1
|
Murray F, Insel PA. Targeting cAMP in chronic lymphocytic leukemia: a pathway-dependent approach for the treatment of leukemia and lymphoma. Expert Opin Ther Targets 2013; 17:937-49. [PMID: 23647244 DOI: 10.1517/14728222.2013.798304] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cyclic AMP (cAMP) promotes growth arrest and/or apoptosis of various types of lymphoma, in particular chronic lymphocytic leukemia (CLL). These responses have spurred the interest in developing agents that increase cAMP to treat such malignancies and to identify mechanisms of the responses. AREAS COVERED The murine T-lymphoma cell line S49, has provided an important, pioneering model to define mechanisms of cAMP-mediated lymphoid cell death. Studies with S49 cells demonstrated that cAMP, acting via protein kinase A (PKA), is pro-apoptotic through a mitochondria-dependent pathway and identified cAMP/PKA-regulated targets involved in apoptosis. Akin to such findings, cAMP promotes apoptosis via PKA of cells from patients with CLL. Analysis of mediators of cAMP accumulation and cAMP-promoted apoptosis in CLL cells has revealed approaches to increase cAMP and engage its pro-apoptotic action. EXPERT OPINION This 'pathway approach' targeted to cAMP has identified GPCR agonists/antagonists, AC activators (e.g., AC7), PDE inhibitors (e.g., PDE7B) and/or activators or inhibitors of downstream mediators (PKA and Epac, respectively), which might be utilized therapeutically in CLL. Therapy directed at such targets may prove to be clinically useful and may also provide a proof-of-principle of the utility of targeting cAMP signaling in other types of cancer.
Collapse
Affiliation(s)
- Fiona Murray
- University of California San Diego, Department of Pharmacology, La Jolla, CA 92093, USA
| | | |
Collapse
|
2
|
Guo Y, Wilderman A, Zhang L, Taylor SS, Insel PA. Quantitative proteomics analysis of the cAMP/protein kinase A signaling pathway. Biochemistry 2012; 51:9323-32. [PMID: 23110364 PMCID: PMC3503394 DOI: 10.1021/bi301282k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
To define the proteins whose expression is regulated
by cAMP and
protein kinase A (PKA), we used a quantitative proteomics approach
in studies of wild-type (WT) and kin- (PKA-null) S49 murine T lymphoma
cells. We also compared the impact of endogenous increases in the
level of cAMP [by forskolin (Fsk) and the phosphodiesterase inhibitor
isobutylmethylxanthine (IBMX)] or by a cAMP analogue (8-CPT-cAMP).
We identified 1056 proteins in WT and kin- S49 cells and found that
8-CPT-cAMP and Fsk with IBMX produced differences in protein expression.
WT S49 cells had a correlation coefficient of 0.41 between DNA microarray
data and the proteomics analysis in cells incubated with 8-CPT-cAMP
for 24 h and a correlation coefficient of 0.42 between the DNA microarray
data obtained at 6 h and the changes in protein expression after incubation
with 8-CPT-cAMP for 24 h. Glutathione reductase (Gsr) had a higher
level of basal expression in kin- S49 cells than in WT cells. Consistent
with this finding, kin- cells are less sensitive to cell killing and
generation of malondialdehyde than are WT cells incubated with H2O2. Cyclic AMP acting via PKA thus has a broad
impact on protein expression in mammalian cells, including in the
regulation of Gsr and oxidative stress.
Collapse
Affiliation(s)
- Yurong Guo
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0654, United States
| | | | | | | | | |
Collapse
|
3
|
Zhang L, Zambon AC, Vranizan K, Pothula K, Conklin BR, Insel PA. Gene expression signatures of cAMP/protein kinase A (PKA)-promoted, mitochondrial-dependent apoptosis. Comparative analysis of wild-type and cAMP-deathless S49 lymphoma cells. J Biol Chem 2007; 283:4304-13. [PMID: 18048352 DOI: 10.1074/jbc.m708673200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The second messenger cAMP acts via protein kinase A (PKA) to induce apoptosis by mechanisms that are poorly understood. Here, we assessed a role for mitochondria and analyzed gene expression in cAMP/PKA-promoted apoptosis by comparing wild-type (WT) S49 lymphoma cells and the S49 variant, D(-) (cAMP-deathless), which lacks cAMP-promoted apoptosis but has wild-type levels of PKA activity and cAMP-promoted G(1) growth arrest. Treatment of WT, but not D(-), S49 cells with 8-CPT-cAMP (8-(4-chlorophenylthio)-adenosine-3':5'-cyclic monophosphate) for 24 h induced loss of mitochondrial membrane potential, mitochondrial release of cytochrome c and SMAC, and increase in caspase-3 activity. Gene expression analysis (using Affymetrix 430 2.0 arrays) revealed that WT and D(-) cells incubated with 8-CPT-cAMP have similar, but non-identical, extents of cAMP-regulated gene expression at 2 h (approximately 800 transcripts) and 6 h (approximately 1000 transcripts) (|Fold| > 2, p < 0.06); by contrast, at 24 h, approximately 2500 and approximately 1100 transcripts were changed in WT and D(-) cells, respectively. Using an approach that combined regression analysis, clustering, and functional annotation to identify transcripts that showed differential expression between WT and D(-) cells, we found differences in cAMP-mediated regulation of mRNAs involved in transcriptional repression, apoptosis, the cell cycle, RNA splicing, Golgi, and lysosomes. The two cell lines differed in cAMP-response element-binding protein (CREB) phosphorylation and expression of the transcriptional inhibitor ICER (inducible cAMP early repressor) and in cAMP-regulated expression of genes in the inhibitor of apoptosis (IAP) and Bcl families. The findings indicate that cAMP/PKA-promoted apoptosis of lymphoid cells occurs via mitochondrial-mediated events and imply that such apoptosis involves gene networks in multiple biochemical pathways.
