1
|
Yamauchi K, Maekawa S, Osawa L, Komiyama Y, Nakakuki N, Takada H, Muraoka M, Suzuki Y, Sato M, Takano S, Enomoto N. Single-molecule sequencing of the whole HCV genome revealed envelope deletions in decompensated cirrhosis associated with NS2 and NS5A mutations. J Gastroenterol 2024; 59:1021-1036. [PMID: 39225750 DOI: 10.1007/s00535-024-02146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Defective hepatitis C virus (HCV) genomes with deletion of the envelope region have been occasionally reported by short-read sequencing analyses. However, the clinical and virological details of such deletion HCV have not been fully elucidated. METHODS We developed a highly accurate single-molecule sequencing system for full-length HCV genes by combining the third-generation nanopore sequencing with rolling circle amplification (RCA) and investigated the characteristics of deletion HCV through the analysis of 21 patients chronically infected with genotype-1b HCV. RESULT In 5 of the 21 patients, a defective HCV genome with approximately 2000 bp deletion from the E1 to NS2 region was detected, with the read frequencies of 34-77%, suggesting the trans-complementation of the co-infecting complete HCV. Deletion HCV was found exclusively in decompensated cirrhosis (5/12 patients), and no deletion HCV was observed in nine compensated patients. Comparing the amino acid substitutions between the deletion and complete HCV (DAS, deletion-associated substitutions), the deletion HCV showed higher amino acid mutations in the ISDR (interferon sensitivity-determining region) in NS5A, and also in the TMS (transmembrane segment) 3 to H (helix) 2 region of NS2. CONCLUSIONS Defective HCV genome with deletion of envelope genes is associated with decompensated cirrhosis. The deletion HCV seems susceptible to innate immunity, such as endogenous interferon with NS5A mutations, escaping from acquired immunity with deletion of envelope proteins with potential modulation of replication capabilities with NS2 mutations. The relationship between these mutations and liver damage caused by HCV deletion is worth investigating.
Collapse
Affiliation(s)
- Kozue Yamauchi
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shinya Maekawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Leona Osawa
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yasuyuki Komiyama
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Natsuko Nakakuki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Hitomi Takada
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Masaru Muraoka
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Yuichiro Suzuki
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Mitsuaki Sato
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Shinichi Takano
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | - Nobuyuki Enomoto
- Department of Gastroenterology and Hepatology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| |
Collapse
|
2
|
Brüggemann Y, Klöhn M, Wedemeyer H, Steinmann E. Hepatitis E virus: from innate sensing to adaptive immune responses. Nat Rev Gastroenterol Hepatol 2024; 21:710-725. [PMID: 39039260 DOI: 10.1038/s41575-024-00950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Hepatitis E virus (HEV) infections are a major cause of acute viral hepatitis in humans worldwide. In immunocompetent individuals, the majority of HEV infections remain asymptomatic and lead to spontaneous clearance of the virus, and only a minority of individuals with infection (5-16%) experience symptoms of acute viral hepatitis. However, HEV infections can cause up to 30% mortality in pregnant women, become chronic in immunocompromised patients and cause extrahepatic manifestations. A growing body of evidence suggests that the host immune response to infection with different HEV genotypes is a critical determinant of distinct HEV infection outcomes. In this Review, we summarize key components of the innate and adaptive immune responses to HEV, including the underlying immunological mechanisms of HEV associated with acute and chronic liver failure and interactions between T cell and B cell responses. In addition, we discuss the current status of vaccines against HEV and raise outstanding questions regarding the immune responses induced by HEV and treatment of the disease, highlighting areas for future investigation.
Collapse
Affiliation(s)
- Yannick Brüggemann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Sites Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany.
- German Center for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
3
|
Mechanisms and Consequences of Genetic Variation in Hepatitis C Virus (HCV). Curr Top Microbiol Immunol 2023; 439:237-264. [PMID: 36592248 DOI: 10.1007/978-3-031-15640-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic infection with hepatitis C virus (HCV) is an important contributor to the global incidence of liver diseases, including liver cirrhosis and hepatocellular carcinoma. Although common for single-stranded RNA viruses, HCV displays a remarkable high level of genetic diversity, produced primarily by the error-prone viral polymerase and host immune pressure. The high genetic heterogeneity of HCV has led to the evolution of several distinct genotypes and subtypes, with important consequences for pathogenesis, and clinical outcomes. Genetic variability constitutes an evasion mechanism against immune suppression, allowing the virus to evolve epitope escape mutants that avoid immune recognition. Thus, heterogeneity and variability of the HCV genome represent a great hindrance for the development of vaccines against HCV. In addition, the high genetic plasticity of HCV allows the virus to rapidly develop antiviral resistance mutations, leading to treatment failure and potentially representing a major hindrance for the cure of chronic HCV patients. In this chapter, we will present the central role that genetic diversity has in the viral life cycle and epidemiology of HCV. Incorporation errors and recombination, both the result of HCV polymerase activity, represent the main mechanisms of HCV evolution. The molecular details of both mechanisms have been only partially clarified and will be presented in the following sections. Finally, we will discuss the major consequences of HCV genetic diversity, namely its capacity to rapidly evolve antiviral and immunological escape variants that represent an important limitation for clearance of acute HCV, for treatment of chronic hepatitis C and for broadly protective vaccines.
Collapse
|
4
|
Chaturvedi N, Svarovskaia ES, Mo H, Osinusi AO, Brainard DM, Subramanian GM, McHutchison JG, Zeuzem S, Fellay J. Adaptation of hepatitis C virus to interferon lambda polymorphism across multiple viral genotypes. eLife 2019; 8:e42542. [PMID: 31478832 PMCID: PMC6721370 DOI: 10.7554/elife.42542] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/31/2019] [Indexed: 12/21/2022] Open
Abstract
Genetic polymorphism in the interferon lambda (IFN-λ) region is associated with spontaneous clearance of hepatitis C virus (HCV) infection and response to interferon-based treatment. Here, we evaluate associations between IFN-λ polymorphism and HCV variation in 8729 patients (Europeans 77%, Asians 13%, Africans 8%) infected with various viral genotypes, predominantly 1a (41%), 1b (22%) and 3a (21%). We searched for associations between rs12979860 genotype and variants in the NS3, NS4A, NS5A and NS5B HCV proteins. We report multiple associations in all tested proteins, including in the interferon-sensitivity determining region of NS5A. We also assessed the combined impact of human and HCV variation on pretreatment viral load and report amino acids associated with both IFN-λ polymorphism and HCV load across multiple viral genotypes. By demonstrating that IFN-λ variation leaves a large footprint on the viral proteome, we provide evidence of pervasive viral adaptation to innate immune pressure during chronic HCV infection.
Collapse
Affiliation(s)
- Nimisha Chaturvedi
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | | | - Hongmei Mo
- Gilead Sciences IncFoster CityUnited States
| | | | | | | | | | | | - Jacques Fellay
- School of Life SciencesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
- Precision Medicine UnitLausanne University HospitalLausanneSwitzerland
| |
Collapse
|
5
|
A Species-Correlated Transitional Residue D132 on Human FMRP Plays a Role in Nuclear Localization via an RNA-Dependent Interaction With PABP1. Neuroscience 2019; 404:282-296. [DOI: 10.1016/j.neuroscience.2019.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/16/2018] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
|
6
|
Sharma G, Raheja H, Das S. Hepatitis C virus: Enslavement of host factors. IUBMB Life 2018; 70:41-49. [PMID: 29281185 DOI: 10.1002/iub.1702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) has infected over 170 million people world-wide. This infection causes severe liver damage that can progress to hepatocellular carcinoma leading to death of the infected patients. Development of a cell culture model system for the study of HCV infection in the recent past has helped the researchers world-wide to understand the biology of this virus. Studies over the past decade have revealed the tricks played by the virus to sustain itself, for as long as 40 years, in the host setup without being eliminated by the immune system. Today we understand that the host organelles and different cellular proteins are affected during HCV infection. This cytoplasmic virus has all the cellular organelles at its disposal to successfully replicate, from ribosomes and intracellular membranous structures to the nucleus. It modulates these organelles at both the structural and the functional levels. The vast knowledge about the viral genome and viral proteins has also helped in the development of drugs against the virus. Despite the achieved success rate to cure the infected patients, we struggle to eliminate the cases of recurrence and the non-responders. Such cases might emerge owing to the property of the viral genome to accumulate mutations during its succeeding replication cycles which favours its survival. The current situation calls an urgent need for alternate therapeutic strategies to counter this major problem of human health. © 2017 IUBMB Life, 70(1):41-49, 2018.
Collapse
Affiliation(s)
- Geetika Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Harsha Raheja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| |
Collapse
|
7
|
Rahamathulla S, Ratnagiri BSVV, Manickam M, Sultana S, Mamatha DM, Magisetty O, Nagarapu R, Ponamgi SPD. Determination of Sustained Virological Response in Hepatitis C Virus Genotypes by the Number of Mutations in the E2 and NS5A-ISDR Regions: A Meta-Analysis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418090119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Chen S, Yang C, Zhang W, Mahalingam S, Wang M, Cheng A. Flaviviridae virus nonstructural proteins 5 and 5A mediate viral immune evasion and are promising targets in drug development. Pharmacol Ther 2018; 190:1-14. [PMID: 29742479 DOI: 10.1016/j.pharmthera.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Infections with viruses in the Flaviviridae family have a vast global and economic impact because of the high morbidity and mortality. The pathogenesis of Flaviviridae infections is very complex and not fully understood because these viruses can inhibit multiple immune pathways including the complement system, NK cells, and IFN induction and signalling pathways. The non-structural (NS) 5 and 5A proteins of Flaviviridae viruses are highly conserved and play an important role in resisting host immunity through various evasion mechanisms. This review summarizes the strategies used by the NS5 and 5A proteins of Flaviviridae viruses for evading the innate immune response by inhibiting pattern recognition receptor (PRR) signalling pathways (TLR/MyD88, IRF7), suppressing interferon (IFN) signalling pathways (IFN-γRs, STAT1, STAT2), and impairing the function of IFN-stimulated genes (ISGs) (e.g. protein kinase R [PKR], oligoadenylate synthase [OAS]). All of these immune evasion mechanisms depend on the interaction of NS5 or NS5A with cellular proteins, such as MyD88 and IRF7, IFN-αRs, IFN-γRs, STAT1, STAT2, PKR and OAS. NS5 is the most attractive target for the discovery of broad spectrum compounds against Flaviviridae virus infection. The methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) activities of NS5 are the main therapeutic targets for antiviral drugs against Flaviviridae virus infection. Based on our site mapping, the sites involved in immune evasion provide some potential and promising targets for further novel antiviral therapeutics.
