1
|
Wolfe JT, Chen V, Chen Y, Tefft BJ. Identification of a subpopulation of highly adherent endothelial cells for seeding synthetic vascular grafts. J Thorac Cardiovasc Surg 2024:S0022-5223(24)00550-6. [PMID: 38972570 DOI: 10.1016/j.jtcvs.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE There is an unmet clinical need for alternatives to autologous vessel grafts. Small-diameter (<6 mm) synthetic vascular grafts are not suitable because of unacceptable patency rates. This mainly occurs due to the lack of an endothelial cell (EC) monolayer to prevent platelet activation, thrombosis, and intimal hyperplasia. There are no reliable methods to endothelialize small-diameter grafts because most seeded ECs are lost due to exposure to fluid shear stress after implantation. The goal of this work is to determine if EC loss is a random process or if it is possible to predict which cells are more likely to remain adherent. METHODS In initial studies, we sorted ECs using fluid shear stress and identified a subpopulation of ECs that are more likely to resist detachment. We use RNA sequencing to examine gene expression of adherent ECs compared with the whole population. Using fluorescence activated cell sorting, we sorted ECs based on the expression level of a candidate marker and studied their retention in small-diameter vascular grafts in vitro. RESULTS Transcriptomic analysis revealed that fibronectin leucine rich transmembrane protein 2 (FLRT2), encoding protein FLRT2, is downregulated in the ECs that are more likely to resist detachment. When seeded onto vascular grafts and exposed to shear stress, ECs expressing low levels of FLRT2 exhibit 59.2% ± 7.4% retention compared with 24.5% ± 6.1% retention for the remainder of the EC population. CONCLUSIONS For the first time, we show EC detachment is not an entirely random process. This provides validation for the concept that we can seed small-diameter vascular grafts only with highly adherent ECs to maintain a stable endothelium and improve graft patency rates.
Collapse
Affiliation(s)
- Jayne T Wolfe
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wis
| | - Vaya Chen
- Versiti Blood Research Institute, Milwaukee, Wis
| | - Yiliang Chen
- Versiti Blood Research Institute, Milwaukee, Wis; Department of Medicine, Medical College of Wisconsin, Milwaukee, Wis; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wis
| | - Brandon J Tefft
- Joint Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, Wis; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wis.
| |
Collapse
|
2
|
Seetharaman S, Devany J, Kim HR, van Bodegraven E, Chmiel T, Tzu-Pin S, Chou WH, Fang Y, Gardel ML. Mechanosensitive FHL2 tunes endothelial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599227. [PMID: 38948838 PMCID: PMC11212908 DOI: 10.1101/2024.06.16.599227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Endothelial tissues are essential mechanosensors in the vasculature and facilitate adaptation to various blood flow-induced mechanical cues. Defects in endothelial mechanoresponses can perturb tissue remodelling and functions leading to cardiovascular disease progression. In this context, the precise mechanisms of endothelial mechanoresponses contributing to normal and diseased tissue functioning remain elusive. Here, we sought to uncover how flow-mediated transcriptional regulation drives endothelial mechanoresponses in healthy and atherosclerotic-prone tissues. Using bulk RNA sequencing, we identify novel mechanosensitive genes in response to healthy unidirectional flow (UF) and athero-prone disturbed flow (DF). We find that the transcription as well as protein expression of Four-and-a-half LIM protein 2 (FHL2) are enriched in athero-prone DF both in vitro and in vivo. We then demonstrate that the exogenous expression of FHL2 is necessary and sufficient to drive discontinuous adherens junction morphology and increased tissue permeability. This athero-prone phenotype requires the force-sensitive binding of FHL2 to actin. In turn, the force-dependent localisation of FHL2 to stress fibres promotes microtubule dynamics to release the RhoGEF, GEF-H1, and activate the Rho-ROCK pathway. Thus, we unravelled a novel mechanochemical feedback wherein force-dependent FHL2 localisation promotes hypercontractility. This misregulated mechanoresponse creates highly permeable tissues, depicting classic hallmarks of atherosclerosis progression. Overall, we highlight crucial functions for the FHL2 force-sensitivity in tuning multi-scale endothelial mechanoresponses.
Collapse
Affiliation(s)
- Shailaja Seetharaman
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Ha Ram Kim
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Emma van Bodegraven
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Theresa Chmiel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Shentu Tzu-Pin
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Wen-hung Chou
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yun Fang
- Department of Medicine, Biological Sciences Division, The University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Lise Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Mannion AJ, Holmgren L. Nuclear mechanosensing of the aortic endothelium in health and disease. Dis Model Mech 2023; 16:dmm050361. [PMID: 37909406 PMCID: PMC10629673 DOI: 10.1242/dmm.050361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| |
Collapse
|
4
|
Pittman AE, Solecki DJ. Cooperation between primary cilia signaling and integrin receptor extracellular matrix engagement regulates progenitor proliferation and neuronal differentiation in the developing cerebellum. Front Cell Dev Biol 2023; 11:1127638. [PMID: 36895790 PMCID: PMC9990755 DOI: 10.3389/fcell.2023.1127638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Neural progenitors and their neuronal progeny are bathed in extrinsic signals that impact critical decisions like the mode of cell division, how long they should reside in specific neuronal laminae, when to differentiate, and the timing of migratory decisions. Chief among these signals are secreted morphogens and extracellular matrix (ECM) molecules. Among the many cellular organelles and cell surface receptors that sense morphogen and ECM signals, the primary cilia and integrin receptors are some of the most important mediators of extracellular signals. Despite years of dissecting the function of cell-extrinsic sensory pathways in isolation, recent research has begun to show that key pathways work together to help neurons and progenitors interpret diverse inputs in their germinal niches. This mini-review utilizes the developing cerebellar granule neuron lineage as a model that highlights evolving concepts on the crosstalk between primary cilia and integrins in the development of the most abundant neuronal type in the brains of mammals.
Collapse
Affiliation(s)
- Anna E Pittman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - David J Solecki
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
5
|
Cano-Castellote M, Afanador-Restrepo DF, González-Santamaría J, Rodríguez-López C, Castellote-Caballero Y, Hita-Contreras F, Carcelén-Fraile MDC, Aibar-Almazán A. Pathophysiology, Diagnosis and Treatment of Spontaneous Coronary Artery Dissection in Peripartum Women. J Clin Med 2022; 11:jcm11226657. [PMID: 36431134 PMCID: PMC9692787 DOI: 10.3390/jcm11226657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Spontaneous coronary artery dissection (SCAD) is an infrequent cause of nonobstructive ischemic heart disease in previously healthy young women and therefore is not usually considered in differential diagnoses. The overall incidence of SCAD in angiographic series is between 0.28 and 1.1%, with a clear predominance in young, healthy women (70%) of whom approximately 30% are in the postpartum period. In the United Kingdom, between 2008 and 2012, SCAD was the cause of 27% of acute myocardial infarctions during pregnancy, with a prevalence of 1.81 per 100,000 pregnancies. Regarding the mechanism of arterial obstruction, this may be due to the appearance of an intramural hematoma or to a tear in the intima of the arteries, both spontaneously. Although multiple diagnostic methods are available, it is suggested to include an appropriate anamnesis, an electrocardiogram in the first 10 min after admission to the service or the onset of symptoms, and subsequently, a CT angiography of the coronary arteries or urgent coronary angiography if the hemodynamic status of the patient allows it. Treatment should be individualized for each case; however, the appropriate approach is generally based on two fundamental pillars: conservative medical treatment with antiplatelet agents, beta-blockers, and nitrates, and invasive treatment with percutaneous coronary intervention for stent implantation or balloon angioplasty, if necessary.
Collapse
Affiliation(s)
- Marta Cano-Castellote
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Diego Fernando Afanador-Restrepo
- Faculty of Distance and Virtual Education, Antonio José Camacho University Institution, Santiago de Cali 760016, Colombia
- ZIPATEFI Research Group, Faculty of Health Sciences and Sports, University Foundation of the Área Andina, Pereira 660001, Colombia
| | - Jhonatan González-Santamaría
- ZIPATEFI Research Group, Faculty of Health Sciences and Sports, University Foundation of the Área Andina, Pereira 660001, Colombia
- Faculty of Health Sciences, Technological University of Pereira, Pereira 660001, Colombia
- Nutrition Sciences Postgraduate, Faculty of Nutrition Sciences, University of Sinaloa, Culiacan 80019, Mexico
| | | | | | - Fidel Hita-Contreras
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | | | - Agustín Aibar-Almazán
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain
| |
Collapse
|
6
|
Contreras M, Bachman W, Long DS. Discrete protein metric (DPM): A new image similarity metric to calculate accuracy of deep learning-generated cell focal adhesion predictions. Micron 2022; 160:103302. [PMID: 35689876 PMCID: PMC10228147 DOI: 10.1016/j.micron.2022.103302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023]
Abstract
Understanding cell behaviors can provide new knowledge on the development of different pathologies. Focal adhesion (FA) sites are important sub-cellular structures that are involved in these processes. To better facilitate the study of FA sites, deep learning (DL) can be used to predict FA site morphology based on limited microscopic datasets (e.g., cell membrane images). However, calculating the accuracy score of these predictions can be challenging due to the discrete/point pattern like nature of FA sites. In the present work, a new image similarity metric, discrete protein metric (DPM), was developed to calculate FA prediction accuracy. This metric measures differences in distribution (d), shape/size (s), and angle (a) of FA sites between predicted and ground truth microscopy images. Performance of the DPM was evaluated by comparing it to three other commonly used image similarity metrics: Pearson correlation coefficient (PCC), feature similarity index (FSIM), and Intersection over Union (IoU). A sensitivity analysis was performed by comparing changes in each metric value due to quantifiable changes in FA site location, number, aspect ratio, area, or orientation. Furthermore, accuracy score of DL-generated predictions was calculated using all four metrics to compare their ability to capture variation across samples. Results showed better sensitivity and range of variation for DPM compared to the other metrics tested. Most importantly, DPM had the ability to determine which FA predictions were quantitatively more accurate and consistent with qualitative assessments. The proposed DPM hence provides a method to validate DL-generated FA predictions and has the potential to be used for investigation of other sub-cellular protein aggregates relevant to cell biology.