Collapse
Affiliation(s)
- Lingzhi Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
4
|
Um JH, Kang CD, Hwang BW, Ha MY, Hur JG, Kim DW, Chung BS, Kim SH. Involvement of DNA-dependent protein kinase in regulation of the mitochondrial heat shock proteins. Leuk Res 2003; 27:509-16. [PMID: 12648511 DOI: 10.1016/s0145-2126(02)00264-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since DNA-dependent protein kinase (DNA-PK) has been known to play a protective role against drug-induced apoptosis, the role of DNA-PK in the regulation of mitochondrial heat shock proteins by anticancer drugs was examined. The levels of basal and drug-induced mitochondrial heat shock proteins of drug-sensitive parental cells were higher than those of multidrug-resistant (MDR) cells. We also demonstrated that the development of MDR might be correlated with the increased expression of Ku-subunit of DNA-PK and concurrent down-regulation of mitochondrial heat shock proteins. The basal mtHsp70 and Hsp60 levels of Ku70(-/-) cells, which were known to be sensitive to anticancer drugs, were higher than those of parental MEF cells, but conversely these mitochondrial heat shock proteins of R7080-6 cells over-expressing both Ku70 and Ku80 were lower than those of parental Rat-1 cells. Also, the mtHsp70 and Hsp60 levels of DNA-PKcs-deficient SCID cells were higher than those of parental CB-17 cells. Our results suggest the possibility that mitochondrial heat shock protein may be one of determinants of drug sensitivity and could be regulated by DNA-PK activity.
Collapse
Affiliation(s)
- Jee Hyun Um
- Department of Biochemistry, College of Medicine, Pusan National University, Pusan 602-739, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kokkonen JO, Lindstedt KA, Kovanen PT. Role for chymase in heart failure: angiotensin II-dependent or -independent mechanisms? Circulation 2003; 107:2522-4. [PMID: 12777313 DOI: 10.1161/01.cir.0000074786.92067.aa] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Kvirkvelia N, Vojnovic I, Warner TD, Athie-Morales V, Free P, Rayment N, Chain BM, Rademacher TW, Lund T, Roitt IM, Delves PJ. Placentally derived prostaglandin E2 acts via the EP4 receptor to inhibit IL-2-dependent proliferation of CTLL-2 T cells. Clin Exp Immunol 2002; 127:263-9. [PMID: 11876748 PMCID: PMC1906325 DOI: 10.1046/j.1365-2249.2002.01718.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A number of immunomodulatory molecules are present in the placenta, including cytokines, prostaglandins, progesterone and indoleamine 2,3-dioxygenase. An undefined factor capable of down-regulating T-cell activity has recently been reported [1] as being produced by short-term cultures of placental fragments. By careful repetition of these studies we have confirmed that chorionic villi isolated from term placenta produce a low molecular weight, heat stable factor capable of inhibiting the IL-2-dependent proliferation of mouse CTLL-2 cells. This activity was not due, however, to a previously unknown immunosuppressive molecule, but rather to prostaglandin E2 (PGE2). Expression of cyclooxygenase (COX)-2 was detected in the syncytiotrophoblast of chorionic villi explants using immunohistochemistry. Culture of the explants in the presence of the COX-1/COX--2 inhibitors indomethacin and diclofenac, or with the COX-2-selective inhibitor DFP, blocked the production of the immunosuppressive factor. The immunosuppressive activity was restored by adding PGE2 to the supernatants obtained from diclofenac-inhibited explants. A number of different receptors are involved in mediating the biological effects of prostaglandins. By utilizing selective antagonists of individual receptors, we have established that the immunosuppressive effect of PGE2 on CTLL-2 cells is exerted via the EP4 receptor. Thus, addition of an EP4-selective antagonist, but not of EP1 or EP3 antagonists, abolished the immunosuppressive effect of PGE2 on CTLL-2 cells. This may have implications for attempts to selectively manipulate T-cell responses.