Collapse
Affiliation(s)
- Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| | - Chao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Wei Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Suresh Mahalingam
- Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan 611130, China.
| |
Collapse
|
9
|
Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. World J Hepatol 2018; 10:186-212. [PMID: 29527256 PMCID: PMC5838439 DOI: 10.4254/wjh.v10.i2.186] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver diseases including liver cirrhosis and hepatocellular carcinoma. Approximately 3% of the world population is infected with HCV. Thus, HCV infection is considered a public healthy challenge. It is worth mentioning, that the HCV prevalence is dependent on the countries with infection rates around 20% in high endemic countries. The review summarizes recent data on HCV molecular biology, the physiopathology of infection (immune-mediated liver damage, liver fibrosis and lipid metabolism), virus diagnostic and treatment. In addition, currently available in vitro, ex vivo and animal models to study the virus life cycle, virus pathogenesis and therapy are described. Understanding of both host and viral factors may in the future lead to creation of new approaches in generation of an efficient therapeutic vaccine.
Collapse
Affiliation(s)
- Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Sylvie Lagaye
- Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
| |
Collapse
|
10
|
Frequency of Interferon-Resistance Conferring Substitutions in Amino Acid Positions 70 and 91 of Core Protein of the Russian HCV 1b Isolates Analyzed in the T-Cell Epitopic Context. J Immunol Res 2018; 2018:7685371. [PMID: 29577052 PMCID: PMC5821972 DOI: 10.1155/2018/7685371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
Amino acid substitutions R70Q/H and L91M in HCV subtype 1b core protein can affect the response to interferon and are associated with the development of hepatocellular carcinoma. We found that the rate of R70Q/H in HCV 1b from Russia was 31.2%, similar to that in HCV strains from Asia (34.0%), higher than that in the European (18.0%, p = 0.0010), but lower than that in the US HCV 1b strains (62.8%, p < 0.0001). Substitution L91M was found in 80.4% of the Russian HCV 1b isolates, higher than in Asian isolates (43.8%, p < 0.0001). Thus, a significant proportion of Russian HCV 1b isolates carry the unfavorable R70Q/H and/or L91M substitution. In silico analysis of the epitopic structure of the regions of substitutions revealed that both harbor clusters of T-cell epitopes. Peptides encompassing these regions were predicted to bind to a panel of HLA class I molecules, with substitutions impairing peptide recognition by HLA I molecules of the alleles prevalent in Russia. This indicates that HCV 1b with R70Q/H and L91M substitutions may have evolved as the immune escape variants. Impairment of T-cell recognition may play a part in the negative effect of these substitutions on the response to IFN treatment.
Collapse
|
11
|
Beldar S, Manimekalai MSS, Cho NJ, Baek K, Grüber G, Yoon HS. Self-association and conformational variation of NS5A domain 1 of hepatitis C virus. J Gen Virol 2018; 99:194-208. [PMID: 29300159 DOI: 10.1099/jgv.0.001000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Direct-acting antivirals (DAAs) targeting the non-structural 5A (NS5A) protein of the hepatitis C virus (HCV) are crucial drugs that have shown exceptional clinical success in patients. However, their mode of action (MoA) remains unclear, and drug-resistant HCV strains are rapidly emerging. It is critical to characterize the behaviour of the NS5A protein in solution, which can facilitate the development of new classes of inhibitors or improve the efficacy of the currently available DAAs. Using biophysical methods, including dynamic light scattering, size exclusion chromatography and chemical cross-linking experiments, we showed that the NS5A domain 1 from genotypes 1b and 1a of the HCV intrinsically self-associated and existed as a heterogeneous mixture in solution. Interestingly, the NS5A domain 1 from genotypes 1b and 1a exhibited different dynamic equilibria of monomers to higher-order structures. Using small-angle X-ray scattering, we studied the structural dynamics of the various states of the NS5A domain 1 in solution. We also tested the effect of daclatasvir (DCV), the most prominent DAA, on self-association of the wild and DCV-resistant mutant (Y93H) NS5A domain 1 proteins, and demonstrated that DCV induced the formation of large and irreversible protein aggregates that eventually precipitated out. This study highlights the conformational variability of the NS5A domain 1 of HCV, which may be an intrinsic structural behaviour of the HCV NS5A domain 1 in solution.
Collapse
Affiliation(s)
- Serap Beldar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ho Sup Yoon
- Department of Genetic Engineering, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, 446-701, Republic of Korea.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
12
|
Sugiyama R, Murayama A, Nitta S, Yamada N, Tasaka-Fujita M, Masaki T, Aly HH, Shiina M, Ryo A, Ishii K, Wakita T, Kato T. Interferon sensitivity-determining region of hepatitis C virus influences virus production and interferon signaling. Oncotarget 2017; 9:5627-5640. [PMID: 29464023 PMCID: PMC5814163 DOI: 10.18632/oncotarget.23562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/27/2017] [Indexed: 02/06/2023] Open
Abstract
The number of amino acid substitutions in the interferon (IFN) sensitivity-determining region (ISDR) of hepatitis C virus (HCV) NS5A is a strong predictor for the outcome of IFN-based treatment. To assess the involvement of ISDR in the HCV life cycle and to clarify the molecular mechanisms influencing IFN susceptibility, we used recombinant JFH-1 viruses with NS5A of the genotype 1b Con1 strain (JFH1/5ACon1) and with NS5A ISDR containing 7 amino acid substitutions (JFH1/5ACon1/i-7mut), and compared the virus propagation and the induction of interferon-stimulated genes (ISGs). By transfecting RNAs of these strains into HuH-7-derived cells, we found that the efficiency of infectious virus production of JFH1/5ACon1/i-7mut was attenuated compared with JFH1/5ACon1. After transfecting full-length HCV RNA into HepaRG cells, the mRNA expression of ISGs was sufficiently induced by IFN treatment in JFH1/5ACon1/i-7mut-transfected but not in JFH1/5ACon1-transfected cells. These data suggested that the NS5A-mediated inhibition of ISG induction was deteriorated by amino acid substitutions in the ISDR. In conclusion, using recombinant JFH-1 viruses, we demonstrated that HCV NS5A is associated with infectious virus production and the inhibition of IFN signaling, and amino acid substitutions in the NS5A ISDR deteriorate these functions. These observations explain the strain-specific evasion of IFN signaling by HCV.
Collapse
Affiliation(s)
- Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asako Murayama
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sayuri Nitta
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan.,Faculty of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Norie Yamada
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Megumi Tasaka-Fujita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Masaki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Present address: Department of Laboratory Medicine, The Jikei University School of Medicine, Nishi-shinbashi, Minato-ku, Tokyo, Japan
| | - Hussein Hassan Aly
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masaaki Shiina
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Gastroenterology and Hepatology, Shin-Yurigaoka General Hospital, Kawasaki, Japan
| | - Akihide Ryo
- Department of Microbiology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Koji Ishii
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
13
|
Muñoz de Rueda P, Fuentes Rodríguez JM, Quiles Pérez R, Gila Medina A, Martín Álvarez AB, Casado Ruíz J, Ruíz Extremera A, Salmerón J. Hepatitis C virus NS5A region mutation in chronic hepatitis C genotype 1 patients who are non-responders to two or more treatments and its relationship with response to a new treatment. World J Gastroenterol 2017; 23:4538-4547. [PMID: 28740342 PMCID: PMC5504369 DOI: 10.3748/wjg.v23.i25.4538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/24/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the number of mutations in the NS5A region of the hepatitis C virus (HCV) and its relationship to the response to antiviral therapy in patients with chronic hepatitis C genotype 1 who are non-responders to two or more treatments.
METHODS Sequences within HCV NS5A [PKR binding domain (PKRBD) and the interferon-sensitivity-determining region (ISDR)] were analysed via direct sequencing in a selected cohort of 72 patients, with a total of 201 treatments [interferon-alpha (IFN-α), n = 49; IFN-α + ribavirin (RBV), n = 75; pegylated (peg) IFN-α + RBV, n = 47; first-generation direct-acting antivirals (DAAs), n = 13; and second-generation DAAs, n = 17]. Of these, 48/201 achieved a sustained virological response (SVR) and 153/201 achieved no virological response (NVR).
RESULTS For both regions, treatments resulting in SVR were associated with more baseline mutations than were treatments resulting in NVR (SVR vs NVR; PKRBD: 5.82 ± 3 vs 4.86 ± 2 mutations, P = 0.045; ISDR: 2.65 ± 2 vs 1.51 ± 1.7 mutations, P = 0.005). A decrease or no change in the number of mutations over time between treatments in the PKRBD or ISDR, as shown by sequencing, was associated with patients who usually failed to respond to treatment (PKRBD, P = 0.02; ISDR, P = 0.001). Moreover, patients showing a post-treatment baseline viral load > 600000 IU/mL and increased ISDR mutations with respect to the previous treatment were 9.21 times more likely to achieve SVR (P = 0.001).
CONCLUSION The obtained results show that among patients who have shown no response to two or more antiviral treatments, the likelihood of achieving SVR increases with the genetic variability in the ISDR region (≥ 2 mutations or number of substitutions from the HCV-J and HCV-1 prototype), especially when the viral load is greater than 600000 IU/mL.
Collapse
|
14
|
Singh A, Mankotia DS, Irshad M. A Single-step Multiplex Quantitative Real Time Polymerase Chain Reaction Assay for Hepatitis C Virus Genotypes. J Transl Int Med 2017; 5:34-42. [PMID: 28680837 DOI: 10.1515/jtim-2017-0010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The variable response of hepatitis C virus (HCV) genotypes towards anti-viral treatment requires prior information on the genotype status before planning a therapeutic strategy. Although assays for typing or subtyping of HCV are available, however, a fast and reliable assay system is still needed. The present study was planned to develop a single-step multiplex quantitative real time polymerase chain reaction (qPCR) assay to determine HCV genotypes in patients' sera. METHODS The conserved sequences from 5' UTR, core and NS5b regions of HCV genome were used to design primers and hydrolysis probes labeled with fluorophores. Starting with the standardization of singleplex (qPCR) for each individual HCV-genotype, the experimental conditions were finally optimized for the development of multiplex assay. The sensitivity and specificity were assessed both for singleplex and multiplex assays. Using the template concentration of 102 copies per microliter, the value of quantification cycle (Cq) and the limit of detection (LOD) were also compared for both singleplex and multiplex assays. Similarly, the merit of multiplex assay was also compared with sequence analysis and restriction fragment length polymorphism (RFLP) techniques used for HCV genotyping. In order to find the application of multiplex qPCR assay, it was used for genotyping in a panel of 98 sera positive for HCV RNA after screening a total number of 239 patients with various liver diseases. RESULTS The results demonstrated the presence of genotype 1 in 26 of 98 (26.53%) sera, genotype 3 in 65 (66.32%) and genotype 4 in 2 (2.04%) sera samples, respectively. One sample showed mixed infection of genotype 1 and 3. Five samples could not show the presence of any genotype. Genotypes 2, 5 and 6 could not be detected in these sera samples. The analysis of sera by singleplex and RFLP indicated the results of multiplex to be comparable with singleplex and with clear merit of multiplex over RFLP. In addition, the results of multiplex assay were also found to be comparable with those from sequence analysis. The sensitivity, specificity, Cq values and LOD values were compared and found to be closely associated both for singleplex and multiplex assays. CONCLUSION The multiplex qPCR assay was found to be a fast, specific and sensitive method that can be used as a technique of choice for HCV genotyping in all routine laboratories.