Collapse
Affiliation(s)
- Miguel Contreras
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita KS USA
| | - William Bachman
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita KS USA
| | - David S Long
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita KS USA.
| |
Collapse
|
7
|
Ancient Origins of Cytoskeletal Crosstalk: Spectraplakin-like Proteins Precede the Emergence of Cortical Microtubule Stabilization Complexes as Crosslinkers. Int J Mol Sci 2022; 23:ijms23105594. [PMID: 35628404 PMCID: PMC9145010 DOI: 10.3390/ijms23105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022] Open
Abstract
Adhesion between cells and the extracellular matrix (ECM) is one of the prerequisites for multicellularity, motility, and tissue specialization. Focal adhesions (FAs) are defined as protein complexes that mediate signals from the ECM to major components of the cytoskeleton (microtubules, actin, and intermediate filaments), and their mutual communication determines a variety of cellular processes. In this study, human cytoskeletal crosstalk proteins were identified by comparing datasets with experimentally determined cytoskeletal proteins. The spectraplakin dystonin was the only protein found in all datasets. Other proteins (FAK, RAC1, septin 9, MISP, and ezrin) were detected at the intersections of FAs, microtubules, and actin cytoskeleton. Homology searches for human crosstalk proteins as queries were performed against a predefined dataset of proteomes. This analysis highlighted the importance of FA communication with the actin and microtubule cytoskeleton, as these crosstalk proteins exhibit the highest degree of evolutionary conservation. Finally, phylogenetic analyses elucidated the early evolutionary history of spectraplakins and cortical microtubule stabilization complexes (CMSCs) as model representatives of the human cytoskeletal crosstalk. While spectraplakins probably arose at the onset of opisthokont evolution, the crosstalk between FAs and microtubules is associated with the emergence of metazoans. The multiprotein complexes contributing to cytoskeletal crosstalk in animals gradually gained in complexity from the onset of metazoan evolution.
Collapse
|
8
|
Polk T, Schmitt S, Aldrich JL, Long DS. Human dermal microvascular endothelial cell morphological response to fluid shear stress. Microvasc Res 2022; 143:104377. [PMID: 35561754 DOI: 10.1016/j.mvr.2022.104377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
As the cells that line the vasculature, endothelial cells are continually exposed to fluid shear stress by blood flow. Recent studies suggest that the morphological response of endothelial cells to fluid shear stress depends on the endothelial cell type. Thus, the present study characterizes the morphological response of human dermal microvascular endothelial cells (HMEC-1) and nuclei to steady, laminar, and unidirectional fluid shear stress. Cultured HMEC-1 monolayers were exposed to shear stress of 0.3 dyn/cm2, 16 dyn/cm2, or 32 dyn/cm2 for 72 h with hourly live-cell imaging capturing both the nuclear and cellular morphology. Despite changes in elongation and alignment occurring with increasing fluid shear stress, there was a lack of elongation and alignment over time under each fluid shear stress condition. Conversely, changes in cellular and nuclear area exhibited dependence on both time and fluid shear stress magnitude. The trends in cellular morphology differed at shear stress levels above and below 16 dyn/cm2, whereas the nuclear orientation was independent of fluid shear stress magnitude. These findings show the complex morphological response of HMEC-1 to fluid shear stress.
Collapse
Affiliation(s)
- Tabatha Polk
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
| | - Sarah Schmitt
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
| | - Jessica L Aldrich
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA
| | - David S Long
- Mechanobiology and Biomedicine Lab, Department of Biomedical Engineering, Wichita State University, Wichita, KS, USA.
| |
Collapse
|
9
|
Wolfe JT, Shradhanjali A, Tefft BJ. Strategies for improving endothelial cell adhesion to blood-contacting medical devices. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1067-1092. [PMID: 34693761 DOI: 10.1089/ten.teb.2021.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The endothelium is a critical mediator of homeostasis on blood-contacting surfaces in the body, serving as a selective barrier to regulate processes such as clotting, immune cell adhesion, and cellular response to fluid shear stress. Implantable cardiovascular devices including stents, vascular grafts, heart valves, and left ventricular assist devices are in direct contact with circulating blood and carry a high risk for platelet activation and thrombosis without a stable endothelial cell (EC) monolayer. Development of a healthy endothelium on the blood-contacting surface of these devices would help ameliorate risks associated with thrombus formation and eliminate the need for long-term anti-platelet or anti-coagulation therapy. Although ECs have been seeded onto or recruited to these blood-contacting surfaces, most ECs are lost upon exposure to shear stress due to circulating blood. Many investigators have attempted to generate a stable EC monolayer by improving EC adhesion using surface modifications, material coatings, nanofiber topology, and modifications to the cells. Despite some success with enhanced EC retention in vitro and in animal models, no studies to date have proven efficacious for routinely creating a stable endothelium in the clinical setting. This review summarizes past and present techniques directed at improving the adhesion of ECs to blood-contacting devices.
Collapse
Affiliation(s)
- Jayne Taylor Wolfe
- Medical College of Wisconsin, 5506, Biomedical Engineering, 8701 Watertown Plank Rd, Milwaukee, Wisconsin, United States, 53226-0509;
| | - Akankshya Shradhanjali
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| | - Brandon J Tefft
- Medical College of Wisconsin, 5506, Biomedical Engineering, Milwaukee, Wisconsin, United States;
| |
Collapse
|
10
|
Akinnola I, Rossi DR, Meyer C, Lindsey A, Haase DR, Fogas S, Ehrhardt MJ, Blue RE, Price AP, Johnson M, Alvarez DF, Taylor DA, Panoskaltsis-Mortari A. Engineering Functional Vasculature in Decellularized Lungs Depends on Comprehensive Endothelial Cell Tropism. Front Bioeng Biotechnol 2021; 9:727869. [PMID: 34485262 PMCID: PMC8415401 DOI: 10.3389/fbioe.2021.727869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tissue engineering using decellularized whole lungs as matrix scaffolds began as a promise for creating autologous transplantable lungs for patients with end-stage lung disease and can also be used to study strategies for lung regeneration. Vascularization remains a critical component for all solid organ bioengineering, yet there has been limited success in generating functional re-endothelialization of most pulmonary vascular segments. We evaluated recellularization of the blood vessel conduits of acellular mouse scaffolds with highly proliferating, rat pulmonary microvascular endothelial progenitor cells (RMEPCs), pulmonary arterial endothelial cells (PAECs) or microvascular endothelial cells (MVECs). After 8 days of pulsatile perfusion, histological analysis showed that PAECs and MVECs possessed selective tropism for larger vessels or microvasculature, respectively. In contrast, RMEPCs lacked site preference and repopulated all vascular segments. RMEPC-derived endothelium exhibited thrombomodulin activity, expression of junctional genes, ability to synthesize endothelial signaling molecules, and formation of a restrictive barrier. The RMEPC phenotype described here could be useful for identifying endothelial progenitors suitable for efficient vascular organ and tissue engineering, regeneration and repair.
Collapse
Affiliation(s)
- Ifeolu Akinnola
- MSTP, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Daniel R Rossi
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn Meyer
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ashley Lindsey
- Internal Medicine and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Douglas R Haase
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - Samuel Fogas
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Michael J Ehrhardt
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Rachel E Blue
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - Andrew P Price
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Max Johnson
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Diego F Alvarez
- Internal Medicine and Center for Lung Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | | | - Angela Panoskaltsis-Mortari
- Pediatric Blood and Marrow Transplantation and Cell Therapy, University of Minnesota, Minneapolis, MN, United States.,Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
11
|
Shear forces induce ICAM-1 nanoclustering on endothelial cells that impact on T-cell migration. Biophys J 2021; 120:2644-2656. [PMID: 34087211 DOI: 10.1016/j.bpj.2021.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023] Open
Abstract
The leukocyte-specific β2-integrin LFA-1 and its ligand ICAM-1, expressed on endothelial cells (ECs), are involved in the arrest, adhesion, and transendothelial migration of leukocytes. Although the role of mechanical forces on LFA-1 activation is well established, the impact of forces on its major ligand ICAM-1 has received less attention. Using a parallel-plate flow chamber combined with confocal and super-resolution microscopy, we show that prolonged shear flow induces global translocation of ICAM-1 on ECs upstream of flow direction. Interestingly, shear forces caused actin rearrangements and promoted actin-dependent ICAM-1 nanoclustering before LFA-1 engagement. T cells adhered to mechanically prestimulated ECs or nanoclustered ICAM-1 substrates developed a promigratory phenotype, migrated faster, and exhibited shorter-lived interactions with ECs than when adhered to non mechanically stimulated ECs or to monomeric ICAM-1 substrates. Together, our results indicate that shear forces increase ICAM-1/LFA-1 bonds because of ICAM-1 nanoclustering, strengthening adhesion and allowing cells to exert higher traction forces required for faster migration. Our data also underscore the importance of mechanical forces regulating the nanoscale organization of membrane receptors and their contribution to cell adhesion regulation.
Collapse
|
12
|
Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function. Int J Mol Sci 2021; 22:ijms22083955. [PMID: 33921229 PMCID: PMC8070425 DOI: 10.3390/ijms22083955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Our understanding of the function and development of the lymphatic system is expanding rapidly due to the identification of specific molecular markers and the availability of novel genetic approaches. In connection, it has been demonstrated that mechanical forces contribute to the endothelial cell fate commitment and play a critical role in influencing lymphatic endothelial cell shape and alignment by promoting sprouting, development, maturation of the lymphatic network, and coordinating lymphatic valve morphogenesis and the stabilization of lymphatic valves. However, the mechanosignaling and mechanotransduction pathways involved in these processes are poorly understood. Here, we provide an overview of the impact of mechanical forces on lymphatics and summarize the current understanding of the molecular mechanisms involved in the mechanosensation and mechanotransduction by lymphatic endothelial cells. We also discuss how these mechanosensitive pathways affect endothelial cell fate and regulate lymphatic development and function. A better understanding of these mechanisms may provide a deeper insight into the pathophysiology of various diseases associated with impaired lymphatic function, such as lymphedema and may eventually lead to the discovery of novel therapeutic targets for these conditions.
