1
|
Cao S, Zhou M, Ji S, Ma D, Zhu S. Recent Advances in the Study of Alphaherpesvirus Latency and Reactivation: Novel Guidance for the Design of Herpesvirus Live Vector Vaccines. Pathogens 2024; 13:779. [PMID: 39338969 PMCID: PMC11435198 DOI: 10.3390/pathogens13090779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Alphaherpesviruses, including herpes simplex virus type 1 (HSV-1), herpes simplex virus type 2 (HSV-2), and varicella-zoster virus (VZV), infect a diverse array of hosts, spanning both humans and animals. Alphaherpesviruses have developed a well-adapted relationship with their hosts through long-term evolution. Some alphaherpesviruses exhibit a typical neurotropic characteristic, which has garnered widespread attention and in-depth research. Virus latency involves the retention of viral genomes without producing infectious viruses. However, under stress, this can be reversed, resulting in lytic infection. Such reactivation events can lead to recurrent infections, manifesting as diseases like herpes labialis, genital herpes, and herpes zoster. Reactivation is a complex process influenced by both viral and host factors, and identifying how latency and reactivation work is vital to developing new antiviral therapies. Recent research highlights a complex interaction among the virus, neurons, and the immune system in regulating alphaherpesvirus latency and reactivation. Neurotropic alphaherpesviruses can breach host barriers to infect neurons, proliferate extensively within their cell bodies, and establish latent infections or spread further. Whether infecting neurons or spreading further, the virus undergoes transmission along axons or dendrites, making this process an indispensable part of the viral life cycle and a critical factor influencing the virus's invasion of the nervous system. Research on the transmission process of neurotropic alphaherpesviruses within neurons can not only deepen our understanding of the virus but can also facilitate the targeted development of corresponding vaccines. This review concentrates on the relationship between the transmission, latency, and activation of alphaherpesviruses within neurons, summarizes recent advancements in the field, and discusses how these findings can inform the design of live virus vaccines for alphaherpesviruses.
Collapse
Affiliation(s)
- Shinuo Cao
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China; (S.C.); (M.Z.)
| | - Mo Zhou
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China; (S.C.); (M.Z.)
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China;
| | - Dongxue Ma
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji 133000, China;
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225306, China; (S.C.); (M.Z.)
| |
Collapse
|
2
|
Wang L, Zhou X, Chen X, Liu Y, Huang Y, Cheng Y, Ren P, Zhao J, Zhou GG. Enhanced therapeutic efficacy for glioblastoma immunotherapy with an oncolytic herpes simplex virus armed with anti-PD-1 antibody and IL-12. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200799. [PMID: 38681801 PMCID: PMC11053222 DOI: 10.1016/j.omton.2024.200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/18/2023] [Accepted: 04/03/2024] [Indexed: 05/01/2024]
Abstract
Glioblastoma is the most common and aggressive malignant brain tumor and has limited treatment options. Hence, innovative approaches are urgently needed. Oncolytic virus therapy is emerging as a promising modality for cancer treatment due to its tumor-specific targeting and immune-stimulatory properties. In this study, we developed a new generation of oncolytic herpes simplex virus C5252 by deletion of a 15-kb internal repeat region and both copies of γ34.5 genes. Additionally, C5252 was armed with anti-programmed cell death protein 1 antibody and interleukin-12 to enhance its therapeutic efficacy for glioblastoma immune-virotherapy. In vitro and in vivo experiments demonstrate that C5252 has a remarkable safety profile and potent anti-tumor activity against glioblastoma. Mechanistic studies demonstrated that C5252 specifically induces cell apoptosis by caspase-3/7 activation via downregulating ciliary neurotrophic factor receptor α. Furthermore, the enhanced anti-tumor therapeutic efficacy of C5252 in a subcutaneous glioblastoma model and an orthotopic glioblastoma model was confirmed. Moreover, syngeneic mouse models showed that the murine surrogate of C5252 has superior anti-tumor activity compared to the unarmed backbone virus, with enhanced immune activation. Taken together, our findings support C5252 as a promising therapeutic option for glioblastoma treatment, positioning it as a highly promising candidate for clinical translation.
Collapse
Affiliation(s)
- Lei Wang
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
- Shenzhen International Institute for Biomedical Research, 1301 Guan-Guang Road, Building 1-B, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen 518110, China
| | - Xusha Zhou
- ImmVira Co., Ltd., Shenzhen 518110, China
| | | | | | - Yue Huang
- ImmVira Co., Ltd., Shenzhen 518110, China
| | - Yuan Cheng
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Peigen Ren
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen 518055, China
| | - Jing Zhao
- Shenzhen International Institute for Biomedical Research, 1301 Guan-Guang Road, Building 1-B, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen 518110, China
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, 1301 Guan-Guang Road, Building 1-B, Silver Star Hi-tech Industrial Park, Longhua District, Shenzhen 518110, China
| |
Collapse
|
3
|
Lu J, Long Y, Sun J, Gong L. Towards a comprehensive view of the herpes B virus. Front Immunol 2023; 14:1281384. [PMID: 38035092 PMCID: PMC10687423 DOI: 10.3389/fimmu.2023.1281384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Herpes B virus is a biosafety level 4 pathogen and widespread in its natural host species, macaques. Although most infected monkeys show asymptomatic or mild symptoms, human infections with this virus can cause serious neurological symptoms or fatal encephalomyelitis with a high mortality rate. Herpes B virus can be latent in the sensory ganglia of monkeys and humans, often leading to missed diagnoses. Furthermore, the herpes B virus has extensive antigen crossover with HSV, SA8, and HVP-2, causing false-positive results frequently. Timely diagnosis, along with methods with sensitivity and specificity, are urgent for research on the herpes B virus. The lack of a clear understanding of the host invasion and life cycle of the herpes B virus has led to slow progress in the development of effective vaccines and drugs. This review discusses the research progress and problems of the epidemiology of herpes B virus, detection methods and therapy, hoping to inspire further investigation into important factors associated with transmission of herpes B virus in macaques and humans, and arouse the development of effective vaccines or drugs, to promote the establishment of specific pathogen-free (SPF) monkeys and protect humans to effectively avoid herpes B virus infection.
Collapse
Affiliation(s)
- Jiangling Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yiru Long
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhua Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| |
Collapse
|
4
|
Preda M, Manolescu LSC, Chivu RD. Advances in Alpha Herpes Viruses Vaccines for Human. Vaccines (Basel) 2023; 11:1094. [PMID: 37376483 DOI: 10.3390/vaccines11061094] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Alpha herpes simplex viruses are an important public health problem affecting all age groups. It can produce from common cold sores and chicken pox to severe conditions like encephalitis or newborn mortality. Although all three subtypes of alpha herpes viruses have a similar structure, the produced pathology differs, and at the same time, the available prevention measures, such as vaccination. While there is an available and efficient vaccine for the varicella-zoster virus, for herpes simplex virus 1 and 2, after multiple approaches from trivalent subunit vaccine to next-generation live-attenuated virus vaccines and bioinformatic studies, there is still no vaccine available. Although there are multiple failed approaches in present studies, there are also a few promising attempts; for example, the trivalent vaccine containing herpes simplex virus type 2 (HSV-2) glycoproteins C, D, and E (gC2, gD2, gE2) produced in baculovirus was able to protect guinea pigs against vaginal infection and proved to cross-protect against HSV-1. Another promising vaccine is the multivalent DNA vaccine, SL-V20, tested in a mouse model, which lowered the clinical signs of infection and produced efficient viral eradication against vaginal HSV-2. Promising approaches have emerged after the COVID-19 pandemic, and a possible nucleoside-modified mRNA vaccine could be the next step. All the approaches until now have not led to a successful vaccine that could be easy to administer and, at the same time, offer antibodies for a long period.
Collapse
Affiliation(s)
- Madalina Preda
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Research Department, Marius Nasta Institute of Pneumology, 050159 Bucharest, Romania
| | - Loredana Sabina Cornelia Manolescu
- Department of Microbiology, Parasitology and Virology, Faculty of Midwives and Nursing, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Virology, Institute of Virology "Stefan S. Nicolau", 030304 Bucharest, Romania
| | - Razvan Daniel Chivu
- Department of Public Health and Health Management, Faculty of Midwifery and Nursing, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
5
|
Zhang B, Mao H, Zhu H, Guo J, Zhou P, Ma Z. Response to HIV-1 gp160-carrying recombinant virus HSV-1 and HIV-1 VLP combined vaccine in BALB/c mice. Front Microbiol 2023; 14:1136664. [PMID: 37007461 PMCID: PMC10063819 DOI: 10.3389/fmicb.2023.1136664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Human immunodeficiency virus (HIV) induced AIDS causes a large number of infections and deaths worldwide every year, still no vaccines are available to prevent infection. Recombinant herpes simplex virus type 1 (HSV-1) vector-based vaccines coding the target proteins of other pathogens have been widely used for disease control. Here, a recombinant virus with HIV-1 gp160 gene integration into the internal reverse (IR) region-deleted HSV-1 vector (HSV-BAC), was obtained by bacterial artificial chromosome (BAC) technology, and its immunogenicity investigated in BALB/c mice. The result showed similar replication ability of the HSV-BAC-based recombinant virus and wild type. Furthermore, humoral and cellular immune response showed superiority of intraperitoneal (IP) administration, compared to intranasally (IN), subcutaneous (SC) and intramuscularly (IM), that evidenced by production of significant antibody and T cell responses. More importantly, in a prime-boost combination study murine model, the recombinant viruses prime followed by HIV-1 VLP boost induced stronger and broader immune responses than single virus or protein vaccination in a similar vaccination regimen. Antibody production was sufficient with huge potential for viral clearance, along with efficient T-cell activation, which were evaluated by the enzyme-linked immunosorbent assay (ELISA) and flow cytometry (FC). Overall, these findings expose the value of combining different vaccine vectors and modalities to improve immunogenicity and breadth against different HIV-1 antigens.
Collapse
Affiliation(s)
- Beibei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongyan Mao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Hongjuan Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Jingxia Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghai Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Ürümqi, Xinjiang, China
- *Correspondence: Zhenghai Ma,
| |
Collapse
|
6
|
Persistent inflammation and neuronal loss in the mouse brain induced by a modified form of attenuated herpes simplex virus type I. Virol Sin 2023; 38:108-118. [PMID: 36436797 PMCID: PMC10006190 DOI: 10.1016/j.virs.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a widespread neurotropic virus that can reach the brain and cause a rare but acute herpes simplex encephalitis (HSE) with a high mortality rate. Most patients present with changes in neurological and behavioral status, and survivors suffer long-term neurological sequelae. To date, the pathogenesis leading to brain damage is still not well understood. HSV-1 induced encephalitis in the central nervous system (CNS) in animals are usually very diffuse and progressing rapidly, and mostly fatal, making the analysis difficult. Here, we established a mouse model of HSE via intracerebral inoculation of modified version of neural-attenuated strains of HSV-1 (deletion of ICP34.5 and inserting a strong promoter into the latency-associated transcript region), in which the LMR-αΔpA strain initiated moderate productive infection, leading to strong host immune and inflammatory response characterized by persistent microglia activation. This viral replication activity and prolonged inflammatory response activated signaling pathways in neuronal damage, amyloidosis, Alzheimer's disease, and neurodegeneration, eventually leading to neuronal loss and behavioral changes characterized by hypokinesia. Our study reveals detailed pathogenic processes and persistent inflammatory responses in the CNS and provides a controlled, mild and non-lethal HSE model for studying long-term neuronal injury and increased risk of neurodegenerative diseases due to HSV-1 infection.
