1
|
Rodrigues AF, Bader M. The contribution of the AT1 receptor to erythropoiesis. Biochem Pharmacol 2023; 217:115805. [PMID: 37714274 DOI: 10.1016/j.bcp.2023.115805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The renin-angiotensin system (RAS) comprises a broad set of functional peptides and receptors that play a role in cardiovascular homeostasis and contribute to cardiovascular pathologies. Angiotensin II (Ang II) is the most potent peptide hormone produced by the RAS due to its high abundance and its strong and pleiotropic impact on the cardiovascular system. Formation of Ang II takes place in the bloodstream and additionally in tissues in the so-called local RAS. Of the two Ang II receptors (AT1 and AT2) that Ang II binds to, AT1 is the most expressed throughout the mammalian body. AT1 expression is not restricted to cells of the cardiovascular system but in fact AT1 protein is found in nearly all organs, hence, Ang II takes part in several modulatory physiological processes one of which is erythropoiesis. In this review, we present multiple evidence supporting that Ang II modulates physiological and pathological erythropoiesis processes trough the AT1 receptor. Cumulative evidence indicates that Ang II by three distinct mechanisms influences erythropoiesis: 1) stimulation of renal erythropoietin synthesis; 2) direct action on bone marrow precursor cells; and 3) modulation of sympathetic nerve activity to the bone marrow. The text highlights clinical and preclinical evidence focusing on mechanistic studies using rodent models.
Collapse
Affiliation(s)
- André F Rodrigues
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.
| | - Michael Bader
- Max Delbrück Center (MDC), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin, Germany; Institute for Biology, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
2
|
Rodrigues AF, Todiras M, Qadri F, Alenina N, Bader M. Angiotensin deficient FVB/N mice are normotensive. Br J Pharmacol 2023; 180:1843-1861. [PMID: 36740662 DOI: 10.1111/bph.16051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND PURPOSE All previous rodent models lacking the peptide hormone angiotensin II (Ang II) were hypotensive. A mixed background strain with global deletion of the angiotensinogen gene was backcrossed to the FVB/N background (Agt-KO), a strain preferred for transgenic generation. Surprisingly, the resulting line turned out to be normotensive. Therefore, this study aimed to understand the unique blood pressure regulation of FVB/N mice without angiotensin peptides. EXPERIMENTAL APPROACH Acute and chronic recordings of blood pressure (BP) in freely-moving adult mice were performed to establish baseline BP. The pressure responses to sympatholytic and sympathomimetic as well as a nitric oxide inhibitor and donor compounds were used to quantify the neurogenic tone and endothelial function. The role of the renal nerves on baseline BP maintenance was tested by renal denervation. Finally, further phenotyping was done by gene expression analysis, histology and measurement of metabolites in plasma, urine and tissues. KEY RESULTS Baseline BP in adult FVB/N Agt-KO was unexpectedly unaltered. As compensatory mechanisms Agt-KO presented an increased sympathetic nerve activity and reduced endothelial nitric oxide production. However, FVB/N Agt-KO exhibited the renal morphological and physiological alterations previously found in mice lacking the production of Ang II including polyuria and hydronephrosis. The hypotensive effect of bilateral renal denervation was blunted in Agt-KO compared to wildtype FVB/N mice. CONCLUSION AND IMPLICATIONS We describe a germline Agt-KO line that challenges all previous knowledge on BP regulation in mice with deletion of the classical RAS. This line may represent a model of drug-resistant hypertension because it lacks hypotension.
Collapse
Affiliation(s)
- André Felipe Rodrigues
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Mihail Todiras
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova
| | - Fatimunnisa Qadri
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Lin H, Geurts F, Hassler L, Batlle D, Mirabito Colafella KM, Denton KM, Zhuo JL, Li XC, Ramkumar N, Koizumi M, Matsusaka T, Nishiyama A, Hoogduijn MJ, Hoorn EJ, Danser AHJ. Kidney Angiotensin in Cardiovascular Disease: Formation and Drug Targeting. Pharmacol Rev 2022; 74:462-505. [PMID: 35710133 PMCID: PMC9553117 DOI: 10.1124/pharmrev.120.000236] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The concept of local formation of angiotensin II in the kidney has changed over the last 10-15 years. Local synthesis of angiotensinogen in the proximal tubule has been proposed, combined with prorenin synthesis in the collecting duct. Binding of prorenin via the so-called (pro)renin receptor has been introduced, as well as megalin-mediated uptake of filtered plasma-derived renin-angiotensin system (RAS) components. Moreover, angiotensin metabolites other than angiotensin II [notably angiotensin-(1-7)] exist, and angiotensins exert their effects via three different receptors, of which angiotensin II type 2 and Mas receptors are considered renoprotective, possibly in a sex-specific manner, whereas angiotensin II type 1 (AT1) receptors are believed to be deleterious. Additionally, internalized angiotensin II may stimulate intracellular receptors. Angiotensin-converting enzyme 2 (ACE2) not only generates angiotensin-(1-7) but also acts as coronavirus receptor. Multiple, if not all, cardiovascular diseases involve the kidney RAS, with renal AT1 receptors often being claimed to exert a crucial role. Urinary RAS component levels, depending on filtration, reabsorption, and local release, are believed to reflect renal RAS activity. Finally, both existing drugs (RAS inhibitors, cyclooxygenase inhibitors) and novel drugs (angiotensin receptor/neprilysin inhibitors, sodium-glucose cotransporter-2 inhibitors, soluble ACE2) affect renal angiotensin formation, thereby displaying cardiovascular efficacy. Particular in the case of the latter three, an important question is to what degree they induce renoprotection (e.g., in a renal RAS-dependent manner). This review provides a unifying view, explaining not only how kidney angiotensin formation occurs and how it is affected by drugs but also why drugs are renoprotective when altering the renal RAS. SIGNIFICANCE STATEMENT: Angiotensin formation in the kidney is widely accepted but little understood, and multiple, often contrasting concepts have been put forward over the last two decades. This paper offers a unifying view, simultaneously explaining how existing and novel drugs exert renoprotection by interfering with kidney angiotensin formation.
Collapse
Affiliation(s)
- Hui Lin
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Frank Geurts
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Luise Hassler
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Daniel Batlle
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Katrina M Mirabito Colafella
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Kate M Denton
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Jia L Zhuo
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Xiao C Li
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Nirupama Ramkumar
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Masahiro Koizumi
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Taiji Matsusaka
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Akira Nishiyama
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Martin J Hoogduijn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - Ewout J Hoorn
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine (H.L., A.H.J.D.) and Division of Nephrology and Transplantation (F.G., M.J.H., E.J.H.), Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands; Northwestern University Feinberg School of Medicine, Chicago, Illinois (L.H., D.B.); Monash University, Melbourne, Australia (K.M.M.C., K.M.D.); Tulane University School of Medicine, New Orleans, Louisiana (J.L.Z., X.C.L.); Division of Nephrology and Hypertension, University of Utah School of Medicine, Salt Lake City, Utah (N.R.); Division of Nephrology, Endocrinology, and Metabolism (M.K.) and Institute of Medical Sciences and Department of Basic Medicine (M.K., T.M.), Tokai University School of Medicine, Isehara, Japan; and Department of Pharmacology, Faculty of Medicine, Kagawa University, Miki-cho, Kita-gun, Japan (A.N.)
| |
Collapse
|
4
|
Song R, Yosypiv IV. Sequence variants in the renin-angiotensin system genes are associated with isolated multicystic dysplastic kidney in children. Pediatr Res 2021; 90:205-211. [PMID: 33173183 DOI: 10.1038/s41390-020-01255-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Multicystic dysplastic kidney (MCDK) is a common form of congenital cystic kidney disease in children. The etiology of MCDK remains unclear. Given an important role of the renin-angiotensin system in normal kidney development, we explored whether MCDK in children is associated with variants in the genes encoding renin-angiotensin system components by Sanger sequencing. METHODS The coding regions of renin (REN), angiotensinogen (AGT), ACE, and angiotensin 1 receptor (AGTR1) genes were amplified by PCR. The effect of DNA sequence variants on protein function was predicted with PolyPhen-2 software. RESULTS 3 novel and known AGT variants were found. 1 variant was probably damaging, 1 was possibly damaging and one was benign. Out of 7 REN variants, 4 were probably damaging and 3 were benign. Of 6 ACE variants, 3 were probably damaging and 3-benign. 3 AGTR1 variants were found. 2 variants were possibly damaging, and one was benign. CONCLUSION We report novel associations of sequence variants in REN, AGT, ACE, or AGTR1 genes in children with isolated MCDK in the United States. Our findings suggest a recessive disease model and support the hypothesis of multiple renin-angiotensin system gene involvement in MCDK. IMPACT Discovery of novel gene variants in renin-angiotensin genes in children with MCDK. Novel possibly damaging gene variants discovered. Multiple renin-angiotensin system gene variants are involved in MCDK.