Collapse
|
13
|
Abe I, Terabayashi T, Hanada K, Kondo H, Teshima Y, Ishii Y, Miyoshi M, Kira S, Saito S, Tsuchimochi H, Shirai M, Yufu K, Arakane M, Daa T, Thumkeo D, Narumiya S, Takahashi N, Ishizaki T. Disruption of actin dynamics regulated by Rho effector mDia1 attenuates pressure overload-induced cardiac hypertrophic responses and exacerbates dysfunction. Cardiovasc Res 2021; 117:1103-1117. [PMID: 32647865 DOI: 10.1093/cvr/cvaa206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/26/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS Cardiac hypertrophy is a compensatory response to pressure overload, leading to heart failure. Recent studies have demonstrated that Rho is immediately activated in left ventricles after pressure overload and that Rho signalling plays crucial regulatory roles in actin cytoskeleton rearrangement during cardiac hypertrophic responses. However, the mechanisms by which Rho and its downstream proteins control actin dynamics during hypertrophic responses remain not fully understood. In this study, we identified the pivotal roles of mammalian homologue of Drosophila diaphanous (mDia) 1, a Rho-effector molecule, in pressure overload-induced ventricular hypertrophy. METHODS AND RESULTS Male wild-type (WT) and mDia1-knockout (mDia1KO) mice (10-12 weeks old) were subjected to a transverse aortic constriction (TAC) or sham operation. The heart weight/tibia length ratio, cardiomyocyte cross-sectional area, left ventricular wall thickness, and expression of hypertrophy-specific genes were significantly decreased in mDia1KO mice 3 weeks after TAC, and the mortality rate was higher at 12 weeks. Echocardiography indicated that mDia1 deletion increased the severity of heart failure 8 weeks after TAC. Importantly, we could not observe apparent defects in cardiac hypertrophic responses in mDia3-knockout mice. Microarray analysis revealed that mDia1 was involved in the induction of hypertrophy-related genes, including immediate early genes, in pressure overloaded hearts. Loss of mDia1 attenuated activation of the mechanotransduction pathway in TAC-operated mice hearts. We also found that mDia1 was involved in stretch-induced activation of the mechanotransduction pathway and gene expression of c-fos in neonatal rat ventricular cardiomyocytes (NRVMs). mDia1 regulated the filamentous/globular (F/G)-actin ratio in response to pressure overload in mice. Additionally, increases in nuclear myocardin-related transcription factors and serum response factor were perturbed in response to pressure overload in mDia1KO mice and to mechanical stretch in mDia1 depleted NRVMs. CONCLUSION mDia1, through actin dynamics, is involved in compensatory cardiac hypertrophy in response to pressure overload.
Collapse
MESH Headings
- Actin Cytoskeleton/metabolism
- Actin Cytoskeleton/ultrastructure
- Aged
- Aged, 80 and over
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Arterial Pressure
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Female
- Formins/genetics
- Formins/metabolism
- Gene Expression Regulation
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Ligation
- Male
- Mechanotransduction, Cellular
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Rats, Sprague-Dawley
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
- Mice
- Rats
Collapse
Affiliation(s)
- Ichitaro Abe
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, Japan
| | - Hidekazu Kondo
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Yasushi Teshima
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Yumi Ishii
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Miho Miyoshi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Shintaro Kira
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Shotaro Saito
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, Japan
| | - Kunio Yufu
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Motoki Arakane
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, Japan
| | - Dean Thumkeo
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Shuh Narumiya
- Department of Drug Discovery Medicine, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| |
Collapse
|
14
|
Real-time and wide-field mapping of cell-substrate adhesion gap and its evolution via surface plasmon resonance holographic microscopy. Biosens Bioelectron 2021; 174:112826. [PMID: 33262060 DOI: 10.1016/j.bios.2020.112826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/17/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
As one of the most common biological phenomena, cell adhesion plays a vital role in the cellular activities such as the growth and apoptosis, attracting tremendous research interests over the past decades. Taking the cell evolution under drug injection as an example, the dynamics of cell-substrate adhesion gap can provide valuable information in the fundamental research of cell contacts. A robust technique of monitoring the cell adhesion gap and its evolution in real time is highly desired. Herein, we develop a surface plasmon resonance holographic microscopy to achieve the novel functionality of real-time and wide-field mapping of the cell-substrate adhesion gap and its evolution in situ. The cell adhesion gap images of mouse osteoblast cells and human breast cancer cells have been effectively extracted in a dynamic and label-free manner. The proposed technique opens up a new avenue of revealing the cell-substrate interaction mechanism and renders the wide applications in the biosensing area.
Collapse
|
15
|
Shear Stress Modulates Osteoblast Cell and Nucleus Morphology and Volume. Int J Mol Sci 2020; 21:ijms21218361. [PMID: 33171812 PMCID: PMC7664694 DOI: 10.3390/ijms21218361] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Mechanical loading preserves bone mass and function—yet, little is known about the cell biological basis behind this preservation. For example, cell and nucleus morphology are critically important for cell function, but how these morphological characteristics are affected by the physiological mechanical loading of bone cells is under-investigated. This study aims to determine the effects of fluid shear stress on cell and nucleus morphology and volume of osteoblasts, and how these effects relate to changes in actin cytoskeleton and focal adhesion formation. Mouse calvaria 3T3-E1 (MC3T3-E1) osteoblasts were treated with or without 1 h pulsating fluid flow (PFF). Live-cell imaging was performed every 10 min during PFF and immediately after PFF. Cytoskeletal organization and focal adhesions were visualized, and gene and protein expression quantified. Two-dimensional (2D) and three-dimensional (3D) morphometric analyses were made using MeasureStack and medical imaging interaction toolkit (MITK) software. 2D-images revealed that 1 h PFF changed cell morphology from polygonal to triangular, and nucleus morphology from round to ellipsoid. PFF also reduced cell surface area (0.3-fold), cell volume (0.3-fold), and nucleus volume (0.2-fold). During PFF, the live-cell volume gradually decreased from 6000 to 3000 µm3. After PFF, α-tubulin orientation was more disorganized, but F-actin fluorescence intensity was enhanced, particularly around the nucleus. 3D-images obtained from Z-stacks indicated that PFF increased F-actin fluorescence signal distribution around the nucleus in the XZ and YZ direction (2.3-fold). PFF increased protein expression of phospho-paxillin (2.0-fold) and integrin-α5 (2.8-fold), but did not increase mRNA expression of paxillin-a (PXNA), paxillin-b (PXNB), integrin-α5 (ITGA51), or α-tubulin protein expression. In conclusion, PFF induced substantial changes in osteoblast cytoskeleton, as well as cell and nucleus morphology and volume, which was accompanied by elevated gene and protein expression of adhesion and structural proteins. More insights into the mechanisms whereby mechanical cues drive morphological changes in bone cells, and thereby, possibly in bone cell behavior, will aid the guidance of clinical treatment, particularly in the field of orthodontics, (oral) implantology, and orthopedics.
Collapse
|
16
|
The role of basement membrane laminins in vascular function. Int J Biochem Cell Biol 2020; 127:105823. [DOI: 10.1016/j.biocel.2020.105823] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 11/18/2022]
|
17
|
Wei F, Xu X, Zhang C, Liao Y, Ji B, Wang N. Stress fiber anisotropy contributes to force-mode dependent chromatin stretching and gene upregulation in living cells. Nat Commun 2020; 11:4902. [PMID: 32994402 PMCID: PMC7524734 DOI: 10.1038/s41467-020-18584-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Living cells and tissues experience various complex modes of forces that are important in physiology and disease. However, how different force modes impact gene expression is elusive. Here we apply local forces of different modes via a magnetic bead bound to the integrins on a cell and quantified cell stiffness, chromatin deformation, and DHFR (dihydrofolate reductase) gene transcription. In-plane stresses result in lower cell stiffness than out-of-plane stresses that lead to bead rolling along the cell long axis (i.e., alignment of actin stress fibers) or at different angles (90° or 45°). However, chromatin stretching and ensuing DHFR gene upregulation by the in-plane mode are similar to those induced by the 45° stress mode. Disrupting stress fibers abolishes differences in cell stiffness, chromatin stretching, and DHFR gene upregulation under different force modes and inhibiting myosin II decreases cell stiffness, chromatin deformation, and gene upregulation. Theoretical modeling using discrete anisotropic stress fibers recapitulates experimental results and reveals underlying mechanisms of force-mode dependence. Our findings suggest that forces impact biological responses of living cells such as gene transcription via previously underappreciated means. Living cells and tissues experience various complex modes of forces but how different force modes impact gene expression is elusive. Here authors apply forces via magnetic beads to integrins on a cell surface and observe force-mode dependent chromatin stretching and gene upregulation in cells and identify underlying mechanisms.
Collapse
Affiliation(s)
- Fuxiang Wei
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Xiangyu Xu
- Department of Applied Mechanics, Beijing Institute of Technology, 100081, Beijing, China
| | - Cunyu Zhang
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yawen Liao
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
| | - Ning Wang
- Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
18
|
Aleksenko L, Quaye IK. Pregnancy-induced Cardiovascular Pathologies: Importance of Structural Components and Lipids. Am J Med Sci 2020; 360:447-466. [PMID: 32540145 DOI: 10.1016/j.amjms.2020.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 01/22/2023]
Abstract
Pregnancy leads to adaptations for maternal and fetal energy needs. The cardiovascular system bears the brunt of the adaptations as the heart and vessels enable nutrient supply to maternal organs facilitated by the placenta to the fetus. The components of the cardiovascular system are critical in the balance between maternal homeostatic and fetus driven homeorhetic regulation. Since lipids intersect maternal cardiovascular function and fetal needs with growth and in stress, factors affecting lipid deposition and mobilization impact risk outcomes. Here, the cardiovascular components and functional derangements associated with cardiovascular pathology in pregnancy, vis-à-vis lipid deposition, mobilization and maternal and/or cardiac and fetal energy needs are detailed. Most reports on the components and associated pathology in pregnancy, are on derangements affecting the extracellular matrix and epicardial fat, followed by the endothelium, vascular smooth muscle, pericytes and myocytes. Targeted studies on all cardiovascular components and pathological outcomes in pregnancy will enhance targeted interventions.
