-Baerenwald JE, Tisoncik-Go J, Green RR, Gale MJ, Rajagopal L, Adams Waldorf KM. Evidence of cardiac involvement in the fetal inflammatory response syndrome: disruption of gene networks programming cardiac development in nonhuman primates. Am J Obstet Gynecol 2018; 218:438.e1-438.e16. [PMID: 29475580 PMCID: PMC6070341 DOI: 10.1016/j.ajog.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Most early preterm births are associated with intraamniotic infection and inflammation, which can lead to systemic inflammation in the fetus. The fetal inflammatory response syndrome describes elevations in the fetal interleukin-6 level, which is a marker for inflammation and fetal organ injury. An understanding of the effects of inflammation on fetal cardiac development may lead to insight into the fetal origins of adult cardiovascular disease. OBJECTIVE The purpose of this study was to determine whether the fetal inflammatory response syndrome is associated with disruptions in gene networks that program fetal cardiac development. STUDY DESIGN We obtained fetal cardiac tissue after necropsy from a well-described pregnant nonhuman primate model (pigtail macaque, Macaca nemestrina) of intrauterine infection (n=5) and controls (n=5). Cases with the fetal inflammatory response syndrome (fetal plasma interleukin-6 >11 pg/mL) were induced by either choriodecidual inoculation of a hypervirulent group B streptococcus strain (n=4) or intraamniotic inoculation of Escherichia coli (n=1). RNA and protein were extracted from fetal hearts and profiled by microarray and Luminex (Millipore, Billerica, MA) for cytokine analysis, respectively. Results were validated by quantitative reverse transcriptase polymerase chain reaction. Statistical and bioinformatics analyses included single gene analysis, gene set analysis, Ingenuity Pathway Analysis (Qiagen, Valencia, CA), and Wilcoxon rank sum. RESULTS Severe fetal inflammation developed in the context of intraamniotic infection and a disseminated bacterial infection in the fetus. Interleukin-6 and -8 in fetal cardiac tissues were elevated significantly in fetal inflammatory response syndrome cases vs controls (P<.05). A total of 609 probe sets were expressed differentially (>1.5-fold change, P<.05) in the fetal heart (analysis of variance). Altered expression of select genes was validated by quantitative reverse transcriptase polymerase chain reaction that included several with known functions in cardiac injury, morphogenesis, angiogenesis, and tissue remodeling (eg, angiotensin I converting enzyme 2, STEAP family member 4, natriuretic peptide A, and secreted frizzled-related protein 4; all P<.05). Multiple gene sets and pathways that are involved in cardiac morphogenesis and vasculogenesis were downregulated significantly by gene set and Ingenuity Pathway Analysis (hallmark transforming growth factor beta signaling, cellular morphogenesis during differentiation, morphology of cardiovascular system; all P<.05). CONCLUSION Disruption of gene networks for cardiac morphogenesis and vasculogenesis occurred in the preterm fetal heart of nonhuman primates with preterm labor, intraamniotic infection, and severe fetal inflammation. Inflammatory injury to the fetal heart in utero may contribute to the development of heart disease later in life. Development of preterm labor therapeutics must also target fetal inflammation to lessen organ injury and potential long-term effects on cardiac function.
Collapse
Affiliation(s)
- Timothy Mitchell
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | | | - Theodor K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Sean Merillat
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Erica Boldenow
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | | | - Kathy Agnew
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA
| | - Audrey Baldessari
- Washington National Primate Research Center, University of Washington, Seattle, WA
| | - Jennifer E Stencel-Baerenwald
- Department of Immunology, University of Washington, Seattle, WA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, WA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Richard R Green
- Department of Immunology, University of Washington, Seattle, WA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Michael J Gale
- Department of Immunology, University of Washington, Seattle, WA; Department of Global Health, University of Washington, Seattle, WA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA
| | - Lakshmi Rajagopal
- Department of Pediatrics, University of Washington, Seattle, WA; Department of Global Health, University of Washington, Seattle, WA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA
| | - Kristina M Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA; Department of Global Health, University of Washington, Seattle, WA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle, WA; Sahlgrenska Academy, Gothenburg, Sweden.