Collapse
Affiliation(s)
- Akanksha Singh
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Dhananjay Singh Mankotia
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Mohammad Irshad
- Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
15
|
Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. Proc Natl Acad Sci U S A 2017; 114:2018-2023. [PMID: 28159892 DOI: 10.1073/pnas.1614623114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hepatitis C virus (HCV) encodes mechanisms to evade the multilayered antiviral actions of the host immune system. Great progress has been made in elucidating the strategies HCV employs to down-regulate interferon (IFN) production, impede IFN signaling transduction, and impair IFN-stimulated gene (ISG) expression. However, there is a limited understanding of the mechanisms governing how viral proteins counteract the antiviral functions of downstream IFN effectors due to the lack of an efficient approach to identify such interactions systematically. To study the mechanisms by which HCV antagonizes the IFN responses, we have developed a high-throughput profiling platform that enables mapping of HCV sequences critical for anti-IFN function at high resolution. Genome-wide profiling performed with a 15-nt insertion mutant library of HCV showed that mutations in the p7 region conferred high levels of IFN sensitivity, which could be alleviated by the expression of WT p7 protein. This finding suggests that p7 protein of HCV has an immune evasion function. By screening a liver-specific ISG library, we identified that IFI6-16 significantly inhibits the replication of p7 mutant viruses without affecting WT virus replication. In contrast, knockout of IFI6-16 reversed the IFN hypersensitivity of p7 mutant virus. In addition, p7 was found to be coimmunoprecipitated with IFI6-16 and to counteract the function of IFI6-16 by depolarizing the mitochondria potential. Our data suggest that p7 is a critical immune evasion protein that suppresses the antiviral IFN function by counteracting the function of IFI6-16.
Collapse
|
16
|
Hayes CN, Chayama K. Interferon stimulated genes and innate immune activation following infection with hepatitis B and C viruses. J Med Virol 2016; 89:388-396. [DOI: 10.1002/jmv.24659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 12/28/2022]
Affiliation(s)
- C. Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
- Liver Research Project Center; Hiroshima University; Hiroshima Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
- Liver Research Project Center; Hiroshima University; Hiroshima Japan
- Laboratory for Digestive Diseases; Center for Genomic Medicine, RIKEN; Hiroshima Japan
| |
Collapse
|
17
|
Bukh J. The history of hepatitis C virus (HCV): Basic research reveals unique features in phylogeny, evolution and the viral life cycle with new perspectives for epidemic control. J Hepatol 2016; 65:S2-S21. [PMID: 27641985 DOI: 10.1016/j.jhep.2016.07.035] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
Abstract
The discovery of hepatitis C virus (HCV) in 1989 permitted basic research to unravel critical components of a complex life cycle for this important human pathogen. HCV is a highly divergent group of viruses classified in 7 major genotypes and a great number of subtypes, and circulating in infected individuals as a continuously evolving quasispecies destined to escape host immune responses and applied antivirals. Despite the inability to culture patient viruses directly in the laboratory, efforts to define the infectious genome of HCV resulted in development of experimental recombinant in vivo and in vitro systems, including replicons and infectious cultures in human hepatoma cell lines. And HCV has become a model virus defining new paradigms in virology, immunology and biology. For example, HCV research discovered that a virus could be completely dependent on microRNA for its replication since microRNA-122 is critical for the HCV life cycle. A number of other host molecules critical for HCV entry and replication have been identified. Thus, basic HCV research revealed important molecules for development of host targeting agents (HTA). The identification and characterization of HCV encoded proteins and their functional units contributed to the development of highly effective direct acting antivirals (DAA) against the NS3 protease, NS5A and the NS5B polymerase. In combination, these inhibitors have since 2014 permitted interferon-free therapy with cure rates above 90% among patients with chronic HCV infection; however, viral resistance represents a challenge. Worldwide control of HCV will most likely require the development of a prophylactic vaccine, and numerous candidates have been pursued. Research characterizing features critical for antibody-based virus neutralization and T cell based virus elimination from infected cells is essential for this effort. If the world community promotes an ambitious approach by applying current DAA broadly, continues to develop alternative viral- and host- targeted antivirals to combat resistant variants, and invests in the development of a vaccine, it would be possible to eradicate HCV. This would prevent about 500 thousand deaths annually. However, given the nature of HCV, the millions of new infections annually, a high chronicity rate, and with over 150 million individuals with chronic infection (which are frequently unidentified), this effort remains a major challenge for basic researchers, clinicians and communities.
Collapse
Affiliation(s)
- Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
18
|
Cuypers L, Snoeck J, Kerremans L, Libin P, Crabbé R, Van Dooren S, Vuagniaux G, Vandamme AM. HCV1b genome evolution under selective pressure of the cyclophilin inhibitor alisporivir during the DEB-025-HCV-203 phase II clinical trial. INFECTION GENETICS AND EVOLUTION 2016; 44:169-181. [PMID: 27374748 DOI: 10.1016/j.meegid.2016.06.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Major advances have revolutionized the HCV antiviral treatment field, with interferon-free combinations of direct-acting antivirals (DAAs) resulting into success rates of >90% for all HCV genotypes. Nevertheless, viral eradication at a global level stills remains challenging, stimulating the continued search for new affordable pan-genotypic drugs. To overcome selection of drug resistant variants, targeting host proteins can be an attractive mechanism of action. Alisporivir (Debio 025) is a potent pan-genotypic host-targeting antiviral agent, acting on cyclophilin A, which is necessary for HCV replication. The efficacy and safety of three different oral doses of alisporivir in combination with pegylated interferon-α2a given over a period of four weeks, was investigated in a randomized, double-blind and placebo-controlled phase IIa clinical trial, in 90 treatment-naïve subjects infected with chronic hepatitis C, wherefrom 58 HCV1b samples were selected for genetic sequencing purposes. Sequencing results were used to study the HCV genome for amino acid changes potentially related with selective pressure and resistance to alisporivir. By comparing baseline and on-treatment sequences, a large variation in proportion of amino acid changes was detected in all treatment arms. The NS5A variant D320E, which was previously identified during in vitro resistance selection and resulted in 3.6-fold reduced alisporivir susceptibility, emerged in two subjects in the alisporivir monotherapy arm. However, emergence of D320E appeared to be associated only with concurrent viral load rebound in one subject with 0.8log10IU/ml increase in HCV RNA. In general, for all datasets, low numbers of positions under positive selective pressure were observed, with no significant differences between naïve and treated sequences. Additionally, incomplete sequence information for some of the 22 patients and the low number of individuals per treatment arm, is limiting the power to assess the association of alisporivir or interferon treatment with the observed amino acid changes.
Collapse
Affiliation(s)
- Lize Cuypers
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Joke Snoeck
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Lien Kerremans
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Pieter Libin
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Raf Crabbé
- Debiopharm International S.A., Che. Messidor 5-7, P.O. Box 5911, 1002 Lausanne, Switzerland.
| | - Sonia Van Dooren
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium.
| | - Grégoire Vuagniaux
- Debiopharm International S.A., Che. Messidor 5-7, P.O. Box 5911, 1002 Lausanne, Switzerland.
| | - Anne-Mieke Vandamme
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Minderbroedersstraat 10, 3000 Leuven, Belgium; Center for Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Jungquiera 100, 1349-008 Lisbon, Portugal.
| |
Collapse
|
19
|
Kumthip K, Maneekarn N. The role of HCV proteins on treatment outcomes. Virol J 2015; 12:217. [PMID: 26666318 PMCID: PMC4678629 DOI: 10.1186/s12985-015-0450-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
For many years, the standard of treatment for hepatitis C virus (HCV) infection was a combination of pegylated interferon alpha (Peg-IFN-α) and ribavirin for 24–48 weeks. This treatment regimen results in a sustained virologic response (SVR) rate in about 50 % of cases. The failure of IFN-α-based therapy to eliminate HCV is a result of multiple factors including a suboptimal treatment regimen, severity of HCV-related diseases, host factors and viral factors. In recent years, advances in HCV cell culture have contributed to a better understanding of the viral life cycle, which has led to the development of a number of direct-acting antiviral agents (DAAs) that target specific key components of viral replication, such as HCV NS3/4A, HCV NS5A, and HCV NS5B proteins. To date, several new drugs have been approved for the treatment of HCV infection. Application of DAAs with IFN-based or IFN-free regimens has increased the SVR rate up to >90 % and has allowed treatment duration to be shortened to 12–24 weeks. The impact of HCV proteins in response to IFN-based and IFN-free therapies has been described in many reports. This review summarizes and updates knowledge on molecular mechanisms of HCV proteins involved in anti-IFN activity as well as examining amino acid variations and mutations in several regions of HCV proteins associated with the response to IFN-based therapy and pattern of resistance associated amino acid variants (RAV) to antiviral agents.
Collapse
Affiliation(s)
- Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
20
|
Carnero E, Fortes P. HCV infection, IFN response and the coding and non-coding host cell genome. Virus Res 2015; 212:85-102. [PMID: 26454190 DOI: 10.1016/j.virusres.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
HCV is an ideal model to study how the infected cell is altered to allow the establishment of a chronic infection. After infection, the transcriptome of the cell changes in response to the virus or to the antiviral pathways induced by infection. The cell has evolved to sense HCV soon after infection and to activate antiviral pathways. In turn, HCV has evolved to block the antiviral pathways induced by the cell and, at the same time, to use some for its own benefit. In this review, we summarize the proviral and antiviral factors induced in HCV infected cells. These factors can be proteins and microRNAs, but also long noncoding RNAs (lncRNAs) that are induced by infection. Interestingly, several of the lncRNAs upregulated after HCV infection have oncogenic functions, suggesting that upregulation of lncRNAs could explain, at least in part, the increased rate of liver tumors observed in HCV-infected patients. Other lncRNAs induced by HCV infection may regulate the expression of coding genes required for replication or control genes involved in the cellular antiviral response. Given the evolutionary pressure imposed by viral infections and that lncRNAs are specially targeted by evolution, we believe that the study of proviral and antiviral lncRNAs may lead to unexpected discoveries that may have a strong impact on basic science and translational research.