Collapse
Affiliation(s)
- N Kvirkvelia
- Department of Immunology and Molecular Pathology, Windeyer Institute of Medical Sciences, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Um JH, Kang CD, Lee BG, Kim DW, Chung BS, Kim SH. Increased and correlated nuclear factor-kappa B and Ku autoantigen activities are associated with development of multidrug resistance. Oncogene 2001; 20:6048-56. [PMID: 11593412 DOI: 10.1038/sj.onc.1204732] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2001] [Revised: 06/05/2001] [Accepted: 06/14/2001] [Indexed: 11/09/2022]
Abstract
In this study, we investigated possible engagement of NF-kappaB and Ku autoantigen (Ku) activation in development of multidrug resistance (MDR) and circumvention of MDR by modulation of NF-kappaB and Ku. The NF-kappaB activity and NF-kappaB p65 subunit level were constitutively higher in MDR cells than in drug-sensitive parental cells. Interestingly, a faster running NF-kappaB DNA binding complex was identified as Ku, a DNA damage sensor and a key double strand break repair protein, and was positively correlated with the NF-kappaB activity in MDR cells and Ku- or both subunits of NF-kappaB-transfected cells. Also both NF-kappaB and Ku activities were activated or inhibited by treatment with etoposide (VP-16) or MG-132 (a proteasome inhibitor), respectively. Furthermore, PKA inhibitor suppressed markedly the constitutive and drug-induced activities of NF-kappaB and Ku in MDR cells and subsequently potentiated the cytotoxic activity of anticancer drugs. Our results proposed that the NF-kappaB and Ku activation could be one of multi-factorial MDR mechanism, and PKA inhibitor, likely via inhibition of NF-kappaB and Ku activities, could enhance the effectiveness of anticancer drugs against MDR cells with high activities of NF-kappaB and Ku.
Collapse
Affiliation(s)
- J H Um
- Department of Biochemistry, College of Medicine, Pusan National University, Pusan 602-739, South Korea
| | | | | | | | | | | |
Collapse
|
8
|
Yin Y, Allen PD, Jia L, Kelsey SM, Newland AC. 8-Cl-adenosine mediated cytotoxicity and sensitization of T-lymphoblastic leukemia cells to TNFalpha-induced apoptosis is via inactivation of NF-kappaB. Leuk Res 2001; 25:423-31. [PMID: 11301111 DOI: 10.1016/s0145-2126(00)00147-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
These data show that 8-Cl-cAMP is cytotoxic to the lymphoblastic leukemia cell line CEM and its vinblastine selected multidrug resistant derivative, CEM/VLB100 although PKA was not involved in these effects. The cytotoxic effects of 8-Cl-cAMP was abrogated by cotreatment with either ADA or IBMX which indicated a degradation form of 8-Cl-cAMP was needed for this cytotoxicity. CEM and CEM/VLB100 cells displayed a notable sensitivity to 8-Cl-adenosine-induced growth inhibition and apoptosis. 8-Cl-adenosine increased the cytosolic levels of IkappaBalpha which prevented NF-kappaB nuclear translocation. 8-Cl-adenosine also prevented TNFalpha-induced IkB decay and NF-kappaB activation in CEM and CEM/VLB100 cells.
Collapse
Affiliation(s)
- Y Yin
- Department of Haematology, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Turner Street, E1 2AD, London, UK
| | | | | | | | | |
Collapse
|
9
|
Irvin BJ, Hanson CL, Smith LH, Daniels CK. Cyclic AMP- and IL6-signaling cross talk: comodulation of proliferation and apoptosis in the 7TD1 B cell hybridoma. Exp Cell Res 2001; 265:73-9. [PMID: 11281645 DOI: 10.1006/excr.2001.5157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proliferation of the 7TD1 B cell hybridoma is dependent on the survival factor interleukin-6 (IL6). IL6 inhibits physiological cell death and allows expansion of populations of serum-stimulated cells. In this report, we demonstrate that cyclic AMP (cAMP)- and IL6-dependent signaling pathways can interact, controlling proliferation of 7TD1 cells through modulation of apoptosis. Cyclic AMP analogues inhibited proliferation, as well as other treatments that increased intracellular cAMP. The cAMP-induced inhibition could be reversed after 24 h by the removal of dibutyryl-cAMP from the culture medium and readdition of IL6. In the absence of IL6, cAMP induced a slow loss of viable cells. This decrease in viable cells in the presence of cAMP was accompanied by a marked increase in apoptosis. The increase in apoptotic cells after 48 h was preceded at 24 h by a parallel increase in DEVD-caspase activity after treatment with cell-permeable cAMP analogues. Increased DEVD-caspase activity and subsequent apoptosis could both be blocked by the addition of IL6. These coregulating actions may represent a cross-talk signaling mechanism modulating cytokine activation of cellular proliferation and survival.