Collapse
Affiliation(s)
- Renfang Song
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Emathinger JM, Nelson JW, Gurley SB. Advances in use of mouse models to study the renin-angiotensin system. Mol Cell Endocrinol 2021; 529:111255. [PMID: 33789143 PMCID: PMC9119406 DOI: 10.1016/j.mce.2021.111255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/19/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
The renin-angiotensin system (RAS) is a highly complex hormonal cascade that spans multiple organs and cell types to regulate solute and fluid balance along with cardiovascular function. Much of our current understanding of the functions of the RAS has emerged from a series of key studies in genetically-modified animals. Here, we review key findings from ground-breaking transgenic models, spanning decades of research into the RAS, with a focus on their use in studying blood pressure. We review the physiological importance of this regulatory system as evident through the examination of mouse models for several major RAS components: angiotensinogen, renin, ACE, ACE2, and the type 1 A angiotensin receptor. Both whole-animal and cell-specific knockout models have permitted critical RAS functions to be defined and demonstrate how redundancy and multiplicity within the RAS allow for compensatory adjustments to maintain homeostasis. Moreover, these models present exciting opportunities for continued discovery surrounding the role of the RAS in disease pathogenesis and treatment for cardiovascular disease and beyond.
Collapse
MESH Headings
- Angiotensin-Converting Enzyme 2/deficiency
- Angiotensin-Converting Enzyme 2/genetics
- Angiotensinogen/deficiency
- Angiotensinogen/genetics
- Animals
- Blood Pressure/genetics
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Kidney/cytology
- Kidney/metabolism
- Mice
- Mice, Knockout
- Receptor, Angiotensin, Type 1/deficiency
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Renin/deficiency
- Renin/genetics
- Renin-Angiotensin System/genetics
- Signal Transduction
- Water-Electrolyte Balance/genetics
Collapse
Affiliation(s)
- Jacqueline M Emathinger
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| | - Susan B Gurley
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Tseng MH, Huang SM, Konrad M, Huang JL, Shaw SW, Tian YC, Chueh HY, Fan WL, Wu TW, Ding JJ, Chiang MC, Lin SH. Effect of Hydrocortisone on Angiotensinogen ( AGT) Mutation-Causing Autosomal Recessive Renal Tubular Dysgenesis. Cells 2021; 10:cells10040782. [PMID: 33916187 PMCID: PMC8065467 DOI: 10.3390/cells10040782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 11/16/2022] Open
Abstract
We has identified a founder homozygous E3_E4 del: 2870 bp deletion + 9 bp insertion in AGT gene encoding angiotensinogen responsible for autosomal recessive renal tubular dysgenesis (ARRTD) with nearly-fatal outcome. High-dose hydrocortisone therapy successfully rescued one patient with an increased serum Angiotensinogen (AGT), Ang I, and Ang II levels. The pathogenesis of ARRTD caused by this AGT mutation and the potential therapeutic effect of hydrocortisone were examined by in vitro functional studies. The expression of this truncated AGT protein was relatively low with a dose-dependent manner. This truncated mutation diminished the interaction between mutant AGT and renin. The truncated AGT also altered the glucocorticoid receptor (GR)-dependent transactivation, indicating that AGT may affect the development of proximal convoluted tubule by alteration of glucocorticoid-dependent transactivation. In hepatocytes, hydrocortisone increased the AGT level by accentuating the stability of mutant AGT and increasing its binding with renin. Therefore, hydrocortisone may exert the therapeutic effect through the enhanced stability and interaction with renin of truncated AGT in patients carrying this AGT mutation.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan;
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital Münster, 481 Münster, Germany;
| | - Jing-Long Huang
- Division of Pediatric Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Steven W. Shaw
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital and Chang Gung University, Taipei 114, Taiwan;
| | - Ya-Chung Tian
- Division of Nephrology, Department of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Ho-Yen Chueh
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 900, USA;
| | - Jhao-Jhuang Ding
- Department of Pediatrics, Tri-Service General Hospital, Taipei 114, Taiwan;
| | - Ming-Chou Chiang
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 330, Taiwan;
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei 114, Taiwan
- Correspondence: ; Tel.: +886-2-87927213; Fax: +886-2-87927134
| |
Collapse
|
7
|
Renin-angiotensin system in mammalian kidney development. Pediatr Nephrol 2021; 36:479-489. [PMID: 32072306 DOI: 10.1007/s00467-020-04496-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022]
Abstract
Mutations in the genes of the renin-angiotensin system result in congenital anomalies of the kidney and urinary tract (CAKUT), the main cause of end-stage renal disease in children. The molecular mechanisms that cause CAKUT are unclear in most cases. To improve the care of children with CAKUT, it is critical to determine the underlying mechanisms of CAKUT. In this review, we discuss recent advances that have helped to better understand how disruption of the renin-angiotensin system during kidney development contributes to CAKUT.
Collapse
|
8
|
Schrankl J, Fuchs M, Broeker K, Daniel C, Kurtz A, Wagner C. Localization of angiotensin II type 1 receptor gene expression in rodent and human kidneys. Am J Physiol Renal Physiol 2021; 320:F644-F653. [PMID: 33615887 DOI: 10.1152/ajprenal.00550.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The kidneys are an important target for angiotensin II (ANG II). In adult kidneys, the effects of ANG II are mediated mainly by ANG II type 1 (AT1) receptors. AT1 receptor expression has been reported for a variety of different cell types within the kidneys, suggesting a broad spectrum of actions for ANG II. Since there have been heterogeneous results in the literature regarding the intrarenal distribution of AT1 receptors, this study aimed to obtain a comprehensive overview about the localization of AT1 receptor expression in mouse, rat, and human kidneys. Using the cell-specific and high-resolution RNAscope technique, we performed colocalization experiments with various cell markers to specifically discriminate between different segments of the tubular and vascular system. Overall, we found a similar pattern of AT1 mRNA expression in mouse, rat, and human kidneys. AT1 receptors were detected in mesangial cells and renin-producing cells. In addition, AT1 mRNA was found in interstitial cells of the cortex and outer medulla. In rodents, late afferent and early efferent arterioles expressed AT1 receptor mRNA, but larger vessels of the investigated species showed no AT1 expression. Tubular expression of AT1 mRNA was species dependent with a strong expression in proximal tubules of mice, whereas expression was undetectable in human tubular cells. These findings suggest that the (juxta)glomerular area and tubulointerstitium are conserved expression sites for AT1 receptors across species and might present the main target sites for ANG II in adult human and rodent kidneys.NEW & NOTEWORTHY Angiotensin II (ANG II) type 1 (AT1) receptors are essential for mediating the effects of ANG II in the kidneys. This study aimed to obtain a comprehensive overview about the cell-specific localization of AT1 receptor expression in rodent and human kidneys using the novel RNAscope technique. We found that the conserved AT1 receptor mRNA expression sites across species are the (juxta)glomerular areas and tubulointerstitium, which might present main target sites for ANG II in adult human and rodent kidneys.
Collapse
Affiliation(s)
- Julia Schrankl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Michaela Fuchs
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Katharina Broeker
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Tseng MH, Huang SM, Huang JL, Fan WL, Konrad M, Shaw SW, Lien R, Chien HP, Ding JJ, Wu TW, Tsai JD, Tian YC, Lee HJ, Cheng PJ, Hsu JF, Lin SH. Autosomal Recessive Renal Tubular Dysgenesis Caused by a Founder Mutation of Angiotensinogen. Kidney Int Rep 2020; 5:2042-2051. [PMID: 33163725 PMCID: PMC7609895 DOI: 10.1016/j.ekir.2020.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/11/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Autosomal recessive renal tubular dysgenesis (ARRTD) caused by inactivation mutations in AGT, REN, ACE, and AGTR is a very rare but fatal disorder with an unknown prevalence. Methods We report 6 Taiwanese individuals with ARRTD from 6 unrelated families diagnosed by renal histology. Clinical features, outcome, and prevalence of carrier heterozygosity were examined. Results All patients exhibited antenatal oligohydramnios, postnatal anuria, pulmonary hypoplasia, and profound hypotension refractory to interventions. Angiotensinogen (AGT) protein levels were diminished in the liver, along with reduced serum AGT, angiotensin I (Ang I) and angiotensin II (Ang II) levels. Neonatal demise occurred in all but 1 case. All individuals carried the same homozygous E3_E4 del:2870bp deletion+9bp insertion in AGT, which led to a truncated protein (1-292 amino acid). The allelic frequency of this heterozygous AGT mutation was approximately 1.2% (6/500), suggesting that ARRTD may not be exceedingly rare in Taiwan. This mutation results in skipping of exons encoding the serpin domain of AGT, which is important for renin interaction and the generation of truncated protein. In silico modeling revealed a diminished interaction between mutant AGT and renin. One patient survived after responding to high-dose hydrocortisone therapy, with resolution of profound hypotension, accompanied by an increase in serum AGT, Ang I, and Ang II levels. Conclusion This AGT mutation may lead to the diminished interaction with renin and decreased Ang I and Ang II generation. Hydrocortisone may potentially rescue cases of ARRTD caused by this truncated AGT.