Collapse
Affiliation(s)
- Elena Carnero
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
21
|
Effect of Hepatitis C Virus Genotype 1b Core and NS5A Mutations on Response to Peginterferon Plus Ribavirin Combination Therapy. Int J Mol Sci 2015; 16:21177-90. [PMID: 26370958 PMCID: PMC4613248 DOI: 10.3390/ijms160921177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022] Open
Abstract
We examined whether hepatitis C virus (HCV) genotype 1b core- and NS5A-region mutations are associated with response to peginterferon α-2b plus ribavirin combination therapy. A total of 103 patients with high HCV genotype 1b viral loads (≥100 KIU/mL) were treated with the combination therapy. Pretreatment mutations in the core region and interferon sensitivity determining region (ISDR) in the NS5A region were analyzed. In univariate analysis, arginine and leucine at positions 70 and 91 in the core region, defined as double wild (DW)-type, were associated with early virologic response (p = 0.002), sustained virologic response (SVR) (p = 0.004), and non-response (p = 0.005). Non-threonine at position 110 was associated with SVR (p = 0.004). Multivariate analysis showed the following pretreatment predictors of SVR: hemoglobin level ≥ 14 g/dL (odds ratio (OR) 6.2, p = 0.04); platelet count ≥ 14 × 104/mm3 (OR 5.2, p = 0.04); aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio < 0.9 (OR 6.17, p = 0.009); DW-type (OR 6.8, p = 0.02); non-threonine at position 110 (OR 14.5, p = 0.03); and ≥2 mutations in the ISDR (OR 12.3, p = 0.02). Patients with non-DW-type, non-threonine at position 110, and <2 ISDR mutations showed significantly lower SVR rates than others (11/45 (24.4%) vs. 27/37 (73.0%), respectively; p < 0.001). SVR can be predicted through core and NS5A region mutations and host factors like hemoglobin, platelet count, and AST/ALT ratio in HCV genotype 1b-infected patients treated with peginterferon and ribavirin combination therapy.
Collapse
|
22
|
Akamatsu S, Hayes CN, Ochi H, Uchida T, Kan H, Murakami E, Abe H, Tsuge M, Miki D, Akiyama R, Hiraga N, Imamura M, Aikata H, Kawaoka T, Kawakami Y, Chayama K. Association between variants in the interferon lambda 4 locus and substitutions in the hepatitis C virus non-structural protein 5A. J Hepatol 2015; 63:554-63. [PMID: 25849245 DOI: 10.1016/j.jhep.2015.03.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/25/2015] [Accepted: 03/25/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Single nucleotide polymorphisms within the interferon lambda 4 (IFNL4) locus are strongly associated with spontaneous clearance of hepatitis C virus (HCV) infection and early viral response to interferon therapy. Interaction between host genotype and amino acid substitutions might also influence the risk of antiviral resistance in interferon-free direct acting antiviral (DAA) therapies. METHODS The relationship between IFNL4 genotype and HCV substitutions was analyzed in 929 patients with chronic HCV genotype 1b infection. Ultra-deep sequencing and quasispecies reconstruction was performed on the N-terminal region of NS5A in 57 patients. RESULTS IFNL4 genotype was strongly associated with HCV NS5A Y93 and core protein substitutions, and the number and diversity of predicted quasispecies was marginally greater in IFNL4 TT/TT patients compared to TT/ΔG, ΔG/ΔG patients. RNA secondary structure prediction of the NS5A region suggests that variable sites are more likely to occupy unpaired, high entropy positions. CONCLUSIONS HCV infection is proposed to induce a more efficient antiviral response in individuals with the IFNL4 TT/TT genotype that results either in viral clearance or selection for viral adaptations. The association between IFNL4 TT/TT genotype and Y93 substitutions may impact the risk of antiviral resistance in NS5A inhibitors in DAA therapy.
Collapse
Affiliation(s)
- Sakura Akamatsu
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - C Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
| | - Hidenori Ochi
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
| | - Takuro Uchida
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Kan
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
| | - Masataka Tsuge
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
| | - Rie Akiyama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Tomokazu Kawaoka
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
| | - Yoshiiku Kawakami
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan; Liver Research Project Center, Hiroshima University, Hiroshima, Japan; Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan.
| |
Collapse
|
23
|
Yoshimi S, Ochi H, Murakami E, Uchida T, Kan H, Akamatsu S, Hayes CN, Abe H, Miki D, Hiraga N, Imamura M, Aikata H, Chayama K. Rapid, Sensitive, and Accurate Evaluation of Drug Resistant Mutant (NS5A-Y93H) Strain Frequency in Genotype 1b HCV by Invader Assay. PLoS One 2015; 10:e0130022. [PMID: 26083687 PMCID: PMC4470996 DOI: 10.1371/journal.pone.0130022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 05/16/2015] [Indexed: 02/06/2023] Open
Abstract
Daclatasvir and asunaprevir dual oral therapy is expected to achieve high sustained virological response (SVR) rates in patients with HCV genotype 1b infection. However, presence of the NS5A-Y93H substitution at baseline has been shown to be an independent predictor of treatment failure for this regimen. By using the Invader assay, we developed a system to rapidly and accurately detect the presence of mutant strains and evaluate the proportion of patients harboring a pre-treatment Y93H mutation. This assay system, consisting of nested PCR followed by Invader reaction with well-designed primers and probes, attained a high overall assay success rate of 98.9% among a total of 702 Japanese HCV genotype 1b patients. Even in serum samples with low HCV titers, more than half of the samples could be successfully assayed. Our assay system showed a better lower detection limit of Y93H proportion than using direct sequencing, and Y93H frequencies obtained by this method correlated well with those of deep-sequencing analysis (r = 0.85, P <0.001). The proportion of the patients with the mutant strain estimated by this assay was 23.6% (164/694). Interestingly, patients with the Y93H mutant strain showed significantly lower ALT levels (p=8.8 x 10-4), higher serum HCV RNA levels (p=4.3 x 10-7), and lower HCC risk (p=6.9 x 10-3) than those with the wild type strain. Because the method is both sensitive and rapid, the NS5A-Y93H mutant strain detection system established in this study may provide important pre-treatment information valuable not only for treatment decisions but also for prediction of disease progression in HCV genotype 1b patients.
Collapse
Affiliation(s)
- Satoshi Yoshimi
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hidenori Ochi
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Eisuke Murakami
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Takuro Uchida
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Kan
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Sakura Akamatsu
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - C. Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiromi Abe
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Daiki Miki
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Aikata
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Laboratory for Digestive Diseases, Center for Genomic Medicine, RIKEN, Hiroshima, Japan
- Liver Research Project Center, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
24
|
IFN-λ: A New Class of Interferon with Distinct Functions-Implications for Hepatitis C Virus Research. Gastroenterol Res Pract 2015; 2015:796461. [PMID: 26078754 PMCID: PMC4452855 DOI: 10.1155/2015/796461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/06/2015] [Indexed: 12/14/2022] Open
Abstract
Pegylated interferon-α and ribavirin (PEG-IFN/RBV) is widely used to treat chronic hepatitis C virus infection with notorious adverse reactions since the broad expression of IFN-α receptors on all nucleated cells. Accordingly, a Type III IFN with restricted receptors distribution is much safer as an alternative for HCV therapy. In addition, single nucleotide polymorphisms (SNPs) near the human IFN-λ3 gene, IL-28B, correlate strongly with the ability to achieve a sustained virological response (SVR) to therapy with pegylated IFN-α plus ribavirin in patients infected with chronic hepatitis C. Furthermore, we also discuss the most recent findings: IFN-λ4 predicts treatment outcomes of HCV infection. In consideration of the apparent limitations of current HCV therapy, especially high failure rate and universal side effects, prediction of treatment outcomes prior to the initiation of treatment and developing new alternative drugs are two important goals in HCV research.
Collapse
|
25
|
Chu PS, Ebinuma H, Nakamoto N, Sugiyama K, Usui S, Wakayama Y, Taniki N, Yamaguchi A, Shiba S, Yamagishi Y, Wakita T, Hibi T, Saito H, Kanai T. Genotype-Associated Differential NKG2D Expression on CD56+CD3+ Lymphocytes Predicts Response to Pegylated-Interferon/Ribavirin Therapy in Chronic Hepatitis C. PLoS One 2015; 10:e0125664. [PMID: 25965701 PMCID: PMC4428701 DOI: 10.1371/journal.pone.0125664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) genotype 1 infections are significantly more difficult to eradicate with PEG-IFN/ribavirin therapy, compared to HCV genotype 2. The aim of this work is to investigate the difference of immunological impairments underlying this phenomenon. Pre-treatment NKG2D expression on peripheral CD56+CD3+ lymphocytes and CD56+CD3- NK cells from cases of chronic hepatitis C were analyzed and assessed by treatment effect. Two strains of HCV were used to co-incubate with immune cells in vitro. NKG2D expression on peripheral CD56+CD3+ lymphocytes, but not NK cells, was significantly impaired in genotype 1 infection, compared to genotype 2. When peripheral blood mononuclear cells from healthy donors were co-incubated with TNS2J1, a genotype 1b/2a chimera strain, or with JFH1, a genotype 2a strain, genotype-specific decrease of NKG2D on CD56+CD3+ lymphocytes, but not NK cells, was observed. Pre-treatment NKG2D expression on peripheral CD56+CD3+ lymphocytes significantly correlated with reduction in serum HCV RNA levels from week 0 to week 4, and predicted treatment response. Ex vivo stimulation of peripheral CD56+CD3+ lymphocytes showed NKG2D expression-correlated IFN-γ production. In conclusion, Decreased NKG2D expression on CD56+CD3+ lymphocytes in chronic HCV genotype 1 infection predicts inferior treatment response to PEG-IFN/ribavirin therapy compared to genotype 2.