| |
Collapse
|
30
|
Ziegler T, Horstkotte M, Lange P, Ng J, Bongiovanni D, Hinkel R, Laugwitz KL, Sperandio M, Horstkotte J, Kupatt C. Endothelial RAGE exacerbates acute postischaemic cardiac inflammation. Thromb Haemost 2018; 116:300-8. [DOI: 10.1160/th15-11-0898] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/24/2016] [Indexed: 01/01/2023]
Abstract
SummaryAdvanced glycation end-products (AGEs) interact with their receptor RAGE, leading to an inflammatory state. We investigated the role of RAGE in postischaemic leukocyte adhesion after myocardial infarction and its effect on postischaemic myocardial function. Wildtype (WT), ICAM-1-/-, RAGE-/- or ICAM-1/RAGE-/- mice underwent 20 minutes (min) of LAD-occlusion followed by 15 min of reperfusion. We applied in vivo fluorescence microscopy visualising Rhodamine-6G labelled leukocytes. To differentiate between endothelial and leukocyte RAGE, we generated bone marrow chimeric mice. Invasive hemodynamic measurements were performed in mice undergoing 45 min of myocardial ischaemia (via LAD-occlusion) followed by 24 hours of reperfusion. Left-ventricular developed pressure (LVDP) was assessed by insertion of a millar-tip catheter into the left ventricle. In the acute model of myocardial ischaemia, leukocyte retention (WT 68 ± 4 cells/ hpf) was significantly reduced in ICAM-1-/- (40 ± 3 cells/hpf) and RAGE-/- mice (38 ± 4 cells/hpf). ICAM-1/RAGE-/- mice displayed an additive reduction of leukocyte retention (ICAM-1/RAGE-/- 15 ± 3 cells/ hpf). Ly-6G+ neutrophil were predominantly reduced in ICAM-1/RAGE-/- hearts (28%), whereas Ly-6C+ proinflammatory monocytes decreased to a lesser extent (55%). Interestingly, PMN recruitment was not affected in chimeric mice with RAGE deficiency in BM cells (WT mice reconstituted with ICAM-1/RAGE-/- BM: 55 ± 4 cells/hpf) while in mice with global RAGE deficiency (ICAM-1/RAGE-/- mice reconstituted with ICAM-1/RAGE-/- BM) leucocyte retention was significantly reduced (13 ± 1 cells/hpf), similar to non-transplanted ICAM/ RAGE-/- mice. Furthermore, postischaemic LVDP increased in ICAM-1/RAGE-/- animals (98 ± 4 mmHg vs 86 ± 4 mmHg in WT mice). In conclusion, combined deficiency of ICAM-1 and RAGE reduces leukocyte influx into infarcted myocardium and improves LV function during the acute phase after myocardial ischaemia and reperfusion. RAGE represents an additional pro-inflammatory endothelial mediator of ischaemia-reperfusion injury.
Collapse
|
31
|
Chen B, Frangogiannis NG. Immune cells in repair of the infarcted myocardium. Microcirculation 2018; 24. [PMID: 27542099 DOI: 10.1111/micc.12305] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022]
Abstract
The immune system plays a critical role in both repair and remodeling of the infarcted myocardium. Danger signals released by dying cardiomyocytes mobilize, recruit, and activate immune cells, triggering an inflammatory reaction. CXC chemokines containing the ELR motif attract neutrophils, while CC chemokines mediate recruitment of mononuclear cell subpopulations, contributing to clearance of the infarct from dead cells and matrix debris. Immune cell subsets also participate in suppression and containment of the postinfarction inflammatory response by secreting anti-inflammatory mediators, such as IL-10 and TGF-β. As proinflammatory signaling is suppressed, macrophage subpopulations, mast cells and lymphocytes, activate fibrogenic and angiogenic responses, contributing to scar formation. In the viable remodeling myocardium, chronic activation of immune cells may promote fibrosis and hypertrophy. This review discusses the role of immune cells in repair and remodeling of the infarcted myocardium. Understanding the role of immune cells in myocardial infarction is critical for the development of therapeutic strategies aimed at protecting the infarcted heart from adverse remodeling. Moreover, modulation of immune cell phenotype may be required in order to achieve the visionary goal of myocardial regeneration.
Collapse
Affiliation(s)
- Bijun Chen
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
32
|
Frangogiannis NG. Cell biological mechanisms in regulation of the post-infarction inflammatory response. CURRENT OPINION IN PHYSIOLOGY 2018; 1:7-13. [PMID: 29552674 PMCID: PMC5851468 DOI: 10.1016/j.cophys.2017.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation plays a crucial role in cardiac repair, but may also extend ischemic injury and contribute to post-infarction remodeling. This review manuscript discusses recent advances in our understanding of the cell biology of the post-infarction inflammatory response. Recently published studies demonstrated that the functional repertoire of inflammatory and reparative cells may extend beyond the roles suggested by traditional teachings. Neutrophils may play an important role in cardiac repair by driving macrophages toward a reparative phenotype. Subsets of activated fibroblasts have been implicated in protection of ischemic cardiomyocytes, in phagocytosis of apoptotic cells, and in regulation of inflammation. Dissection of the cellular effectors of cardiac repair is critical in order to develop new therapeutic strategies for patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
33
|
Guérette B, Asselin I, Skuk D, Entman M, Tremblay JP. Control of Inflammatory Damage by Anti-Lfa-1: Increase Success of Myoblast Transplantation. Cell Transplant 2017; 6:101-7. [PMID: 9142441 DOI: 10.1177/096368979700600203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Myoblast transplantation is a potential treatment for Duchenne Muscular Dystrophy. This article confirms by experiments in mice that one problem that has limited the success of clinical trials of this procedure is a rapid (within 3 days) inflammatory reaction which kills most of the injected myoblasts. The death of the transplanted myoblasts can be prevented by treating the host with a mAb against LFA-1. This led to a 27-fold increase in the number of muscle fibers expressing a reporter gene present in the donor myoblasts when the host is also adequately immunosuppressed with FK506. Therefore, both the nonspecific inflammatory reaction and the specific immune response should be adequately controlled following myoblast transplantation.