Collapse
Affiliation(s)
- Larysa Aleksenko
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Isaac K Quaye
- Regent University College of Science and Technology, Accra, Ghana
| |
Collapse
|
19
|
Butler PJ. Mechanobiology of dynamic enzyme systems. APL Bioeng 2020; 4:010907. [PMID: 32161834 PMCID: PMC7054122 DOI: 10.1063/1.5133645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/28/2020] [Indexed: 12/29/2022] Open
Abstract
This Perspective paper advances a hypothesis of mechanosensation by endothelial cells in which the cell is a dynamic crowded system, driven by continuous enzyme activity, that can be shifted from one non-equilibrium state to another by external force. The nature of the shift will depend on the direction, rate of change, and magnitude of the force. Whether force induces a pathophysiological or physiological change in cell biology will be determined by whether the dynamics of a cellular system can accommodate the dynamics and magnitude of the force application. The complex interplay of non-static cytoskeletal structures governs internal cellular rheology, dynamic spatial reorganization, and chemical kinetics of proteins such as integrins, and a flaccid membrane that is dynamically supported; each may constitute the necessary dynamic properties able to sense external fluid shear stress and reorganize in two and three dimensions. The resulting reorganization of enzyme systems in the cell membrane and cytoplasm may drive the cell to a new physiological state. This review focuses on endothelial cell mechanotransduction of shear stress, but may lead to new avenues of investigation of mechanobiology in general requiring new tools for interrogation of mechanobiological systems, tools that will enable the synthesis of large amounts of spatial and temporal data at the molecular, cellular, and system levels.
Collapse
Affiliation(s)
- Peter J. Butler
- Department of Biomedical Engineering The Pennsylvania State University University Park, Pennsylvania 16802, USA
| |
Collapse
|
20
|
Mitchell JM, Nichols SA. Diverse cell junctions with unique molecular composition in tissues of a sponge (Porifera). EvoDevo 2019; 10:26. [PMID: 31687123 PMCID: PMC6820919 DOI: 10.1186/s13227-019-0139-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/19/2019] [Indexed: 02/08/2023] Open
Abstract
The integrity and organization of animal tissues depend upon specialized protein complexes that mediate adhesion between cells with each other (cadherin-based adherens junctions), and with the extracellular matrix (integrin-based focal adhesions). Reconstructing how and when these cell junctions evolved is central to understanding early tissue evolution in animals. We examined focal adhesion protein homologs in tissues of the freshwater sponge, Ephydatia muelleri (phylum Porifera; class Demospongiae). Our principal findings are that (1) sponge focal adhesion homologs (integrin, talin, focal adhesion kinase, etc.) co-precipitate as a complex, separate from adherens junction proteins; (2) that actin-based structures resembling focal adhesions form at the cell–substrate interface, and their abundance is dynamically regulated in response to fluid shear; (3) focal adhesion proteins localize to both cell–cell and cell–extracellular matrix adhesions, and; (4) the adherens junction protein β-catenin is co-distributed with focal adhesion proteins at cell–cell junctions everywhere except the choanoderm, and at novel junctions between cells with spicules, and between cells with environmental bacteria. These results clarify the diversity, distribution and molecular composition of cell junctions in tissues of E. muelleri, but raise new questions about their functional properties and ancestry.
Collapse
Affiliation(s)
- Jennyfer M Mitchell
- 1Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave. SGM 203, Denver, CO 80208 USA.,2Present Address: University of Colorado, Anschutz Medical Campus, 12801 E. 17th Ave. RC1S, 11401G, Aurora, CO 80045 USA
| | - Scott A Nichols
- 1Department of Biological Sciences, University of Denver, 2101 E. Wesley Ave. SGM 203, Denver, CO 80208 USA
| |
Collapse
|
21
|
Pinto TS, Fernandes CJDC, da Silva RA, Gomes AM, Vieira JCS, Padilha PDM, Zambuzzi WF. c‐Src kinase contributes on endothelial cells mechanotransduction in a heat shock protein 70‐dependent turnover manner. J Cell Physiol 2018; 234:11287-11303. [DOI: 10.1002/jcp.27787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Thaís Silva Pinto
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | | | - Rodrigo Augusto da Silva
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - Anderson Moreira Gomes
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - José Cavalcante Souza Vieira
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - Pedro de M. Padilha
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| | - Willian F. Zambuzzi
- Department of Chemistry and Biochemistry São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
- Electron Microscopy Center São Paulo State University (UNESP), Institute of Biosciences Botucatu Brazil
| |
Collapse
|
22
|
James BD, Allen JB. Vascular Endothelial Cell Behavior in Complex Mechanical Microenvironments. ACS Biomater Sci Eng 2018; 4:3818-3842. [PMID: 33429612 DOI: 10.1021/acsbiomaterials.8b00628] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vascular mechanical microenvironment consists of a mixture of spatially and temporally changing mechanical forces. This exposes vascular endothelial cells to both hemodynamic forces (fluid flow, cyclic stretching, lateral pressure) and vessel forces (basement membrane mechanical and topographical properties). The vascular mechanical microenvironment is "complex" because these forces are dynamic and interrelated. Endothelial cells sense these forces through mechanosensory structures and transduce them into functional responses via mechanotransduction pathways, culminating in behavior directly affecting vascular health. Recent in vitro studies have shown that endothelial cells respond in nuanced and unique ways to combinations of hemodynamic and vessel forces as compared to any single mechanical force. Understanding the interactive effects of the complex mechanical microenvironment on vascular endothelial behavior offers the opportunity to design future biomaterials and biomedical devices from the bottom-up by engineering for the cellular response. This review describes and defines (1) the blood vessel structure, (2) the complex mechanical microenvironment of the vascular endothelium, (3) the process in which vascular endothelial cells sense mechanical forces, and (4) the effect of mechanical forces on vascular endothelial cells with specific attention to recent works investigating the influence of combinations of mechanical forces. We conclude this review by providing our perspective on how the field can move forward to elucidate the effects of the complex mechanical microenvironment on vascular endothelial cell behavior.
Collapse
Affiliation(s)
- Bryan D James
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Computational Engineering, University of Florida, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| | - Josephine B Allen
- Department of Materials Science & Engineering, University of Florida, 100 Rhines Hall, PO Box 116400, Gainesville, Florida 32611, United States.,Institute for Cell and Tissue Science and Engineering, 300 Weil Hall, PO Box 116550, Gainesville, Florida 32611, United States
| |
Collapse
|
23
|
Watanabe N, Tohyama K, Yamashiro S. Mechanostress resistance involving formin homology proteins: G- and F-actin homeostasis-driven filament nucleation and helical polymerization-mediated actin polymer stabilization. Biochem Biophys Res Commun 2018; 506:323-329. [PMID: 30309655 DOI: 10.1016/j.bbrc.2018.09.189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/30/2018] [Indexed: 01/28/2023]
Abstract
The actin cytoskeleton has two faces. One side provides the relatively stable scaffold to maintain the shape of cell cortex fit to the organs. The other side rapidly changes morphology in response to extracellular stimuli including chemical signal and physical strain. Our series of studies employing single-molecule speckle analysis of actin have revealed diverse F-actin lifetimes spanning a range of seconds to minutes in live cells. The dynamic part of the actin turnover is tightly coupled with actin nucleation activities of formin homology proteins (formins), which serve as rapid and efficient F-actin restoration mechanisms in cells under physical stress. More recently, our two studies revealed stabilization of F-actin either by actomyosin contractile force or by helical rotation of processively-actin polymerizing diaphanous-related formin mDia1. These findings quantitatively explain our proposed anti-mechanostress cascade in that G-actin released from F-actin upon loss of tension triggers frequent nucleation and subsequent fast elongation of F-actin by formins. This formin-restored F-actin may become specifically stabilized over long distance by helical polymerization-mediated filament untwisting. In this review, we discuss how and to what extent formins-mediated F-actin restoration might confer mechanostress resistance to the cell. We also give thought to the possible involvement of helical polymerization-mediated filament untwisting in the formation of diverse actin architectures including chirality control.
Collapse
Affiliation(s)
- Naoki Watanabe
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan; Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan.
| | - Kiyoshi Tohyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Japan
| | - Sawako Yamashiro
- Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Japan
| |
Collapse
|
24
|
Albarrán-Juárez J, Iring A, Wang S, Joseph S, Grimm M, Strilic B, Wettschureck N, Althoff TF, Offermanns S. Piezo1 and G q/G 11 promote endothelial inflammation depending on flow pattern and integrin activation. J Exp Med 2018; 215:2655-2672. [PMID: 30194266 PMCID: PMC6170174 DOI: 10.1084/jem.20180483] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/22/2018] [Accepted: 08/01/2018] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis preferentially develops in areas of disturbed flow. Albarrán-Juárez et al. provide evidence that this depends on at least two different endothelial mechanosignaling pathways, a flow direction-independent pathway involving Piezo1 and Gq/G11, as well as integrin signaling, which is only initiated in response to disturbed flow. The vascular endothelium is constantly exposed to mechanical forces, including fluid shear stress exerted by the flowing blood. Endothelial cells can sense different flow patterns and convert the mechanical signal of laminar flow into atheroprotective signals, including eNOS activation, whereas disturbed flow in atheroprone areas induces inflammatory signaling, including NF-κB activation. How endothelial cells distinguish different flow patterns is poorly understood. Here we show that both laminar and disturbed flow activate the same initial pathway involving the mechanosensitive cation channel Piezo1, the purinergic P2Y2 receptor, and Gq/G11-mediated signaling. However, only disturbed flow leads to Piezo1- and Gq/G11-mediated integrin activation resulting in focal adhesion kinase-dependent NF-κB activation. Mice with induced endothelium-specific deficiency of Piezo1 or Gαq/Gα11 show reduced integrin activation, inflammatory signaling, and progression of atherosclerosis in atheroprone areas. Our data identify critical steps in endothelial mechanotransduction, which distinguish flow pattern-dependent activation of atheroprotective and atherogenic endothelial signaling and suggest novel therapeutic strategies to treat inflammatory vascular disorders such as atherosclerosis.