Collapse
Affiliation(s)
- Po-sung Chu
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Hirotoshi Ebinuma
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuhiro Nakamoto
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuo Sugiyama
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shingo Usui
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yuko Wakayama
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Nobuhito Taniki
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Akihiro Yamaguchi
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Shunsuke Shiba
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiyuki Yamagishi
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Toshifumi Hibi
- Center for Advanced IBD Research and Treatment, Kitasato Institute Hospital, Kitasato University, Tokyo, Japan
| | - Hidetsugu Saito
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
- Division of Pharmacotherapeutics, School of Pharmacy, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Department of Gastroenterology and Hepatology, Division of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
26
|
Echeverría N, Moratorio G, Cristina J, Moreno P. Hepatitis C virus genetic variability and evolution. World J Hepatol 2015; 7:831-845. [PMID: 25937861 PMCID: PMC4411526 DOI: 10.4254/wjh.v7.i6.831] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/22/2014] [Accepted: 02/11/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) has infected over 170 million people worldwide and creates a huge disease burden due to chronic, progressive liver disease. HCV is a single-stranded, positive sense, RNA virus, member of the Flaviviridae family. The high error rate of RNA-dependent RNA polymerase and the pressure exerted by the host immune system, has driven the evolution of HCV into 7 different genotypes and more than 67 subtypes. HCV evolves by means of different mechanisms of genetic variation. On the one hand, its high mutation rates generate the production of a large number of different but closely related viral variants during infection, usually referred to as a quasispecies. The great quasispecies variability of HCV has also therapeutic implications since the continuous generation and selection of resistant or fitter variants within the quasispecies spectrum might allow viruses to escape control by antiviral drugs. On the other hand HCV exploits recombination to ensure its survival. This enormous viral diversity together with some host factors has made it difficult to control viral dispersal. Current treatment options involve pegylated interferon-α and ribavirin as dual therapy or in combination with a direct-acting antiviral drug, depending on the country. Despite all the efforts put into antiviral therapy studies, eradication of the virus or the development of a preventive vaccine has been unsuccessful so far. This review focuses on current available data reported to date on the genetic mechanisms driving the molecular evolution of HCV populations and its relation with the antiviral therapies designed to control HCV infection.
Collapse
|
27
|
Plauzolles A, Lucas M, Gaudieri S. Influence of host resistance on viral adaptation: hepatitis C virus as a case study. Infect Drug Resist 2015; 8:63-74. [PMID: 25897250 PMCID: PMC4396509 DOI: 10.2147/idr.s49891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genetic and cellular studies have shown that the host’s innate and adaptive immune responses are an important correlate of viral infection outcome. The features of the host’s immune response (host resistance) reflect the coevolution between hosts and pathogens that has occurred over millennia, and that has also resulted in a number of strategies developed by viruses to improve fitness and survival within the host (viral adaptation). In this review, we discuss viral adaptation to host immune pressure via protein–protein interactions and sequence-specific mutations. Specifically, we will present the “state of play” on viral escape mutations to host T-cell responses in the context of the hepatitis C virus, and their influence on infection outcome.
Collapse
Affiliation(s)
- Anne Plauzolles
- Centre for Forensic Science, University of Western Australia, Perth, WA, Australia
| | - Michaela Lucas
- School of Medicine and Pharmacology, Harry Perkins Institute, University of Western Australia, Perth, WA, Australia ; School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, Australia
| | - Silvana Gaudieri
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
28
|
Antonelli G, Scagnolari C, Moschella F, Proietti E. Twenty-five years of type I interferon-based treatment: a critical analysis of its therapeutic use. Cytokine Growth Factor Rev 2015; 26:121-31. [PMID: 25578520 PMCID: PMC7108252 DOI: 10.1016/j.cytogfr.2014.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023]
Abstract
The clinical exploitation of type I interferon (IFN) as an antiviral and antineoplastic agent is based on the properties originally attributed to this cytokine family, with schedules reflecting only their antiviral and antiproliferative activities. Nevertheless, type I IFN has emerged as a central activator of the innate immunity. As current schedules of treatment for chronic hepatitis C and for hematological and solid tumors, based on the continuous administration of recombinant type I IFN or pegylated formulations, disregard viral resistance, host genetic variants predicting treatment outcome and mechanisms of refractoriness, new administration schedules, the combination of type I IFN with new drugs and the increased monitoring of patients' susceptibility to type I IFN are expected to provide a new life to this valuable cytokine.
Collapse
Affiliation(s)
- Guido Antonelli
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Pasteur Institute-Cenci Bolognetti Foundation, Sapienza University, Rome, Italy
| | - Federica Moschella
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Enrico Proietti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
29
|
Horner SM. Insights into antiviral innate immunity revealed by studying hepatitis C virus. Cytokine 2015; 74:190-7. [PMID: 25819428 DOI: 10.1016/j.cyto.2015.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 02/07/2023]
Abstract
Experimental studies on the interactions of the positive strand RNA virus hepatitis C virus (HCV) with the host have contributed to several discoveries in the field of antiviral innate immunity. These include revealing the antiviral sensing pathways that lead to the induction of type I interferon (IFN) during HCV infection and also the importance of type III IFNs in the antiviral immune response to HCV. These studies on HCV/host interactions have contributed to our overall understanding of viral sensing and viral evasion of the antiviral intracellular innate immune response. In this review, I will highlight how these studies of HCV/host interactions have led to new insights into antiviral innate immunity. Overall, I hope to emphasize that studying antiviral immunity in the context of virus infection is necessary to fully understand antiviral immunity and how it controls the outcome of viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Durham, NC 27710, United States; Department of Medicine, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
30
|
Amadoz A, González-Candelas F. A novel approach to identify candidate prognostic factors for hepatitis C treatment response integrating clinical and viral genetic data. Evol Bioinform Online 2015; 11:15-24. [PMID: 25780333 PMCID: PMC4344356 DOI: 10.4137/ebo.s20853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 11/29/2022] Open
Abstract
The combined therapy of pegylated interferon (IFN) plus ribavirin (RBV) has been for a long time the standard treatment for patients infected with hepatitis C virus (HCV). In the case of genotype 1, only 38%–48% of patients have a positive response to the combined treatment. In previous studies, viral genetic information has been occasionally included as a predictor. Here, we consider viral genetic variation in addition to 11 clinical and 19 viral populations and evolutionary parameters to identify candidate baseline prognostic factors that could be involved in the treatment outcome. We obtained potential prognostic models for HCV subtypes la and lb in combination as well as separately. We also found that viral genetic information is relevant for the combined treatment assessment of patients, as the potential prognostic model of joint subtypes includes 9 viral-related variables out of 11. Our proposed methodology fully characterizes viral genetic information and finds a combination of positions that modulate inter-patient variability.
Collapse
Affiliation(s)
- Alicia Amadoz
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia. ; Computational Genomics Department, Centro de Investigatión Príncipe Felipe
| | - Fernando González-Candelas
- Unidad Mixta Infectión y Salud Pública FISABIO-Universidad de Valencia, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Valencia, Spain. ; CIBER en Epidemiología y Salud Pública, Spain
| |
Collapse
|
31
|
Fu Y, Chen G, Guo X, Zhang J, Pan Y. Analyzing the Effects of Pretreatment Diversity on HCV Drug Treatment Responsiveness Using Bayesian Partition methods. JOURNAL OF BIOINFORMATICS AND PROTEOMICS REVIEW 2015; 1:1-6. [PMID: 26457332 PMCID: PMC4597793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Traditional therapies for Hepatitis C Virus (HCV) often yield unsatisfactory results. The reason for this may lie in the mechanism of drug resistance of the HCV virus. Despite doing a plain vanilla comparison between the treated and untreated groups, this paper takes a detour and investigates the drug resistance mechanism to interferon plus ribavirin combined therapy by comparing pretreatment sequence data between response and non-response patients in the NS5A region for genotype 1a HCV virus. We use Bayesian probabilistic models to detect single mutation or mutation combinations, and infer interaction structures between these mutations, to investigate the drug resistance combinations differences between those patients. We hope to decipher, at least partially, the reason behind the unsatisfactory results received from interferon plus ribavirin therapy. AUTHOR SUMMARY HCV treatment results have been historically suboptimal[1-3]. HCV drug resistance, which further hinders the treatment effects, is caused by mutations of viral proteins that disrupt the drugs' binding but do not affect the viral survival. Due to the high rate and low fidelity of HCV replication, resistant strains quickly become dominant in a viral population under the selection pressure of a drug. M.J. Donlin et al indicate that pretreatment sequence diversity correlates with response effects[15]. We incorporate this idea and use a Bayesian approach to look into the pretreatment sequences diversity of HCV virus between response and non-response groups, under a combined treatment of interferon and ribavirin.
Collapse
Affiliation(s)
- Yao Fu
- Program of Computational Biology and Bioinformatics, Yale University
| | - Gang Chen
- Department of Statistics, Yale University
| | - Xuan Guo
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | - Jing Zhang
- Department of Mathematics and Statistics, Georgia State University,Program of Computational Biology and Bioinformatics, Yale University,Department of Statistics, Yale University,Corresponding author: Jing Zhang, Program of Computational, Biology and Bioinformatics, Yale University, USA. , Yi Pan, Department of Computer, Science, Georgia State University, Atlanta, Georgia, USA.
| | - Yi Pan
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA,Corresponding author: Jing Zhang, Program of Computational, Biology and Bioinformatics, Yale University, USA. , Yi Pan, Department of Computer, Science, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
32
|
Atsukawa M, Tsubota A, Shimada N, Abe H, Kondo C, Itokawa N, Nakagawa A, Iwakiri K, Kawamoto C, Aizawa Y, Sakamoto C. Serum 25(OH)D3 levels affect treatment outcomes for telaprevir/peg-interferon/ribavirin combination therapy in genotype 1b chronic hepatitis C. Dig Liver Dis 2014; 46:738-43. [PMID: 24880716 DOI: 10.1016/j.dld.2014.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/26/2014] [Accepted: 05/01/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Close relationships between chronic hepatitis C and vitamin D levels have been reported. For genotype 1b infection, the current standard of care is pegylated interferon/ribavirin therapy combined with a protease inhibitor. The present study analyzed the relationship between outcomes of triple therapy and serum 25(OH)D3 levels. METHODS Factors contributing to sustained virological response were investigated in 177 patients with chronic hepatitis C who received telaprevir-based triple therapy in this prospective study. RESULTS The sustained virological response rate was 86.9% in patients with 25(OH)D3 levels of >18 ng/ml; this was higher than the 66.7% in patients with 25(OH)D3 levels of ≤ 18 ng/ml (P=0.003). 25(OH)D3 levels and IL28B genotype were identified as significantly independent factors contributing to sustained virological response. The sustained virological response rate did not differ according to 25(OH)D3 levels in patients with the IL28B major genotype. The sustained virological response rate was 64.9% in patients with the IL28B minor genotype and 25(OH)D3 levels of >18 ng/ml, and was 38.5% in those with decreased 25(OH)D3 levels (P=0.045). CONCLUSIONS In triple therapy, 25(OH)D3 levels were an independent factor contributing to sustained virological response. Of particular note, the sustained virological response rate was significantly lower in patients with the IL28B minor genotype.