Collapse
Affiliation(s)
- B Guérette
- Centre de recherche en Neurobiologie, Université Laval, Québec, Canada
| | | | | | | | | |
Collapse
|
34
|
Prabhu SD, Frangogiannis NG. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res 2017; 119:91-112. [PMID: 27340270 DOI: 10.1161/circresaha.116.303577] [Citation(s) in RCA: 1490] [Impact Index Per Article: 186.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/15/2016] [Indexed: 12/14/2022]
Abstract
In adult mammals, massive sudden loss of cardiomyocytes after infarction overwhelms the limited regenerative capacity of the myocardium, resulting in the formation of a collagen-based scar. Necrotic cells release danger signals, activating innate immune pathways and triggering an intense inflammatory response. Stimulation of toll-like receptor signaling and complement activation induces expression of proinflammatory cytokines (such as interleukin-1 and tumor necrosis factor-α) and chemokines (such as monocyte chemoattractant protein-1/ chemokine (C-C motif) ligand 2 [CCL2]). Inflammatory signals promote adhesive interactions between leukocytes and endothelial cells, leading to extravasation of neutrophils and monocytes. As infiltrating leukocytes clear the infarct from dead cells, mediators repressing inflammation are released, and anti-inflammatory mononuclear cell subsets predominate. Suppression of the inflammatory response is associated with activation of reparative cells. Fibroblasts proliferate, undergo myofibroblast transdifferentiation, and deposit large amounts of extracellular matrix proteins maintaining the structural integrity of the infarcted ventricle. The renin-angiotensin-aldosterone system and members of the transforming growth factor-β family play an important role in activation of infarct myofibroblasts. Maturation of the scar follows, as a network of cross-linked collagenous matrix is formed and granulation tissue cells become apoptotic. This review discusses the cellular effectors and molecular signals regulating the inflammatory and reparative response after myocardial infarction. Dysregulation of immune pathways, impaired suppression of postinfarction inflammation, perturbed spatial containment of the inflammatory response, and overactive fibrosis may cause adverse remodeling in patients with infarction contributing to the pathogenesis of heart failure. Therapeutic modulation of the inflammatory and reparative response may hold promise for the prevention of postinfarction heart failure.
Collapse
Affiliation(s)
- Sumanth D Prabhu
- From the Division of Cardiovascular Disease, University of Alabama at Birmingham, and Medical Service, Birmingham VAMC (S.D.P.); and Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (N.G.F.)
| | - Nikolaos G Frangogiannis
- From the Division of Cardiovascular Disease, University of Alabama at Birmingham, and Medical Service, Birmingham VAMC (S.D.P.); and Department of Medicine, The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY (N.G.F.).
| |
Collapse
|
35
|
Abstract
BACKGROUND The liver has a number of functions in innate immunity. These functions predispose the liver to innate immune-mediated liver injury when inflammation goes unchecked. Significant progress has been made in the last 25 years on sterile inflammatory liver injury in a number of models; however, a great deal of controversy and many questions about the nature of sterile inflammation still exist. AIM The goal of this article is to review sterile inflammatory liver injury using both a basic approach to what constitutes the inflammatory injury, and through examination of current models of liver injury and inflammation. This information will be tied to human patient conditions when appropriate. RELEVANCE FOR PATIENTS Inflammation is one of the most critical factors for managing in-patient liver disease in a number of scenarios. More information is needed for both scientists and clinicians to develop rational treatments.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
36
|
Contreras A, Orozco AF, Resende M, Schutt RC, Traverse JH, Henry TD, Lai D, Cooke JP, Bolli R, Cohen ML, Moyé L, Pepine CJ, Yang PC, Perin EC, Willerson JT, Taylor DA. Identification of cardiovascular risk factors associated with bone marrow cell subsets in patients with STEMI: a biorepository evaluation from the CCTRN TIME and LateTIME clinical trials. Basic Res Cardiol 2017; 112:3. [PMID: 27882430 PMCID: PMC5760218 DOI: 10.1007/s00395-016-0592-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022]
Abstract
Autologous bone marrow mononuclear cell (BM-MNC) therapy for patients with ST-segment elevation myocardial infarction (STEMI) has produced inconsistent results, possibly due to BM-MNC product heterogeneity. Patient-specific cardiovascular risk factors (CRFs) may contribute to variations in BM-MNC composition. We sought to identify associations between BM-MNC subset frequencies and specific CRFs in STEMI patients. Bone marrow was collected from 191 STEMI patients enrolled in the CCTRN TIME and LateTIME trials. Relationships between BM-MNC subsets and CRFs were determined with multivariate analyses. An assessment of CRFs showed that hyperlipidemia and hypertension were associated with a higher frequency of CD11b+ cells (P = 0.045 and P = 0.016, respectively). In addition, we found that females had lower frequencies of CD11b+ (P = 0.018) and CD45+CD14+ (P = 0.028) cells than males, age was inversely associated with the frequency of CD45+CD31+ cells (P = 0.001), smoking was associated with a decreased frequency of CD45+CD31+ cells (P = 0.013), glucose level was positively associated with the frequency of CD45+CD3+ cells, and creatinine level (an indicator of renal function) was inversely associated with the frequency of CD45+CD3+ cells (P = 0.015). In conclusion, the frequencies of monocytic, lymphocytic, and angiogenic BM-MNCs varied in relation to patients' CRFs. These phenotypic variations may affect cell therapy outcomes and might be an important consideration when selecting patients for and reviewing results from autologous cell therapy trials.