Collapse
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Jing-Long Huang
- Division of Pediatric Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital Münster, Münster, Germany
| | - Steven W. Shaw
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Reyin Lien
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Hui-Ping Chien
- Department of Pathology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Jhao-Jhuang Ding
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology Children’s Hospital Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeng-Daw Tsai
- Division of Nephrology, Department of Pediatrics, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ya-Chung Tian
- Division of Nephrology, Department of Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Hwei-Jen Lee
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Po-Jen Cheng
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Jen-Fu Hsu
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hua Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, National Defense Medical Center, Taiwan
- Correspondence: Shih-Hua Lin, Division of Nephrology, Department of Medicine, Tri-Service General Hospital, No 325, Section 2, Cheng-Kung Road, Neihu 114, Taipei, Taiwan.
| |
Collapse
|
10
|
Sapouckey SA, Morselli LL, Deng G, Patil CN, Balapattabi K, Oliveira V, Claflin KE, Gomez J, Pearson NA, Potthoff MJ, Gibson-Corley KN, Sigmund CD, Grobe JL. Exploration of cardiometabolic and developmental significance of angiotensinogen expression by cells expressing the leptin receptor or agouti-related peptide. Am J Physiol Regul Integr Comp Physiol 2020; 318:R855-R869. [PMID: 32186897 DOI: 10.1152/ajpregu.00297.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Angiotensin II (ANG II) Agtr1a receptor (AT1A) is expressed in cells of the arcuate nucleus of the hypothalamus that express the leptin receptor (Lepr) and agouti-related peptide (Agrp). Agtr1a expression in these cells is required to stimulate resting energy expenditure in response to leptin and high-fat diets (HFDs), but the mechanism activating AT1A signaling by leptin remains unclear. To probe the role of local paracrine/autocrine ANG II generation and signaling in this mechanism, we bred mice harboring a conditional allele for angiotensinogen (Agt, encoding AGT) with mice expressing Cre-recombinase via the Lepr or Agrp promoters to cause cell-specific deletions of Agt (AgtLepr-KO and AgtAgrp-KO mice, respectively). AgtLepr-KO mice were phenotypically normal, arguing against a paracrine/autocrine AGT signaling mechanism for metabolic control. In contrast, AgtAgrp-KO mice exhibited reduced preweaning survival, and surviving adults exhibited altered renal structure and steroid flux, paralleling previous reports of animals with whole body Agt deficiency or Agt disruption in albumin (Alb)-expressing cells (thought to cause liver-specific disruption). Surprisingly, adult AgtAgrp-KO mice exhibited normal circulating AGT protein and hepatic Agt mRNA expression but reduced Agt mRNA expression in adrenal glands. Reanalysis of RNA-sequencing data sets describing transcriptomes of normal adrenal glands suggests that Agrp and Alb are both expressed in this tissue, and fluorescent reporter gene expression confirms Cre activity in adrenal gland of both Agrp-Cre and Alb-Cre mice. These findings lead to the iconoclastic conclusion that extrahepatic (i.e., adrenal) expression of Agt is critically required for normal renal development and survival.
Collapse
Affiliation(s)
- Sarah A Sapouckey
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Lisa L Morselli
- Division of Endocrinology, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Guorui Deng
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Chetan N Patil
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Vanessa Oliveira
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Javier Gomez
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Nicole A Pearson
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa.,Obesity Research & Education Initiative, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Katherine N Gibson-Corley
- Fraternal Order of Eagles' Diabetes Research Center, University of Iowa, Iowa City, Iowa.,Department of Pathology, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Justin L Grobe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin.,Comprehensive Rodent Metabolic Phenotyping Core, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
11
|
DuPriest E, Hebert J, Morita M, Marek N, Meserve EEK, Andeen N, Houseman EA, Qi Y, Alwasel S, Nyengaard J, Morgan T. Fetal Renal DNA Methylation and Developmental Programming of Stress-Induced Hypertension in Growth-Restricted Male Mice. Reprod Sci 2020; 27:1110-1120. [PMID: 32046425 DOI: 10.1007/s43032-019-00121-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/13/2019] [Indexed: 12/19/2022]
Abstract
Fetal growth restriction (FGR) is associated with developmental programming of adult onset hypertension, which may be related to differences in nephron development. Prior studies showed that maternal nutrient restriction is associated with reduced nephrogenesis in rodents, especially in male progeny. We hypothesized that maternal genetic risk for FGR may similarly affect fetal kidney development, leading to adult onset hypertension. We employed an angiotensinogen (AGT) gene titration transgenic (TG) construct with 3 copies of the mouse AGT gene that mimics a common human genotype (AGT A[-6]G) associated with FGR. We investigated whether FGR in 2-copy (wild type, [WT]) progeny from 3-copy TG dams leads to developmental programming differences in kidney development and adult blood pressure compared with age- and sex-matched controls. Progeny were tested in the late fetal period (e17.5), neonatal period (2 weeks of age), and as young adults (12 weeks). We measured weights, tested for renal oxidative stress, compared renal DNA methylation profiles, counted the number of glomeruli, and measured adult blood pressure ± stress. Progeny from TG dams were growth restricted with evidence of renal oxidative stress, males showed fetal renal DNA hypermethylation, they had fewer glomeruli, and they developed stress-induced hypertension as adults. Their female siblings did not share this pathology and instead resembled progeny from WT dams. Surprisingly, glomerular counts in the neonatal period were not different between sexes or maternal genotypes. In turn, we suspect that differences in fetal renal DNA methylation may affect the long-term viability of glomeruli, rather than reducing nephrogenesis.
Collapse
Affiliation(s)
- Elizabeth DuPriest
- Departments of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.,Division of Natural Science and Health, Warner Pacific University, Portland, OR, USA
| | - Jessica Hebert
- Departments of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.,Department of Biology, Portland State University, Portland, OR, USA
| | - Mayu Morita
- Departments of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Nicole Marek
- Departments of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Emily E K Meserve
- Departments of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.,Department of Anatomic & Clinical Pathology, Maine Medical Center, Portland, ME, USA
| | - Nicole Andeen
- Departments of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - E Andres Houseman
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Yue Qi
- Departments of Cardiovascular Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Saleh Alwasel
- Department of Zoology, King Saud University, Riyadh, Saudi Arabia
| | - Jens Nyengaard
- Core Centre for Molecular Morphology, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Terry Morgan
- Departments of Pathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
12
|
Steglich A, Hickmann L, Linkermann A, Bornstein S, Hugo C, Todorov VT. Beyond the Paradigm: Novel Functions of Renin-Producing Cells. Rev Physiol Biochem Pharmacol 2020; 177:53-81. [PMID: 32691160 DOI: 10.1007/112_2020_27] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The juxtaglomerular renin-producing cells (RPC) of the kidney are referred to as the major source of circulating renin. Renin is the limiting factor in renin-angiotensin system (RAS), which represents a proteolytic cascade in blood plasma that plays a central role in the regulation of blood pressure. Further cells disseminated in the entire organism express renin at a low level as part of tissue RASs, which are thought to locally modulate the effects of systemic RAS. In recent years, it became increasingly clear that the renal RPC are involved in developmental, physiological, and pathophysiological processes outside RAS. Based on recent experimental evidence, a novel concept emerges postulating that next to their traditional role, the RPC have non-canonical RAS-independent progenitor and renoprotective functions. Moreover, the RPC are part of a widespread renin lineage population, which may act as a global stem cell pool coordinating homeostatic, stress, and regenerative responses throughout the organism. This review focuses on the RAS-unrelated functions of RPC - a dynamic research area that increasingly attracts attention.
Collapse
Affiliation(s)
- Anne Steglich
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Linda Hickmann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Andreas Linkermann
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Stefan Bornstein
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Christian Hugo
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Experimental Nephrology, Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|
13
|
Nephropathy in Hypertensive Animals Is Linked to M2 Macrophages and Increased Expression of the YM1/Chi3l3 Protein. Mediators Inflamm 2019; 2019:9086758. [PMID: 31360120 PMCID: PMC6652056 DOI: 10.1155/2019/9086758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/03/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022] Open
Abstract
Macrophages contribute to a continuous increase in blood pressure and kidney damage in hypertension, but their polarization status and the underlying mechanisms have not been clarified. This study revealed an important role for M2 macrophages and the YM1/Chi3l3 protein in hypertensive nephropathy in a mouse model of hypertension. Bone marrow cells were isolated from the femurs and tibia of male FVB/N (control) and transgenic hypertensive animals that overexpressed the rat form of angiotensinogen (TGM(rAOGEN)123, TGM123-FVB/N). The cells were treated with murine M-CSF and subsequently with LPS+IFN-γ to promote their polarization into M1 macrophages and IL-4+IL-13 to trigger the M2 phenotype. We examined the kidneys of TGM123-FVB/N animals to assess macrophage polarization and end-organ damage. mRNA expression was evaluated using real-time PCR, and protein levels were assessed through ELISA, CBA, Western blot, and immunofluorescence. Histology confirmed high levels of renal collagen. Cells stimulated with LPS+IFN-γ in vitro showed no significant difference in the expression of CD86, an M1 marker, compared to cells from the controls or the hypertensive mice. When stimulated with IL-4+IL-13, however, macrophages of the hypertensive group showed a significant increase in CD206 expression, an M2 marker. The M2/M1 ratio reached 288%. Our results indicate that when stimulated in vitro, macrophages from hypertensive mice are predisposed toward polarization to an M2 phenotype. These data support results from the kidneys where we found an increased infiltration of macrophages predominantly polarized to M2 associated with high levels of YM1/Chi3l3 (91,89%), suggesting that YM1/Chi3l3 may be a biomarker of hypertensive nephropathy.