Collapse
Affiliation(s)
- B J Irvin
- Department of Pharmaceutical Sciences, Idaho State University, Pocatello, Idaho 83209, USA
| | | | | | | |
Collapse
|
10
|
Barlucchi L, Leri A, Dostal DE, Fiordaliso F, Tada H, Hintze TH, Kajstura J, Nadal-Ginard B, Anversa P. Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Circ Res 2001; 88:298-304. [PMID: 11179197 DOI: 10.1161/01.res.88.3.298] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ventricular pacing leads to a dilated myopathy in which cell death and myocyte hypertrophy predominate. Because angiotensin II (Ang II) stimulates myocyte growth and triggers apoptosis, we tested whether canine myocytes express the components of the renin-angiotensin system (RAS) and whether the local RAS is upregulated with heart failure. p53 modulates transcription of angiotensinogen (Aogen) and AT(1) receptors in myocytes, raising the possibility that enhanced p53 function in the decompensated heart potentiates Ang II synthesis and Ang II-mediated responses. Therefore, the presence of mRNA transcripts for Aogen, renin, angiotensin-converting enzyme, chymase, and AT(1) and AT(2) receptors was evaluated by reverse transcriptase-polymerase chain reaction in myocytes. Changes in the protein expression of these genes were then determined by Western blot in myocytes from control dogs and dogs affected by congestive heart failure. p53 binding to the promoter of Aogen and AT(1) receptor was also determined. Ang II in myocytes was measured by ELISA and by immunocytochemistry and confocal microscopy. Myocytes expressed mRNAs for all the constituents of RAS, and heart failure was characterized by increased p53 DNA binding to Aogen and AT(1). Additionally, protein levels of Aogen, renin, cathepsin D, angiotensin-converting enzyme, and AT(1) were markedly increased in paced myocytes. Conversely, chymase and AT(2) proteins were not altered. Ang II quantity and labeling of myocytes increased significantly with cardiac decompensation. In conclusion, dog myocytes synthesize Ang II, and activation of p53 function with ventricular pacing upregulates the myocyte RAS and the generation and secretion of Ang II. Ang II may promote myocyte growth and death, contributing to the development of heart failure.
Collapse
MESH Headings
- Actins/metabolism
- Angiotensin II/metabolism
- Animals
- Binding, Competitive
- Blotting, Western
- Cardiac Pacing, Artificial
- Cathepsin D/metabolism
- Chymases
- Dogs
- Heart Failure/physiopathology
- Heart Ventricles/cytology
- Heart Ventricles/metabolism
- Immunohistochemistry
- Microscopy, Confocal
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Renin/genetics
- Renin/metabolism
- Renin-Angiotensin System/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
- Ventricular Function
Collapse
Affiliation(s)
- L Barlucchi
- Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sun Y, Li L, Lau F, Beavo JA, Clark EA. Infection of CD4+ memory T cells by HIV-1 requires expression of phosphodiesterase 4. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1755-61. [PMID: 10925252 DOI: 10.4049/jimmunol.165.4.1755] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using PCR to monitor HIV-1 RNA genome reverse transcription and nuclear import of preintegration complexes, we found that memory, but not naive, CD4+ T cells could support transport of HIV-1 DNA to nuclei upon TCR/CD3 and IL-2 stimulation. Moreover, memory CD4+ T cells, unlike naive CD4+ T cells, express high levels of phosphodiesterase 4 (PDE4) constitutively. Selective blocking of PDE4 activity inhibited IL-2R expression and thereby led to abolishing HIV-1 DNA nuclear import in memory T cells; however, full-length viral DNA synthesis was not affected. Thus, blocking PDE4 prevents initiation of HIV-1 DNA circle formation in T cells. The fact that PDE4 is expressed constitutively at higher levels in memory vs naive CD4+ T cells may help HIV-1 readily infect memory T cells.