Collapse
Affiliation(s)
| | | | | | - Robert C Schutt
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Research Institute, Houston, TX, USA
| | - Jay H Traverse
- Minneapolis Heart Institute Foundation, Abbott Northwestern Hospital, Minneapolis, MN, USA
| | | | - Dejian Lai
- UT Health School of Public Health, Houston, TX, USA
| | - John P Cooke
- Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Research Institute, Houston, TX, USA
| | | | | | - Lem Moyé
- UT Health School of Public Health, Houston, TX, USA.
| | - Carl J Pepine
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Phillip C Yang
- Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Ischemic disorders, such as myocardial infarction, stroke, and peripheral vascular disease, are the most common causes of debilitating disease and death in westernized cultures. The extent of tissue injury relates directly to the extent of blood flow reduction and to the length of the ischemic period, which influence the levels to which cellular ATP and intracellular pH are reduced. By impairing ATPase-dependent ion transport, ischemia causes intracellular and mitochondrial calcium levels to increase (calcium overload). Cell volume regulatory mechanisms are also disrupted by the lack of ATP, which can induce lysis of organelle and plasma membranes. Reperfusion, although required to salvage oxygen-starved tissues, produces paradoxical tissue responses that fuel the production of reactive oxygen species (oxygen paradox), sequestration of proinflammatory immunocytes in ischemic tissues, endoplasmic reticulum stress, and development of postischemic capillary no-reflow, which amplify tissue injury. These pathologic events culminate in opening of mitochondrial permeability transition pores as a common end-effector of ischemia/reperfusion (I/R)-induced cell lysis and death. Emerging concepts include the influence of the intestinal microbiome, fetal programming, epigenetic changes, and microparticles in the pathogenesis of I/R. The overall goal of this review is to describe these and other mechanisms that contribute to I/R injury. Because so many different deleterious events participate in I/R, it is clear that therapeutic approaches will be effective only when multiple pathologic processes are targeted. In addition, the translational significance of I/R research will be enhanced by much wider use of animal models that incorporate the complicating effects of risk factors for cardiovascular disease. © 2017 American Physiological Society. Compr Physiol 7:113-170, 2017.
Collapse
Affiliation(s)
- Theodore Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Christopher P. Baines
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri College of Veterinary Medicine, Columbia, Missouri, USA
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
38
|
Zlatanova I, Pinto C, Silvestre JS. Immune Modulation of Cardiac Repair and Regeneration: The Art of Mending Broken Hearts. Front Cardiovasc Med 2016; 3:40. [PMID: 27790620 PMCID: PMC5063859 DOI: 10.3389/fcvm.2016.00040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/30/2016] [Indexed: 12/15/2022] Open
Abstract
The accumulation of immune cells is among the earliest responses that manifest in the cardiac tissue after injury. Both innate and adaptive immunity coordinate distinct and mutually non-exclusive events governing cardiac repair, including elimination of the cellular debris, compensatory growth of the remaining cardiac tissue, activation of resident or circulating precursor cells, quantitative and qualitative modifications of the vascular network, and formation of a fibrotic scar. The present review summarizes the mounting evidence suggesting that the inflammatory response also guides the regenerative process following cardiac damage. In particular, recent literature has reinforced the central role of monocytes/macrophages in poising the refreshment of cardiomyocytes in myocardial infarction- or apical resection-induced cardiac insult. Macrophages dictate cardiac myocyte renewal through stimulation of preexisting cardiomyocyte proliferation and/or neovascularization. Nevertheless, substantial efforts are required to identify the nature of these macrophage-derived factors as well as the molecular mechanisms engendered by the distinct subsets of macrophages pertaining in the cardiac tissue. Among the growing inflammatory intermediaries that have been recognized as essential player in heart regeneration, we will focus on the role of interleukin (IL)-6 and IL-13. Finally, it is likely that within the mayhem of the injured cardiac tissue, additional types of inflammatory cells, such as neutrophils, will enter the dance to ignite and refresh the broken heart. However, the protective and detrimental inflammatory pathways have been mainly deciphered in animal models. Future research should be focused on understanding the cellular effectors and molecular signals regulating inflammation in human heart to pave the way for the development of factual therapies targeting the inflammatory compartment in cardiac diseases.
Collapse
Affiliation(s)
- Ivana Zlatanova
- UMRS-970, Paris Centre de Recherche Cardiovasculaire, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cité, Université Paris Descartes , Paris , France
| | - Cristina Pinto
- UMRS-970, Paris Centre de Recherche Cardiovasculaire, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cité, Université Paris Descartes , Paris , France
| | - Jean-Sébastien Silvestre
- UMRS-970, Paris Centre de Recherche Cardiovasculaire, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cité, Université Paris Descartes , Paris , France
| |
Collapse
|
39
|
Hill GE. The Inflammatory Response to Cardiopulmonary Bypass— Should It Be Treated? Semin Cardiothorac Vasc Anesth 2016. [DOI: 10.1053/scva.2001.26128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Proinflammatory cytokines, including tumor necrosis factor (TNF) α and the interieukins, are important in the metabolic response to injury or infection. Although the importance of cytokine release during cardiopulmonary bypass (CPB) is not fully appreciated, increasing num bers of publications present evidence that cytokine release during CPB is detrimental. In addition, endoge nous inhibitors of cytokine function, including TNF-sol uble receptor and interleukin 1 receptor antagonist, are released in response to elevated proinflammatory cyto kine levels during and after CPB. The involvement of these endogenous inhibitors in the pathophysiology of proinflammatory cytokine-induced solid organ injury after CPB remains to be defined.