Collapse
|
14
|
Schrankl J, Neubauer B, Fuchs M, Gerl K, Wagner C, Kurtz A. Apparently normal kidney development in mice with conditional disruption of ANG II-AT 1 receptor genes in FoxD1-positive stroma cell precursors. Am J Physiol Renal Physiol 2019; 316:F1191-F1200. [PMID: 30969804 DOI: 10.1152/ajprenal.00305.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An intact renin-angiotensin system involving ANG II type 1 (AT1) receptors is crucial for normal kidney development. It is still unclear in which cell types AT1 receptor signaling is required for normal kidney development, maturation, and function. Because all kidney cells deriving from stroma progenitor cells express AT1 receptors and because stromal cells fundamentally influence nephrogenesis and tubular maturation, we investigated the relevance of AT1 receptors in stromal progenitors and their descendants for renal development and function. For this aim, we generated and analyzed mice with conditional deletion of AT1A receptor in the FoxD1 cell lineage in combination with global disruption of the AT1B receptor gene. These FoxD1-AT1ko mice developed normally. Their kidneys showed neither structural nor functional abnormalities compared with wild-type mice, whereas in isolated perfused FoxD1-AT1ko kidneys, the vasoconstrictor and renin inhibitory effects of ANG II were absent. In vivo, however, plasma renin concentration and renal renin expression were normal in FoxD1-AT1ko mice, as were blood pressure and glomerular filtration rate. These findings suggest that a strong reduction of AT1 receptors in renal stromal progenitors and their descendants does not disturb normal kidney development.
Collapse
Affiliation(s)
- Julia Schrankl
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| | - Bjoern Neubauer
- Department of Medicine IV, University Medical Center Freiburg , Freiburg , Germany
| | - Michaela Fuchs
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| | - Katharina Gerl
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg , Regensburg , Germany
| |
Collapse
|
15
|
Jain S, Chen F. Developmental pathology of congenital kidney and urinary tract anomalies. Clin Kidney J 2018; 12:382-399. [PMID: 31198539 PMCID: PMC6543978 DOI: 10.1093/ckj/sfy112] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Congenital anomalies of the kidneys or lower urinary tract (CAKUT) are the most common causes of renal failure in children and account for 25% of end-stage renal disease in adults. The spectrum of anomalies includes renal agenesis; hypoplasia; dysplasia; supernumerary, ectopic or fused kidneys; duplication; ureteropelvic junction obstruction; primary megaureter or ureterovesical junction obstruction; vesicoureteral reflux; ureterocele; and posterior urethral valves. CAKUT originates from developmental defects and can occur in isolation or as part of other syndromes. In recent decades, along with better understanding of the pathological features of the human congenital urinary tract defects, researchers using animal models have provided valuable insights into the pathogenesis of these diseases. However, the genetic causes and etiology of many CAKUT cases remain unknown, presenting challenges in finding effective treatment. Here we provide an overview of the critical steps of normal development of the urinary system, followed by a description of the pathological features of major types of CAKUT with respect to developmental mechanisms of their etiology.
Collapse
Affiliation(s)
- Sanjay Jain
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Feng Chen
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
16
|
Yoo KH, Yim HE, Bae ES, Hong YS. Capillary rarefaction and altered renal development: the imbalance between pro- and anti-angiogenic factors in response to angiotensin II inhibition in the developing rat kidney. J Mol Histol 2018; 49:219-228. [DOI: 10.1007/s10735-018-9762-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
|
17
|
Nakamori H, Yoshida SI, Ishiguro H, Suzuki S, Yasuzaki H, Hashimoto T, Ishigami T, Hirawa N, Toya Y, Umemura S, Tamura K. Arterial wall hypertrophy is ameliorated by α2-adrenergic receptor antagonist or aliskiren in kidneys of angiotensinogen-knockout mice. Clin Exp Nephrol 2017; 22:773-781. [PMID: 29230587 DOI: 10.1007/s10157-017-1520-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Arterial hypertrophy and interstitial fibrosis are important characteristics in kidneys of angiotensinogen-knockout (Atg -/-) mice. In these mice, which exhibit polyuria and hypotension, sympathetic nerve signaling is estimated to be compensatorily hyperactive. Furthermore, transforming growth factor (TGF)-β1 is overexpressed in mice kidneys. To determine whether sympathetic nerve signaling and TGF-β1 exacerbate arterial hypertrophy and interstitial fibrosis, intervention studies of such signaling are required. METHODS We performed renal denervation and administered the α2-adrenergic receptor (AR) antagonist, atipamezole, to Atg -/- mice. A renin inhibitor, aliskiren, which was preliminarily confirmed to reduce TGF-β1 gene expression in kidneys of the mice, was additionally administered to assess the effect on the arterial hypertrophy and interstitial fibrosis. RESULTS Norepinephrine content in kidneys of Atg -/- mice was three times higher than in kidneys of wild-type mice. Interventions by renal denervation and atipamezole resulted in amelioration of the histological findings. Overexpression of TGF-β1 gene in kidneys of Atg -/- mice was altered in a manner linked to the histological findings. Surprisingly, aliskiren reduced α2-AR gene expression, interstitial fibrosis, and arterial hypertrophy in kidneys of Atg -/- mice, which lack renin substrate. CONCLUSIONS Alpha2-AR signaling is one of the causes of persistent renal arterial hypertrophy in Atg -/- mice. Aliskiren also angiotensinogen-independently reduces the extent of renal arterial hypertrophy, partly thorough downregulation of α2-ARs. Although renal arterial hypertrophy in Atg -/- mice appears to be of multifactorial origin, TGF-β1 may play a key role in the persistence of such hypertrophy.
Collapse
Affiliation(s)
- Haruka Nakamori
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shin-Ichiro Yoshida
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Hiroaki Ishiguro
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Shota Suzuki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiroaki Yasuzaki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tatsuo Hashimoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Tomoaki Ishigami
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Nobuhito Hirawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
18
|
Meyfour A, Pooyan P, Pahlavan S, Rezaei-Tavirani M, Gourabi H, Baharvand H, Salekdeh GH. Chromosome-Centric Human Proteome Project Allies with Developmental Biology: A Case Study of the Role of Y Chromosome Genes in Organ Development. J Proteome Res 2017; 16:4259-4272. [PMID: 28914051 DOI: 10.1021/acs.jproteome.7b00446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the main goals of Chromosome-Centric Human Proteome Project is to identify protein evidence for missing proteins (MPs). Here, we present a case study of the role of Y chromosome genes in organ development and how to overcome the challenges facing MPs identification by employing human pluripotent stem cell differentiation into cells of different organs yielding unprecedented biological insight into adult silenced proteins. Y chromosome is a male-specific sex chromosome which escapes meiotic recombination. From an evolutionary perspective, Y chromosome has preserved 3% of ancestral genes compared to 98% preservation of the X chromosome based on Ohno's law. Male specific region of Y chromosome (MSY) contains genes that contribute to central dogma and govern the expression of various targets throughout the genome. One of the most well-known functions of MSY genes is to decide the male-specific characteristics including sex, testis formation, and spermatogenesis, which are majorly formed by ampliconic gene families. Beyond its role in sex-specific gonad development, MSY genes in coexpression with their X counterparts, as single copy and broadly expressed genes, inhibit haplolethality and play a key role in embryogenesis. The role of X-Y related gene mutations in the development of hereditary syndromes suggests an essential contribution of sex chromosome genes to development. MSY genes, solely and independent of their X counterparts and/or in association with sex hormones, have a considerable impact on organ development. In this Review, we present major recent findings on the contribution of MSY genes to gonad formation, spermatogenesis, and the brain, heart, and kidney development and discuss how Y chromosome proteome project may exploit developmental biology to find missing proteins.