Collapse
Affiliation(s)
- Julián Albarrán-Juárez
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Andras Iring
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - ShengPeng Wang
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Sayali Joseph
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Myriam Grimm
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Boris Strilic
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany
| | - Nina Wettschureck
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany.,Center for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK)
| | - Till F Althoff
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany.,Charité - Universitätsmedizin Berlin, Department of Cardiology and Angiology, Campus Mitte, Berlin, Germany.,German Center for Cardiovascular Research (DZHK)
| | - Stefan Offermanns
- Max Planck Institute for Heart and Lung Research, Department of Pharmacology, Bad Nauheim, Germany .,Center for Molecular Medicine, Medical Faculty, J.W. Goethe University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK)
| |
Collapse
|
25
|
Live cell imaging reveals focal adhesions mechanoresponses in mammary epithelial cells under sustained equibiaxial stress. Sci Rep 2018; 8:9788. [PMID: 29955093 PMCID: PMC6023913 DOI: 10.1038/s41598-018-27948-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
Mechanical stimuli play a key role in many cell functions such as proliferation, differentiation and migration. In the mammary gland, mechanical signals such as the distension of mammary epithelial cells due to udder filling are proposed to be directly involved during lactation and involution. However, the evolution of focal adhesions -specialized multiprotein complexes that mechanically connect cells with the extracellular matrix- during the mammary gland development, as well as the influence of the mechanical stimuli involved, remains unclear. Here we present the use of an equibiaxial stretching device for exerting a sustained normal strain to mammary epithelial cells while quantitatively assessing cell responses by fluorescence imaging techniques. Using this approach, we explored changes in focal adhesion dynamics in HC11 mammary cells in response to a mechanical sustained stress, which resembles the physiological stimuli. We studied the relationship between a global stress and focal adhesion assembly/disassembly, observing an enhanced persistency of focal adhesions under strain as well as an increase in their size. At a molecular level, we evaluated the mechanoresponses of vinculin and zyxin, two focal adhesion proteins postulated as mechanosensors, observing an increment in vinculin molecular tension and a slower zyxin dynamics while increasing the applied normal strain.
Collapse
|
26
|
Strohbach A, Pennewitz M, Glaubitz M, Palankar R, Groß S, Lorenz F, Materzok I, Rong A, Busch MC, Felix SB, Delcea M, Busch R. The apelin receptor influences biomechanical and morphological properties of endothelial cells. J Cell Physiol 2018; 233:6250-6261. [PMID: 29369349 DOI: 10.1002/jcp.26496] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
The adaption of endothelial cells to local flow conditions is a multifunctional process which leads to distinct alterations in cell shape, the subcellular distribution of structural proteins, and cellular function. G-protein-coupled receptors (GPCRs) have been identified to be fundamentally involved in such processes. Recently, we and others have shown that the expression of the endothelial GPCR apelin receptor (APJ) is regulated by fluid flow and that activation of APJ participates in signaling pathways which are related to processes of mechanotransduction. The present study aims to illuminate these findings by further visualization of APJ function. We show that APJ is located to the cellular junctions and might thus be associated with platelet endothelial cell adhesion molecule-1 (PECAM-1) in human umbilical vein endothelial cells (HUVEC). Furthermore, siRNA-mediated silencing of APJ expression influences the shear-induced adaption of HUVEC in terms of cytoskeletal remodeling, cellular elasticity, cellular motility, attachment, and distribution of adhesion complexes. Taken together, our results demonstrate that APJ is crucial for complemented endothelial adaption to local flow conditions.
Collapse
Affiliation(s)
- Anne Strohbach
- Clinic for Internal Medicine B (Cardiology), University of Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
| | - Malte Pennewitz
- Clinic for Internal Medicine B (Cardiology), University of Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
| | - Michael Glaubitz
- ZIK HIKE (Innovation Center- Humoral Immune Reactions in Cardiovascular Diseases), University of Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Groß
- Clinic for Internal Medicine B (Cardiology), University of Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
| | - Florian Lorenz
- Clinic for Internal Medicine B (Cardiology), University of Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
| | - Ilka Materzok
- Clinic for Internal Medicine B (Cardiology), University of Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
| | - Alena Rong
- ZIK HIKE (Innovation Center- Humoral Immune Reactions in Cardiovascular Diseases), University of Greifswald, Greifswald, Germany
| | - Mathias C Busch
- Clinic for Internal Medicine B (Cardiology), University of Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
| | - Stephan B Felix
- Clinic for Internal Medicine B (Cardiology), University of Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Greifswald, Germany.,ZIK HIKE (Innovation Center- Humoral Immune Reactions in Cardiovascular Diseases), University of Greifswald, Greifswald, Germany
| | - Mihaela Delcea
- DZHK (German Centre for Cardiovascular Research), Greifswald, Germany.,ZIK HIKE (Innovation Center- Humoral Immune Reactions in Cardiovascular Diseases), University of Greifswald, Greifswald, Germany
| | - Raila Busch
- Clinic for Internal Medicine B (Cardiology), University of Greifswald, Ferdinand-Sauerbruch-Strasse, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Greifswald, Germany
| |
Collapse
|
27
|
Urner S, Kelly-Goss M, Peirce SM, Lammert E. Mechanotransduction in Blood and Lymphatic Vascular Development and Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:155-208. [PMID: 29310798 DOI: 10.1016/bs.apha.2017.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The blood and lymphatic vasculatures are hierarchical networks of vessels, which constantly transport fluids and, therefore, are exposed to a variety of mechanical forces. Considering the role of mechanotransduction is key for fully understanding how these vascular systems develop, function, and how vascular pathologies evolve. During embryonic development, for example, initiation of blood flow is essential for early vascular remodeling, and increased interstitial fluid pressure as well as initiation of lymph flow is needed for proper development and maturation of the lymphatic vasculature. In this review, we introduce specific mechanical forces that affect both the blood and lymphatic vasculatures, including longitudinal and circumferential stretch, as well as shear stress. In addition, we provide an overview of the role of mechanotransduction during atherosclerosis and secondary lymphedema, which both trigger tissue fibrosis.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute for Beta Cell Biology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
28
|
Di Russo J, Hannocks MJ, Luik AL, Song J, Zhang X, Yousif L, Aspite G, Hallmann R, Sorokin L. Vascular laminins in physiology and pathology. Matrix Biol 2017; 57-58:140-148. [DOI: 10.1016/j.matbio.2016.06.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022]
|
29
|
von Bilderling C, Caldarola M, Masip ME, Bragas AV, Pietrasanta LI. Monitoring in real-time focal adhesion protein dynamics in response to a discrete mechanical stimulus. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:013703. [PMID: 28147641 DOI: 10.1063/1.4973664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The adhesion of cells to the extracellular matrix is a hierarchical, force-dependent, multistage process that evolves at several temporal scales. An understanding of this complex process requires a precise measurement of forces and its correlation with protein responses in living cells. We present a method to quantitatively assess live cell responses to a local and specific mechanical stimulus. Our approach combines atomic force microscopy with fluorescence imaging. Using this approach, we evaluated the recruitment of adhesion proteins such as vinculin, focal adhesion kinase, paxillin, and zyxin triggered by applying forces in the nN regime to live cells. We observed in real time the development of nascent adhesion sites, evident from the accumulation of early adhesion proteins at the position where the force was applied. We show that the method can be used to quantify the recruitment characteristic times for adhesion proteins in the formation of focal complexes. We also found a spatial remodeling of the mature focal adhesion protein zyxin as a function of the applied force. Our approach allows the study of a variety of complex biological processes involved in cellular mechanotransduction.
Collapse
Affiliation(s)
- Catalina von Bilderling
- Centro de Microscopías Avanzadas and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Caldarola
- Laboratorio de Electrónica Cuántica, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín E Masip
- Laboratorio de Electrónica Cuántica, Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Lía I Pietrasanta
- Centro de Microscopías Avanzadas and Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
30
|
Di Russo J, Luik AL, Yousif L, Budny S, Oberleithner H, Hofschröer V, Klingauf J, van Bavel E, Bakker EN, Hellstrand P, Bhattachariya A, Albinsson S, Pincet F, Hallmann R, Sorokin LM. Endothelial basement membrane laminin 511 is essential for shear stress response. EMBO J 2016; 36:183-201. [PMID: 27940654 PMCID: PMC5239996 DOI: 10.15252/embj.201694756] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/09/2022] Open
Abstract
Shear detection and mechanotransduction by arterial endothelium requires junctional complexes containing PECAM-1 and VE-cadherin, as well as firm anchorage to the underlying basement membrane. While considerable information is available for junctional complexes in these processes, gained largely from in vitro studies, little is known about the contribution of the endothelial basement membrane. Using resistance artery explants, we show that the integral endothelial basement membrane component, laminin 511 (laminin α5), is central to shear detection and mechanotransduction and its elimination at this site results in ablation of dilation in response to increased shear stress. Loss of endothelial laminin 511 correlates with reduced cortical stiffness of arterial endothelium in vivo, smaller integrin β1-positive/vinculin-positive focal adhesions, and reduced junctional association of actin-myosin II In vitro assays reveal that β1 integrin-mediated interaction with laminin 511 results in high strengths of adhesion, which promotes p120 catenin association with VE-cadherin, stabilizing it at cell junctions and increasing cell-cell adhesion strength. This highlights the importance of endothelial laminin 511 in shear response in the physiologically relevant context of resistance arteries.