Collapse
Affiliation(s)
- Masanori Atsukawa
- Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan.
| | - Akihito Tsubota
- Institute of Clinical Medicine and Research (ICMR), Jikei University School of Medicine, Kashiwa, Chiba, Japan
| | - Noritomo Shimada
- Division of Gastroenterology and Hepatology, Shinmatsudo Central General Hospital, Matsudo, Chiba, Japan
| | - Hiroshi Abe
- Jikei University School of Medicine Katsusika Medical Center, Division of Gastroenterology and Hepatology, Katsushika-ku, Tokyo, Japan
| | - Chisa Kondo
- Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Norio Itokawa
- Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Ai Nakagawa
- Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Katsuhiko Iwakiri
- Division of Gastroenterology, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Chiba, Japan
| | - Chiaki Kawamoto
- Nippon Medical School, Division of Gastroenterology and Hepatology, Bunkyo-ku, Tokyo, Japan
| | - Yoshio Aizawa
- Jikei University School of Medicine Katsusika Medical Center, Division of Gastroenterology and Hepatology, Katsushika-ku, Tokyo, Japan
| | - Choitsu Sakamoto
- Nippon Medical School, Division of Gastroenterology and Hepatology, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
33
|
Veerapu NS, Park SH, Tully DC, Allen TM, Rehermann B. Trace amounts of sporadically reappearing HCV RNA can cause infection. J Clin Invest 2014; 124:3469-78. [PMID: 25003189 DOI: 10.1172/jci73104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 05/29/2014] [Indexed: 12/20/2022] Open
Abstract
Successful hepatitis C virus (HCV) treatment is defined as the absence of viremia 6 months after therapy cessation. We previously reported that trace amounts of HCV RNA, below the sensitivity of the standard clinical assay, can reappear sporadically in treatment responders. Here, we assessed the infectivity of this RNA and infused 3 chimpanzees sequentially at 9-week intervals with plasma or PBMCs from patients who tested positive for trace amounts of HCV RNA more than 6 months after completing pegylated IFN-α/ribavirin therapy. A fourth chimpanzee received HCV RNA-negative plasma and PBMCs from healthy blood donors. The 3 experimental chimpanzees, but not the control chimpanzee, generated HCV-specific T cell responses against nonstructural and structural HCV sequences 6-10 weeks after the first infusion of patient plasma and during subsequent infusions. In 1 chimpanzee, T cell responses declined, and this animal developed high-level viremia at week 27. Deep sequencing of HCV demonstrated transmission of a minor HCV variant from the first infusion donor that persisted in the chimpanzee for more than 6 months despite undetectable systemic viremia. Collectively, these results demonstrate that trace amounts of HCV RNA, which appear sporadically in successfully treated patients, can be infectious; furthermore, transmission can be masked in the recipient by an extended eclipse phase prior to establishing high-level viremia.
Collapse
|
34
|
Okushin H, Yamamoto T, Kishida H, Morii K, Uesaka K. Indices of initial hepatitis C virus RNA reduction rate to predict efficacy of interferon-beta followed by peginterferon plus ribavirin for genotype 1b high viral load. Hepatol Res 2014; 44:728-34. [PMID: 23745758 DOI: 10.1111/hepr.12182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/27/2013] [Accepted: 06/02/2013] [Indexed: 02/08/2023]
Abstract
AIM Initial hepatitis C virus (HCV) RNA reduction was investigated as a potential index for sustained virological response (SVR) in the treatment of interferon (IFN)-β followed by peginterferon plus ribavirin (PEG IFN/RBV). METHODS The treatment course was retrospectively analyzed in 64 genotype 1b patients with a HCV RNA level of 5.0 logIU/mL or higher. IFN-β was administrated twice a day for 2 weeks followed by 24 or 48 weeks of PEG IFN/RBV. The serum HCV RNA level was measured by real-time polymerase chain reaction before administration and at 1, 2 and 4 weeks of therapy. RESULTS By the duration of PEG IFN administration, the SVR rates were 11% (2/18, <19 weeks), 64% (23/36, 20-24 weeks) and 40% (4/10, 25-72 weeks) (P = 0.0011, χ(2) -test). The SVR rate was high in patients in whom the HCV RNA level had decreased by 2.5 logIU/mL or greater at 1 week of IFN-β (29/55 [53%] vs 0/9 [0%], P = 0.0029, χ(2) -test). Among these patients, the SVR rate was even higher in those with continuous reduction in the first 2 weeks after the switch to PEG IFN/RBV (27/45 [60%] vs 2/10 [20%], P = 0.0048). Age below 65 years, no previous IFN course and good initial HCV RNA reduction were significantly associated with SVR on multivariate analysis, and the SVR rate was 95% (18/19) among these patients. CONCLUSION The 2.5 logIU/mL reduction in HCV RNA at 1 week of IFN-β and the continuous reduction just after the switch to PEG IFN/RBV are important SVR-predictive indices.
Collapse
Affiliation(s)
- Hiroaki Okushin
- Department of Internal Medicine, Himeji Red Cross Hospital, Himeji-shi, Hyogo, Japan
| | | | | | | | | |
Collapse
|
35
|
El-Shamy A, Hotta H. Impact of hepatitis C virus heterogeneity on interferon sensitivity: an overview. World J Gastroenterol 2014; 20:7555-69. [PMID: 24976696 PMCID: PMC4069287 DOI: 10.3748/wjg.v20.i24.7555] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/18/2014] [Accepted: 04/21/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver disease worldwide. HCV is able to evade host defense mechanisms, including both innate and acquired immune responses, to establish persistent infection, which results in a broad spectrum of pathogenicity, such as lipid and glucose metabolism disorders and hepatocellular carcinoma development. The HCV genome is characterized by a high degree of genetic diversity, which can be associated with viral sensitivity or resistance (reflected by different virological responses) to interferon (IFN)-based therapy. In this regard, it is of importance to note that polymorphisms in certain HCV genomic regions have shown a close correlation with treatment outcome. In particular, among the HCV proteins, the core and nonstructural proteins (NS) 5A have been extensively studied for their correlation with responses to IFN-based treatment. This review aims to cover updated information on the impact of major HCV genetic factors, including HCV genotype, mutations in amino acids 70 and 91 of the core protein and sequence heterogeneity in the IFN sensitivity-determining region and IFN/ribavirin resistance-determining region of NS5A, on virological responses to IFN-based therapy.
Collapse
|
36
|
Abdel-Hakeem MS, Shoukry NH. Protective immunity against hepatitis C: many shades of gray. Front Immunol 2014; 5:274. [PMID: 24982656 PMCID: PMC4058636 DOI: 10.3389/fimmu.2014.00274] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022] Open
Abstract
The majority of individuals who become acutely infected with hepatitis C virus (HCV) develop chronic infection and suffer from progressive liver damage while approximately 25% are able to eliminate the virus spontaneously. Despite the recent introduction of new direct-acting antivirals, there is still no vaccine for HCV. As a result, new infections and reinfections will remain a problem in developing countries and among high risk populations like injection drug users who have limited access to treatment and who continue to be exposed to the virus. The outcome of acute HCV is determined by the interplay between the host genetics, the virus, and the virus-specific immune response. Studies in humans and chimpanzees have demonstrated the essential role of HCV-specific CD4 and CD8 T cell responses in protection against viral persistence. Recent data suggest that antibody responses play a more important role than what was previously thought. Individuals who spontaneously resolve acute HCV infection develop long-lived memory T cells and are less likely to become persistently infected upon reexposure. New studies examining high risk cohorts are identifying correlates of protection during real life exposures and reinfections. In this review, we discuss correlates of protective immunity during acute HCV and upon reexposure. We draw parallels between HCV and the current knowledge about protective memory in other models of chronic viral infections. Finally, we discuss some of the yet unresolved questions about key correlates of protection and their relevance for vaccine development against HCV.
Collapse
Affiliation(s)
- Mohamed S Abdel-Hakeem
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada ; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University , Cairo , Egypt
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada ; Département de Médecine, Faculté de Médecine, Université de Montréal , Montréal, QC , Canada
| |
Collapse
|
37
|
Clinical Aspects of Hepatitis C Virus Infection. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
Imran M, Manzoor S, Khattak NM, Tariq M, Khalid M, Javed F, Bhatti S. Correlation of OAS1 gene polymorphism at exon 7 splice accepter site with interferon-based therapy of HCV infection in Pakistan. Viral Immunol 2014; 27:105-11. [PMID: 24673406 DOI: 10.1089/vim.2013.0107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The most useful treatment for HCV infection worldwide is peg-interferon plus ribavirin, although the response varies from person to person. Hence, host genetics are significantly involved in the treatment response to HCV infection. The 2'-5' oligoadenylate synthetase (OAS) is one of the most important components of the immune system having significant antiviral functions. The aim of this study was to investigate the role of single nucleotide polymorphism (SNP) at the exon 7 splice acceptor site (SAS) of OAS1 to interferon-based therapy of HCV infection. OAS1 genotyping was performed in 140 HCV patients by restriction fragment length polymorphism polymerase chain reaction method (RFLP-PCR). These patients were enrolled for the study in 2010-2013. OAS1 SNP was also established in 120 healthy controls. Correlation of HCV genotypes, OAS1 SNP, and other factors with response to interferon therapy were statistically analyzed by SPSS 13 software. There were no significant differences in the distribution of OAS1 genotypes between healthy and patients subjects. The distribution of AG and AA genotypes of OAS1 genotypes between sustained virological responders (SVRs) and the non-responders (NRs) group were also comparable. However, Pearson chi square analysis indicated that the patients possessing a GG genotype of the OAS1 gene at exon 7 SAS demonstrated significantly positive association with treatment response to HCV infection (p=0.039). This study determined that SNP at exon 7 SAS of OAS1 was significantly associated with response to interferon-based therapy of HCV infection in our population.