Collapse
|
7
|
Krawczyk E, Kangas C, He B. HSV Replication: Triggering and Repressing STING Functionality. Viruses 2023; 15:226. [PMID: 36680267 PMCID: PMC9864509 DOI: 10.3390/v15010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Herpes simplex virus (HSV) has persisted within human populations due to its ability to establish both lytic and latent infection. Given this, human hosts have evolved numerous immune responses to protect against HSV infection. Critical in this defense against HSV, the host protein stimulator of interferon genes (STING) functions as a mediator of the antiviral response by inducing interferon (IFN) as well as IFN-stimulated genes. Emerging evidence suggests that during HSV infection, dsDNA derived from either the virus or the host itself ultimately activates STING signaling. While a complex regulatory circuit is in operation, HSV has evolved several mechanisms to neutralize the STING-mediated antiviral response. Within this review, we highlight recent progress involving HSV interactions with the STING pathway, with a focus on how STING influences HSV replication and pathogenesis.
Collapse
Affiliation(s)
| | | | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Duarte LF, Gatica S, Castillo A, Kalergis AM, Bueno SM, Riedel CA, González PA. Is there a role for herpes simplex virus type 1 in multiple sclerosis? Microbes Infect 2022; 25:105084. [PMID: 36586461 DOI: 10.1016/j.micinf.2022.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Numerous studies relate the onset and severity of multiple sclerosis (MS) with viral infections. Herpes simplex virus type 1 (HSV-1), which is neurotropic and highly prevalent in the brain of healthy individuals, has been proposed to relate to MS. Here, we review and discuss the reported connections between HSV-1 and MS.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Sebastian Gatica
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Almendra Castillo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de La Vida, Universidad Andres Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.
| |
Collapse
|
9
|
Ghajar-Rahimi G, Kang KD, Totsch SK, Gary S, Rocco A, Blitz S, Kachurak K, Chambers MR, Li R, Beierle EA, Bag A, Johnston JM, Markert JM, Bernstock JD, Friedman GK. Clinical advances in oncolytic virotherapy for pediatric brain tumors. Pharmacol Ther 2022; 239:108193. [PMID: 35487285 DOI: 10.1016/j.pharmthera.2022.108193] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Malignant brain tumors constitute nearly one-third of cancer diagnoses in children and have recently surpassed hematologic malignancies as the most lethal neoplasm in the pediatric population. Outcomes for children with brain tumors are unacceptably poor and current standards of care-surgical resection, chemotherapy, and radiation-are associated with significant long-term morbidity. Oncolytic virotherapy has emerged as a promising immunotherapy for the treatment of brain tumors. While the majority of brain tumor clinical trials utilizing oncolytic virotherapy have been in adults, five viruses are being tested in pediatric brain tumor clinical trials: herpes simplex virus (G207), reovirus (pelareorep/Reolysin), measles virus (MV-NIS), poliovirus (PVSRIPO), and adenovirus (DNX-2401, AloCELYVIR). Herein, we review past and current pediatric immunovirotherapy brain tumor trials including the relevant preclinical and clinical research that contributed to their development. We describe mechanisms by which the viruses may overcome barriers in treating pediatric brain tumors, examine challenges associated with achieving effective, durable responses, highlight unique aspects and successes of the trials, and discuss future directions of immunovirotherapy research for the treatment of pediatric brain tumors.
Collapse
Affiliation(s)
- Gelare Ghajar-Rahimi
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyung-Don Kang
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stacie K Totsch
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sam Gary
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Abbey Rocco
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kara Kachurak
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M R Chambers
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rong Li
- Department of Pathology, University of Alabama at Birmingham, and Children's of Alabama, Birmingham, AL, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Asim Bag
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard University, Boston, MA, USA.
| | - Gregory K Friedman
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Gong L, Ou X, Hu L, Zhong J, Li J, Deng S, Li B, Pan L, Wang L, Hong X, Luo W, Zeng Q, Zan J, Peng T, Cai M, Li M. The Molecular Mechanism of Herpes Simplex Virus 1 UL31 in Antagonizing the Activity of IFN-β. Microbiol Spectr 2022; 10:e0188321. [PMID: 35196784 PMCID: PMC8865407 DOI: 10.1128/spectrum.01883-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/11/2022] [Indexed: 11/20/2022] Open
Abstract
Virus infection triggers intricate signal cascade reactions to activate the host innate immunity, which leads to the production of type I interferon (IFN-I). Herpes simplex virus 1 (HSV-1), a human-restricted pathogen, is capable of encoding over 80 viral proteins, and several of them are involved in immune evasion to resist the host antiviral response through the IFN-I signaling pathway. Here, we determined that HSV-1 UL31, which is associated with nuclear matrix and is essential for the formation of viral nuclear egress complex, could inhibit retinoic acid-inducible gene I (RIG-I)-like receptor pathway-mediated interferon beta (IFN-β)-luciferase (Luc) and (PRDIII-I)4-Luc (an expression plasmid of IFN-β positive regulatory elements III and I) promoter activation, as well as the mRNA transcription of IFN-β and downstream interferon-stimulated genes (ISGs), such as ISG15, ISG54, ISG56, etc., to promote viral infection. UL31 was shown to restrain IFN-β activation at the interferon regulatory factor 3 (IRF3)/IRF7 level. Mechanically, UL31 was demonstrated to interact with TANK binding kinase 1 (TBK1), inducible IκB kinase (IKKi), and IRF3 to impede the formation of the IKKi-IRF3 complex but not the formation of the IRF7-related complex. UL31 could constrain the dimerization and nuclear translocation of IRF3. Although UL31 was associated with the CREB binding protein (CBP)/p300 coactivators, it could not efficiently hamper the formation of the CBP/p300-IRF3 complex. In addition, UL31 could facilitate the degradation of IKKi and IRF3 by mediating their K48-linked polyubiquitination. Taken together, these results illustrated that UL31 was able to suppress IFN-β activity by inhibiting the activation of IKKi and IRF3, which may contribute to the knowledge of a new immune evasion mechanism during HSV-1 infection. IMPORTANCE The innate immune system is the first line of host defense against the invasion of pathogens. Among its mechanisms, IFN-I is an essential cytokine in the antiviral response, which can help the host eliminate a virus. HSV-1 is a double-stranded DNA virus that can cause herpes and establish a lifelong latent infection, due to its possession of multiple mechanisms to escape host innate immunity. In this study, we illustrate for the first time that the HSV-1-encoded UL31 protein has a negative regulatory effect on IFN-β production by blocking the dimerization and nuclear translocation of IRF3, as well as promoting the K48-linked polyubiquitination and degradation of both IKKi and IRF3. This study may be helpful for fully understanding the pathogenesis of HSV-1.
Collapse
Affiliation(s)
- Lan Gong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaowen Ou
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Hu
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayi Zhong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingjing Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Jinming Yu Academician Workstation of Oncology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Shenyu Deng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bolin Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingxia Pan
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liding Wang
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xuejun Hong
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenqi Luo
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiyuan Zeng
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Tao Peng
- State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingsheng Cai
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meili Li
- State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology; Department of Pathogenic Biology and Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Liu X, Acharya D, Krawczyk E, Kangas C, Gack MU, He B. Herpesvirus-mediated stabilization of ICP0 expression neutralizes restriction by TRIM23. Proc Natl Acad Sci U S A 2021; 118:e2113060118. [PMID: 34903664 PMCID: PMC8713807 DOI: 10.1073/pnas.2113060118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV) infection relies on immediate early proteins that initiate viral replication. Among them, ICP0 is known, for many years, to facilitate the onset of viral gene expression and reactivation from latency. However, how ICP0 itself is regulated remains elusive. Through genetic analyses, we identify that the viral γ134.5 protein, an HSV virulence factor, interacts with and prevents ICP0 from proteasomal degradation. Furthermore, we show that the host E3 ligase TRIM23, recently shown to restrict the replication of HSV-1 (and certain other viruses) by inducing autophagy, triggers the proteasomal degradation of ICP0 via K11- and K48-linked ubiquitination. Functional analyses reveal that the γ134.5 protein binds to and inactivates TRIM23 through blockade of K27-linked TRIM23 autoubiquitination. Deletion of γ134.5 or ICP0 in a recombinant HSV-1 impairs viral replication, whereas ablation of TRIM23 markedly rescues viral growth. Herein, we show that TRIM23, apart from its role in autophagy-mediated HSV-1 restriction, down-regulates ICP0, whereas viral γ134.5 functions to disable TRIM23. Together, these results demonstrate that posttranslational regulation of ICP0 by virus and host factors determines the outcome of HSV-1 infection.
Collapse
Affiliation(s)
- Xing Liu
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987
| | - Eric Krawczyk
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Chase Kangas
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987
| | - Bin He
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612;
| |
Collapse
|
12
|
Duarte LF, Reyes A, Farías MA, Riedel CA, Bueno SM, Kalergis AM, González PA. Crosstalk Between Epithelial Cells, Neurons and Immune Mediators in HSV-1 Skin Infection. Front Immunol 2021; 12:662234. [PMID: 34012447 PMCID: PMC8126613 DOI: 10.3389/fimmu.2021.662234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antonia Reyes
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Friedman GK, Johnston JM, Bag AK, Bernstock JD, Li R, Aban I, Kachurak K, Nan L, Kang KD, Totsch S, Schlappi C, Martin AM, Pastakia D, McNall-Knapp R, Farouk Sait S, Khakoo Y, Karajannis MA, Woodling K, Palmer JD, Osorio DS, Leonard J, Abdelbaki MS, Madan-Swain A, Atkinson TP, Whitley RJ, Fiveash JB, Markert JM, Gillespie GY. Oncolytic HSV-1 G207 Immunovirotherapy for Pediatric High-Grade Gliomas. N Engl J Med 2021; 384:1613-1622. [PMID: 33838625 PMCID: PMC8284840 DOI: 10.1056/nejmoa2024947] [Citation(s) in RCA: 196] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Outcomes in children and adolescents with recurrent or progressive high-grade glioma are poor, with a historical median overall survival of 5.6 months. Pediatric high-grade gliomas are largely immunologically silent or "cold," with few tumor-infiltrating lymphocytes. Preclinically, pediatric brain tumors are highly sensitive to oncolytic virotherapy with genetically engineered herpes simplex virus type 1 (HSV-1) G207, which lacks genes essential for replication in normal brain tissue. METHODS We conducted a phase 1 trial of G207, which used a 3+3 design with four dose cohorts of children and adolescents with biopsy-confirmed recurrent or progressive supratentorial brain tumors. Patients underwent stereotactic placement of up to four intratumoral catheters. The following day, they received G207 (107 or 108 plaque-forming units) by controlled-rate infusion over a period of 6 hours. Cohorts 3 and 4 received radiation (5 Gy) to the gross tumor volume within 24 hours after G207 administration. Viral shedding from saliva, conjunctiva, and blood was assessed by culture and polymerase-chain-reaction assay. Matched pre- and post-treatment tissue samples were examined for tumor-infiltrating lymphocytes by immunohistologic analysis. RESULTS Twelve patients 7 to 18 years of age with high-grade glioma received G207. No dose-limiting toxic effects or serious adverse events were attributed to G207 by the investigators. Twenty grade 1 adverse events were possibly related to G207. No virus shedding was detected. Radiographic, neuropathological, or clinical responses were seen in 11 patients. The median overall survival was 12.2 months (95% confidence interval, 8.0 to 16.4); as of June 5, 2020, a total of 4 of 11 patients were still alive 18 months after G207 treatment. G207 markedly increased the number of tumor-infiltrating lymphocytes. CONCLUSIONS Intratumoral G207 alone and with radiation had an acceptable adverse-event profile with evidence of responses in patients with recurrent or progressive pediatric high-grade glioma. G207 converted immunologically "cold" tumors to "hot." (Supported by the Food and Drug Administration and others; ClinicalTrials.gov number, NCT02457845.).