Collapse
Affiliation(s)
- Y Sun
- Regional Primate Research Center, Department of Pharmacology and Molecular, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
12
|
Yin Y, Allen PD, Jia L, MacEy MG, Kelsey SM, Newland AC. Constitutive levels of cAMP-dependent protein kinase activity determine sensitivity of human multidrug-resistant leukaemic cell lines to growth inhibition and apoptosis by forskolin and tumour necrosis factor alpha. Br J Haematol 2000; 108:565-73. [PMID: 10759715 DOI: 10.1046/j.1365-2141.2000.01903.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) signal pathway regulates cell proliferation, differentiation and cell death. It may also regulate the multidrug resistance (MDR) phenotype in leukaemic cells. These data showed that MDR1+ K/Dau600 cells exhibited a higher basal level of PKA activity than MDR- parental cells. The significance of this on tumour necrosis factor alpha (TNFalpha)-induced apoptosis and cytostasis was investigated further. In comparison with MDR1- parental cells, K/Dau600 cells had a higher expression of PKA regulatory subunit RIalpha and nuclear catalytic subunit PKAcalpha. They were also more susceptible to inhibition of proliferation and induction of apoptosis by TNFalpha and/or forskolin, but this could be attenuated by H89. An increase in cAMP was associated with the apoptosis in the K/Dau600 cell line. Forskolin inactivated NF-kappaB in K/Dau600 cells but not in K562 cl. 6 cells, whereas TNF activated NF-kappaB in K562 cl.6 cells but not in K/Dau600 cells. 8-Cl-cAMP exhibited similar inhibitory effects on the proliferation of all of the cell lines used via its metabolite 8-Cl-adenosine, which indicates that these effects were independent of residual PKA or cAMP. Therefore, the differential sensitivity to apoptosis and/or growth inhibition could be mediated via cAMP, partly through PKA via NF-kappaB and partly by PKA-independent pathways.
Collapse
Affiliation(s)
- Y Yin
- Department of Haematology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Turner Street, London E1 2AD, UK
| | | | | | | | | | | |
Collapse
|
13
|
Padmanabhan N, Jardine AG, McGrath JC, Connell JM. Angiotensin-converting enzyme-independent contraction to angiotensin I in human resistance arteries. Circulation 1999; 99:2914-20. [PMID: 10359736 DOI: 10.1161/01.cir.99.22.2914] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In vitro studies of myocardial tissue suggest that angiotensin II (Ang II) may be generated by both ACE and chymase. A similar dual pathway may exist in the vasculature. We studied the effects of ACE and chymase inhibitors on the contractile response to angiotensin I (Ang I) in human resistance arteries to investigate ACE-independent generation of Ang II. METHODS AND RESULTS Subcutaneous resistance arteries (250 to 350 microm) were obtained from gluteal biopsies from volunteers and New Zealand White rabbits and mounted on a wire myograph. Contractile ability was tested with high-potassium depolarization and norepinephrine 10 micromol/L and endothelial integrity by relaxation to acetylcholine 3 micromol/L. Cumulative concentration-response curves were constructed for Ang I in the presence of enalaprilat 1 micromol/L, chymostatin 10 micromol/L, or both inhibitors together. In the rabbit, enalaprilat completely inhibited the Ang I response. In human vessels, enalaprilat or chymostatin alone had no effect, but the combination of enalaprilat and chymostatin almost completely inhibited the response to Ang I. CONCLUSIONS A dual pathway for Ang II generation exists in human resistance arteries, mediated by ACE and a chymostatin-sensitive enzyme, probably chymase. We confirm that a marked species difference exists in the mechanism of Ang II generation between the human and the rabbit. More efficacious suppression of the renin-angiotensin system may require development of novel enzyme inhibitors or combinations of currently available drugs.
Collapse
Affiliation(s)
- N Padmanabhan
- Department of Medicine and Therapeutics, Western Infirmary, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | |
Collapse
|
14
|
Wei CC, Meng QC, Palmer R, Hageman GR, Durand J, Bradley WE, Farrell DM, Hankes GH, Oparil S, Dell'Italia LJ. Evidence for angiotensin-converting enzyme- and chymase-mediated angiotensin II formation in the interstitial fluid space of the dog heart in vivo. Circulation 1999; 99:2583-9. [PMID: 10330392 DOI: 10.1161/01.cir.99.19.2583] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We have previously demonstrated that angiotensin II (Ang II) levels in the interstitial fluid (ISF) space of the heart are higher than in the blood plasma and do not change after systemic infusion of Ang I. In this study, we assess the enzymatic mechanisms (chymase versus ACE) by which Ang II is generated in the ISF space of the dog heart in vivo. METHODS AND RESULTS Cardiac microdialysis probes were implanted in the left ventricular (LV) myocardium (3 to 4 probes per dog) of 12 anesthetized open-chest normal dogs. ISF Ang I and II levels were measured at baseline and during ISF infusion of Ang I (15 micromol/L, n=12), Ang I+the ACE inhibitor captopril (cap) (2.5 mmol/L, n=4), Ang I+the chymase inhibitor chymostatin (chy) (1 mmol/L, n=4), and Ang I+cap+chy (n=4). ISF infusion of Ang I increased ISF Ang II levels 100-fold (P<0.01), whereas aortic and coronary sinus plasma Ang I and II levels were unaffected and were 100-fold lower than ISF levels. Compared with ISF infusion of Ang I alone, Ang I+cap (n=4) produced a greater reduction in ISF Ang II levels than did Ang I+chy (n=4) (71% versus 43%, P<0.01), whereas Ang I+cap+chy produced a 100% decrease in ISF Ang II levels. CONCLUSIONS This study demonstrates for the first time a very high capacity for conversion of Ang I to Ang II mediated by both ACE and chymase in the ISF space of the dog heart in vivo.