Collapse
Affiliation(s)
- Gary E. Hill
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| |
Collapse
|
40
|
Bonaventura A, Montecucco F, Dallegri F. Cellular recruitment in myocardial ischaemia/reperfusion injury. Eur J Clin Invest 2016; 46:590-601. [PMID: 27090739 DOI: 10.1111/eci.12633] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/17/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is strictly linked to atherosclerosis. Beyond the mechanical narrowing of coronary vessels lumen, during MI a great burden of inflammation is carried out. One of the crucial events is represented by the ischaemia/reperfusion injury, a complex event involving inflammatory cells (such as neutrophils, platelets, monocytes/macrophages, lymphocytes and mast cells) and key activating signals (such as cytokines, chemokines and growth factors). Cardiac repair following myocardial infarction is dependent on a finely regulated response involving a sequential recruitment and the clearance of different subsets of inflammatory cells. MATERIALS AND METHODS This narrative review was based on the works detected on PubMed and MEDLINE up to November 2015. RESULTS Infarct healing classically follows three overlapping phases: the inflammatory phase, in which the innate immune pathways are activated and inflammatory leucocytes are recruited in order to clear the wound from dead cells; the proliferative phase, characterized by the suppression of pro-inflammatory signalling and infiltration of 'repairing' cells secreting matrix proteins in the injured area; and the maturation phase, which is associated with the quiescence and the elimination of the reparative cells together with cross-linking of the matrix. All these phases are timely regulated by the production of soluble mediators, such as cytokines, chemokines and growth factors. CONCLUSION Targeting inflammatory cell recruitment early during reperfusion and healing might be promising to selectively inhibit injury and favour repair. This approach might substantially improve adverse postischaemic left ventricle remodelling, characterized by dilation, hypertrophy of viable segments and progressive dysfunction.
Collapse
Affiliation(s)
- Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy.,IRCCS AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| |
Collapse
|
41
|
Jose Corbalan J, Vatner DE, Vatner SF. Myocardial apoptosis in heart disease: does the emperor have clothes? Basic Res Cardiol 2016; 111:31. [PMID: 27043720 DOI: 10.1007/s00395-016-0549-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Abstract
Since the discovery of a novel mechanism of cell death that differs from traditional necrosis, i.e., apoptosis, there have been numerous studies concluding that increased apoptosis augments myocardial infarction and heart failure and that limiting apoptosis protects the heart. Importantly, the vast majority of cells in the heart are non-myocytes with only roughly 30 % myocytes, yet almost the entire field studying apoptosis in the heart has disregarded non-myocyte apoptosis, e.g., only 4.7 % of 423 studies on myocardial apoptosis in the past 3 years quantified non-myocyte apoptosis. Accordingly, we reviewed the history of apoptosis in the heart focusing first on myocyte apoptosis, followed by the history of non-myocyte apoptosis in myocardial infarction and heart failure. Apoptosis of several of the major non-myocyte cell types in the heart (cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, macrophages and leukocytes) may actually be responsible for affecting the severity of myocardial infarction and heart failure. In summary, even though it is now known that the majority of apoptosis in the heart occurs in non-myocytes, very little work has been done to elucidate the mechanisms by which non-myocyte apoptosis might be responsible for the adverse effects of apoptosis in myocardial infarction and heart failure. The goal of this review is to provide an impetus for future work in this field on non-myocyte apoptosis that will be required for a better understanding of the role of apoptosis in the heart.
Collapse
Affiliation(s)
- J Jose Corbalan
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers-New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
42
|
Nishikido T, Oyama JI, Shiraki A, Komoda H, Node K. Deletion of Apoptosis Inhibitor of Macrophage (AIM)/CD5L Attenuates the Inflammatory Response and Infarct Size in Acute Myocardial Infarction. J Am Heart Assoc 2016; 5:e002863. [PMID: 27045005 PMCID: PMC4859278 DOI: 10.1161/jaha.115.002863] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background An excessive inflammatory response after myocardial infarction (MI) increases myocardial injury. The toll‐like receptor (TLR)‐4 is activated by the recognition of endogenous ligands and is proinflammatory when there is myocardial tissue injury. The apoptosis inhibitor of the macrophage (AIM) is known to provoke an efflux of saturated free fatty acids (FFA) due to lipolysis, which causes inflammation via the TLR‐4 pathway. Therefore, this study investigated the hypothesis that AIM causes a proinflammatory response after MI. Methods and Results The left anterior descending coronary artery was ligated to induce MI in both AIM‐knockout (AIM−/−) and wild‐type (WT) mice. After 3 days, the inflammatory response from activation of the TLR‐4/NFκB pathway was assessed, and infarct size was measured by staining with triphenyltetrazolium chloride. In addition, left ventricular remodeling was examined after 28 days. Although the area at risk was similar between AIM−/− and WT mice, the infarct size was significantly smaller in AIM−/− mice (P=0.02). The heart weight–to–body weight ratio and myocardial fibrosis were also decreased in the AIM−/− mice, and the 28‐day survival rate was improved (P<0.01). With the reduction of plasma FFA in AIM−/− mice, myocardial IRAK4 and NFκB activity were decreased (all P<0.05). Moreover, there was a reduction in myeloperoxidase activity and inducible nitric oxide synthase as part of the inflammatory response (P<0.01, P=0.03, respectively). Furthermore, NFκB DNA‐binding activation via TLR‐4, neutrophil infiltration, and inflammatory mediators were decreased in AIM−/− mice. Conclusions The deletion of AIM reduced the inflammatory response and infarct size and improved survival after myocardial infarction.