Collapse
Affiliation(s)
- Gregory K Friedman
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - James M Johnston
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Asim K Bag
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Joshua D Bernstock
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Rong Li
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Inmaculada Aban
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Kara Kachurak
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Li Nan
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Kyung-Don Kang
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Stacie Totsch
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Charles Schlappi
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Allison M Martin
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Devang Pastakia
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Rene McNall-Knapp
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Sameer Farouk Sait
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Yasmin Khakoo
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Matthias A Karajannis
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Karina Woodling
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Joshua D Palmer
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Diana S Osorio
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Jeffrey Leonard
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Mohamed S Abdelbaki
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Avi Madan-Swain
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - T Prescott Atkinson
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - Richard J Whitley
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - John B Fiveash
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - James M Markert
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| | - G Yancey Gillespie
- From the Department of Pediatrics, Divisions of Pediatric Hematology-Oncology (G.K.F., K.K., L.N., K.-D.K., S.T., C.S., A.M.-S.), Pediatric Allergy and Immunology (T.P.A.), and Pediatric Infectious Disease (R.J.W.), and the Departments of Neurosurgery (G.K.F., J.M.J., J.M.M., G.Y.G.), Pathology (R.L.), Biostatistics (I.A.), and Radiation Oncology (J.B.F.), University of Alabama at Birmingham, and Children's of Alabama (G.K.F., J.M.J., R.L., K.K., A.M.-S., T.P.A., R.J.W.) - both in Birmingham; the Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis (A.K.B.), and the Department of Pediatrics, Vanderbilt University Medical Center, Nashville (D.P.) - both in Tennessee; the Department of Neurosurgery, Brigham and Women's Hospital and Boston Children's Hospital, Harvard Medical School, Boston (J.D.B.); the Department of Pediatrics, Albert Einstein College of Medicine (A.M.M.), and the Departments of Pediatrics (S.F.S., Y.K., M.A.K.) and Neurology (Y.K.), Memorial Sloan Kettering Cancer Center - both in New York; the Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City (R.M.-K.); the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant (K.W., D.S.O., M.S.A.) and the Department of Pediatric Neurosurgery (J.L.), Nationwide Children's Hospital, and the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center (J.D.P.) - both in Columbus; and the Division of Pediatric Hematology, Oncology, and Bone Marrow Transplant, Washington University School of Medicine, St. Louis (M.S.A.)
| |
Collapse
|
14
|
Duarte LF, Altamirano-Lagos MJ, Tabares-Guevara JH, Opazo MC, Díaz M, Navarrete R, Muza C, Vallejos OP, Riedel CA, Bueno SM, Kalergis AM, González PA. Asymptomatic Herpes Simplex Virus Type 1 Infection Causes an Earlier Onset and More Severe Experimental Autoimmune Encephalomyelitis. Front Immunol 2021; 12:635257. [PMID: 33679788 PMCID: PMC7928309 DOI: 10.3389/fimmu.2021.635257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is an increasingly prevalent progressive autoimmune and debilitating chronic disease that involves the detrimental recognition of central nervous system (CNS) antigens by the immune system. Although significant progress has been made in the last decades on the biology of MS and the identification of novel therapies to treat its symptoms, the etiology of this disease remains unknown. However, recent studies have suggested that viral infections may contribute to disease onset. Interestingly, a potential association between herpes simplex virus type 1 (HSV-1) infection and MS has been reported, yet a direct relationship among both has not been conclusively demonstrated. Experimental autoimmune encephalomyelitis (EAE) recapitulates several aspects of MS in humans and is widely used to study this disease. Here, we evaluated the effect of asymptomatic brain infection by HSV-1 on the onset and severity of EAE in C57BL/6 mice. We also evaluated the effect of infection with an HSV-1-mutant that is attenuated in neurovirulence and does not cause encephalitis. Importantly, we observed more severe EAE in mice previously infected either, with the wild-type (WT) or the mutant HSV-1, as compared to uninfected control mice. Also, earlier EAE onset was seen after WT virus inoculation. These findings support the notion that a previous exposure to HSV-1 can accelerate and enhance EAE, which suggests a potential contribution of asymptomatic HSV-1 to the onset and severity of MS.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Asymptomatic Diseases
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/virology
- Capillary Permeability
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/virology
- Female
- Herpes Simplex/genetics
- Herpes Simplex/immunology
- Herpes Simplex/metabolism
- Herpes Simplex/virology
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/pathogenicity
- Inflammation Mediators/metabolism
- Mice, Inbred C57BL
- Mutation
- Severity of Illness Index
- Time Factors
- Virulence
- Mice
Collapse
Affiliation(s)
- Luisa F. Duarte
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María J. Altamirano-Lagos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge H. Tabares-Guevara
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Máximo Díaz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Romina Navarrete
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina Muza
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
15
|
Viegas DJ, da Silva VD, Buarque CD, Bloom DC, Abreu PA. Antiviral activity of 1,4-disubstituted-1,2,3-triazoles against HSV-1 in vitro. Antivir Ther 2021; 25:399-410. [PMID: 33705354 DOI: 10.3851/imp3387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1) affects a large part of the adult population. Anti-HSV-1 drugs, such as acyclovir, target thymidine kinase and viral DNA polymerase. However, the emerging of resistance of HSV-1 alerts for the urgency in developing new antivirals with other therapeutic targets. Thus, this study evaluated a series of 1,4-disubstituted-1,2,3-triazole derivatives against HSV-1 acute infection and provided deeper insights into the possible mechanisms of action. METHODS Human fibroblast cells (HFL-1) were infected with HSV-1 17syn+ and treated with the triazole compounds at 50 μM for 24 h. The 50% effective drug concentration (EC50) was determined for the active compounds. Their cytotoxicity was also evaluated in HFL-1 with the 50% cytotoxic concentration (CC50) determined using CellTiter-Glo® solution. The most promising compounds were evaluated by virucidal activity and influence on virus egress, DNA replication and transcription, and effect on an acyclovir-resistant HSV-1 strain. RESULTS Compounds 3 ((E)-4-methyl-N'-(2-(4-(phenoxymethyl)-1H-1,2,3-triazol1yl)benzylidene)benzenesulfonohydrazide) and 4 (2,2'-(4,4'-((1,3-phenylenebis(oxy))bis(methylene))bis(1H-1,2,3-triazole-4,1 diyl)) dibenzaldehyde) were the most promising, with an EC50 of 16 and 21 μM and CC50 of 285 and 2,593 μM, respectively. Compound 3 was able to inhibit acyclovir-resistant strain replication and to interfere with virus egress. Both compounds did not affect viral DNA replication, but inhibited significantly the expression of ICP0, ICP4 and gC. Compound 4 also affected the transcription of UL30 and ICP34.5. CONCLUSIONS Our findings demonstrated that these compounds are promising antiviral candidates with different mechanisms of action from acyclovir and further studies are merited.
Collapse
Affiliation(s)
- Daiane J Viegas
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Verônica D da Silva
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Camilla D Buarque
- Laboratório de Síntese Orgânica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - David C Bloom
- College of Medicine, Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL, USA
| | - Paula A Abreu
- LAMCIFAR, Laboratório de Modelagem Molecular e Pesquisa em Ciências Farmacêuticas, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Dogrammatzis C, Waisner H, Kalamvoki M. "Non-Essential" Proteins of HSV-1 with Essential Roles In Vivo: A Comprehensive Review. Viruses 2020; 13:E17. [PMID: 33374862 PMCID: PMC7824580 DOI: 10.3390/v13010017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.
Collapse
Affiliation(s)
| | | | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (C.D.); (H.W.)
| |
Collapse
|
17
|
Chambers MR, Bentley RT, Crossman DK, Foote JB, Koehler JW, Markert JM, Omar NB, Platt SR, Self DM, Shores A, Sorjonen DC, Waters AM, Yanke AB, Gillespie GY. The One Health Consortium: Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Combination With a Checkpoint Inhibitor in Canine Patients With Sporadic High Grade Gliomas. Front Surg 2020; 7:59. [PMID: 33005623 PMCID: PMC7484881 DOI: 10.3389/fsurg.2020.00059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
As the most common and deadly of primary brain tumors, malignant gliomas have earned their place within one of the most multifaceted and heavily-funded realms of medical research. Numerous avenues of pre-clinical investigation continue to provide valuable insight, but modeling the complex evolution and behavior of these tumors within a host under simulated circumstances may pose challenges to extrapolation of data. Remarkably, certain breeds of pet dogs spontaneously and sporadically develop high grade gliomas that follow similar incidence, treatment, and outcome patterns as their human glioma counterparts. The most malignant of these tumors have been refractory to limited treatment options despite aggressive treatment; outcomes are dismal with median survivals of just over 1 year in humans and 2 months in dogs. Novel treatments are greatly needed and combination therapies appear to hold promise. This clinical protocol, a dose-escalating phase I study in dogs with sporadic malignant glioma, represents a first in comparative oncology and combination immunotherapy. The trial will evaluate M032, an Interleukin-12 expressing Herpes Simplex virus, alone and combined with a checkpoint inhibitor, Indoximod. Extensive pre-clinical work has demonstrated safety of intracranial M032 administration in mice and non-human primates. M032 is currently being tested in humans with high-grade malignant gliomas. Thus, in a novel fashion, both canine and human trials will proceed concurrently allowing a direct “head-to-head” comparison of safety and efficacy. We expect this viral oncolytic therapy to be as safe as it is in human patients and M032 to (a) infect and kill glioma cells, producing a virus and tumor cell antigen-rich debris field; (b) provide an adjuvant effect due to liberation of viral DNA, which is rich in unmethylated CpG sequences that “toggle” TLR-9 receptors; and (c) express IL-12 locally, stimulating induction of TH1 lymphocytes. The resultant immune-mediated anti-viral responses should, through cross-epitope spreading, translate into a strong response to tumor antigens. The ability to compare human and dog responses in real time affords the most stringent test of suitability of the dog as an informative model of human brain tumors. Subsequent studies will allow canine trials to properly inform the design of human trials.