Collapse
Affiliation(s)
- C C Wei
- Birmingham Veteran Affairs Medical Center, Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Zisman LS, Asano K, Dutcher DL, Ferdensi A, Robertson AD, Jenkin M, Bush EW, Bohlmeyer T, Perryman MB, Bristow MR. Differential regulation of cardiac angiotensin converting enzyme binding sites and AT1 receptor density in the failing human heart. Circulation 1998; 98:1735-41. [PMID: 9788827 DOI: 10.1161/01.cir.98.17.1735] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The regulation and interaction of ACE and the angiotensin II (Ang II) type I (AT1) receptor in the failing human heart are not understood. METHODS AND RESULTS Radioligand binding with 3H-ramiprilat was used to measure ACE protein in membrane preparations of hearts obtained from 36 subjects with idiopathic dilated cardiomyopathy (IDC), 8 subjects with primary pulmonary hypertension (PPH), and 32 organ donors with normal cardiac function (NF hearts). 125I-Ang II formation was measured in a subset of hearts. Saralasin (125I-(Sar1,Ile8)-Ang II) was used to measure total Ang II receptor density. AT1 and AT2 receptor binding were determined with the AT1 receptor antagonist losartan. Maximal ACE binding (Bmax) was 578+/-47 fmol/mg in IDC left ventricle (LV), 713+/-97 fmol/mg in PPH LV, and 325+/-27 fmol/mg in NF LV (P<0.001, IDC or PPH versus NF). In IDC, PPH, and NF right ventricles (RV), ACE Bmax was 737+/-78, 638+/-137, and 422+/-49 fmol/mg, respectively (P=0.02, IDC versus NF; P=0.08, PPH versus NF). 125I-Ang II formation correlated with ACE binding sites (r=0.60, P=0.00005). There was selective downregulation of the AT1 receptor subtype in failing PPH ventricles: 6.41+/-1.23 fmol/mg in PPH LV, 2.37+/-0.50 fmol/mg in PPH RV, 5.38+/-0.53 fmol/mg in NF LV, and 7.30+/-1.10 fmol/mg in NF RV (P=0.01, PPH RV versus PPH LV; P=0.0006, PPH RV versus NF RV). CONCLUSIONS ACE binding sites are increased in both failing IDC and nonfailing PPH ventricles. In PPH hearts, the AT1 receptor is downregulated only in the failing RV.
Collapse
Affiliation(s)
- L S Zisman
- Department of Medicine, Division of Cardiology, University of Colorado Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
van Kats JP, Danser AH, van Meegen JR, Sassen LM, Verdouw PD, Schalekamp MA. Angiotensin production by the heart: a quantitative study in pigs with the use of radiolabeled angiotensin infusions. Circulation 1998; 98:73-81. [PMID: 9665063 DOI: 10.1161/01.cir.98.1.73] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Beneficial effects of ACE inhibitors on the heart may be mediated by decreased cardiac angiotensin II (Ang II) production. METHODS AND RESULTS To determine whether cardiac Ang I and Ang II are produced in situ or derived from the circulation, we infused 125I-labeled Ang I or II into pigs (25 to 30 kg) and measured 125I-Ang I and II as well as endogenous Ang I and II in cardiac tissue and blood plasma. In untreated pigs, the tissue Ang II concentration (per gram wet weight) in different parts of the heart was 5 times the concentration (per milliliter) in plasma, and the tissue Ang I concentration was 75% of the plasma Ang I concentration. Tissue 125I-Ang II during 125I-Ang II infusion was 75% of 125I-Ang II in arterial plasma, whereas tissue 125I-Ang I during 125I-Ang I infusion was <4% of 125I-Ang I in arterial plasma. After treatment with the ACE inhibitor captopril (25 mg twice daily), Ang II fell in plasma but not in tissue, and Ang I and renin rose both in plasma and tissue, whereas angiotensinogen did not change in plasma and fell in tissue. Tissue 125I-Ang II derived by conversion from arterially delivered 125I-Ang I fell from 23% to <2% of 125I-Ang I in arterial plasma. CONCLUSIONS Most of the cardiac Ang II appears to be produced at tissue sites by conversion of in situ-synthesized rather than blood-derived Ang I. Our study also indicates that under certain experimental conditions, the heart can maintain its Ang II production, whereas the production of circulating Ang II is effectively suppressed.