Collapse
Affiliation(s)
| | - Jun-ichi Oyama
- Department of Advanced Cardiology, Saga University, Saga, Japan
| | - Aya Shiraki
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Hiroshi Komoda
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| |
Collapse
|
43
|
Salvador AM, Nevers T, Velázquez F, Aronovitz M, Wang B, Abadía Molina A, Jaffe IZ, Karas RH, Blanton RM, Alcaide P. Intercellular Adhesion Molecule 1 Regulates Left Ventricular Leukocyte Infiltration, Cardiac Remodeling, and Function in Pressure Overload-Induced Heart Failure. J Am Heart Assoc 2016; 5:e003126. [PMID: 27068635 PMCID: PMC4943280 DOI: 10.1161/jaha.115.003126] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Left ventricular dysfunction and heart failure are strongly associated in humans with increased circulating levels of proinflammatory cytokines, T cells, and soluble intercellular cell adhesion molecule 1 (ICAM1). In mice, infiltration of T cells into the left ventricle contributes to pathological cardiac remodeling, but the mechanisms regulating their recruitment to the heart are unclear. We hypothesized that ICAM1 regulates cardiac inflammation and pathological cardiac remodeling by mediating left ventricular T‐cell recruitment and thus contributing to cardiac dysfunction and heart failure. Methods and Results In a mouse model of pressure overload–induced heart failure, intramyocardial endothelial ICAM1 increased within 48 hours in response to thoracic aortic constriction and remained upregulated as heart failure progressed. ICAM1‐deficient mice had decreased T‐cell and proinflammatory monocyte infiltration in the left ventricle in response to thoracic aortic constriction, despite having numbers of circulating T cells and activated T cells in the heart‐draining lymph nodes that were similar to those of wild‐type mice. ICAM1‐deficient mice did not develop cardiac fibrosis or systolic and diastolic dysfunction in response to thoracic aortic constriction. Exploration of the mechanisms regulating ICAM1 expression revealed that endothelial ICAM1 upregulation and T‐cell infiltration were not mediated by endothelial mineralocorticoid receptor signaling, as demonstrated in thoracic aortic constriction studies in mice with endothelial mineralocorticoid receptor deficiency, but rather were induced by the cardiac cytokines interleukin 1β and 6. Conclusions ICAM1 regulates pathological cardiac remodeling by mediating proinflammatory leukocyte infiltration in the left ventricle and cardiac fibrosis and dysfunction and thus represents a novel target for treatment of heart failure.
Collapse
Affiliation(s)
- Ane M Salvador
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA Centro de Investigaciόn Biomédica, Universidad de Granada, Spain
| | - Tania Nevers
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Francisco Velázquez
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA Sackler School for Graduate studies, Tufts University School of Medicine, Boston, MA
| | - Mark Aronovitz
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Bonnie Wang
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | | | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA Sackler School for Graduate studies, Tufts University School of Medicine, Boston, MA
| | - Richard H Karas
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA Sackler School for Graduate studies, Tufts University School of Medicine, Boston, MA
| | - Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Pilar Alcaide
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA Sackler School for Graduate studies, Tufts University School of Medicine, Boston, MA
| |
Collapse
|
44
|
Reduced acute myocardial ischemia-reperfusion injury in IL-6-deficient mice employing a closed-chest model. Inflamm Res 2016; 65:489-99. [PMID: 26935770 PMCID: PMC4841857 DOI: 10.1007/s00011-016-0931-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 01/04/2023] Open
Abstract
Objective and design We examined the role of IL-6 in the temporal development of cardiac ischemia–reperfusion injury employing a closed-chest I/R model. Materials/methods Infarction, local and systemic inflammation, neutrophil infiltration, coagulation and ST elevation/resolution were compared between wild-type (WT) and IL-6-deficient (IL-6−/−) mice after 1 h ischemia and 0, ½, 3, and 24 h reperfusion. Results IL-6 deficiency reduced infarct size at 3 h reperfusion (28.8 ± 4.5 % WT vs 17.6 ± 2.5 % IL-6−/−), which reduction persisted and remained similar at 24 h reperfusion (25.1 ± 3.0 % WT vs 14.6 ± 4.4 % IL-6−/−). Serum Amyloid A was reduced at 24 h reperfusion only (57.5 ± 4.9 WT vs 24.8 ± 5.6 ug/ml IL-6−/− mice). Cardiac cytokines (IL-6, IL-1β and TNFα) peaked at 3 h reperfusion, but IL-1β and TNFα levels were unaffected by IL-6 deficiency. Significant neutrophil influx was only detected at 24 h reperfusion and was similar for WT and IL-6−/−. Tissue factor peaked at 24 h reperfusion, whereas fibrin/fibrinogen peaked at 3 h reperfusion and was completely resolved at 24 h reperfusion; both coagulation factors were unaltered by IL-6 deficiency. Prolonged ST elevation was observed during ischemia that completely resolved for both genotypes at early reperfusion. Conclusions The data suggest that, in the absence of major surgical intervention, IL-6 contributes to the development of infarct size in the early phase of reperfusion; this contribution did not depend on neutrophil influx, IL-1β and TNFα, tissue factor and fibrin.
Collapse
|
45
|
Saxena A, Russo I, Frangogiannis NG. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl Res 2016; 167:152-66. [PMID: 26241027 PMCID: PMC4684426 DOI: 10.1016/j.trsl.2015.07.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/14/2022]
Abstract
In the infarcted myocardium, necrotic cardiomyocytes release danger signals, activating an intense inflammatory response. Inflammatory pathways play a crucial role in regulation of a wide range of cellular processes involved in injury, repair, and remodeling of the infarcted heart. Proinflammatory cytokines, such as tumor necrosis factor α and interleukin 1, are markedly upregulated in the infarcted myocardium and promote adhesive interactions between endothelial cells and leukocytes by stimulating chemokine and adhesion molecule expression. Distinct pairs of chemokines and chemokine receptors are implicated in recruitment of various leukocyte subpopulations in the infarcted myocardium. For more than the past 30 years, extensive experimental work has explored the role of inflammatory signals and the contributions of leukocyte subpopulations in myocardial infarction. Robust evidence derived from experimental models of myocardial infarction has identified inflammatory targets that may attenuate cardiomyocyte injury or protect from adverse remodeling. Unfortunately, attempts to translate the promising experimental findings to clinical therapy have failed. This review article discusses the biology of the inflammatory response after myocardial infarction, attempts to identify the causes for the translational failures of the past, and proposes promising new therapeutic directions. Because of their potential involvement in injurious, reparative, and regenerative responses, inflammatory cells may hold the key for design of new therapies in myocardial infarction.