Collapse
Affiliation(s)
- Anna Meyfour
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran.,Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , 19839-63113 Tehran, Iran
| | - Paria Pooyan
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Department of Basic Science, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences , 19839-63113 Tehran, Iran
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute , 19395-4644 Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran.,Department of Developmental Biology, University of Science and Culture , 19395-4644 Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research , 81589-68433 Tehran, Iran.,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran , 31535-1897 Karaj, Iran
| |
Collapse
|
19
|
Li XC, Zhang J, Zhuo JL. The vasoprotective axes of the renin-angiotensin system: Physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases. Pharmacol Res 2017; 125:21-38. [PMID: 28619367 DOI: 10.1016/j.phrs.2017.06.005] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 01/11/2023]
Abstract
The renin-angiotensin system (RAS) is undisputedly one of the most prominent endocrine (tissue-to-tissue), paracrine (cell-to-cell) and intracrine (intracellular/nuclear) vasoactive systems in the physiological regulation of neural, cardiovascular, blood pressure, and kidney function. The importance of the RAS in the development and pathogenesis of cardiovascular, hypertensive and kidney diseases has now been firmly established in clinical trials and practice using renin inhibitors, angiotensin-converting enzyme (ACE) inhibitors, type 1 (AT1) angiotensin II (ANG II) receptor blockers (ARBs), or aldosterone receptor antagonists as major therapeutic drugs. The major mechanisms of actions for these RAS inhibitors or receptor blockers are mediated primarily by blocking the detrimental effects of the classic angiotensinogen/renin/ACE/ANG II/AT1/aldosterone axis. However, the RAS has expanded from this classic axis to include several other complex biochemical and physiological axes, which are derived from the metabolism of this classic axis. Currently, at least five axes of the RAS have been described, with each having its key substrate, enzyme, effector peptide, receptor, and/or downstream signaling pathways. These include the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor, the ANG II/APA/ANG III/AT2/NO/cGMP, the ANG I/ANG II/ACE2/ANG (1-7)/Mas receptor, the prorenin/renin/prorenin receptor (PRR or Atp6ap2)/MAP kinases ERK1/2/V-ATPase, and the ANG III/APN/ANG IV/IRAP/AT4 receptor axes. Since the roles and therapeutic implications of the classic angiotensinogen/renin/ACE/ANG II/AT1 receptor axis have been extensively reviewed, this article will focus primarily on reviewing the roles and therapeutic implications of the vasoprotective axes of the RAS in cardiovascular, hypertensive and kidney diseases.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Jianfeng Zhang
- Department of Emergency Medicine, The 2nd Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| |
Collapse
|
20
|
Čertíková Chábová V, Červenka L. The dilemma of dual renin-angiotensin system blockade in chronic kidney disease: why beneficial in animal experiments but not in the clinic? Physiol Res 2017; 66:181-192. [PMID: 28471687 DOI: 10.33549/physiolres.933607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Drugs interfering with the renin-angiotensin-aldosterone system (RAAS) improved the prognosis in patients with hypertension, heart failure, diabetes and chronic kidney disease. However, combining different drugs brought no further benefit while increasing the risk of hyperkalemia, hypotension and acute renal failure. This was so with combining angiotensin converting enzyme inhibitors (ACEi) and angiotensin II receptors type 1 antagonists (ARB). Dissimilarly, in animal disease models this dual therapy proved clearly superior to single drug treatment and became the optimal standard regime for comparison with other treatments. This review analyzes the causes of the discrepancy of effects of the dual therapy between animal experiments versus clinical studies, and is focused on the outcomes in chronic kidney disease. Discussed is the role of species differences in RAAS, of the variability of the disease features in humans versus relative stability in animals, of the genetic uniformity in the animals but not in humans, and of the biased publication habits of experimental versus clinical studies. We attempt to understand the causes and reconcile the discordant findings and suggest to what extent dual RAAS inhibition should be continued in animal experiments and why its application in the clinics should be limited to strictly selected groups of patients.
Collapse
Affiliation(s)
- V Čertíková Chábová
- Department of Nephrology, First Faculty of Medicine, Charles University, Prague, Czech Republic, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | |
Collapse
|
21
|
Epochs in the depressor/pressor balance of the renin-angiotensin system. Clin Sci (Lond) 2017; 130:761-71. [PMID: 27128801 DOI: 10.1042/cs20150939] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
The renin-angiotensin system (RAS) plays a commanding role in the regulation of extracellular fluid homoeostasis. Tigerstadt and Bergman first identified the RAS more than two centuries ago. By the 1980s a voyage of research and discovery into the mechanisms and actions of this system led to the development of drugs that block the RAS, which have become the mainstay for the treatment of cardiovascular and renal disease. In the last 25 years new components of the RAS have come to light, including the angiotensin type 2 receptor (AT2R) and the angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) [Ang(1-7)]/Mas receptor (MasR) axis. These have been shown to counter the classical actions of angiotensin II (AngII) at the predominant angiotensin type 1 receptor (AT1R). Our studies, and those of others, have demonstrated that targeting these depressor RAS pathways may be therapeutically beneficial. It is apparent that the evolution of both the pressor and depressor RAS pathways is distinct throughout life and that the depressor/pressor balance of the RAS vary between the sexes. These temporal patterns of expression suggest that therapies targeting the RAS could be optimized for discrete epochs in life.
Collapse
|
22
|
Azushima K, Ohki K, Wakui H, Uneda K, Haku S, Kobayashi R, Haruhara K, Kinguchi S, Matsuda M, Maeda A, Toya Y, Yamashita A, Umemura S, Tamura K. Adipocyte-Specific Enhancement of Angiotensin II Type 1 Receptor-Associated Protein Ameliorates Diet-Induced Visceral Obesity and Insulin Resistance. J Am Heart Assoc 2017; 6:JAHA.116.004488. [PMID: 28264860 PMCID: PMC5524000 DOI: 10.1161/jaha.116.004488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The renin–angiotensin system has a pivotal role in the pathophysiology of visceral obesity. Angiotensin II type 1 receptor (AT1R) is a major player in the signal transduction of the renin–angiotensin system, and the overactivation of this signaling contributes to the progression of visceral obesity. We have shown that the AT1R‐associated protein (ATRAP) promotes AT1R internalization from the cell surface into cytoplasm along with the suppression of overactivation of tissue AT1R signaling. In this study, we examined whether the enhancement of adipose ATRAP expression could efficiently prevent diet‐induced visceral obesity and insulin resistance. Methods and Results We generated adipocyte‐specific ATRAP transgenic mice using a 5.4‐kb adiponectin promoter, and transgenic mice and littermate control mice were fed either a low‐ or high‐fat diet for 10 weeks. Although the physiological phenotypes of the transgenic and control mice fed a low‐fat diet were comparable, the transgenic mice exhibited significant protection against high‐fat diet–induced adiposity, adipocyte hypertrophy, and insulin resistance concomitant with an attenuation of adipose inflammation, macrophage infiltration, and adipokine dysregulation. In addition, when mice were fed a high‐fat diet, the adipose expression of glucose transporter type 4 was significantly elevated and the level of adipose phospho‐p38 mitogen‐activated protein kinase was significantly attenuated in the transgenic mice compared with control mice. Conclusions Results presented in this study suggested that the enhancement in adipose ATRAP plays a protective role against the development of diet‐induced visceral obesity and insulin resistance through improvement of adipose inflammation and function via the suppression of overactivation of adipose AT1R signaling. Consequently, adipose tissue ATRAP is suggested to be an effective therapeutic target for the treatment of visceral obesity.
Collapse
Affiliation(s)
- Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan .,Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| | - Kohji Ohki
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sona Haku
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotaro Haruhara
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sho Kinguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akinobu Maeda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
23
|
Gomez RA, Sequeira-Lopez MLS. Novel Functions of Renin Precursors in Homeostasis and Disease. Physiology (Bethesda) 2017; 31:25-33. [PMID: 26661526 DOI: 10.1152/physiol.00039.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Renin progenitors appear early and are found in multiple tissues throughout the embryo. Besides their well known role in blood pressure and fluid homeostasis, renin progenitors participate in tissue morphogenesis, repair, and regeneration, and may integrate immune and endocrine responses. In the bone marrow, renin cells offer clues to understand normal and neoplastic hematopoiesis.
Collapse
Affiliation(s)
- R Ariel Gomez
- University of Virginia School of Medicine, Child Health Research Center, Charlottesville, Virginia
| | | |
Collapse
|
24
|
Angiotensin II-AT1-receptor signaling is necessary for cyclooxygenase-2-dependent postnatal nephron generation. Kidney Int 2016; 91:818-829. [PMID: 28040266 DOI: 10.1016/j.kint.2016.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 10/25/2016] [Accepted: 11/03/2016] [Indexed: 11/23/2022]
Abstract
Deletion of cyclooxygenase-2 (COX-2) causes impairment of postnatal kidney development. Here we tested whether the renin angiotensin system contributes to COX-2-dependent nephrogenesis in mice after birth and whether a rescue of impaired renal development and function in COX-2-/- mice was achievable. Plasma renin concentration in mouse pups showed a birth peak and a second peak around day P8 during the first 10 days post birth. Administration of the angiotensin II receptor AT1 antagonist telmisartan from day P1 to P3 did not result in cortical damage. However, telmisartan treatment from day P3 to P8, the critical time frame of renal COX-2 expression, led to hypoplastic glomeruli, a thinned subcapsular cortex and maturational arrest of superficial glomeruli quite similar to that observed in COX-2-/- mice. In contrast, AT2 receptor antagonist PD123319 was without any effect on renal development. Inhibition of the renin angiotensin system by aliskiren and enalapril caused similar glomerular defects as telmisartan. Administration of the AT1 receptor agonist L162313 to COX-2-/- pups improved kidney growth, ameliorated renal defects, but had no beneficial effect on reduced cortical mass. L162313 rescued impaired renal function by reducing serum urea and creatinine and mitigated pathologic albumin excretion. Moreover, glomerulosclerosis in the kidneys of COX-2-/- mice was reduced. Thus, angiotensin II-AT1-receptor signaling is necessary for COX-2-dependent normal postnatal nephrogenesis and maturation.