Collapse
Affiliation(s)
- Jacopo Di Russo
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Anna-Liisa Luik
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lema Yousif
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Sigmund Budny
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Hans Oberleithner
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Verena Hofschröer
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Physiology II, University of Muenster, Muenster, Germany
| | - Juergen Klingauf
- Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany.,Institute of Medical Physics, University of Muenster, Muenster, Germany
| | - Ed van Bavel
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik Ntp Bakker
- Biomedical Engineering and Physics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Per Hellstrand
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | | - Frederic Pincet
- Laboratoire de Physique Statistique, École Normale Superieure - PSL Research University, Paris, France.,CNRS UMR8550, Sorbonne Universités - UPMC Univ Paris 06, Université Paris, Paris, France
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| | - Lydia M Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany .,Cells-in-Motion Cluster of Excellence, University of Muenster, Muenster, Germany
| |
Collapse
|
31
|
Yurdagul A, Orr AW. Blood Brothers: Hemodynamics and Cell-Matrix Interactions in Endothelial Function. Antioxid Redox Signal 2016; 25:415-34. [PMID: 26715135 PMCID: PMC5011636 DOI: 10.1089/ars.2015.6525] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/25/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Alterations in endothelial function contribute to a variety of vascular diseases. In pathological conditions, the endothelium shows a reduced ability to regulate vasodilation (endothelial dysfunction) and a conversion toward a proinflammatory and leaky phenotype (endothelial activation). At the interface between the vessel wall and blood, the endothelium exists in a complex microenvironment and must translate changes in these environmental signals to alterations in vessel function. Mechanical stimulation and endothelial cell interactions with the vascular matrix, as well as a host of soluble factors, coordinately contribute to this dynamic regulation. RECENT ADVANCES Blood hemodynamics play an established role in the regulation of endothelial function. However, a growing body of work suggests that subendothelial matrix composition similarly and coordinately regulates endothelial cell phenotype such that blood flow affects matrix remodeling, which affects the endothelial response to flow. CRITICAL ISSUES Hemodynamics and soluble factors likely affect endothelial matrix remodeling through multiple mechanisms, including transforming growth factor β signaling and alterations in cell-matrix receptors, such as the integrins. Likewise, differential integrin signaling following matrix remodeling appears to regulate several key flow-induced responses, including nitric oxide production, regulation of oxidant stress, and activation of proinflammatory signaling and gene expression. Microvascular remodeling responses, such as angiogenesis and arteriogenesis, may also show coordinated regulation by flow and matrix. FUTURE DIRECTIONS Identifying the mechanisms regulating the dynamic interplay between hemodynamics and matrix remodeling and their contribution to the pathogenesis of cardiovascular disease remains an important research area with therapeutic implications across a variety of conditions. Antioxid. Redox Signal. 25, 415-434.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
| | - A. Wayne Orr
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Blood flow is intimately linked with cardiovascular development, repair and dysfunction. The current review will build on the fluid mechanical principle underlying haemodynamic shear forces, mechanotransduction and metabolic effects. RECENT FINDINGS Pulsatile flow produces both time (∂τ/∂t) and spatial-varying shear stress (∂τ/∂x) to modulate vascular oxidative stress and inflammatory response with pathophysiological significance to atherosclerosis. The characteristics of haemodynamic shear forces, namely, steady laminar (∂τ/∂t = 0), pulsatile shear stress (PSS: unidirectional forward flow) and oscillatory shear stress (bidirectional with a near net 0 forward flow), modulate mechano-signal transduction to influence metabolic effects on vascular endothelial function. Atheroprotective PSS promotes antioxidant, anti-inflammatory and antithrombotic responses, whereas atherogenic oscillatory shear stress induces nicotinamide adenine dinucleotide phosphate oxidase-JNK signalling to increase mitochondrial superoxide production, protein degradation of manganese superoxide dismutase and post-translational protein modifications of LDL particles in the disturbed flow-exposed regions of vasculature. In the era of tissue regeneration, shear stress has been implicated in reactivation of developmental genes, namely, Wnt and Notch signalling, for vascular development and repair. SUMMARY Blood flow imparts a dynamic continuum from vascular development to repair. Augmentation of PSS confers atheroprotection and reactivation of developmental signalling pathways for regeneration.
Collapse
Affiliation(s)
- Juhyun Lee
- Department of Bioengineering, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
| | - René R. Sevag Packard
- Department of Molecular, Cellular and Integrative Physiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
- Division of Cardiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
| | - Tzung K. Hsiai
- Department of Bioengineering, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
- Department of Molecular, Cellular and Integrative Physiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
- Division of Cardiology, Department of Medicine, all at the University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
33
|
Brown CFC, Yan J, Han TTY, Marecak DM, Amsden BG, Flynn LE. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels. ACTA ACUST UNITED AC 2015. [PMID: 26225549 DOI: 10.1088/1748-6041/10/4/045010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling methods and the effects of DAT particle size and cell seeding density on the response of human ASCs encapsulated in photo-cross-linkable methacrylated chondroitin sulphate (MCS)-DAT composite hydrogels. DAT particles were generated by milling lyophilized DAT and the particle size was controlled through the processing conditions with the goal of developing composite scaffolds with a tissue-specific 3D microenvironment tuned to enhance adipogenesis. ASC proliferation and adipogenic differentiation were assessed in vitro in scaffolds incorporating small (average diameter of 38 ± 6 μm) or large (average diameter of 278 ± 3 μm) DAT particles in comparison to MCS controls over a period of up to 21 d. Adipogenic differentiation was enhanced in the composites incorporating the smaller DAT particles and seeded at the higher density of 5 × 10(5) ASCs/scaffold, as measured by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, semi-quantitative analysis of perilipin expression and oil red O staining of intracellular lipid accumulation. Overall, this study demonstrates that decellularized tissue particle size can impact stem cell differentiation through cell-cell and cell-matrix interactions, providing relevant insight towards the rational design of composite biomaterial scaffolds for adipose tissue engineering.
Collapse
Affiliation(s)
- Cody F C Brown
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Tsimbouri PM. Adult Stem Cell Responses to Nanostimuli. J Funct Biomater 2015; 6:598-622. [PMID: 26193326 PMCID: PMC4598673 DOI: 10.3390/jfb6030598] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 12/31/2022] Open
Abstract
Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called "stem cell niches". They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both internal and external forces at the nanoscale level and this response of stem cells to nanostimuli is the focus of this review.
Collapse
Affiliation(s)
- Penelope M Tsimbouri
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
35
|
Abstract
Morphology and changes in gene expression of vascular endothelium are mainly due to shear stress and inflammation. Cell phenotype modulation has been clearly demonstrated to be controlled by small noncoding micro-RNAs (miRNAs). This study focused on the effect of laminar shear stress (LSS) on human endothelial cells (HUVECs), with an emphasis on the role of miRNA-126 (miR-126). Exposure of HUVECs in vitro to LSS modified the shape of HUVECs and concomitantly regulated the expression of miR-126, vascular cell adhesion molecule 1 (VCAM-1), and syndecan-4 (SDC-4). A significant upregulation of miR-126 during long-term exposure to flow was shown. Interestingly, LSS enhanced SDC-4 expression on the HUVEC membranes. Overexpression of miR-126 in HUVECs decreased the levels of targets stromal cell-derived factor-1 SDF-1/CXCL12 and VCAM-1 but increased the expression of RGS16, CXCR4, and SDC-4. No significant difference in terms of cell proliferation and apoptosis was observed between scramble, anti-miR-126, and pre-miR-126 transfected HUVECs. In Apo-E KO/CKD mice aortas expressing a high level of miR-126, SDC-4 was concomitantly increased. In conclusion, our results suggest that miR-126 (i) is overexpressed by long-term LSS, (ii) has a role in up- and downregulation of genes involved in atherosclerosis, and (iii) affects SDC-4 expression.
Collapse
|
36
|
Model of cellular mechanotransduction via actin stress fibers. Biomech Model Mechanobiol 2015; 15:331-44. [PMID: 26081725 DOI: 10.1007/s10237-015-0691-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 06/04/2015] [Indexed: 10/24/2022]
Abstract
Mechanical stresses due to blood flow regulate vascular endothelial cell structure and function and play a key role in arterial physiology and pathology. In particular, the development of atherosclerosis has been shown to correlate with regions of disturbed blood flow where endothelial cells are round and have a randomly organized cytoskeleton. Thus, deciphering the relation between the mechanical environment, cell structure, and cell function is a key step toward understanding the early development of atherosclerosis. Recent experiments have demonstrated very rapid (∼100 ms) and long-distance (∼10 μm) cellular mechanotransduction in which prestressed actin stress fibers play a critical role. Here, we develop a model of mechanical signal transmission within a cell by describing strains in a network of prestressed viscoelastic stress fibers following the application of a force to the cell surface. We find force transmission dynamics that are consistent with experimental results. We also show that the extent of stress fiber alignment and the direction of the applied force relative to this alignment are key determinants of the efficiency of mechanical signal transmission. These results are consistent with the link observed experimentally between cytoskeletal organization, mechanical stress, and cellular responsiveness to stress. Based on these results, we suggest that mechanical strain of actin stress fibers under force constitutes a key link in the mechanotransduction chain.
Collapse
|
37
|
Chanet S, Martin AC. Mechanical force sensing in tissues. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 126:317-52. [PMID: 25081624 DOI: 10.1016/b978-0-12-394624-9.00013-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tissue size, shape, and organization reflect individual cell behaviors such as proliferation, shape change, and movement. Evidence suggests that mechanical signals operate in tandem with biochemical cues to properly coordinate cell behavior and pattern tissues. The objective of this chapter is to present recent evidence demonstrating that forces transmitted between cells act as signals that coordinate cell behavior across tissues. We first briefly summarize molecular and cellular mechanisms by which forces are sensed by cells with an emphasis on forces generated and transmitted by cytoskeletal networks. We then discuss evidence for these mechanisms operating in multicellular contexts to coordinate complex cell and tissue behaviors that occur during embryonic development: specifically growth and morphogenesis.
Collapse
Affiliation(s)
- Soline Chanet
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
38
|
Scheiwe AC, Frank SC, Autenrieth TJ, Bastmeyer M, Wegener M. Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds. Biomaterials 2015; 44:186-94. [PMID: 25617137 DOI: 10.1016/j.biomaterials.2014.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 01/21/2023]
Abstract
In vivo, cells are exposed to mechanical forces in many different ways. These forces can strongly influence cell functions or may even lead to diseases. Through their sensing machinery, cells are able to perceive the physical information of the extracellular matrix and translate it into biochemical signals resulting in cellular responses. Here, by virtue of two-component polymer scaffolds made via direct laser writing, we precisely control the cell matrix adhesions regarding their spatial arrangement and size. This leads to highly controlled and uniform cell morphologies, thereby allowing for averaging over the results obtained from several different individual cells, enabling quantitative analysis. We transiently deform these elastic structures by a micromanipulator, which exerts controlled stretching forces on primary fibroblasts grown in these scaffolds on a subcellular level. We find stretch-induced remodeling of both actin cytoskeleton and cell matrix adhesions. The responses to static and periodic stretching are significantly different. The amount of paxillin and phosphorylated focal adhesion kinase increases in cell matrix adhesions at the manipulated pillar after static stretching whereas it decreases after periodic stretching.