Collapse
Affiliation(s)
- Amit Saxena
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Ilaria Russo
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
46
|
Ng VG, Lansky AJ, Toro S, Parise H, Cristea E, Mehran R, Stone GW. Prognostic utility of myocardial blush grade after PCI in patients with NSTE-ACS: Analysis from the ACUITY trial. Catheter Cardiovasc Interv 2015; 88:215-24. [PMID: 25641255 DOI: 10.1002/ccd.25865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/07/2015] [Accepted: 01/25/2015] [Indexed: 11/08/2022]
Abstract
OBJECTIVE We evaluated the ability of post-procedural myocardial blush grade (MBG) to stratify outcomes of patients undergoing percutaneous coronary intervention (PCI) for non-ST segment elevation acute coronary syndromes (NSTE-ACS). BACKGROUND MBG strongly correlates with survival after reperfusion therapy in patients with ST-segment elevation myocardial infarction (STEMI). METHODS Of 13,819 NSTE-ACS patients randomized in the ACUITY trial, 3,115 patients underwent PCI and had MBG analyzed by an independent angiographic core laboratory. We examined net adverse clinical events (NACE; composite ischemia or bleeding), composite ischemia (death, MI or ischemia-driven revascularization) and non-CABG major bleeding according to final MBG. RESULTS At 30 days, patients with MBG-0/1 had higher rates of NACE (25.1% vs. 13.9%, P = 0.002) and composite ischemia (19.1% vs. 9.4%, P = 0.002) than patients with MBG-2/3. At 1-year follow-up, MBG-0/1 patients had significantly higher rates of composite ischemia compared to other patients (27.8% vs. 19.8%, P = 0.02). By multivariable analysis, MBG-0/1 was an independent predictor of 30-day ischemia-driven revascularization (OR 5.74 [2.63, 12.54], P < 0.0001) in the total population and among patients with normal post-PCI epicardial TIMI-3 flow (OR 6.39 [2.06, 19.78], P = 0.001). However, 1-year outcomes were similar between patients with and without normal myocardial perfusion. CONCLUSIONS In conclusion, MBG is a predictor of 30-day revascularization in the overall population and in patients with normal epicardial flow but fails to stratify 1-year outcomes. Thus, unlike in STEMI patients, the prognostic value of MBG in NSTE-ACS patients appears to be limited to the short-term. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vivian G Ng
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Alexandra J Lansky
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Saleem Toro
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Helen Parise
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Ecaterina Cristea
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University Medical Center, New Haven, Connecticut
| | - Roxana Mehran
- Division of Cardiology, Department of Medicine, Mount Sinai Medical Center and the Cardiovascular Research Foundation, New York, New York
| | - Gregg W Stone
- Division of Cardiology, Department of Medicine, Columbia University Medical Center and the Cardiovascular Research Foundation, New York, New York
| |
Collapse
|
47
|
Abstract
Myocardial infarction is defined as sudden ischemic death of myocardial tissue. In the clinical context, myocardial infarction is usually due to thrombotic occlusion of a coronary vessel caused by rupture of a vulnerable plaque. Ischemia induces profound metabolic and ionic perturbations in the affected myocardium and causes rapid depression of systolic function. Prolonged myocardial ischemia activates a "wavefront" of cardiomyocyte death that extends from the subendocardium to the subepicardium. Mitochondrial alterations are prominently involved in apoptosis and necrosis of cardiomyocytes in the infarcted heart. The adult mammalian heart has negligible regenerative capacity, thus the infarcted myocardium heals through formation of a scar. Infarct healing is dependent on an inflammatory cascade, triggered by alarmins released by dying cells. Clearance of dead cells and matrix debris by infiltrating phagocytes activates anti-inflammatory pathways leading to suppression of cytokine and chemokine signaling. Activation of the renin-angiotensin-aldosterone system and release of transforming growth factor-β induce conversion of fibroblasts into myofibroblasts, promoting deposition of extracellular matrix proteins. Infarct healing is intertwined with geometric remodeling of the chamber, characterized by dilation, hypertrophy of viable segments, and progressive dysfunction. This review manuscript describes the molecular signals and cellular effectors implicated in injury, repair, and remodeling of the infarcted heart, the mechanistic basis of the most common complications associated with myocardial infarction, and the pathophysiologic effects of established treatment strategies. Moreover, we discuss the implications of pathophysiological insights in design and implementation of new promising therapeutic approaches for patients with myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
48
|
Epelman S, Liu PP, Mann DL. Role of innate and adaptive immune mechanisms in cardiac injury and repair. Nat Rev Immunol 2015; 15:117-29. [PMID: 25614321 DOI: 10.1038/nri3800] [Citation(s) in RCA: 468] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the advances that have been made in developing new therapeutics, cardiovascular disease remains the leading cause of worldwide mortality. Therefore, understanding the mechanisms underlying cardiovascular tissue injury and repair is of prime importance. Following cardiac tissue injury, the immune system has an important and complex role in driving both the acute inflammatory response and the regenerative response. This Review summarizes the role of the immune system in cardiovascular disease - focusing on the idea that the immune system evolved to promote tissue homeostasis following injury and/or infection, and that the inherent cost of this evolutionary development is unwanted inflammatory damage.