Collapse
Affiliation(s)
- M R Chambers
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - R Timothy Bentley
- College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jeremy B Foote
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jey W Koehler
- College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nidal B Omar
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Simon R Platt
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - D Mitchell Self
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Shores
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States
| | - Donald C Sorjonen
- College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Alicia M Waters
- Division of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Amy B Yanke
- College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Safety and efficacy of oncolytic HSV-1 G207 inoculated into the cerebellum of mice. Cancer Gene Ther 2019; 27:246-255. [PMID: 30918335 DOI: 10.1038/s41417-019-0091-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/12/2019] [Indexed: 12/25/2022]
Abstract
Primary malignant central nervous system (CNS) tumors are the leading cause of childhood cancer-related death and morbidity. While advances in surgery, radiation, and chemotherapy have improved the survival rates in children with malignant brain tumors, mortality persists in certain subpopulations and current therapies are associated with extreme morbidity. This is especially true for children with malignant infratentorial tumors. Accordingly, G207, a genetically engineered herpes simplex virus (HSV-1) capable of selectively targeting cancer cells has emerged as a promising therapeutic option for this patient population. Herein, we demonstrate that cerebellar inoculation of G207 was systemically non-toxic in an immunocompetent, HSV-1 sensitive mouse strain (CBA/J). Mice had neither abnormal brain/organ pathology nor evidence of G207 replication by immunohistochemistry at days 7 and 30 after cerebellar G207 inoculation. While a minute amount viral DNA was recovered in the cerebellum and brainstem of mice at day 7, no viral DNA persisted at day 30. Critically, G207 delivered to the cerebellum was able to target/treat the highly aggressive MYC-overexpressed group 3 murine medulloblastoma increasing survival vs controls. These results provide critical safety and efficacy data to support the translation of G207 for pediatric clinical trials in intractable cerebellar malignancies.
Collapse
|
19
|
Herpes Simplex Virus 1 γ 134.5 Protein Inhibits STING Activation That Restricts Viral Replication. J Virol 2018; 92:JVI.01015-18. [PMID: 30045990 DOI: 10.1128/jvi.01015-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/19/2018] [Indexed: 11/20/2022] Open
Abstract
The γ134.5 gene of herpes simplex virus 1 (HSV-1) encodes a virulence factor that promotes viral pathogenesis. Although it perturbs TANK-binding kinase 1 (TBK1) in the complex network of innate immune pathways, the underlying mechanism is obscure. Here we report that HSV-1 γ134.5 targets stimulator of interferon genes (STING) in the intracellular DNA recognition pathway that regulates TBK1 activation. In virus-infected cells the γ134.5 protein associates with and inactivates STING, which leads to downregulation of interferon regulatory factor 3 (IRF3) and IFN responses. Importantly, HSV-1 γ134.5 disrupts translocation of STING from the endoplasmic reticulum to Golgi apparatus, a process necessary to prime cellular immunity. Deletion of γ134.5 or its amino-terminal domain from HSV-1 abolishes the observed inhibitory activities. Consistently, an HSV mutant that lacks functional γ134.5 replicated less efficiently in STING+/+ than in STING-/- mouse embryonic fibroblasts. Moreover, reconstituted expression of human STING in the STING-/- cells activated IRF3 and reduced viral growth. These results suggest that control of the DNA sensing pathway by γ134.5 is advantageous to HSV infection.IMPORTANCE Viral inhibition of innate immunity contributes to herpes simplex virus pathogenesis. Although this complex process involves multiple factors, the underlying events remain unclear. We demonstrate that an HSV virulence factor γ134.5 precludes the activation of STING, a central adaptor in the intracellular DNA sensing pathway. Upon HSV infection, this viral protein engages with and inactivates STING. Consequently, it compromises host immunity and facilitates HSV replication. These observations uncover an HSV mechanism that is likely to mediate viral virulence.
Collapse
|
20
|
Eberle R, Jones-Engel L. Questioning the Extreme Neurovirulence of Monkey B Virus (Macacine alphaherpesvirus 1). Adv Virol 2018; 2018:5248420. [PMID: 29666644 PMCID: PMC5831965 DOI: 10.1155/2018/5248420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/10/2018] [Indexed: 01/20/2023] Open
Abstract
Monkey B virus (Macacine alphaherpesvirus 1; BV) occurs naturally in macaques of the genus Macaca, which includes rhesus and long-tailed (cynomolgus) monkeys that are widely used in biomedical research. BV is closely related to the human herpes simplex viruses (HSV), and BV infections in its natural macaque host are quite similar to HSV infections in humans. Zoonotic BV is extremely rare, having been diagnosed in only a handful of North American facilities with the last documented case occurring in 1998. However, BV is notorious for its neurovirulence since zoonotic infections are serious, usually involving the central nervous system, and are frequently fatal. Little is known about factors underlying the extreme neurovirulence of BV in humans. Here we review what is actually known about the molecular biology of BV and viral factors affecting its neurovirulence. Based on what is known about related herpesviruses, areas for future research that may elucidate mechanisms underlying the neurovirulence of this intriguing virus are also reviewed.
Collapse
Affiliation(s)
- R. Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - L. Jones-Engel
- Department of Anthropology and Center for Studies in Ecology and Demography, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
21
|
Ghonime MG, Jackson J, Shah A, Roth J, Li M, Saunders U, Coleman J, Gillespie GY, Markert JM, Cassady KA. Chimeric HCMV/HSV-1 and Δγ 134.5 oncolytic herpes simplex virus elicit immune mediated antigliomal effect and antitumor memory. Transl Oncol 2017; 11:86-93. [PMID: 29216507 PMCID: PMC6002352 DOI: 10.1016/j.tranon.2017.10.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas are the most common primary brain tumor and are characterized by rapid and highly invasive growth. Because of their poor prognosis, new therapeutic strategies are needed. Oncolytic virotherapy (OV) is a promising strategy for treating cancer that incorporates both direct viral replication mediated and immune mediated mechanisms to kill tumor cells. C134 is a next generation Δγ134.5 oHSV-1 with improved intratumoral viral replication. It remains safe in the CNS environment by inducing early IFN signaling which restricts its replication in non-malignant cells. We sought to identify how C134 performed in an immunocompetent tumor model that restricts its replication advantage over first generation viruses. To achieve this we identified tumors that have intact IFN signaling responses that restrict C134 and first generation virus replication similarly. Our results show that both viruses elicit a T cell mediated anti-tumor effect and improved animal survival but that subtle difference exist between the viruses effect on median survival despite equivalent in vivo viral replication. To further investigate this we examined the anti-tumor activity in immunodeficient mice and in syngeneic models with re-challenge. These studies show that the T cell response is integral to C134 replication independent anti-tumor response and that OV therapy elicits a durable and circulating anti-tumor memory. The studies also show that repeated intratumoral administration can extend both OV anti-tumor effects and induce durable anti-tumor memory that is superior to tumor antigen exposure alone.
Collapse
Affiliation(s)
- Mohammed G Ghonime
- The Research Institute at Nationwide Children's Hospital-Center for Childhood Cancer and Blood Disorders, Columbus, OH, USA
| | - Josh Jackson
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA
| | - Amish Shah
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA
| | - Justin Roth
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA
| | - Mao Li
- Nationwide Children's Hospital Department of Pediatrics - Infectious Diseases, Columbus, OH, USA
| | - Ute Saunders
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA
| | - Jennifer Coleman
- University of Alabama at Birmingham-Department of Neurosurgery, Birmingham, AL, USA
| | - G Yancey Gillespie
- University of Alabama at Birmingham-Department of Neurosurgery, Birmingham, AL, USA
| | - James M Markert
- University of Alabama at Birmingham-School of Medicine, Birmingham, AL, USA; University of Alabama at Birmingham-Department of Neurosurgery, Birmingham, AL, USA
| | - Kevin A Cassady
- The Research Institute at Nationwide Children's Hospital-Center for Childhood Cancer and Blood Disorders, Columbus, OH, USA; Nationwide Children's Hospital Department of Pediatrics - Infectious Diseases, Columbus, OH, USA; The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
22
|
Pourchet A, Copin R, Mulvey MC, Shopsin B, Mohr I, Wilson AC. Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63. Virology 2017; 512:124-131. [PMID: 28957690 PMCID: PMC5653468 DOI: 10.1016/j.virol.2017.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a widespread pathogen that persists for life, replicating in surface tissues and establishing latency in peripheral ganglia. Increasingly, molecular studies of latency use cultured neuron models developed using recombinant viruses such as HSV-1 GFP-US11, a derivative of strain Patton expressing green fluorescent protein (GFP) fused to the viral US11 protein. Visible fluorescence follows viral DNA replication, providing a real time indicator of productive infection and reactivation. Patton was isolated in Houston, Texas, prior to 1973, and distributed to many laboratories. Although used extensively, the genomic structure and phylogenetic relationship to other strains is poorly known. We report that wild type Patton and the GFP-US11 recombinant contain the full complement of HSV-1 genes and differ within the unique regions at only eight nucleotides, changing only two amino acids. Although isolated in North America, Patton is most closely related to Asian viruses, including KOS63.
Collapse
Affiliation(s)
- Aldo Pourchet
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Richard Copin
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Analysis of Herpes Simplex Virus Reactivation in Explant Reveals a Method-Dependent Difference in Measured Timing of Reactivation. J Virol 2017. [PMID: 28637763 PMCID: PMC5533896 DOI: 10.1128/jvi.00848-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus (HSV) infection is widespread in the human population. Following orofacial infection, HSV establishes latency in innervating sensory neurons, primarily located in the trigeminal ganglia. A central feature of HSV pathogenesis is the ability to periodically reactivate in those neurons and be transported back to the body surface. Both transmission and disease, such as keratitis, encephalitis, and neurodegeneration, have been linked to reactivation. Despite invaluable insights obtained from model systems, interactions between viral and host functions that regulate reactivation are still incompletely understood. Various assays are used for measuring reactivation in animal models, but there have been limited comparisons between methods and the accuracy of detecting the timing of reactivation and the corresponding amount of infectious virus produced in the ganglia per reactivation event. Here, we directly compare two approaches for measuring reactivation in latently infected explanted ganglia by sampling media from the explanted cultures or by homogenization of the ganglia and compare the results to viral protein expression in the whole ganglia. We show that infectious virus detection by direct homogenization of explanted ganglia correlates with viral protein expression, but detection of infectious virus in medium samples from explanted cultures does not occur until extensive spread of virus is observed in the ganglia. The medium-sampling method is therefore not reflective of the initial timing of reactivation, and the additional variables influencing spread of virus in the ganglia should be considered when interpreting results obtained using this method. IMPORTANCE The development of treatments to prevent and/or treat HSV infection rely upon understanding viral and host factors that influence reactivation. Progress is dependent on experimental methods that accurately measure the frequency and timing of reactivation in latently infected neurons. In this study, two methods for detecting reactivation using the explant model are compared. We show through direct tissue homogenization that reactivation occurs much earlier than can be detected by the indirect method of sampling media from explanted cultures. Thus, the sampling method does not detect the initial timing of reactivation, and results obtained using this method are subject to additional variables with the potential to obscure reactivation outcomes.