Collapse
|
25
|
Kamo T, Akazawa H, Suzuki JI, Komuro I. Roles of renin-angiotensin system and Wnt pathway in aging-related phenotypes. Inflamm Regen 2016; 36:12. [PMID: 29259685 PMCID: PMC5725913 DOI: 10.1186/s41232-016-0018-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023] Open
Abstract
The renin-angiotensin system (RAS) regulates diverse cellular responses and is crucial for normal organ development and function. On the other hand, RAS exerts deleterious effects promoting cardiovascular and multiple organ damage and contributes to promoting various aging-related diseases and aging-related decline in multiple organ functions. RAS blockade has been shown to prevent the progression of aging-related phenotypes and promote longevity. Wnt signaling pathway also plays a major role in the regulation of mammalian pathophysiology and is essential for organismal survival, and furthermore, it is substantially involved in the promotion of aging process. In this way, both RAS signaling and Wnt signaling have the functions of antagonistic pleiotropy during the process of growth and aging. Our recent study has demonstrated that an anti-aging effect of RAS blockade is associated with down-regulation of canonical Wnt signaling pathway, providing evidence for the hierarchical relationship between RAS signaling and Wnt signaling in promoting aging-related phenotypes. Here, we review how RAS signaling and Wnt signaling regulate the aging process and promote aging-related diseases.
Collapse
Affiliation(s)
- Takehiro Kamo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, 100-0004 Japan
| | - Jun-Ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, 100-0004 Japan
| |
Collapse
|
26
|
Ishimura Y, Chatani F, Sato S. Characterization of Hydronephrosis in Neonatal Rats from Dams Receiving Candesartan Cilexetil (TCV-116), an Angiotensin II Type 1 Receptor Antagonist. Int J Toxicol 2016. [DOI: 10.1080/109158199225071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The characteristics and mechanisms of hydronephrosis in neonatal rats induced by candesartan cilexetil (TCV-116), a potent angiotensin II (AngII) type 1 receptor antagonist, were examined. TCV-116 (300 mg/kg/day) was orally administered to dams for 4 weeks from gestation day 15 through lactation day 21. On lactation days 0, 4, 7, 14, and 22, the kidneys of the pups were examined. Hydronephrosis was observed starting on lactation day 14 accompanied by other histological changes, atrophy of the renal papillary tubules, dilatation of the renal tubules, and basophilic renal tubules in the cortex. These changes could also be observed at 10 weeks of age, 7 weeks after the last dose was administered. These renal structural abnormalities were consistent with that seen in other renin-angiotensin system antagonists. TCV-116 (300 mg/kg/day) was then administered to dams for four separate 1-week periods: gestation days 15 through 21, lactation days 0 to 6, lactation days 7 to 13, and lactation days 14 to 21. Pups were most susceptible to the induction of hydronephrosis when TCV-116 was administered from lactation days 0 to 6 and lactation days 7 to 13. The increased incidence of hydronephrosis and renal histological changes in the pups was prevented by administering mineralocorticoid, deoxycorticosterone acetate (10 mg/kg/day), subcutaneously to the pups from lactation days 7 to 13. Also, plasma aldosterone concentration in the pups was decreased after three daily treatments of TCV-116, accompanied by the increased plasma potassium concentration and urine Na/K ratio and the decreased urine osmolality. Therefore, we considered that the development of hydronephrosis in pups is closely related to the AngII blockade for the first 2 weeks after birth, and the reduction of aldosterone secretion by the inhibition of AngII leads to the disorder of the sodium and potassium homeostasis in neonates, and subsequent increase in urine volume may be involved in the mechanisms of hydronephrosis. We conclude that the hydronephrosis was caused by the sodium imbalance resulted from the pharmacological action of TCV-116 during the neonatal period.
Collapse
Affiliation(s)
- Yoshimasa Ishimura
- Hikari Branch, Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Chemical Industries, Ltd., Yamaguchi, Japan
| | - Fumio Chatani
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Chemical Industries, Ltd., Osaka, Japan
| | - Shuzo Sato
- Drug Safety Research Laboratories, Pharmaceutical Research Division, Takeda Chemical Industries, Ltd., Osaka, Japan
| |
Collapse
|
27
|
ERp44 Exerts Redox-Dependent Control of Blood Pressure at the ER. Mol Cell 2015; 58:1015-27. [DOI: 10.1016/j.molcel.2015.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 01/16/2015] [Accepted: 03/31/2015] [Indexed: 01/09/2023]
|
28
|
Nagalakshmi VK, Yu J. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning. Mol Reprod Dev 2015; 82:151-66. [PMID: 25783232 DOI: 10.1002/mrd.22462] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/12/2015] [Indexed: 01/03/2023]
Abstract
The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney.
Collapse
Affiliation(s)
- Vidya K Nagalakshmi
- Department of Cell Biology and Division of Center of Immunity, Inflammation and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
29
|
Meyrier A. Nephrosclerosis: update on a centenarian. Nephrol Dial Transplant 2014; 30:1833-41. [PMID: 25488894 DOI: 10.1093/ndt/gfu366] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/03/2014] [Indexed: 12/23/2022] Open
Abstract
Nephrosclerosis is an umbrella term defining changes in all compartments of the kidney, changes caused by hypertension and by ageing. Among other lesions, arteriolosclerosis and arteriolohyalinosis play a major role in inducing glomerular ischaemic shrinking and sclerosis along with glomerulomegaly and focal-segmental glomerulosclerosis (FSGS). These lesions are accompanied by tubulointerstitial inflammation and fibrosis that predict the decline of renal function. Nephrosclerosis is a major cause of renal insufficiency in blacks of African descent with a severe, early form of renovasculopathy and a rapid course to renal failure with predominant lesions of FSGS. It seems that in blacks, separate genetic factors independently lead to vascular lesions and to hypertension with a different time-scale of their onset and of their progression, nephroangiosclerosis preceding the onset of hypertension. Conversely, true and histologically identified nephrosclerosis in white Europeans rarely leads to end-stage renal disease in the absence of malignant hypertension. Various animal models demonstrate that renal vascular lesions may exist in the absence of hypertension. These experiments also point to a major role of angiotensin II and of a number of independent and overlapping cellular and molecular pathways in a cascade of inflammatory events that end in renal fibrosis. Two pathophysiologic mechanisms are at work in inducing glomerular lesions and tubulointerstitial fibrosis: a loss of autoregulation of the renal blood flow caused by an arteriolohyalinosis of the glomerular afferent arteriole and ischaemia that fosters the generation of hypoxia inducible-fibrosing factors. Not all antihypertensive drugs equally protect the kidney from nephrosclerosis. Angiotensin II antagonists exert a favourable effect on hyperfiltration. Conversely, dihydropyridine calcium-channel blockers and vasodilators do not withstand the derangement of renal autoregulation.