Collapse
Affiliation(s)
- J P van Kats
- Department of Internal Medicine, Cardiovascular Research Institute Erasmus University Rotterdam (COEUR), The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
de Lannoy LM, Danser AH, Bouhuizen AM, Saxena PR, Schalekamp MA. Localization and production of angiotensin II in the isolated perfused rat heart. Hypertension 1998; 31:1111-7. [PMID: 9576122 DOI: 10.1161/01.hyp.31.5.1111] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We used a modification of the isolated perfused rat heart, in which coronary effluent and interstitial transudate were separately collected, to investigate the localization and production of angiotensin II (Ang II) in the heart. During combined renin (0.7 to 1.5 pmol Ang I/mL per minute) and angiotensinogen (6 to 12 pmol/mL) perfusion (4 to 8 mL/min) for 60 minutes (n=3), the steady-state levels of Ang II in interstitial transudate in two consecutive 10-minute periods were 4.3+/-1.5 and 3.6+/-1.5 fmol/mL compared with 1.1+/-0.4 and 1.1+/-0.6 fmol/mL in coronary effluent (mean+/-half range). During perfusion with Ang II (n=5), steady-state Ang II in interstitial transudate was 32+/-19% of arterial Ang II compared with 65+/-16% in coronary effluent (mean+/-SD, P<.02). During perfusion with Ang I (n=5), Ang II in interstitial transudate was 5.1+/-0.6% of arterial Ang I compared with 2.2+/-0.3% in coronary effluent (P<.05). The tissue concentration of Ang II in the combined renin/angiotensinogen perfusions (per gram) was as high as the concentration in interstitial transudate (per milliliter). Addition of losartan (10(-6) mol/L) to the renin/angiotensinogen perfusion (n=3) had no significant effect on the tissue level of Ang II, whereas losartan in the perfusions with Ang I (n=5) or Ang II (n=5) decreased tissue Ang II to undetectably low levels. The results indicate that the heart is capable of producing Ang II and that this can lead to higher levels in tissue than in blood plasma. Cardiac Ang II does not appear to be restricted to the extracellular fluid. This is in part due to AT1-receptor-mediated cellular uptake of extracellular Ang II, but our results also raise the possibility of intracellular Ang II production.
Collapse
Affiliation(s)
- L M de Lannoy
- Department of Internal Medicine I, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Boddi M, Poggesi L, Coppo M, Zarone N, Sacchi S, Tania C, Neri Serneri GG. Human vascular renin-angiotensin system and its functional changes in relation to different sodium intakes. Hypertension 1998; 31:836-42. [PMID: 9495269 DOI: 10.1161/01.hyp.31.3.836] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing body of evidence supports the existence of a tissue-based renin-angiotensin system (RAS) in the vasculature, but the functional capacity of vascular RAS was not investigated in humans. In 28 normotensive healthy control subjects, the metabolism of angiotensins through vascular tissue was investigated in normal, low, and high sodium diets by the measurement of arterial-venous gradient of endogenous angiotensin (Ang) I and Ang II in two different vascular beds (forearm and leg), combined with the study of 125I-Ang I and 125I-Ang II kinetics. In normal sodium diet subjects, forearm vascular tissue extracted 36+/-6% of 125I-Ang I and 30+/-5% of 125I-Ang II and added 14.9+/-5.1 fmol x 100 mL(-1) x min(-1) of de novo formed Ang I and 6.2+/-2.8 fmol x 100 mL(-1) x min(-1) of Ang II to antecubital venous blood. Fractional conversion of 125I-Ang I through forearm vascular tissue was about 12%. Low sodium diet increased (P<.01) plasma renin activity, whereas de novo Ang I and Ang II formation by forearm vascular tissue became undetectable. Angiotensin degradation (33+/-7% for Ang I and 30+/-7% for Ang II) was unchanged, and vascular fractional conversion of 125I-Ang I decreased from 12% to 6% (P<.01). In high sodium diet subjects, plasma renin activity decreased, and de novo Ang I and Ang II formation by forearm vascular tissue increased to 22 and 14 fmol x 100 mL(-1) x min(-1), respectively (P<.01). Angiotensin degradation did not significantly change, whereas fractional conversion of 125I-Ang I increased from 12% to 20% (P<.01). Leg vascular tissue functional activities of RAS paralleled those of forearm vascular tissue both at baseline and during different sodium intake. These results provide consistent evidence for the existence of a functional tissue-based RAS in vascular tissue of humans. The opposite changes of plasma renin activity and vascular angiotensin formation indicate that vascular RAS is independent from but related to circulating RAS.