Collapse
|
24
|
Waters AM, Johnston JM, Reddy AT, Fiveash J, Madan-Swain A, Kachurak K, Bag AK, Gillespie GY, Markert JM, Friedman GK. Rationale and Design of a Phase 1 Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors. HUM GENE THER CL DEV 2017; 28:7-16. [PMID: 28319448 DOI: 10.1089/humc.2017.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Primary central nervous system tumors are the most common solid neoplasm of childhood and the leading cause of cancer-related death in pediatric patients. Survival rates for children with malignant supratentorial brain tumors are poor despite aggressive treatment with combinations of surgery, radiation, and chemotherapy, and survivors often suffer from damaging lifelong sequelae from current therapies. Novel innovative treatments are greatly needed. One promising new approach is the use of a genetically engineered, conditionally replicating herpes simplex virus (HSV) that has shown tumor-specific tropism and potential efficacy in the treatment of malignant brain tumors. G207 is a genetically engineered HSV-1 lacking genes essential for replication in normal brain cells. Safety has been established in preclinical investigations involving intracranial inoculation in the highly HSV-sensitive owl monkey (Aotus nancymai), and in three adult phase 1 trials in recurrent/progressive high-grade gliomas. No dose-limiting toxicities were seen in the adult studies and a maximum tolerated dose was not reached. Approximately half of the 35 treated adults had radiographic or neuropathologic evidence of response at a minimum of one time point. Preclinical studies in pediatric brain tumor models indicate that a variety of pediatric tumor types are highly sensitive to killing by G207. This clinical protocol outlines a first in human children study of intratumoral inoculation of an oncolytic virus via catheters placed directly into recurrent or progressive supratentorial malignant tumors.
Collapse
Affiliation(s)
- Alicia M Waters
- 1 Department of Surgery, Division of Pediatric Surgery, University of Alabama at Birmingham , Birmingham, Alabama
| | - James M Johnston
- 2 Department of Neurosurgery, University of Alabama at Birmingham , Birmingham, Alabama
| | - Alyssa T Reddy
- 3 Department of Pediatrics, Division of Hematology/Oncology, University of Alabama at Birmingham , Birmingham, Alabama
| | - John Fiveash
- 4 Department of Radiation Oncology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Avi Madan-Swain
- 3 Department of Pediatrics, Division of Hematology/Oncology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kara Kachurak
- 5 Division of Hematology/Oncology, Children's of Alabama , Birmingham, Alabama
| | - Asim K Bag
- 6 Department of Radiology, University of Alabama at Birmingham , Birmingham, Alabama
| | - G Yancey Gillespie
- 2 Department of Neurosurgery, University of Alabama at Birmingham , Birmingham, Alabama
| | - James M Markert
- 2 Department of Neurosurgery, University of Alabama at Birmingham , Birmingham, Alabama.,3 Department of Pediatrics, Division of Hematology/Oncology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Gregory K Friedman
- 3 Department of Pediatrics, Division of Hematology/Oncology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
25
|
Foreman PM, Friedman GK, Cassady KA, Markert JM. Oncolytic Virotherapy for the Treatment of Malignant Glioma. Neurotherapeutics 2017; 14:333-344. [PMID: 28265902 PMCID: PMC5398989 DOI: 10.1007/s13311-017-0516-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malignant glioma is the most common primary brain tumor and carries a grim prognosis, with a median survival of just over 14 months. Given the poor outcomes with standard-of-care treatments, novel treatment strategies are needed. The concept of virotherapy for the treatment of malignant tumors dates back more than a century and can be divided into replication-competent oncolytic viruses and replication-deficient viral vectors. Oncolytic viruses are designed to selectively target, infect, and replicate in tumor cells, while sparing surrounding normal brain. A host of oncolytic viruses has been evaluated in early phase human trials with promising safety results, but none has progressed to phase III trials. Despite the 25 years that has passed since the initial publication of genetically engineered oncolytic viruses for the treatment of glioma, much remains to be learned about the use of this therapy, including its mechanism of action, optimal treatment paradigm, appropriate targets, and integration with adjuvant agents. Oncolytic viral therapy for glioma remains promising and will undoubtedly impact the future of patient care.
Collapse
Affiliation(s)
- Paul M Foreman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory K Friedman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - James M Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
26
|
Cassady KA, Bauer DF, Roth J, Chambers MR, Shoeb T, Coleman J, Prichard M, Gillespie GY, Markert JM. Pre-clinical Assessment of C134, a Chimeric Oncolytic Herpes Simplex Virus, in Mice and Non-human Primates. MOLECULAR THERAPY-ONCOLYTICS 2017; 5:1-10. [PMID: 28345027 PMCID: PMC5363760 DOI: 10.1016/j.omto.2017.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/19/2017] [Indexed: 11/18/2022]
Abstract
Oncolytic herpes simplex virus (oHSV) type I constructs are investigational anti-neoplastic agents for a variety of malignancies, including malignant glioma. Clinical trials to date have supported the safety of these agents even when directly administered in the CNS. Traditional pre-clinical US Food and Drug Administration (FDA) toxicity studies for these agents have included the use of two species, generally including murine and primate studies. Recently, the FDA has decreased its requirement of non-human primates as an animal model for ethical reasons, especially for established viral systems where there are good alternative model systems. Here we present data demonstrating the safety of C134, a chimeric oHSV construct, in CBA mice as well as in a limited number of the HSV-sensitive non-human primate Aotus nancymaae as a proposed agent for clinical trials. These data, along with the previously conducted clinical trials of oHSV constructs, support the use of the CBA mouse model as sufficient for the pre-clinical toxicity studies of this agent. We summarize our experience with different HSV recombinants and differences between them using multiple assays to assess neurovirulence, as well as our experience with C134 in a limited number of A. nancymaae.
Collapse
Affiliation(s)
- Kevin A Cassady
- Department of Pediatrics, Research Institute Center for Childhood Cancer and Blood Disorders, Nationwide Children's Hospital, Columbus, OH 43212, USA; Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - David F Bauer
- Department of Neurosurgery, University of Alabama, Birmingham, AL 35294, USA
| | - Justin Roth
- Department of Pediatrics, University of Alabama, Birmingham, AL 35294, USA
| | - Melissa R Chambers
- Department of Neurosurgery, University of Alabama, Birmingham, AL 35294, USA
| | - Trent Shoeb
- Department of Neurosurgery, University of Alabama, Birmingham, AL 35294, USA
| | - Jennifer Coleman
- Department of Neurosurgery, University of Alabama, Birmingham, AL 35294, USA
| | - Mark Prichard
- Department of Pediatrics, University of Alabama, Birmingham, AL 35294, USA
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama, Birmingham, AL 35294, USA; Department of Pediatrics, University of Alabama, Birmingham, AL 35294, USA; Department of Comparative Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - James M Markert
- Department of Neurosurgery, University of Alabama, Birmingham, AL 35294, USA; Department of Pediatrics, University of Alabama, Birmingham, AL 35294, USA; Department of Comparative Medicine, University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
27
|
Waters AM, Johnston JM, Reddy AT, Fiveash J, Madan-Swain A, Kachurak K, Bag AK, Gillespie GY, Markert JM, Friedman GK. Rationale and Design of a Phase I Clinical Trial to Evaluate HSV G207 Alone or with a Single Radiation Dose in Children with Progressive or Recurrent Malignant Supratentorial Brain Tumors. HUM GENE THER CL DEV 2017. [DOI: 10.1089/hum.2017.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Alicia M Waters
- University of Alabama at Birmingham, Surgery, Birmingham, Alabama, United States
| | - James M Johnston
- University of Alabama at Birmingham, Neurosurgery, Birmingham, Alabama, United States
| | - Alyssa T Reddy
- University of Alabama at Birmingham, Pediatrics, Birmingham, Alabama, United States
| | - John Fiveash
- University of Alabama at Birmingham, Radiation Oncology, Birmingham, Alabama, United States
| | - Avi Madan-Swain
- University of Alabama at Birmingham, Pediatrics, Birmingham, Alabama, United States
| | - Kara Kachurak
- Benjamin Russell Hospital for Children, 22078, Birmingham, Alabama, United States
| | - Asim K Bag
- University of Alabama at Birmingham, Radiology, Birmingham, Alabama, United States
| | - G. Yancey Gillespie
- University of Alabama at Birmingham, Cell Biology and Anatomy, Birmingham, Alabama, United States
| | - James M Markert
- University of Alabama at Birmingham, Neurosurgery, Birmingham, Alabama, United States
| | - Gregory K Friedman
- University of Alabama at Birmingham, Pediatrics, 1600 7th Avenue South, Lowder 512, Birmingham, Alabama, United States, 35233
| |
Collapse
|
28
|
Presage of oncolytic virotherapy for oral cancer with herpes simplex virus. JAPANESE DENTAL SCIENCE REVIEW 2016; 53:53-60. [PMID: 28479936 PMCID: PMC5405200 DOI: 10.1016/j.jdsr.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/02/2016] [Accepted: 10/08/2016] [Indexed: 12/30/2022] Open
Abstract
A virus is a pathogenic organism that causes a number of infectious diseases in humans. The oral cavity is the site at which viruses enter and are excreted from the human body. Herpes simplex virus type 1 (HSV-1) produces the primary infectious disease, gingivostomatitis, and recurrent disease, labial herpes. HSV-1 is one of the most extensively investigated viruses used for cancer therapy. In principle, HSV-1 infects epithelial cells and neuronal cells and exhibits cytotoxicity due to its cytopathic effects on these cells. If the replication of the virus occurs in tumor cells, but not normal cells, the virus may be used as an antitumor agent. Therefore, HSV-1 genes have been modified by genetic engineering, and in vitro and in vivo studies with the oncolytic virus have demonstrated its efficiency against head and neck cancer including oral cancer. The oncolytic abilities of other viruses such as adenovirus and reovirus have also been demonstrated. In clinical trials, HSV-1 is the top runner and is now available for the treatment of patients with advanced melanoma. Thus, melanoma in the oral cavity is the target of oncolytic HSV-1. Oncolytic virotherapy is a hopeful and realistic modality for the treatment of oral cancer.