Collapse
Affiliation(s)
- Alain Meyrier
- Université Paris-Descartes, Paris, France Département de Néphrologie, Hôpital Georges Pompidou (AP-HP), Paris, France
| |
Collapse
|
30
|
Itoh M, Nakadate K, Horibata Y, Matsusaka T, Xu J, Hunziker W, Sugimoto H. The structural and functional organization of the podocyte filtration slits is regulated by Tjp1/ZO-1. PLoS One 2014; 9:e106621. [PMID: 25184792 PMCID: PMC4153657 DOI: 10.1371/journal.pone.0106621] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/30/2014] [Indexed: 01/16/2023] Open
Abstract
Blood filtration in the kidney glomerulus is essential for physiological homeostasis. The filtration apparatus of the kidney glomerulus is composed of three distinct components: the fenestrated endothelial cells, the glomerular basement membrane, and interdigitating foot processes of podocytes that form the slit diaphragm. Recent studies have demonstrated that podocytes play a crucial role in blood filtration and in the pathogenesis of proteinuria and glomerular sclerosis; however, the molecular mechanisms that organize the podocyte filtration barrier are not fully understood. In this study, we suggest that tight junction protein 1 (Tjp1 or ZO-1), which is encoded by Tjp1 gene, plays an essential role in establishing the podocyte filtration barrier. The podocyte-specific deletion of Tjp1 down-regulated the expression of podocyte membrane proteins, impaired the interdigitation of the foot processes and the formation of the slit diaphragm, resulting in glomerular dysfunction. We found the possibility that podocyte filtration barrier requires the integration of two independent units, the pre-existing epithelial junction components and the newly synthesized podocyte-specific components, at the final stage in glomerular morphogenesis, for which Tjp1 is indispensable. Together with previous findings that Tjp1 expression was decreased in glomerular diseases in human and animal models, our results indicate that the suppression of Tjp1 could directly aggravate glomerular disorders, highlights Tjp1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Masahiko Itoh
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
- * E-mail: (MI); (WH)
| | - Kazuhiko Nakadate
- Department of Basic Biology, Educational and Research Center for Pharmacy, Meiji Pharmaceutical University, Kiyose, Tokyo, Japan
| | - Yasuhiro Horibata
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| | - Taiji Matsusaka
- Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jianliang Xu
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
| | - Walter Hunziker
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore
- * E-mail: (MI); (WH)
| | - Hiroyuki Sugimoto
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Mibu-machi, Shimotsuga-gun, Tochigi, Japan
| |
Collapse
|
31
|
Ohsawa M, Tamura K, Wakui H, Maeda A, Dejima T, Kanaoka T, Azushima K, Uneda K, Tsurumi-Ikeya Y, Kobayashi R, Matsuda M, Uchida S, Toya Y, Kobori H, Nishiyama A, Yamashita A, Ishikawa Y, Umemura S. Deletion of the angiotensin II type 1 receptor-associated protein enhances renal sodium reabsorption and exacerbates angiotensin II-mediated hypertension. Kidney Int 2014; 86:570-81. [PMID: 24694992 PMCID: PMC4149871 DOI: 10.1038/ki.2014.95] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 02/07/2014] [Accepted: 02/13/2014] [Indexed: 12/13/2022]
Abstract
Angiotensin II type 1 receptor (AT1R)–associated protein (ATRAP) promotes AT1R internalization along with suppression of pathological activation of tissue AT1R signaling. However, the functional significance of ATRAP in renal sodium handling and blood pressure regulation under pathological stimuli is not fully resolved. Here we show the blood pressure of mice with a gene-targeted disruption of ATRAP was comparable to that of wild-type mice at baseline. However, in ATRAP-knockout mice, angiotensin II–induced hypertension was exacerbated and the extent of positive sodium balance was increased by angiotensin II. Renal expression of the sodium-proton antiporter 3, a major sodium transporter in the proximal tubules, urinary pH, renal angiotensinogen production, and angiotensin II content was unaffected. Stimulation of the renal expression and activity of the epithelial sodium channel (ENaC), a major sodium transporter in the distal tubules, was significantly enhanced by chronic angiotensin II infusion. The circulating and urinary aldosterone levels were comparable. The blood pressure response and renal ENaC expression by aldosterone were not affected. Thus, ATRAP deficiency exacerbated angiotensin II–mediated hypertension by pathological activation of renal tubular AT1R by angiotensin II. This directly stimulates ENaC in the distal tubules and enhances sodium retention in an aldosterone-independent manner.
Collapse
Affiliation(s)
- Masato Ohsawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akinobu Maeda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Toru Dejima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiko Kanaoka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kazushi Uneda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuko Tsurumi-Ikeya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryu Kobayashi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshiyuki Toya
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroyuki Kobori
- Department of Pharmacology, Kagawa University School of Medicine, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Kagawa University School of Medicine, Kagawa, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
32
|
Gomez RA, Belyea B, Medrano S, Pentz ES, Sequeira-Lopez MLS. Fate and plasticity of renin precursors in development and disease. Pediatr Nephrol 2014; 29:721-6. [PMID: 24337407 PMCID: PMC3999616 DOI: 10.1007/s00467-013-2688-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/04/2013] [Accepted: 10/28/2013] [Indexed: 01/04/2023]
Abstract
Renin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra renal tissues remain to be investigated. In the kidney, they participate locally in the assembly and branching of the renal arterial tree and later in the endocrine control of blood pressure and fluid-electrolyte homeostasis. Interestingly, this endocrine function is accomplished by the remarkable plasticity of renin cell descendants along the kidney arterioles and glomeruli which are capable of reacquiring the renin phenotype in response to physiological demands, increasing circulating renin and maintaining homeostasis. Given that renin cells are sensors of the status of the extracellular fluid and perfusion pressure, several signaling mechanisms (β-adrenergic receptors, Notch pathway, gap junctions and the renal baroreceptor) must be coordinated to ensure the maintenance of renin phenotype--and ultimately the availability of renin--during basal conditions and in response to homeostatic threats. Notably, key transcriptional (Creb/CBP/p300, RBP-J) and posttranscriptional (miR-330, miR125b-5p) effectors of those signaling pathways are prominent in the regulation of renin cell identity. The next challenge, it seems, would be to understand how those factors coordinate their efforts to control the endocrine and contractile phenotypes of the myoepithelioid granulated renin-expressing cell.
Collapse
Affiliation(s)
- R Ariel Gomez
- Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, Room 2001, Charlottesville, VA, 22908, USA,
| | | | | | | | | |
Collapse
|
33
|
Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: implications for kidney disease. Pediatr Nephrol 2014; 29:609-20. [PMID: 24061643 DOI: 10.1007/s00467-013-2616-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 12/26/2022]
Abstract
Failure of normal branching morphogenesis of the ureteric bud (UB), a key ontogenic process that controls organogenesis of the metanephric kidney, leads to congenital anomalies of the kidney and urinary tract (CAKUT), the leading cause of end-stage kidney disease in children. Recent studies have revealed a central role of the renin-angiotensin system (RAS), the cardinal regulator of blood pressure and fluid/electrolyte homeostasis, in the control of normal kidney development. Mice or humans with mutations in the RAS genes exhibit a spectrum of CAKUT which includes renal medullary hypoplasia, hydronephrosis, renal hypodysplasia, duplicated renal collecting system and renal tubular dysgenesis. Emerging evidence indicates that severe hypoplasia of the inner medulla and papilla observed in angiotensinogen (Agt)- or angiotensin (Ang) II AT 1 receptor (AT 1 R)-deficient mice is due to aberrant UB branching morphogenesis resulting from disrupted RAS signaling. Lack of the prorenin receptor (PRR) in the UB in mice causes reduced UB branching, resulting in decreased nephron endowment, marked kidney hypoplasia, urinary concentrating and acidification defects. This review provides a mechanistic rational supporting the hypothesis that aberrant signaling of the intrarenal RAS during distinct stages of metanephric kidney development contributes to the pathogenesis of the broad phenotypic spectrum of CAKUT. As aberrant RAS signaling impairs normal renal development, these findings advocate caution for the use of RAS inhibitors in early infancy and further underscore a need to avoid their use during pregnancy and to identify the types of molecular processes that can be targeted for clinical intervention.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA, 70112, USA,
| |
Collapse
|
34
|
Bernstein KE, Giani JF, Shen XZ, Gonzalez-Villalobos RA. Renal angiotensin-converting enzyme and blood pressure control. Curr Opin Nephrol Hypertens 2014; 23:106-12. [PMID: 24378774 PMCID: PMC4028050 DOI: 10.1097/01.mnh.0000441047.13912.56] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW This review presents novel findings regarding the renal angiotensin-converting enzyme (ACE) and its role in blood pressure (BP) control. RECENT FINDINGS The textbook flow diagram of the renin-angiotensin system (RAS) shows the pulmonary endothelium as the main source of the ACE that converts angiotensin I to angiotensin II. However, ACE is made in large quantities by the kidneys, which raises the important question of what precisely is the function of renal ACE? Recent studies in gene-targeted mice indicates that renal ACE plays a dominant role in regulating the response of the kidney to experimental hypertension. In particular, renal ACE and locally generated angiotensin II affect the activity of several key sodium transporters and the induction of sodium and water retention resulting in the elevation of BP. SUMMARY New experimental data link the renal ACE/angiotensin II pathway and the local regulation of sodium transport as key elements in the development of hypertension.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Departments of Biomedical Sciences and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
35
|
Campbell DJ. Clinical relevance of local Renin Angiotensin systems. Front Endocrinol (Lausanne) 2014; 5:113. [PMID: 25071727 PMCID: PMC4095645 DOI: 10.3389/fendo.2014.00113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Duncan J. Campbell
- St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine, University of Melbourne, St. Vincent’s Hospital, Fitzroy, VIC, Australia
- *Correspondence:
| |
Collapse
|
36
|
Xie L, Sparks MA, Li W, Qi Y, Liu C, Coffman TM, Johnson GA. Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR IN BIOMEDICINE 2013; 26:1853-63. [PMID: 24154952 PMCID: PMC3956055 DOI: 10.1002/nbm.3039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/06/2013] [Accepted: 08/23/2013] [Indexed: 05/18/2023]
Abstract
Disruption of the regulatory role of the kidneys leads to diverse renal pathologies; one major hallmark is inflammation and fibrosis. Conventional magnitude MRI has been used to study renal pathologies; however, the quantification or even detection of focal lesions caused by inflammation and fibrosis is challenging. We propose that quantitative susceptibility mapping (QSM) may be particularly sensitive for the identification of inflammation and fibrosis. In this study, we applied QSM in a mouse model deficient for angiotensin receptor type 1 (AT1). This model is known for graded pathologies, including focal interstitial fibrosis, cortical inflammation, glomerulocysts and inner medullary hypoplasia. We acquired high-resolution MRI on kidneys from AT1-deficient mice that were perfusion fixed with contrast agent. Two MR sequences were used (three-dimensional spin echo and gradient echo) to produce three image contrasts: T1, T2* (magnitude) and QSM. T1 and T2* (magnitude) images were acquired to segment major renal structures and to provide landmarks for the focal lesions of inflammation and fibrosis in the three-dimensional space. The volumes of major renal structures were measured to determine the relationship of the volumes to the degree of renal abnormalities and magnetic susceptibility values. Focal lesions were segmented from QSM images and were found to be closely associated with the major vessels. Susceptibilities were relatively more paramagnetic in wild-type mice: 1.46 ± 0.36 in the cortex, 2.14 ± 0.94 in the outer medulla and 2.10 ± 2.80 in the inner medulla (10(-2) ppm). Susceptibilities were more diamagnetic in knockout mice: -7.68 ± 4.22 in the cortex, -11.46 ± 2.13 in the outer medulla and -7.57 ± 5.58 in the inner medulla (10(-2) ppm). This result was consistent with the increase in diamagnetic content, e.g. proteins and lipids, associated with inflammation and fibrosis. Focal lesions were validated with conventional histology. QSM was very sensitive in detecting pathology caused by small focal inflammation and fibrosis. QSM offers a new MR contrast mechanism to study this common disease marker in the kidney.