Collapse
Affiliation(s)
- Muhammad Imran
- Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology , Islamabad 44000, Pakistan
| | | | | | | | | | | | | |
Collapse
|
39
|
Nishiguchi S, Enomoto H, Aizawa N, Nishikawa H, Osaki Y, Tsuda Y, Higuchi K, Okazaki K, Seki T, Kim SR, Hongo Y, Jyomura H, Nishida N, Kudo M. Relevance of the Core 70 and IL-28B polymorphism and response-guided therapy of peginterferon alfa-2a ± ribavirin for chronic hepatitis C of Genotype 1b: a multicenter randomized trial, ReGIT-J study. J Gastroenterol 2014; 49:492-501. [PMID: 23543311 PMCID: PMC3953545 DOI: 10.1007/s00535-013-0785-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 02/19/2013] [Indexed: 02/15/2023]
Abstract
BACKGROUND We conducted a multicenter randomized clinical trial to determine the optimal treatment strategy against chronic hepatitis C virus (HCV) with genotype 1b and a high viral load (G1b/high). METHODS The study subjects included 153 patients with G1b/high. Patients were initially treated with PEG-IFNα-2a alone and then randomly assigned to receive different treatment regimens. Ribavirin (RBV) was administered to all patients with HCV RNA at week 4. Patients negative for HCV RNA at week 4 were randomly assigned to receive PEG-IFNα-2a (group A) or PEG-IFNα-2a/RBV (group B). Patients who showed HCV RNA at week 4 but were negative at week 12 were randomly assigned to receive weekly PEG-IFNα-2a (group C) or biweekly therapy (group D). Patients who showed HCV RNA at week 12 but were negative at week 24 were randomly assigned to receive PEG-IFNα-2a/RBV (group E) or PEG-IFNα-2a/RBV/fluvastatin (group F). RESULTS Overall, the rate of sustained virological response (SVR) was 46 % (70/153). The total SVR rate in the group (A, D, and F) of response-guided therapy was significantly higher than that in the group (B, C, and E) of conventional therapy [70 % (38/54) versus 52 % (32/61), p = 0.049]. Although IL28-B polymorphism and Core 70 mutation were significantly associated with efficacy, patients with rapid virological response (RVR) and complete early virological response (cEVR) achieved high SVR rates regardless of their status of IL-28B polymorphism and Core 70 mutation. CONCLUSION In addition to knowing the IL-28B polymorphism and Core 70 mutation status, understanding the likelihood of virological response during treatment is critical in determining the appropriate treatment strategy.
Collapse
Affiliation(s)
- Shuhei Nishiguchi
- Division of Hepatobiliary and Pancreatic Disease, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Belema M, Lopez OD, Bender JA, Romine JL, St Laurent DR, Langley DR, Lemm JA, O'Boyle DR, Sun JH, Wang C, Fridell RA, Meanwell NA. Discovery and development of hepatitis C virus NS5A replication complex inhibitors. J Med Chem 2014; 57:1643-72. [PMID: 24621191 DOI: 10.1021/jm401793m] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lead inhibitors that target the function of the hepatitis C virus (HCV) nonstructural 5A (NS5A) protein have been identified by phenotypic screening campaigns using HCV subgenomic replicons. The demonstration of antiviral activity in HCV-infected subjects by the HCV NS5A replication complex inhibitor (RCI) daclatasvir (1) spawned considerable interest in this mechanistic approach. In this Perspective, we summarize the medicinal chemistry studies that led to the discovery of 1 and other chemotypes for which resistance maps to the NS5A protein and provide synopses of the profiles of many of the compounds currently in clinical trials. We also summarize what is currently known about the NS5A protein and the studies using NS5A RCIs and labeled analogues that are helping to illuminate aspects of both protein function and inhibitor interaction. We conclude with a synopsis of the results of notable clinical trials with HCV NS5A RCIs.
Collapse
Affiliation(s)
- Makonen Belema
- Department of Discovery Chemistry, ‡Department of Virology Discovery, and §Department of Computer-Assisted Drug Design, Bristol-Myers Squibb Research and Development , 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Metz P, Reuter A, Bender S, Bartenschlager R. Interferon-stimulated genes and their role in controlling hepatitis C virus. J Hepatol 2013; 59:1331-41. [PMID: 23933585 DOI: 10.1016/j.jhep.2013.07.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/24/2022]
Abstract
Infections with the hepatitis C virus (HCV) are a major cause of chronic liver disease. While the acute phase of infection is mostly asymptomatic, this virus has the high propensity to establish persistence and in the course of one to several decades liver disease can develop. HCV is a paradigm for the complex interplay between the interferon (IFN) system and viral countermeasures. The virus induces an IFN response within the infected cell and is rather sensitive against the antiviral state triggered by IFNs, yet in most cases HCV persists. Numerous IFN-stimulated genes (ISGs) have been reported to suppress HCV replication, but in only a few cases we begin to understand the molecular mechanisms underlying antiviral activity. It is becoming increasingly clear that blockage of viral replication is mediated by the concerted action of multiple ISGs that target different steps of the HCV replication cycle. This review briefly summarizes the activation of the IFN system by HCV and then focuses on ISGs targeting the HCV replication cycle and their possible mode of action.
Collapse
Affiliation(s)
- Philippe Metz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | | | | | |
Collapse
|
42
|
Hikita H, Enooku K, Satoh Y, Yoshida H, Nakagawa H, Masuzaki R, Tateishi R, Soroida Y, Sato M, Suzuki A, Gotoh H, Iwai T, Yokota H, Koike K, Yatomi Y, Ikeda H. Perihepatic lymph node enlargement is a negative predictor for sustained responses to pegylated interferon-α and ribavirin therapy for Japanese patients infected with hepatitis C virus genotype 1. Hepatol Res 2013; 43:1005-12. [PMID: 23356977 DOI: 10.1111/hepr.12061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 12/10/2012] [Accepted: 12/25/2012] [Indexed: 02/01/2023]
Abstract
AIM Although perihepatic lymph node enlargement (PLNE) is reportedly associated with the negative outcome of interferon therapy for chronic hepatitis C, there were limitations in that the results were obtained in patients with various genotypes, viral loads and treatment regimens. We aimed to precisely clarify the significance of PLNE in interferon therapy for chronic hepatitis C. METHODS Between December 2004 and June 2005, 112 patients with hepatitis C virus (HCV) genotype 1 and HCV RNA of more than 100 KIU/mL were enrolled, who underwent pegylated interferon-α plus ribavirin therapy thereafter. PLNE was defined as a perihepatic lymph node of more than 1 cm in the longest axis by ultrasonography. RESULTS The sustained virological response (SVR) rate was lower in patients with PLNE (4/22, 18.2%) than in those without (37/90, 41.1%; P = 0.045) and viral load decline was smaller in patients with PLNE than in those without (P = 0.028). The proportion of PLNE positive patients was the smallest in the SVR group (P = 0.033) among the patient groups divided by the treatment outcome. PLNE was retained as a negative predictor for SVR by multivariate logistic regression analysis (P = 0.012). Furthermore, PLNE was not significantly associated with the mutations at HCV core protein and at interferon sensitivity-determining region, or interleukin-28B polymorphism in 45 patients with HCV genotype 1, enrolled between December 2011 and March 2012. CONCLUSION PLNE is a negative predictor for SVR in patients with HCV genotype 1 and HCV RNA of more than 100 KIU/mL treated with pegylated interferon-α plus ribavirin, independent of other known predictors for SVR.
Collapse
Affiliation(s)
- Hiromi Hikita
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Identification of alpha interferon-induced envelope mutations of hepatitis C virus in vitro associated with increased viral fitness and interferon resistance. J Virol 2013; 87:12776-93. [PMID: 24049176 DOI: 10.1128/jvi.00901-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alpha interferon (IFN-α) is an essential component of innate antiviral immunity and of treatment regimens for chronic hepatitis C virus (HCV) infection. Resistance to IFN might be important for HCV persistence and failure of IFN-based therapies. Evidence for HCV genetic correlates of IFN resistance is limited. Experimental studies were hampered by lack of HCV culture systems. Using genotype (strain) 1a(H77) and 3a(S52) Core-NS2 JFH1-based recombinants, we aimed at identifying viral correlates of IFN-α resistance in vitro. Long-term culture with IFN-α2b in Huh7.5 cells resulted in viral spread with acquisition of putative escape mutations in HCV structural and nonstructural proteins. Reverse genetic studies showed that primarily amino acid changes I348T in 1a(H77) E1 and F345V/V414A in 3a(S52) E1/E2 increased viral fitness. Single-cycle assays revealed that I348T and F345V/V414A enhanced viral entry and release, respectively. In assays allowing viral spread, these mutations conferred a level of IFN-α resistance exceeding the observed fitness effect. The identified mutations acted in a subtype-specific manner but were not found in genotype 1a and 3a patients, who failed IFN-α therapy. Studies with HCV recombinants with different degrees of culture adaptation confirmed the correlation between viral fitness and IFN-α resistance. In conclusion, in vitro escape experiments led to identification of HCV envelope mutations resulting in increased viral fitness and conferring IFN-α resistance. While we established a close link between viral fitness and IFN-α resistance, identified mutations acted via different mechanisms and appeared to be relatively specific to the infecting virus, possibly explaining difficulties in identifying signature mutations for IFN resistance.
Collapse
|
44
|
Mihalik KB, Feigelstock DA. Sensitivity of a ribavirin resistant mutant of hepatitis C virus to other antiviral drugs. PLoS One 2013; 8:e74027. [PMID: 24040153 PMCID: PMC3764029 DOI: 10.1371/journal.pone.0074027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022] Open
Abstract
Background While ribavirin mono-therapy regimens have minimal effect on patients with chronic hepatitis C virus (HCV) infections, they can be efficacious when combined with interferon. Clinical studies show that interferon-free combination therapies containing ribavirin are also efficacious, suggesting that an interferon-free therapy could be adopted in the near future. However, generation of drug resistant mutants and cross resistance to other drugs could impair the efficacy of the treatment. Therefore, understanding the mechanism of HCV resistance to ribavirin and cross resistance to other antiviral drugs could be of major importance. Methods We tested the ability of a J6/JFH1 derived HCV ribavirin resistant mutant to grow in tissue cultured Huh7D cells in the presence of the mutagen 5-Fluorouracil and the nucleoside analog 2′-C-Methylcytidine. Virus replication was assessed by detecting HCV antigens by immunofluorescence and by titrating virus present in the supernatants. Recovered viruses were amplified by RT-PCR and sequenced. Results The sensitivity of HCV-RR relative to parental J6/JFH1 to the tested drugs varied. HCV-RR was more resistant than J6/JFH1 to 5-Fluorouracil but was not more resistant than J6/JFH1 to 2′-C-Methylcytidine. Growth of HCV-RR in 5-Fluorouracil allowed the selection of an HCV-RR derived mutant resistant to 5-Fluorouracil (HCV-5FU). HCV-5FU grows to moderate levels in the presence of high concentrations of 5-Fluorouracil and to parental levels in the absence of the drug. Sequence of its genome shows that HCV-5FU accumulated multiple synonymous and non-synonymous mutations. Conclusions These results indicate that determinants of resistance to ribavirin could also confer resistance to other anti-HCV drugs, shedding light toward understanding the mechanism of action of ribavirin and highlighting the importance of combination drug selection for HCV treatment. The results also show that it is possible to select a 5-Fluorouracil HCV resistant mutant that replicates to levels similar to parental virus when grown in the absence of 5-Fluorouracil.