Collapse
|
29
|
Rosato PC, Leib DA. Neuronal Interferon Signaling Is Required for Protection against Herpes Simplex Virus Replication and Pathogenesis. PLoS Pathog 2015; 11:e1005028. [PMID: 26153886 PMCID: PMC4495997 DOI: 10.1371/journal.ppat.1005028] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/17/2015] [Indexed: 12/28/2022] Open
Abstract
Interferon (IFN) responses are critical for controlling herpes simplex virus 1 (HSV-1). The importance of neuronal IFN signaling in controlling acute and latent HSV-1 infection remains unclear. Compartmentalized neuron cultures revealed that mature sensory neurons respond to IFNβ at both the axon and cell body through distinct mechanisms, resulting in control of HSV-1. Mice specifically lacking neural IFN signaling succumbed rapidly to HSV-1 corneal infection, demonstrating that IFN responses of the immune system and non-neuronal tissues are insufficient to confer survival following virus challenge. Furthermore, neurovirulence was restored to an HSV strain lacking the IFN-modulating gene, γ34.5, despite its expected attenuation in peripheral tissues. These studies define a crucial role for neuronal IFN signaling for protection against HSV-1 pathogenesis and replication, and they provide a novel framework to enhance our understanding of the interface between host innate immunity and neurotropic pathogens. Herpes simplex virus type 1 (HSV-1) is a ubiquitous virus that can cause cold sores, blindness, and even death from encephalitis. There is no vaccine against HSV, and although antiviral drugs can control HSV-1, it persists because it establishes lifelong latent infections in neurons. Humans with deficiencies in innate immunity have significant problems controlling HSV infections. In this study we therefore sought to elucidate the role of neuronal innate immunity in the control of viral infection. Sensory neurons, in which HSV resides, have projection which that extend long distances to innervate the skin, the initial site of HSV infection. We found that neurons can respond to interferon beta, a molecule that strongly stimulates innate immunity and inhibits virus growth, at both the cell body and at the end of these long projections. Moreover, we found that this interferon response of neurons is critical for controlling HSV infection in vivo and that the interferon responses of non-neuronal cells are insufficient to provide protection. Our results have important implications for understanding how the nervous system defends itself against virus infections.
Collapse
Affiliation(s)
- Pamela C. Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
| | - David A. Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
30
|
Characterization of herpes simplex virus 2 primary microRNA Transcript regulation. J Virol 2015; 89:4837-48. [PMID: 25673716 DOI: 10.1128/jvi.03135-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In order to understand factors that may influence latency-associated transcription and latency-associated transcript (LAT) phenotypes, we studied the expression of the herpes simplex virus 2 (HSV-2) LAT-associated microRNAs (miRNAs). We mapped the transcription initiation sites of all three primary miRNA transcripts and identified the ICP4-binding sequences at the transcription initiation sites of both HSV-2 LAT (pri-miRNA for miR-I and miR-II, which target ICP34.5, and miR-III, which targets ICP0) and L/ST (a pri-miRNA for miR-I and miR-II) but not at that of the primary miR-H6 (for which the target is unknown). We confirmed activity of the putative HSV-2 L/ST promoter and found that ICP4 trans-activates the L/ST promoter when the ICP4-binding site at its transcription initiation site is mutated, suggesting that ICP4 may play a dual role in regulating transcription of L/ST and, consequently, of miR-I and miR-II. LAT exon 1 (containing LAT enhancer sequences), together with the LAT promoter region, comprises a bidirectional promoter required for the expression of both LAT-encoded miRNAs and miR-H6 in latently infected mouse ganglia. The ability of ICP4 to suppress ICP34.5-targeting miRNAs and to activate lytic viral genes suggests that ICP4 could play a key role in the switch between latency and reactivation. IMPORTANCE The HSV-2 LAT and viral miRNAs expressed in the LAT region are the most abundant viral transcripts during HSV latency. The balance between the expression of LAT and LAT-associated miRNAs and the expression of lytic viral transcripts from the opposite strand appears to influence whether individual HSV-infected neurons will be latently or productively infected. The outcome of neuronal infection may thus depend on regulation of gene expression of the corresponding primary miRNAs. In the present study, we characterize promoter sequences responsible for miRNA expression, including identification of the primary miRNA 5' ends and evaluation of ICP4 response. These findings provide further insight into the virus' strategy to tightly control expression of lytic cycle genes (especially the neurovirulence factor, ICP34.5) and suggest a mechanism (via ICP4) for the transition from latency to reactivated productive infection.
Collapse
|
31
|
Wang Y, Yang Y, Wu S, Pan S, Zhou C, Ma Y, Ru Y, Dong S, He B, Zhang C, Cao Y. p32 is a novel target for viral protein ICP34.5 of herpes simplex virus type 1 and facilitates viral nuclear egress. J Biol Chem 2014; 289:35795-805. [PMID: 25355318 PMCID: PMC4276848 DOI: 10.1074/jbc.m114.603845] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/23/2014] [Indexed: 12/25/2022] Open
Abstract
As a large double-stranded DNA virus, herpes simplex virus type 1 (HSV-1) assembles capsids in the nucleus where the viral particles exit by budding through the inner nuclear membrane. Although a number of viral and host proteins are involved, the machinery of viral egress is not well understood. In a search for host interacting proteins of ICP34.5, which is a virulence factor of HSV-1, we identified a cellular protein, p32 (gC1qR/HABP1), by mass spectrophotometer analysis. When expressed, ICP34.5 associated with p32 in mammalian cells. Upon HSV-1 infection, p32 was recruited to the inner nuclear membrane by ICP34.5, which paralleled the phosphorylation and rearrangement of nuclear lamina. Knockdown of p32 in HSV-1-infected cells significantly reduced the production of cell-free viruses, suggesting that p32 is a mediator of HSV-1 nuclear egress. These observations suggest that the interaction between HSV-1 ICP34.5 and p32 leads to the disintegration of nuclear lamina and facilitates the nuclear egress of HSV-1 particles.
Collapse
Affiliation(s)
- Yu Wang
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yin Yang
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Songfang Wu
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shuang Pan
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chaodong Zhou
- Department of Biochemistry, Institute for Drug Control, Tianjin 300070, China
| | - Yijie Ma
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois 60612, and
| | - Yongxin Ru
- Department of Electron Microscopy, Institute of Hematology and Blood Diseases Hospital, Peking Union College, Tianjin 300020, China
| | - Shuxu Dong
- Department of Electron Microscopy, Institute of Hematology and Blood Diseases Hospital, Peking Union College, Tianjin 300020, China
| | - Bin He
- Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois 60612, and
| | - Cuizhu Zhang
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China,
| | - Youjia Cao
- From the Key laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China,
| |
Collapse
|
32
|
Up to four distinct polypeptides are produced from the γ34.5 open reading frame of herpes simplex virus 2. J Virol 2014; 88:11284-96. [PMID: 25031346 DOI: 10.1128/jvi.01284-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) ICP34.5 protein strongly influences neurovirulence and regulates several cellular antiviral responses. Despite the clinical importance of HSV-2, relatively little is known about its ICP34.5 ortholog. We found that HSV-2 produces up to four distinct forms of ICP34.5 in infected cells: a full-length protein, one shorter form sharing the N terminus, and two shorter forms sharing the C terminus. These forms appeared with similar kinetics and accumulated in cells over much of the replication cycle. We confirmed that the N-terminal form is translated from the primary unspliced transcript to a stop codon within the intron unique to HSV-2 γ34.5. We found that the N-terminal form was produced in a variety of cell types and by 9 of 10 clinical isolates. ICP27 influenced but was not required for expression of the N-terminal form. Western blotting and reverse transcription-PCR indicated the C-terminal forms did not contain the N terminus and were not products of alternative splicing or internal transcript initiation. Expression plasmids encoding methionine at amino acids 56 and 70 generated products that comigrated in SDS-PAGE with the C1 and C2 forms, respectively, and mutation of these sites abolished C1 and C2. Using a recombinant HSV-2 encoding hemagglutinin (HA)-tagged ICP34.5, we demonstrated that the C-terminal forms were also produced during infection of many human and mouse cell types but were not detectable in mouse primary neurons. The protein diversity generated from the HSV-2 γ34.5 open reading frame implies additional layers of cellular regulation through potential independent activities associated with the various forms of ICP34.5. IMPORTANCE The herpes simplex virus 1 (HSV-1) protein ICP34.5, encoded by the γ34.5 gene, interferes with several host defense mechanisms by binding cellular proteins that would otherwise stimulate the cell's autophagic, translational-arrest, and type I interferon responses to virus infection. ICP34.5 also plays a crucial role in determining the severity of nervous system infections with HSV-1 and HSV-2. The HSV-2 γ34.5 gene contains an intron not present in HSV-1 γ34.5. A shorter N-terminal form of HSV-2 ICP34.5 can be translated from the unspliced γ34.5 mRNA. Here, we show that two additional forms consisting of the C-terminal portion of ICP34.5 are generated in infected cells. Production of these N- and C-terminal forms is highly conserved among HSV-2 strains, including many clinical isolates, and they are broadly expressed in several cell types, but not mouse primary neurons. Multiple ICP34.5 polypeptides add additional complexity to potential functional interactions influencing HSV-2 neurovirulence.
Collapse
|
33
|
Hughes T, Coffin RS, Lilley CE, Ponce R, Kaufman HL. Critical analysis of an oncolytic herpesvirus encoding granulocyte-macrophage colony stimulating factor for the treatment of malignant melanoma. Oncolytic Virother 2014; 3:11-20. [PMID: 27512660 PMCID: PMC4918360 DOI: 10.2147/ov.s36701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Oncolytic viruses that selectively lyse tumor cells with minimal damage to normal cells are a new area of therapeutic development in oncology. An attenuated herpesvirus encoding the granulocyte-macrophage colony stimulating factor (GM-CSF), known as talimogene laherparepvec (T-VEC), has been identified as an attractive oncolytic virus for cancer therapy based on preclinical tumor studies and results from early-phase clinical trials and a large randomized Phase III study in melanoma. In this review, we discuss the basic biology of T-VEC, describe the role of GM-CSF as an immune adjuvant, summarize the preclinical data, and report the outcomes of published clinical trials using T-VEC. The emerging data suggest that T-VEC is a safe and potentially effective antitumor therapy in malignant melanoma and represents the first oncolytic virus to demonstrate therapeutic activity against human cancer in a randomized, controlled Phase III study.