Collapse
Affiliation(s)
- M Boddi
- Istituto di Medica Generale e Cardiologia, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Neri Serneri GG, Boddi M, Coppo M, Chechi T, Zarone N, Moira M, Poggesi L, Margheri M, Simonetti I. Evidence for the existence of a functional cardiac renin-angiotensin system in humans. Circulation 1996; 94:1886-93. [PMID: 8873664 DOI: 10.1161/01.cir.94.8.1886] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The presence of mRNA for the essential components of the renin-angiotensin system (RAS) has been found in animal and human hearts. The present study was designed to provide evidence for the existence of a (functional) cardiac RAS. METHODS AND RESULTS Twenty-four patients with atypical chest pain undergoing coronary angiography for diagnostic purposes were investigated. The cardiac production rate of angiotensins was estimated by measurement of the cardiac extraction of 125I-angiotensin I and 125I-angiotensin II associated with the determination of endogenous angiotensins in aortic and coronary sinus blood in normal, low, or high sodium diets. In a normal sodium diet, angiotensin I and II aorta-coronary sinus gradients were tendentially negative (-1.8 +/- 2.5 and -0.9 +/- 1.7 pg/mL, respectively), and the amounts of angiotensin I and II added by cardiac tissues were 6.5 +/- 3.1 and 2.7 +/- 1.3 pg/mL, respectively. The low sodium diet caused a significant increase in both plasma renin activity (PRA) and angiotensin I concentration in aortic but not in coronary sinus blood, resulting in a more negative aorta-coronary sinus gradient (-9.7 +/- 3.1 pg/mL, P < .01). Angiotensin formation by PRA in blood during transcardiac passage increased (P < .001), whereas angiotensin I formed by cardiac tissues decreased dramatically. Accordingly, in the low sodium diet, 125I-angiotensin II extraction did not change, the cardiac fractional conversion rate of 125I-angiotensin I to 125I-angiotensin II notably decreased (P < .01), and angiotensin II formation by cardiac tissues was undetectable. The high sodium diet caused a decrease in PRA and no changes in cardiac extraction of radiolabeled angiotensins; conversely, angiotensin I formed by cardiac tissues, cardiac Ang I fractional conversion rate, and angiotensin II formed during transcardiac passage significantly (P < .01 for all) increased. CONCLUSIONS These results provide evidence for the existence of a functional cardiac RAS independent of but related to the circulating RAS.
Collapse
Affiliation(s)
- G G Neri Serneri
- Istituto di Clinica Medica Generale e Cardiologia, University of Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Myers DE, Chandan-Langlie M, Chelstrom LM, Uckun FM. In vitro and in vivo anti-leukemic efficacy of cyclic AMP modulating agents against human leukemic B-cell precursors. Leuk Lymphoma 1996; 22:259-64. [PMID: 8819074 DOI: 10.3109/10428199609051756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We show that the adenylate cyclase activating diterpine, forskolin, the phosphodiesterase inhibitor, aminophylline, and the permeant cAMP analog dibutyryl cAMP inhibit the in vitro clonogenic growth of leukemic B-cell precursors. We also used a SCID mouse xenograft model of refractory human B-cell precursor leukemia to evaluate the anti-leukemic effect of aminophylline in vivo. Treatment with aminophylline (6 mg/kg bolus followed by 0.1-0.5 mg/kg/hour x 7 days) significantly prolonged the event-free survival of SCID mice (median survival of control mice, 39 days, N = 79; median survival of aminophylline-treated mice, 60 days, N = 10; P < 0.0001 by log-rank test) and it was more effective than treatment with vincristine (median survival = 51 days, N = 5) or L asparaginase (median survival = 44 days, N = 5). However, aminophylline was not as effective as methylprednisolone (median survival: 103 days, N = 5). These results indicate that cAMP modulating agents may be useful in treatment of refractory human B-cell precursor leukemia.
Collapse
Affiliation(s)
- D E Myers
- University of Minnesota Biotherapy Program, Roseville 55113, USA
| | | | | | | |
Collapse
|