Collapse
Affiliation(s)
- Kathleen B. Mihalik
- Division of Viral Products, Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, United States of America
| | - Dino A. Feigelstock
- Division of Viral Products, Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Saludes V, Bascuñana E, Jordana-Lluch E, Casanovas S, Ardèvol M, Soler E, Planas R, Ausina V, Martró E. Relevance of baseline viral genetic heterogeneity and host factors for treatment outcome prediction in hepatitis C virus 1b-infected patients. PLoS One 2013; 8:e72600. [PMID: 24015264 PMCID: PMC3755994 DOI: 10.1371/journal.pone.0072600] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Only about 50% of patients chronically infected with HCV genotype 1 (HCV-1) respond to treatment with pegylated interferon-alfa and ribavirin (dual therapy), and protease inhibitors have to be administered together with these drugs increasing costs and side-effects. We aimed to develop a predictive model of treatment response based on a combination of baseline clinical and viral parameters. METHODOLOGY Seventy-four patients chronically infected with HCV-1b and treated with dual therapy were studied (53 retrospectively -training group-, and 21 prospectively -validation group-). Host and viral-related factors (viral load, and genetic variability in the E1-E2, core and Interferon Sensitivity Determining Region) were assessed. Multivariate discriminant analysis and decision tree analysis were used to develop predictive models on the training group, which were then validated in the validation group. PRINCIPAL FINDINGS A multivariate discriminant predictive model was generated including the following variables in decreasing order of significance: the number of viral variants in the E1-E2 region, an amino acid substitution pattern in the viral core region, the IL28B polymorphism, serum GGT and ALT levels, and viral load. Using this model treatment outcome was accurately predicted in the training group (AUROC = 0.9444; 96.3% specificity, 94.7% PPV, 75% sensitivity, 81% NPV), and the accuracy remained high in the validation group (AUROC = 0.8148, 88.9% specificity, 90.0% PPV, 75.0% sensitivity, 72.7% NPV). A second model was obtained by a decision tree analysis and showed a similarly high accuracy in the training group but a worse reproducibility in the validation group (AUROC = 0.9072 vs. 0.7361, respectively). CONCLUSIONS AND SIGNIFICANCE The baseline predictive models obtained including both host and viral variables had a high positive predictive value in our population of Spanish HCV-1b treatment naïve patients. Accurately identifying those patients that would respond to the dual therapy could help reducing implementation costs and additional side effects of new treatment regimens.
Collapse
Affiliation(s)
- Verónica Saludes
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Elisabet Bascuñana
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Elena Jordana-Lluch
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Sònia Casanovas
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Mercè Ardèvol
- Hospital Pharmacy, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Esther Soler
- Liver Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ramón Planas
- Liver Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Vicente Ausina
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Enfermedades Respiratorias (CIBERES), Bunyola, Spain
| | - Elisa Martró
- Microbiology Service, Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| |
Collapse
|
46
|
Khaliq S, Latief N, Jahan S. Role of different regions of the hepatitis C virus genome in the therapeutic response to interferon-based treatment. Arch Virol 2013; 159:1-15. [PMID: 23851652 DOI: 10.1007/s00705-013-1780-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/28/2013] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) is considered a significant risk factor in HCV-induced liver diseases and development of hepatocellular carcinoma (HCC). Nucleotide substitutions in the viral genome result in its diversification into quasispecies, subtypes and distinct genotypes. Different genotypes vary in their infectivity and immune response due to these nucleotide/amino acid variations. The current combination treatment for HCV infection is pegylated interferon α (PEG-IFN-α) with ribavirin, with a highly variable response rate mainly depending upon the HCV genotype. Genotypes 2 and 3 are found to respond better than genotypes 1 and 4, which are more resistant to IFN-based therapies. Different studies have been conducted worldwide to explore the basis of this difference in therapy response, which identified some putative regions in the HCV genome, especially in Core and NS5a, and to some extent in the E2 region, containing specific sequences in different genotypes that act differently with respect to the IFN response. In the review, we try to summarize the role of HCV proteins and their nucleotide sequences in association with treatment outcome in IFN-based therapy.
Collapse
Affiliation(s)
- Saba Khaliq
- Department of Immunology, University of Health Sciences, Lahore, Pakistan,
| | | | | |
Collapse
|
47
|
Impact of host and virus genome variability on HCV replication and response to interferon. Curr Opin Virol 2013; 3:501-7. [PMID: 23835049 DOI: 10.1016/j.coviro.2013.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 02/07/2023]
Abstract
Since the discovery of hepatitis C virus (HCV), treatment has proven difficult and the regimen of pegylated interferon-α and ribavirin is only effective for half of patients. Evidence suggests that host and viral genome variations play a role in either viral clearance or persistence. Powerful genomic technologies have made it possible to study genome-wide associations with treatment response, which yielded critical genetic polymorphisms that predict treatment response. This has important implications for treatment of HCV infection and opened the door to the possibility of genetic marker-guided treatment (personalized medicine). This review will focus on the recent advances in understanding host and viral genetic variations with regards to treatment and the importance for future therapeutic intervention.
Collapse
|
48
|
Qashqari H, Al-Mars A, Chaudhary A, Abuzenadah A, Damanhouri G, Alqahtani M, Mahmoud M, El Sayed Zaki M, Fatima K, Qadri I. Understanding the molecular mechanism(s) of hepatitis C virus (HCV) induced interferon resistance. INFECTION GENETICS AND EVOLUTION 2013; 19:113-9. [PMID: 23831932 DOI: 10.1016/j.meegid.2013.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV) is one of the foremost causes of chronic liver disease affecting over 300 million globally. HCV contains a positive-stranded RNA of ~9600 nt and is surrounded by the 5' and 3'untranslated regions (UTR). The only successful treatment regimen includes interferon (IFN) and ribavirin. Like many other viruses, HCV has also evolved various mechanisms to circumvent the IFN response by blocking (1) downstream signaling actions via STAT1, STAT2, IRF9 and JAK-STAT pathways and (2) repertoire of IFN Stimulatory Genes (ISGs). Several studies have identified complex host demographic and genetic factors as well as viral genetic heterogeneity associated with outcomes of IFN therapy. The genetic predispositions of over 2000 ISGS may render the patients to become resistant, thus identification of such parameters within a subset of population are necessary for management corollary. The ability of various HCV genotypes to diminish IFN antiviral responses plays critical role in the establishment of chronic infection at the acute stage of infection, thus highlighting importance of the resistance in HCV treated groups. The recently defined role of viral protein such as C, E2, NS3/NS4 and NS5A proteins in inducing the IFN resistance are discussed in this article. How the viral and host genetic composition and epistatic connectivity among polymorphic genomic sites synchronizes the evolutionary IFN resistance trend remains under investigation. However, these signals may have the potential to be employed for accurate prediction of therapeutic outcomes. In this review article, we accentuate the significance of host and viral components in IFN resistance with the aim to determine the successful outcome in patients.
Collapse
Affiliation(s)
- Hanadi Qashqari
- King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Suzuki F, Suzuki Y, Sezaki H, Akuta N, Seko Y, Kawamura Y, Hosaka T, Kobayashi M, Saito S, Arase Y, Ikeda K, Mineta R, Watahiki S, Kobayashi M, Nakayasu Y, Tsuda H, Aoki K, Yamada I, Kumada H. Exploratory study on telaprevir given every 8 h at 500 mg or 750 mg with peginterferon-alpha-2b and ribavirin in hepatitis C patients. Hepatol Res 2013. [PMID: 23190247 DOI: 10.1111/hepr.12009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM The aims of this study are to assess the antiviral effects, safety and telaprevir (TVR) pharmacokinetics in two cohorts given TVR every 8 h (q8h) at doses of 500 mg and 750 mg with peginterferon-α-2b and ribavirin in chronic hepatitis C patients. METHODS Twenty chronic hepatitis C (HCV) patients with genotype 1b in high viral loads were randomly assigned to two TVR-based regimens of 750 mg q8h (group A) and 500 mg q8h (group B) in combination with peginterferon-α-2b and ribavirin for 12 weeks. RESULTS Although the difference was not statistically significant other than trough concentration (Ctrough ) at week 4, the parameters of maximum concentration (Cmax ), the area under the concentration time curve (AUC0-∞ ) and Ctrough tended to be higher in group A than those in group B. The antiviral effects were similar in the two groups (sustained virological response rates [SVR], 40% in group A, 50% in group B). The discontinuation rates by anemia were 30% in group A and 20% in group B. Serum creatinine concentrations were lower in group B than those in group A. CONCLUSION Although the exposure to TVR tended to be lower in 500 mg q8h than that in 750 mg q8h, the SVR rates in both groups were similar. The result suggests that the 500 mg q8h dose may be one option for treatment. In addition, the present findings indicate that the development of adverse events which increase with a TVR-based regimen, specifically anemia and creatinine, could be avoided by dose adjustment of TVR.
Collapse
|
50
|
Response of hepatitis C virus to long-term passage in the presence of alpha interferon: multiple mutations and a common phenotype. J Virol 2013; 87:7593-607. [PMID: 23637397 DOI: 10.1128/jvi.02824-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell culture-produced hepatitis C virus (HCV) has been subjected to up to 100 serial passages in human hepatoma cells in the absence or presence of different doses of alpha interferon (IFN-α). Virus survival, genetic changes, fitness levels, and phenotypic traits have been examined. While high initial IFN-α doses (increasing from 1 to 4 IU/ml) did not allow HCV survival beyond passage 40, a gradual exposure (from 0.25 to 10 IU/ml) allowed the virus to survive for at least 100 passages. The virus passaged in the presence of IFN-α acquired IFN-α resistance as evidenced by enhanced progeny production and viral protein expression in an IFN-α environment. A partial IFN-α resistance was also noted in populations passaged in the absence of IFN-α. All lineages acquired adaptative mutations, and multiple, nonsynonymous mutations scattered throughout the genome were present in IFN-α-selected populations. Comparison of consensus sequences indicates a dominance of synonymous versus nonsynonymous substitutions. IFN-α-resistant populations displayed decreased sensitivity to a combination of IFN-α and ribavirin. A phenotypic trait common to all assayed viral populations is the ability to increase shutoff host cell protein synthesis, accentuated in infections with IFN-α-selected populations carried out in the presence of IFN-α. The trait was associated with enhanced phosphorylation of protein kinase R (PKR) and eIF2α, although other contributing factors are likely. The results suggest that multiple, independent mutational pathways can confer IFN-α resistance to HCV and might explain why no unified picture has been obtained regarding IFN-α resistance in vivo.
Collapse
|