Collapse
Affiliation(s)
- Tasha Hughes
- Departments of General Surgery and Immunology and Microbiology, Rush University Medical Center, Chicago IL, USA
| | - Robert S Coffin
- BioVex, Inc, a subsidiary of Amgen, Inc, Sherman Oaks, CA, USA
| | | | - Rafael Ponce
- BioVex, Inc, a subsidiary of Amgen, Inc, Sherman Oaks, CA, USA
| | - Howard L Kaufman
- Departments of General Surgery and Immunology and Microbiology, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
34
|
|
35
|
Nygårdas M, Paavilainen H, Müther N, Nagel CH, Röyttä M, Sodeik B, Hukkanen V. A herpes simplex virus-derived replicative vector expressing LIF limits experimental demyelinating disease and modulates autoimmunity. PLoS One 2013; 8:e64200. [PMID: 23700462 PMCID: PMC3659099 DOI: 10.1371/journal.pone.0064200] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/09/2013] [Indexed: 12/29/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has properties that can be exploited for the development of gene therapy vectors. The neurotropism of HSV enables delivery of therapeutic genes to the nervous system. Using a bacterial artificial chromosome (BAC), we constructed an HSV-1(17+)-based replicative vector deleted of the neurovirulence gene γ134.5, and expressing leukemia inhibitory factor (LIF) as a transgene for treatment of experimental autoimmune encephalomyelitis (EAE). EAE is an inducible T-cell mediated autoimmune disease of the central nervous system (CNS) and is used as an animal model for multiple sclerosis. Demyelination and inflammation are hallmarks of both diseases. LIF is a cytokine that has the potential to limit demyelination and oligodendrocyte loss in CNS autoimmune diseases and to affect the T-cell mediated autoimmune response. In this study SJL/J mice, induced for EAE, were treated with a HSV-LIF vector intracranially and the subsequent changes in disease parameters and immune responses during the acute disease were investigated. Replicating HSV-LIF and its DNA were detected in the CNS during the acute infection, and the vector spread to the spinal cord but was non-virulent. The HSV-LIF significantly ameliorated the EAE and contributed to a higher number of oligodendrocytes in the brains when compared to untreated mice. The HSV-LIF therapy also induced favorable changes in the expression of immunoregulatory cytokines and T-cell population markers in the CNS during the acute disease. These data suggest that BAC-derived HSV vectors are suitable for gene therapy of CNS disease and can be used to test the therapeutic potential of immunomodulatory factors for treatment of EAE.
Collapse
Affiliation(s)
- Michaela Nygårdas
- Department of Virology, University of Turku, Turku, Finland
- * E-mail: (MN); (VH)
| | | | - Nadine Müther
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | | | - Matias Röyttä
- Department of Pathology, University of Turku, Turku, Finland
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Veijo Hukkanen
- Department of Virology, University of Turku, Turku, Finland
- * E-mail: (MN); (VH)
| |
Collapse
|
36
|
Herpes simplex virus 2 expresses a novel form of ICP34.5, a major viral neurovirulence factor, through regulated alternative splicing. J Virol 2013; 87:5820-30. [PMID: 23487469 DOI: 10.1128/jvi.03500-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) and HSV-2, two closely related neurotropic human herpesviruses, achieve neurotropism through ICP34.5, a major viral neurovirulence factor. In this report, in addition to the full-length 38-kDa protein (ICP34.5α), we identified a 28-kDa novel form of ICP34.5 (ICP34.5β) in HSV-2-infected cells. ICP34.5β is translated from unspliced ICP34.5 mRNA, with the retained intron introducing a premature stop codon. Thus, ICP34.5β lacks the C-terminal conserved GADD34 domain but includes 19 additional amino acids encoded by the intron. Although a fraction of both HSV-2 ICP34.5 proteins are detected in the nucleolus, ICP34.5α is predominantly located in cytoplasm, and ICP34.5β is mainly detected more diffusely in the nucleus. ICP34.5β is unable to counteract PKR-mediated eIF2 phosphorylation but does not interfere with ICP34.5α's function in this process. Efficient expression of ICP34.5β in cell culture assays is dependent on viral infection or expression of ICP27, a multifunctional immediate-early gene. The effect of ICP27 on the ICP34.5β protein level is attributed to its selective inhibition of ICP34.5 splicing, which results in increased expression of ICP34.5β but a reduced level of ICP34.5α. The C- terminal KH3 domain but not the RNA binding domain of ICP27 is required for its specific inhibition of ICP34.5 splicing and promotion of ICP34.5β expression. Our results suggest that the expression of ICP34.5α and ICP34.5β is tightly regulated in HSV-2 and likely contributes to viral pathogenesis.
Collapse
|
37
|
Friedman GK, Raborn J, Kelly VM, Cassady KA, Markert JM, Gillespie GY. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy. Front Oncol 2013; 3:28. [PMID: 23450706 PMCID: PMC3584319 DOI: 10.3389/fonc.2013.00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/04/2013] [Indexed: 01/17/2023] Open
Abstract
While glioblastoma multiforme (GBM) is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs) remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed “glioma stem cells” (GSCs), “glioma progenitor cells,” or “glioma-initiating cells,” which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGG must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses (oHSV), genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oHSV.
Collapse
Affiliation(s)
- Gregory K Friedman
- Brain Tumor Research Program, Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
38
|
A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 2013; 12:334-45. [PMID: 22980330 DOI: 10.1016/j.chom.2012.07.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 01/18/2012] [Accepted: 07/06/2012] [Indexed: 11/20/2022]
Abstract
Type I interferons (IFNs) are considered to be the universal mechanism by which viral infections are controlled. However, many IFN-stimulated genes (ISGs) rely on antiviral pathways that are toxic to host cells, which may be detrimental in nonrenewable cell types, such as neurons. We show that dorsal root ganglionic (DRG) neurons produced little type I IFNs in response to infection with a neurotropic virus, herpes simplex type 1 (HSV-1). Further, type I IFN treatment failed to completely block HSV-1 replication or to induce IFN-primed cell death in neurons. We found that DRG neurons required autophagy to limit HSV-1 replication both in vivo and in vitro. In contrast, mucosal epithelial cells and other mitotic cells responded robustly to type I IFNs and did not require autophagy to control viral replication. These findings reveal a fundamental difference in the innate antiviral strategies employed by neurons and mitotic cells to control HSV-1 infection.
Collapse
|
39
|
Inhibition of TANK binding kinase 1 by herpes simplex virus 1 facilitates productive infection. J Virol 2011; 86:2188-96. [PMID: 22171259 DOI: 10.1128/jvi.05376-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The γ(1)34.5 protein of herpes simplex viruses (HSV) is essential for viral pathogenesis, where it precludes translational arrest mediated by double-stranded-RNA-dependent protein kinase (PKR). Paradoxically, inhibition of PKR alone is not sufficient for HSV to exhibit viral virulence. Here we report that γ(1)34.5 inhibits TANK binding kinase 1 (TBK1) through its amino-terminal sequences, which facilitates viral replication and neuroinvasion. Compared to wild-type virus, the γ(1)34.5 mutant lacking the amino terminus induces stronger antiviral immunity. This parallels a defect of γ(1)34.5 for interacting with TBK1 and reducing phosphorylation of interferon (IFN) regulatory factor 3. This activity is independent of PKR. Although resistant to IFN treatment, the γ(1)34.5 amino-terminal deletion mutant replicates at an intermediate level between replication of wild-type virus and that of the γ(1)34.5 null mutant in TBK1(+/+) cells. However, such impaired viral growth is not observed in TBK1(-/-) cells, indicating that the interaction of γ(1)34.5 with TBK1 dictates HSV infection. Upon corneal infection, this mutant replicates transiently but barely invades the trigeminal ganglia or brain, which is a difference from wild-type virus and the γ(1)34.5 null mutant. Therefore, in addition to PKR, γ(1)34.5 negatively regulates TBK1, which contributes viral replication and spread in vivo.
Collapse
|
40
|
Activation of NF-κB in CD8+ dendritic cells Ex Vivo by the γ134.5 null mutant correlates with immunity against herpes simplex virus 1. J Virol 2011; 86:1059-68. [PMID: 22072757 DOI: 10.1128/jvi.06202-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The γ(1)34.5 protein of herpes simplex viruses (HSV) is essential for virulence. Accordingly, an HSV mutant lacking γ(1)34.5 is attenuated in vivo. Despite its vaccine potential, the mechanism by which the γ(1)34.5 null mutant triggers protective immunity is unknown. In this report we show that vaccination with the γ(1)34.5 null mutant protects against lethal challenge from wild-type virus via IκB kinase in dendritic cells (DCs), which sense virus-associated molecular patterns. Unlike mock-treated DCs, DCs primed with the γ(1)34.5 null mutant ex vivo mediate resistance to wild-type HSV after adoptive transfer into naïve mice. Furthermore, the γ(1)34.5 null mutant activates IκB kinase, which facilitates p65/RelA phosphorylation and nuclear translocation, resulting in DC maturation. While unable to produce infectious virus in DCs, this mutant virus expresses early and late genes. In its abortive infection, the γ(1)34.5 null mutant induces protective immunity more effectively in CD8(+) DCs than in CD8(-) DCs. This is mirrored by a higher level of interleukin-6 (IL-6) and IL-12 secretion by CD8(+) DCs than CD8(-) DCs. Remarkably, inhibition of p65/RelA phosphorylation or nuclear translocation in CD8(+) DCs disrupts protective immunity. These results suggest that engagement of the γ(1)34.5 null mutant with CD8(+) DCs elicits innate immunity to activate NF-κB, which translates into protective immunity.
Collapse
|
41
|
Viral delivery for gene therapy against cell movement in cancer. Adv Drug Deliv Rev 2011; 63:671-7. [PMID: 21616108 DOI: 10.1016/j.addr.2011.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/15/2011] [Accepted: 05/07/2011] [Indexed: 12/17/2022]
Abstract
Viral delivery for cancer gene therapy is a promising approach, where traditional radiotherapy or chemotherapy to limit proliferation and movement of cancer cells has met resistance. Based on the new understanding of the biology of the viral vectors, therapeutic viral vectors for cancer gene therapy have been improved for greater safety and efficacy as well as transitioned from being non-replicating to replication-competent. Traditional oncolytic vectors have focused on eliminating tumor growth, while novel vectors simultaneously target epithelial-to-mesenchymal transition (EMT) in cancer cells, which could further prevent and reverse the aggressive tumor progression. In this review, we highlight the illustrative examples of cancer gene therapy in clinical trials as well as preclinical data and include proposals on methods to further enhance the safety and efficacy of oncolytic viral vectors in cancer gene therapy.
Collapse
|
42
|
Jurak I, Griffiths A, Coen DM. Mammalian alphaherpesvirus miRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:641-53. [PMID: 21736960 DOI: 10.1016/j.bbagrm.2011.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 12/26/2022]
Abstract
Mammalian alphaherpesviruses are major causes of human and veterinary disease. During productive infection, these viruses exhibit complex and robust patterns of gene expression. These viruses also form latent infections in neurons of sensory ganglia in which productive cycle gene expression is highly repressed. Both modes of infection provide advantageous opportunities for regulation by microRNAs. Thus far, published data regarding microRNAs are available for six mammalian alphaherpesviruses. No microRNAs have yet been detected from varicella zoster virus. The five other viruses-herpes simplex viruses-1 and -2, herpes B virus, bovine herpesvirus-1, and pseudorabies virus-representing both genera of mammalian alphaherpesviruses have been shown to express microRNAs. In this article, we discuss these microRNAs in terms of where they are encoded in the viral genome relative to other viral transcripts; whether they are expressed during productive or latent infection; their potential targets; what little is known about their actual targets and functions during viral infection; and what little is known about the interactions of these viruses with the host microRNA machinery. This article is part of a Special Issue entitled: "MicroRNAs in viral gene regulation".