Collapse
Affiliation(s)
- Slava Epelman
- Toronto Medical Discovery Tower, 101 College Street, TMDT 3903 Toronto, Ontario, M5G 1L7, Canada
| | - Peter P Liu
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario, K1Y 4W7, Canada
| | - Douglas L Mann
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
49
|
Liu ML, Nagai T, Tokunaga M, Iwanaga K, Matsuura K, Takahashi T, Kanda M, Kondo N, Naito AT, Komuro I, Kobayashi Y. Anti-inflammatory peptides from cardiac progenitors ameliorate dysfunction after myocardial infarction. J Am Heart Assoc 2014; 3:e001101. [PMID: 25468657 PMCID: PMC4338698 DOI: 10.1161/jaha.114.001101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Cardiac cell therapy has been proposed as one of the new strategies against myocardial infarction. Although several reports showed improvement of the function of ischemic heart, the effects of cell therapy vary among the studies and the mechanisms of the beneficial effects are still unknown. Previously, we reported that clonal stem cell antigen‐1–positive cardiac progenitor cells exerted a therapeutic effect when transplanted into the ischemic heart. Our aims were to identify the cardiac progenitor‐specific paracrine factor and to elucidate the mechanism of its beneficial effect. Methods and Results By using an antibody array, we found that soluble junctional adhesion molecule‐A (JAM‐A) was abundantly secreted from cardiac progenitor cells. Pretreatment of neutrophils with conditioned medium from cultured cardiac progenitor cells or soluble JAM‐A inhibited transendothelial migration and reduced motility of neutrophils. These inhibitory effects were attenuated by anti–JAM‐A neutralizing antibody. Injection of cardiac progenitor cells into infarct heart attenuated neutrophil infiltration and expression of inflammatory cytokines. Injection of soluble JAM‐A–expressing, but not of JAM‐A siRNA–expressing, cardiac progenitor cells into the infarct heart prevented cardiac remodeling and reduced fibrosis area. Conclusions Soluble JAM‐A secreted from cardiac progenitor cells reduces infiltration of neutrophils after myocardial infarction and ameliorates tissue damage through prevention of excess inflammation. Our finding may lead to a new therapy for cardiovascular disease by using the anti‐inflammatory effect of JAM‐A.
Collapse
Affiliation(s)
- Mei-Lan Liu
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Toshio Nagai
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Masakuni Tokunaga
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Koji Iwanaga
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Katsuhisa Matsuura
- Department of Cardiology and Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Shinjuku-ku, Tokyo, Japan (K.M.)
| | - Toshinao Takahashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Masato Kanda
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Naomichi Kondo
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| | - Atsuhiko T Naito
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan (A.T.N., I.K.)
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, Tokyo, Japan (A.T.N., I.K.)
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan (M.L.L., T.N., M.T., K.I., T.T., M.K., N.K., Y.K.)
| |
Collapse
|
50
|
Qin C, Yang YH, May L, Gao X, Stewart AG, Tu Y, Woodman OL, Ritchie RH. Cardioprotective potential of annexin-A1 mimetics in myocardial infarction. Pharmacol Ther 2014; 148:47-65. [PMID: 25460034 DOI: 10.1016/j.pharmthera.2014.11.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 12/15/2022]
Abstract
Myocardial infarction (MI) and its resultant heart failure remains a major cause of death in the world. The current treatments for patients with MI are revascularization with thrombolytic agents or interventional procedures. These treatments have focused on restoring blood flow to the ischemic tissue to prevent tissue necrosis and preserve organ function. The restoration of blood flow after a period of ischemia, however, may elicit further myocardial damage, called reperfusion injury. Pharmacological interventions, such as antioxidant and Ca(2+) channel blockers, have shown premises in experimental settings; however, clinical studies have shown limited success. Thus, there is a need for the development of novel therapies to treat reperfusion injury. The therapeutic potential of glucocorticoid-regulated anti-inflammatory mediator annexin-A1 (ANX-A1) has recently been recognized in a range of systemic inflammatory disorders. ANX-A1 binds to and activates the family of formyl peptide receptors (G protein-coupled receptor family) to inhibit neutrophil activation, migration and infiltration. Until recently, studies on the cardioprotective actions of ANX-A1 and its peptide mimetics (Ac2-26, CGEN-855A) have largely focused on its anti-inflammatory effects as a mechanism of preserving myocardial viability following I-R injury. Our laboratory provided the first evidence of the direct protective action of ANX-A1 on myocardium, independent of inflammatory cells in vitro. We now review the potential for ANX-A1 based therapeutics to be seen as a "triple shield" therapy against myocardial I-R injury, limiting neutrophil infiltration and preserving both cardiomyocyte viability and contractile function. This novel therapy may thus represent a valuable clinical approach to improve outcome after MI.
Collapse
Affiliation(s)
- Chengxue Qin
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yuan H Yang
- Centre for Inflammatory Diseases Monash University and Monash Medical Centre, Clayton, Victoria, Australia
| | - Lauren May
- Department of Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, and Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Xiaoming Gao
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Owen L Woodman
- School of Medical Sciences, RMIT University, Bundoora 3083, Victoria, Australia
| | - Rebecca H Ritchie
- Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia; Department of Medicine, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|