Collapse
Affiliation(s)
- Andrea C Scheiwe
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Stephanie C Frank
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Tatjana J Autenrieth
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Martin Bastmeyer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany; Zoological Institute, Department of Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
| | - Martin Wegener
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany; DFG-Center for Functional Nanostructures (CFN), and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
| |
Collapse
|
39
|
Ostrowski MA, Huang NF, Walker TW, Verwijlen T, Poplawski C, Khoo AS, Cooke JP, Fuller GG, Dunn AR. Microvascular endothelial cells migrate upstream and align against the shear stress field created by impinging flow. Biophys J 2014; 106:366-74. [PMID: 24461011 DOI: 10.1016/j.bpj.2013.11.4502] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022] Open
Abstract
At present, little is known about how endothelial cells respond to spatial variations in fluid shear stress such as those that occur locally during embryonic development, at heart valve leaflets, and at sites of aneurysm formation. We built an impinging flow device that exposes endothelial cells to gradients of shear stress. Using this device, we investigated the response of microvascular endothelial cells to shear-stress gradients that ranged from 0 to a peak shear stress of 9-210 dyn/cm(2). We observe that at high confluency, these cells migrate against the direction of fluid flow and concentrate in the region of maximum wall shear stress, whereas low-density microvascular endothelial cells that lack cell-cell contacts migrate in the flow direction. In addition, the cells align parallel to the flow at low wall shear stresses but orient perpendicularly to the flow direction above a critical threshold in local wall shear stress. Our observations suggest that endothelial cells are exquisitely sensitive to both magnitude and spatial gradients in wall shear stress. The impinging flow device provides a, to our knowledge, novel means to study endothelial cell migration and polarization in response to gradients in physical forces such as wall shear stress.
Collapse
Affiliation(s)
| | - Ngan F Huang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, California; Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia; Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Travis W Walker
- Chemical Engineering, Stanford University, Stanford, California
| | - Tom Verwijlen
- Department of Chemical Engineering, KU Leuven, Belgium
| | | | - Amanda S Khoo
- Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - John P Cooke
- Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia; Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Gerald G Fuller
- Chemical Engineering, Stanford University, Stanford, California.
| | - Alexander R Dunn
- Chemical Engineering, Stanford University, Stanford, California; Stanford Cardiovascular Institute, Stanford University, Stanford, Califiornia.
| |
Collapse
|
40
|
van Geemen D, Smeets MWJ, van Stalborch AMD, Woerdeman LAE, Daemen MJAP, Hordijk PL, Huveneers S. F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries and veins. Arterioscler Thromb Vasc Biol 2014; 34:2059-67. [PMID: 25012130 DOI: 10.1161/atvbaha.114.304180] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Vascular endothelial-cadherin- and integrin-based cell adhesions are crucial for endothelial barrier function. Formation and disassembly of these adhesions controls endothelial remodeling during vascular repair, angiogenesis, and inflammation. In vitro studies indicate that vascular cytokines control adhesion through regulation of the actin cytoskeleton, but it remains unknown whether such regulation occurs in human vessels. We aimed to investigate regulation of the actin cytoskeleton and cell adhesions within the endothelium of human arteries and veins. APPROACH AND RESULTS We used an ex vivo protocol for immunofluorescence in human vessels, allowing detailed en face microscopy of endothelial monolayers. We compared arteries and veins of the umbilical cord and mesenteric, epigastric, and breast tissues and find that the presence of central F-actin fibers distinguishes the endothelial phenotype of adult arteries from veins. F-actin in endothelium of adult veins as well as in umbilical vasculature predominantly localizes cortically at the cell boundaries. By contrast, prominent endothelial F-actin fibers in adult arteries anchor mostly to focal adhesions containing integrin-binding proteins paxillin and focal adhesion kinase and follow the orientation of the extracellular matrix protein fibronectin. Other arterial F-actin fibers end in vascular endothelial-cadherin-based endothelial focal adherens junctions. In vitro adhesion experiments on compliant substrates demonstrate that formation of focal adhesions is strongly induced by extracellular matrix rigidity, irrespective of arterial or venous origin of endothelial cells. CONCLUSIONS Our data show that F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries from veins. We conclude that the biomechanical properties of the vascular extracellular matrix determine this endothelial characteristic.
Collapse
Affiliation(s)
- Daphne van Geemen
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Michel W J Smeets
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Anne-Marieke D van Stalborch
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Leonie A E Woerdeman
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Mat J A P Daemen
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Peter L Hordijk
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.)
| | - Stephan Huveneers
- From the Department of Molecular Cell Biology, Sanquin Research and Swammerdam Institute for Life Sciences, Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (D.v.G., M.W.J.S., A.-M.D.v.S., P.L.H., S.H.); Department of Plastic and Reconstructive Surgery, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands (L.A.E.W.); and Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (M.J.A.P.D.).
| |
Collapse
|
41
|
Collins C, Osborne LD, Guilluy C, Chen Z, O'Brien ET, Reader JS, Burridge K, Superfine R, Tzima E. Haemodynamic and extracellular matrix cues regulate the mechanical phenotype and stiffness of aortic endothelial cells. Nat Commun 2014; 5:3984. [PMID: 24917553 PMCID: PMC4068264 DOI: 10.1038/ncomms4984] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/29/2014] [Indexed: 01/16/2023] Open
Abstract
Endothelial cell (ECs) lining blood vessels express many mechanosensors, including platelet endothelial cell adhesion molecule-1 (PECAM-1), that convert mechanical force to biochemical signals. While it is accepted that mechanical stresses and the mechanical properties of ECs regulate vessel health, the relationship between force and biological response remains elusive. Here we show that ECs integrate mechanical forces and extracellular matrix (ECM) cues to modulate their own mechanical properties. We demonstrate that the ECM influences EC response to tension on PECAM-1. ECs adherent on collagen display divergent stiffening and focal adhesion growth compared to ECs on fibronectin. This is due to PKA-dependent serine phosphorylation and inactivation of RhoA. PKA signaling regulates focal adhesion dynamics and EC compliance in response to shear stress in vitro and in vivo. Our study identifies a ECM-specific, mechanosensitive signaling pathway that regulates EC compliance and may serve as an atheroprotective mechanism maintains blood vessel integrity in vivo.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Lukas D Osborne
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christophe Guilluy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zhongming Chen
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - E Tim O'Brien
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - John S Reader
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Keith Burridge
- 1] Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [3] McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ellie Tzima
- 1] Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [2] Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA [3] McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
42
|
Abstract
Mechanical forces influence many biological processes via activation of signaling molecules, including the family of Rho GTPases. Within the endothelium, the mechanical force of fluid shear stress regulates the spatiotemporal activation of Rho GTPases, including Rac1. Shear stress-induced Rac1 activation is required for numerous essential biological processes, including changes in permeability, alignment of the actin cytoskeleton, redox signaling, and changes in gene expression. Thus, identifying mechanisms of Rac1 activation and the spatial cues that direct proper localization of the GTPase is essential in order to gain a comprehensive understanding the role of Rac1 in shear stress responses. This commentary will highlight our current understanding of how Rac1 activity is regulated in response to shear stress, as well as the downstream consequences of Rac1 activation.
Collapse
Affiliation(s)
- Caitlin Collins
- Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | - Ellie Tzima
- Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| |
Collapse
|
43
|
Wu SH, Lee KL, Weng RH, Zheng ZX, Chiou A, Wei PK. Dynamic monitoring of mechano-sensing of cells by gold nanoslit surface plasmon resonance sensor. PLoS One 2014; 9:e89522. [PMID: 24586846 PMCID: PMC3931794 DOI: 10.1371/journal.pone.0089522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/21/2014] [Indexed: 11/30/2022] Open
Abstract
We demonstrated a real-time monitoring of live cells upon laminar shear stress stimulation via surface plasmon resonance (SPR) in gold nanoslit array. A large-area gold nanostructure consisted of 500-nm-period nanoslits was fabricated on a plastic film using the thermal-annealed template-stripping method. The SPR in the gold nanoslit array provides high surface sensitivity to monitor cell adhesion changes near the sensor surface. The human non-small cell lung cancer (CL1-0), human lung fibroblast (MRC-5), and human dermal fibroblast (Hs68) were cultured on the gold nanoslits and their dynamic responses to laminar shear stress were measured under different stress magnitudes from 0 to 30 dyne/cm(2). Cell adhesion was increased in CL1-0 under shear flow stimulation. No adhesion recovery was observed after stopping the flow. On the other hand, MRC-5 and Hs68 decreased adhesion and recovered from the shear stress. The degree of recovery was around 70% for MRC-5. This device provides dynamic study and early detection of cell adhesion changes under shear flow conditions.
Collapse
Affiliation(s)
- Shu-Han Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Kuang-Li Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Ruei-Hung Weng
- Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University, Keelung, Taiwan
| | - Zhao-Xian Zheng
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| | - Pei-Kuen Wei
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
- Biophotonics and Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
44
|
Uehara K, Uehara A. Integrin αvβ5 in endothelial cells of rat splenic sinus: an immunohistochemical and ultrastructural study. Cell Tissue Res 2014; 356:183-93. [PMID: 24556923 DOI: 10.1007/s00441-014-1796-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
Localization of integrins β1-8, α1, α2, α3, α5, α6 and αv in sinus endothelial cells of the rat spleen was examined by immunofluorescence microscopy. Labeling for anti-integrin β5 and integrin αv was detected and colocalized in the entire circumference of endothelial cells. Labeling for integrin β5, vinculin and actin filaments demonstrated that they lay close to each other in the basal part of the endothelial cells. Although the other integrin βs, including integrin β1 and integrins α1, α2, α3, α5 and α6 in combination with integrin β1, were localized in leukocytes, slightly large cells, megakaryocytes and/or platelets in the sinus lumen and splenic cords, they were not detected in endothelial cells. Labeling for vitronectin, a component of the extracellular-matrix-binding integrin αvβ5, was strongly stained in the periphery of the wall of sinuses, as was collagen IV and, in addition, was localized in the cytoplasm of endothelial cells. Ultrastructural localization of integrin β5, vitronectin and clathrin was examined by immunogold electron microscopy to elucidate the involvement of integrin αvβ5 in the endocytosis of vitronectin in sinus endothelial cells. Electron microscopy with detergent extraction revealed abundant coated pits and coated vesicles in endothelial cells. Immunogold labeling for vitronectin was present in pits, vesicles and the stacked endoplasmic reticulum. Double-labeling for integrin β5 or integrin αv and clathrin revealed that they were colocalized in some vesicles in close proximity to the apical and lateral plasma membrane of the endothelial cells. The possible functional roles of integrin αvβ5 in endothelial cells of the splenic sinus are discussed.