Collapse
Affiliation(s)
- Igor Jurak
- Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
43
|
Campadelli-Fiume G, De Giovanni C, Gatta V, Nanni P, Lollini PL, Menotti L. Rethinking herpes simplex virus: the way to oncolytic agents. Rev Med Virol 2011; 21:213-26. [PMID: 21626603 DOI: 10.1002/rmv.691] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/22/2022]
Abstract
Oncolytic viruses infect, replicate in and kill cancer cells. HSV has emerged as a most promising candidate because it exerts a generally moderate pathogenicity in humans; it is amenable to attenuation and tropism retargeting; the ample genome provides space for heterologous genes; specific antiviral therapy is available in a worst case scenario. The first strategy to convert HSV into an oncolytic agent consisted in deletion of the γ(1) 34.5 gene which counteracts the protein kinase R (PKR) response, and of the UL39 gene which encodes the large ribonucleotide reductase subunit. Tumor specificity resided in low PKR activity, and high deoxyribonucleotides content of cancer cells. These highly attenuated viruses have been and presently are in clinical trials with encouraging results. The preferred route of administration has been intratumor or in tissues adjacent to resected tumors. Although the general population has a high seroprevalence of antibodies to HSV, studies in animals and humans demonstrate that prior immunity is not an obstacle to systemic routes of administration, and that oncolytic HSV (o-HSVs) do populate tumors. As the attenuated viruses undergo clinical experimentation, the research pipeline is developing novel, more potent and highly tumor-specific o-HSVs. These include viruses which overcome tumor heterogeneity in PKR level by insertion of anti-PKR genes, viruses which reinforce the host tumor clearance capacity by encoding immune cytokines (IL-12 or granulocyte-macrophage colony-stimulating factor), and non-attenuated viruses fully retargeted to tumor specific receptors. A strategy to generate o-HSVs fully retargeted to human epidermal growth factor receptor-2 (HER-2) or other cancer-specific surface receptors is detailed.
Collapse
Affiliation(s)
- Gabriella Campadelli-Fiume
- Department of Experimental Pathology, Section on Microbiology and Virology, Alma Mater Studiorum - University of Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Ausubel LJ, Meseck M, Derecho I, Lopez P, Knoblauch C, McMahon R, Anderson J, Dunphy N, Quezada V, Khan R, Huang P, Dang W, Luo M, Hsu D, Woo SLC, Couture L. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment. Hum Gene Ther 2011; 22:489-97. [PMID: 21083425 DOI: 10.1089/hum.2010.159] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC.
Collapse
Affiliation(s)
- L J Ausubel
- Center for Biomedicine and Genetics, and Center for Applied Technology Development, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gaston DC, Whitley RJ, Parker JN. Engineered herpes simplex virus vectors for antitumor therapy and vaccine delivery. Future Virol 2011. [DOI: 10.2217/fvl.11.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetically modified herpes simplex viruses (HSVs) have been exploited for both antitumor therapy and vaccine delivery. These mutant viruses retain their ability to replicate and lyse permissive cells, including many tumor types, and are referred to as oncolytic HSVs. In addition, deletion of nonessential genes permits the introduction of foreign genes to augment the antitumor effect by either immune stimulation, targeting for select tumors, or expression of tumor or vaccine antigens. This article reviews the development of oncolytic HSVs as an anticancer therapy, as well as the application of HSV-1 vectors for delivery of targeted antigens or as vaccine adjuvants. The impact of these novel vectors with respect to enhanced antitumor activity and development of antitumor vaccination strategies is discussed.
Collapse
Affiliation(s)
- David C Gaston
- Medical Scientist Training Program, Department of Cell Biology, CHB 130, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Richard J Whitley
- Departments of Pediatrics, Microbiology, Medicine & Neurosurgery, CHB 303, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jacqueline N Parker
- Departments of Pediatrics & Cell Biology, CHB 118B, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
46
|
Tyler S, Severini A, Black D, Walker M, Eberle R. Structure and sequence of the saimiriine herpesvirus 1 genome. Virology 2011; 410:181-91. [PMID: 21130483 PMCID: PMC3017652 DOI: 10.1016/j.virol.2010.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 10/25/2010] [Accepted: 11/03/2010] [Indexed: 01/24/2023]
Abstract
We report here the complete genome sequence of the squirrel monkey α-herpesvirus saimiriine herpesvirus 1 (HVS1). Unlike the simplexviruses of other primate species, only the unique short region of the HVS1 genome is bounded by inverted repeats. While all Old World simian simplexviruses characterized to date lack the herpes simplex virus RL1 (γ34.5) gene, HVS1 has an RL1 gene. HVS1 lacks several genes that are present in other primate simplexviruses (US8.5, US10-12, UL43/43.5 and UL49A). Although the overall genome structure appears more like that of varicelloviruses, the encoded HVS1 proteins are most closely related to homologous proteins of the primate simplexviruses. Phylogenetic analyses confirm that HVS1 is a simplexvirus. Limited comparison of two HVS1 strains revealed a very low degree of sequence variation more typical of varicelloviruses. HVS1 is thus unique among the primate α-herpesviruses in that its genome has properties of both simplexviruses and varicelloviruses.
Collapse
Affiliation(s)
- Shaun Tyler
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Alberto Severini
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Dept. of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Darla Black
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Matthew Walker
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - R. Eberle
- Dept. of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
47
|
A herpesvirus virulence factor inhibits dendritic cell maturation through protein phosphatase 1 and Ikappa B kinase. J Virol 2011; 85:3397-407. [PMID: 21248029 DOI: 10.1128/jvi.02373-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dendritic cells are sentinels in innate and adaptive immunity. Upon virus infection, a complex program is in operation, which activates IκB kinase (IKK), a key regulator of inflammatory cytokines and costimulatory molecules. Here we show that the γ(1)34.5 protein, a virulence factor of herpes simplex viruses, blocks Toll-like receptor-mediated dendritic cell maturation. While the wild-type virus inhibits the induction of major histocompatibility complex (MHC) class II, CD86, interleukin-6 (IL-6), and IL-12, the γ(1)34.5-null mutant does not. Notably, γ(1)34.5 works in the absence of any other viral proteins. When expressed in mammalian cells, including dendritic cells, γ(1)34.5 associates with IKKα/β and inhibits NF-κB activation. This is mirrored by the inhibition of IKKα/β phosphorylation, p65/RelA phosphorylation, and nuclear translocation in response to lipopolysaccharide or poly(I:C) stimulation. Importantly, γ(1)34.5 recruits both IKKα/β and protein phosphatase 1, forming a complex that dephosphorylates two serine residues within the catalytic domains of IκB kinase. The amino-terminal domain of γ(1)34.5 interacts with IKKα/β, whereas the carboxyl-terminal domain binds to protein phosphatase 1. Deletions or mutations in either domain abolish the activity of γ(1)34.5. These results suggest that the control of IκB kinase dephosphorylation by γ(1)34.5 represents a critical viral mechanism to disrupt dendritic cell functions.
Collapse
|
48
|
Ultrastructural analysis of ICP34.5- herpes simplex virus 1 replication in mouse brain cells in vivo. J Virol 2010; 84:10982-90. [PMID: 20702618 DOI: 10.1128/jvi.00337-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replication-competent forms of herpes simplex virus 1 (HSV-1) defective in the viral neurovirulence factor infected cell protein 34.5 (ICP34.5) are under investigation for use in the therapeutic treatment of cancer. In mouse models, intratumoral injection of ICP34.5-defective oncolytic HSVs (oHSVs) has resulted in the infection and lysis of tumor cells, an associated decrease in tumor size, and increased survival times. The ability of these oHSVs to infect and lyse cells is frequently characterized as exclusive to or selective for tumor cells. However, the extent to which ICP34.5-deficient HSV-1 replicates in and may be neurotoxic to normal brain cell types in vivo is poorly understood. Here we report that HSV-1 defective in ICP34.5 expression is capable of establishing a productive infection in at least one normal mouse brain cell type. We show that γ34.5 deletion viruses replicate productively in and induce cellular damage in infected ependymal cells. Further evaluation of the effects of oHSVs on normal brain cells in animal models is needed to enhance our understanding of the risks associated with the use of current and future oHSVs in the brains of clinical trial subjects and to provide information that can be used to create improved oHSVs for future use.
Collapse
|
49
|
Sequence variability in clinical and laboratory isolates of herpes simplex virus 1 reveals new mutations. J Virol 2010; 84:5303-13. [PMID: 20219902 DOI: 10.1128/jvi.00312-10] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a well-adapted human pathogen that can invade the peripheral nervous system and persist there as a lifelong latent infection. Despite their ubiquity, only one natural isolate of HSV-1 (strain 17) has been sequenced. Using Illumina high-throughput sequencing of viral DNA, we obtained the genome sequences of both a laboratory strain (F) and a low-passage clinical isolate (H129). These data demonstrated the extent of interstrain variation across the entire genome of HSV-1 in both coding and noncoding regions. We found many amino acid differences distributed across the proteome of the new strain F sequence and the previously known strain 17, demonstrating the spectrum of variability among wild-type HSV-1 proteins. The clinical isolate, strain H129, displays a unique anterograde spread phenotype for which the causal mutations were completely unknown. We have defined the sequence differences in H129 and propose a number of potentially causal genes, including the neurovirulence protein ICP34.5 (RL1). Further studies will be required to demonstrate which change(s) is sufficient to recapitulate the spread defect of strain H129. Unexpectedly, these data also revealed a frameshift mutation in the UL13 kinase in our strain F isolate, demonstrating how deep genome sequencing can reveal the full complement of background mutations in any given strain, particularly those passaged or plaque purified in a laboratory setting. These data increase our knowledge of sequence variation in large DNA viruses and demonstrate the potential of deep sequencing to yield insight into DNA genome evolution and the variation among different pathogen isolates.
Collapse
|
50
|
Abstract
Targeted therapy of cancer using oncolytic viruses has generated much interest over the past few years in the light of the limited efficacy and side effects of standard cancer therapeutics for advanced disease. In 2006, the world witnessed the first government-approved oncolytic virus for the treatment of head and neck cancer. It has been known for many years that viruses have the ability to replicate in and lyse cancer cells. Although encouraging results have been demonstrated in vitro and in animal models, most oncolytic viruses have failed to impress in the clinical setting. The explanation is multifactorial, determined by the complex interactions between the tumor and its microenvironment, the virus, and the host immune response. This review focuses on discussion of the obstacles that oncolytic virotherapy faces and recent advances made to overcome them, with particular reference to adenoviruses.
Collapse
Affiliation(s)
- Han Hsi Wong
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; E-Mails: (H.H.W.); (N.R.L.)
| | - Nicholas R. Lemoine
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; E-Mails: (H.H.W.); (N.R.L.)
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
| | - Yaohe Wang
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; E-Mails: (H.H.W.); (N.R.L.)
- Sino-British Research Centre for Molecular Oncology, Zhengzhou University, Zhengzhou 450052, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-2078823596, Fax: +44-2078823884
| |
Collapse
|