Collapse
Affiliation(s)
- Kiyoko Uehara
- Department of Cell Biology, Fukuoka University School of Medicine, Jonan-ku, Fukuoka, 814-0180, Japan,
| | | |
Collapse
|
45
|
Chatterjee S, Fisher AB. Mechanotransduction in the endothelium: role of membrane proteins and reactive oxygen species in sensing, transduction, and transmission of the signal with altered blood flow. Antioxid Redox Signal 2014; 20:899-913. [PMID: 24328670 PMCID: PMC3924805 DOI: 10.1089/ars.2013.5624] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Changes in shear stress associated with alterations in blood flow initiate a signaling cascade that modulates the vascular phenotype. Shear stress is "sensed" by the endothelium via a mechanosensitive complex on the endothelial cell (EC) membrane that has been characterized as a "mechanosome" consisting of caveolae, platelet endothelial cell adhesion molecule (PECAM), vascular endothelial growth factor receptor 2 (VEGFR2), vascular endothelial (VE)-cadherin, and possibly other elements. This shear signal is transduced by cell membrane ion channels and various kinases and results in the activation of NADPH oxidase (type 2) with the production of reactive oxygen species (ROS). RECENT ADVANCES The signaling cascade associated with stop of shear, as would occur in vivo with various obstructive pathologies, leads to cell proliferation and eventual revascularization. CRITICAL ISSUES AND FUTURE DIRECTIONS Although several elements of mechanosensing such as the sensing event, the transduction, transmission, and reception of the mechanosignal are now reasonably well understood, the links among these discrete steps in the pathway are not clear. Thus, identifying the mechanisms for the interaction of the K(ATP) channel, the kinases, and ROS to drive long-term adaptive responses in ECs is necessary. A critical re-examination of the signaling events associated with complex flow patterns (turbulent, oscillatory) under physiological conditions is also essential for the progress in the field. Since these complex shear patterns may be associated with an atherosclerosis susceptible phenotype, a specific challenge will be the pharmacological modulation of the responses to altered signaling events that occur at specific sites of disturbed or obstructed flow.
Collapse
Affiliation(s)
- Shampa Chatterjee
- Institute for Environmental Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | |
Collapse
|
46
|
Shav D, Gotlieb R, Zaretsky U, Elad D, Einav S. Wall shear stress effects on endothelial-endothelial and endothelial-smooth muscle cell interactions in tissue engineered models of the vascular wall. PLoS One 2014; 9:e88304. [PMID: 24520363 PMCID: PMC3919748 DOI: 10.1371/journal.pone.0088304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/05/2014] [Indexed: 12/30/2022] Open
Abstract
Vascular functions are affected by wall shear stresses (WSS) applied on the endothelial cells (EC), as well as by the interactions of the EC with the adjacent smooth muscle cells (SMC). The present study was designed to investigate the effects of WSS on the endothelial interactions with its surroundings. For this purpose we developed and constructed two co-culture models of EC and SMC, and compared their response to that of a single monolayer of cultured EC. In one co-culture model the EC were cultured on the SMC, whereas in the other model the EC and SMC were cultured on the opposite sides of a membrane. We studied EC-matrix interactions through focal adhesion kinase morphology, EC-EC interactions through VE-Cadherin expression and morphology, and EC-SMC interactions through the expression of Cx43 and Cx37. In the absence of WSS the SMC presence reduced EC-EC connectivity but produced EC-SMC connections using both connexins. The exposure to WSS produced discontinuity in the EC-EC connections, with a weaker effect in the co-culture models. In the EC monolayer, WSS exposure (12 and 4 dyne/cm2 for 30 min) increased the EC-EC interaction using both connexins. WSS exposure of 12 dyne/cm2 did not affect the EC-SMC interactions, whereas WSS of 4 dyne/cm2 elevated the amount of Cx43 and reduced the amount of Cx37, with a different magnitude between the models. The reduced endothelium connectivity suggests that the presence of SMC reduces the sealing properties of the endothelium, showing a more inflammatory phenotype while the distance between the two cell types reduced their interactions. These results demonstrate that EC-SMC interactions affect EC phenotype and change the EC response to WSS. Furthermore, the interactions formed between the EC and SMC demonstrate that the 1-side model can simulate better the arterioles, while the 2-side model provides better simulation of larger arteries.
Collapse
Affiliation(s)
- Dalit Shav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| | - Ruth Gotlieb
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Uri Zaretsky
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - David Elad
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Einav
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
47
|
Li H, Zuo X, Ouyang P, Lin M, Zhao Z, Liang Y, Zhong S, Rao S. Identifying functional modules for coronary artery disease by a prior knowledge-based approach. Gene 2013; 537:260-8. [PMID: 24389497 DOI: 10.1016/j.gene.2013.12.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 12/18/2013] [Accepted: 12/20/2013] [Indexed: 12/22/2022]
Abstract
Until recently, the underlying genetic mechanisms for coronary artery disease (CAD) have been largely unknown, with just a list of genes identified accounting for very little of the disease in the population. Hence, a systematic dissection of the sophisticated interplays between these individual disease genes and their functional involvements becomes essential. Here, we presented a novel knowledge-based approach to identify the functional modules for CAD. First, we selected 266 disease genes in CADgene database as the initial seed genes, and used PPI knowledge as a guide to expand these genes into a CAD-specific gene network. Then, we used Newman's algorithm to decompose the primary network into 14 compact modules with high modularity. By analysis of these modules, we further identified 114 hub genes, all either directly or indirectly associated with CAD. Finally, by functional analysis of these modules, we revealed several novel pathogenic mechanisms for CAD (for examples, some yet rarely concerned like peptide YY receptor activity, Fc gamma R-mediated phagocytosis and actin cytoskeleton regulation etc.).
Collapse
Affiliation(s)
- Haoli Li
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Xiaoyu Zuo
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China; Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Ouyang
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Meihua Lin
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China
| | - Zhong Zhao
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China; Department of Statistical Sciences, School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510080, China
| | - Yan Liang
- Department of Internal Cardiovascular Medicine, Maoming People's Hospital, Maoming 525000, China
| | - Shouqiang Zhong
- Department of Internal Cardiovascular Medicine, Maoming People's Hospital, Maoming 525000, China
| | - Shaoqi Rao
- Institute for Medical Systems Biology and Department of Medical Statistics and Epidemiology, School of Public Health, Guangdong Medical College, Dongguan 523808, China; Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Department of Statistical Sciences, School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
48
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
49
|
Abstract
Physical forces are central players in development and morphogenesis, provide an ever-present backdrop influencing physiological functions, and contribute to a variety of pathologies. Mechanotransduction encompasses the rich variety of ways in which cells and tissues convert cues from their physical environment into biochemical signals. These cues include tensile, compressive and shear stresses, and the stiffness or elastic modulus of the tissues in which cells reside. This article focuses on the proximal events that lead directly from a change in physical state to a change in cell-signaling state. A large body of evidence demonstrates a prominent role for the extracellular matrix, the intracellular cytoskeleton, and the cell matrix adhesions that link these networks in transduction of the mechanical environment. Recent work emphasizes the important role of physical unfolding or conformational changes in proteins induced by mechanical loading, with examples identified both within the focal adhesion complex at the cell-matrix interface and in extracellular matrix proteins themselves. Beyond these adhesion and matrix-based mechanisms, classical and new mechanisms of mechanotransduction reside in stretch-activated ion channels, the coupling of physical forces to interstitial autocrine and paracrine signaling, force-induced activation of extracellular proteins, and physical effects directly transmitted to the cell's nucleus. Rapid progress is leading to detailed delineation of molecular mechanisms by which the physical environment shapes cellular signaling events, opening up avenues for exploring how mechanotransduction pathways are integrated into physiological and pathophysiological cellular and tissue processes.
Collapse
Affiliation(s)
- Daniel J Tschumperlin
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.
| |
Collapse
|
50
|
Kemeny SF, Cicalese S, Figueroa DS, Clyne AM. Glycated collagen and altered glucose increase endothelial cell adhesion strength. J Cell Physiol 2013; 228:1727-36. [PMID: 23280505 DOI: 10.1002/jcp.24313] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/10/2012] [Indexed: 01/08/2023]
Abstract
Cell adhesion strength is important to cell survival, proliferation, migration, and mechanotransduction, yet changes in endothelial cell adhesion strength have not yet been examined in diseases such as diabetes with high rates of cardiovascular complications. We therefore investigated porcine aortic endothelial cell adhesion strength on native and glycated collagen-coated substrates and in low, normal, and high glucose culture using a spinning disc apparatus. Adhesion strength increased by 30 dynes/cm(2) in cells on glycated collagen as compared to native collagen. Attachment studies revealed that cells use higher adhesion strength αv β3 integrins to bind to glycated collagen instead of the typical α2 β1 integrins used to bind to native collagen. Similarly, endothelial cells cultured in low and high glucose had 15 dynes/cm(2) higher adhesion strength than cells in normal glucose after 2 days. Increased adhesion strength was due to elevated VEGF release and intracellular PKC in low and high glucose cells, respectively. Thus glucose increased endothelial cell adhesion strength via different underlying mechanisms. These adhesion strength changes could contribute to diabetic vascular disease, including accelerated atherosclerosis and disordered angiogenesis.
Collapse
Affiliation(s)
- Steven Frank Kemeny
- Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|