Collapse
Affiliation(s)
- Luke Xie
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Matthew A. Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA
| | - Wei Li
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Yi Qi
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Chunlei Liu
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
| | - Thomas M. Coffman
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, USA
| | - G. Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC, USA
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, USA
- Correspondence to: G. A. Johnson, Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Box 3302, Durham, NC 27710, USA.
| |
Collapse
|
37
|
Gonzalez-Villalobos RA, Shen XZ, Bernstein EA, Janjulia T, Taylor B, Giani JF, Blackwell WLB, Shah KH, Shi PD, Fuchs S, Bernstein KE. Rediscovering ACE: novel insights into the many roles of the angiotensin-converting enzyme. J Mol Med (Berl) 2013; 91:1143-54. [PMID: 23686164 PMCID: PMC3779503 DOI: 10.1007/s00109-013-1051-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 04/09/2013] [Accepted: 05/02/2013] [Indexed: 01/13/2023]
Abstract
Angiotensin-converting enzyme (ACE) is best known for the catalytic conversion of angiotensin I to angiotensin II. However, the use of gene-targeting techniques has led to mouse models highlighting many other biochemical properties and actions of this enzyme. This review discusses recent studies examining the functional significance of ACE tissue-specific expression and the presence in ACE of two independent catalytic sites with distinct substrates and biological effects. It is these features which explain why ACE makes important contributions to many different physiological processes including renal development, blood pressure control, inflammation, and immunity.
Collapse
|
38
|
Taranta-Janusz K, Wasilewska A, Dębek W, Fiłonowicz R, Michaluk-Skutnik J. Urinary angiotensinogen as a novel marker of obstructive nephropathy in children. Acta Paediatr 2013; 102:e429-33. [PMID: 23772991 DOI: 10.1111/apa.12324] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/13/2013] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
Abstract
AIM Obstructive nephropathy due to congenital or acquired urinary tract obstruction is one of the most important causes of chronic renal failure in children. There is a need for identification of new noninvasive urinary biomarkers to provide the clinician with fast, specific and reliable diagnostic and prognostic tool. The aim of the study was to determine whether urinary angiotensinogen (uAGT) may be a useful marker of obstruction in children with hydronephrosis (HN) caused by ureteropelvic junction obstruction (UPJO). METHODS The study cohort consisted of surgical group (SG): 31 children with severe HN who required surgery; nonsurgical group (NSG): 20 patients with mild HN, and reference group (RG): 19 healthy children. Urinary concentrations of angiotensinogen were measured using immunoenzymatic ELISA commercial kit and were expressed in ng/mg Cre (uAGT/uCre). RESULTS uAGT/uCre level was higher in SG when compared to NSG (p < 0.01) and healthy participants (SG vs. RG: p < 0.01). The difference between the uAGT/uCre in NSG and RG was not statistically significant (p > 0.05). uAGT/uCre was correlated negatively with differential renal function (r = -0.46; p < 0.01). CONCLUSION The present pilot study has clearly demonstrated that children with UPJO showed increased uAGT levels, which correlated negatively with differential renal function in radionuclide scan.
Collapse
Affiliation(s)
| | - Anna Wasilewska
- Department of Pediatrics and Nephrology; Medical University of Białystok; Białystok Poland
| | - Wojciech Dębek
- Department of Pediatric Surgery; Medical University of Białystok; Białystok Poland
| | - Renata Fiłonowicz
- Department of Pediatrics and Nephrology; Medical University of Białystok; Białystok Poland
| | | |
Collapse
|
39
|
Rasouly HM, Lu W. Lower urinary tract development and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:307-42. [PMID: 23408557 PMCID: PMC3627353 DOI: 10.1002/wsbm.1212] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital anomalies of the lower urinary tract (CALUT) are a family of birth defects of the ureter, the bladder, and the urethra. CALUT includes ureteral anomaliesc such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUVs). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease, and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, the bladder, and the urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, the bladder and the urethra and associated gene mutations are also presented. As we are entering the postgenomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families.
Collapse
Affiliation(s)
- Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| |
Collapse
|
40
|
Wakui H, Tamura K, Masuda SI, Tsurumi-Ikeya Y, Fujita M, Maeda A, Ohsawa M, Azushima K, Uneda K, Matsuda M, Kitamura K, Uchida S, Toya Y, Kobori H, Nagahama K, Yamashita A, Umemura S. Enhanced angiotensin receptor-associated protein in renal tubule suppresses angiotensin-dependent hypertension. Hypertension 2013; 61:1203-10. [PMID: 23529167 DOI: 10.1161/hypertensionaha.111.00572] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously shown that angiotensin II type 1 receptor-associated protein (ATRAP/Agtrap) interacts with the angiotensin II type 1 receptor and promotes constitutive internalization of the receptor so as to inhibit the pathological activation of its downstream signaling but preserve baseline physiological signaling activity. The present study was designed to investigate the role of renal ATRAP in angiotensin II-dependent hypertension. We generated transgenic mice dominantly expressing ATRAP in the renal tubules, including renal distal tubules. The renal ATRAP transgenic mice exhibited no significant change in blood pressure at baseline on normal salt diet. However, in the renal ATRAP transgenic mice compared with wild-type mice, the following took place: (1) the development of high blood pressure in response to angiotensin II infusion was significantly suppressed based on radiotelemetry, (2) the extent of daily positive sodium balance was significantly reduced during angiotensin II infusion in metabolic cage analysis, and (3) the renal Na+ -Cl- cotransporter activation and α-subunit of the epithelial sodium channel induction by angiotensin II infusion were inhibited. Furthermore, adenoviral overexpression of ATRAP suppressed the angiotensin II-mediated increase in the expression of α-subunit of the epithelial sodium channel in mouse distal convoluted tubule cells. These results indicate that renal tubule-dominant ATRAP activation provokes no evident effects on blood pressure at baseline but exerts an inhibitory effect on the pathological elevation of blood pressure in response to angiotensin II stimulation, thereby suggesting that ATRAP is a potential target of interest in blood pressure modulation under pathological conditions.
Collapse
Affiliation(s)
- Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Bernstein KE, Ong FS, Blackwell WLB, Shah KH, Giani JF, Gonzalez-Villalobos RA, Shen XZ, Fuchs S, Touyz RM. A modern understanding of the traditional and nontraditional biological functions of angiotensin-converting enzyme. Pharmacol Rev 2012; 65:1-46. [PMID: 23257181 DOI: 10.1124/pr.112.006809] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors.
Collapse
Affiliation(s)
- Kenneth E Bernstein
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Davis 2021, Los Angeles, CA 90048, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chen F. Plumbing the depths of urinary tract obstruction by using murine models. Organogenesis 2012; 5:297-305. [PMID: 19568351 DOI: 10.4161/org.8055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/19/2022] Open
Abstract
Urinary tract obstruction leads to obstructive nephropathy, which in turn, frequently results in renal failure. Congenital urinary tract obstruction can be traced back to errors during the organogenesis of the urinary system. A fundamental understanding of the causes of urinary tract obstruction and the developmental processes involved are critical for improving the diagnostic and therapeutic strategies for this disease. A number of laboratories, including ours, have been using genetically engineered and spontaneously occurring mouse models to study the primary causes and the pathogenesis of urinary tract obstruction. These studies have shown that urinary tract obstruction is a very heterogeneous disease that can be caused by a diverse set of factors targeting multiple levels of the urinary system. Accumulating evidence also indicates that the development of the urinary tract requires the integration of progenitor cells of diverse embryonic origins, leading to the formation of multiple junctions prone to developmental errors. In addition, the high sensitivity of the pyeloureteral peristaltic machinery to disturbance affecting the structural or functional integrity of its components also contributes to the high incidence rate of urinary tract obstruction.
Collapse
Affiliation(s)
- Feng Chen
- Assistant Professor of Medicine and Cell Biology and Physiology; Washington University School of Medicine; St. Louis, Missouri USA
| |
Collapse
|
43
|
Renal Development and Blood Pressure in Offspring from Dams Submitted to High-Sodium Intake during Pregnancy and Lactation. Int J Nephrol 2012; 2012:919128. [PMID: 22830019 PMCID: PMC3398627 DOI: 10.1155/2012/919128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/08/2012] [Indexed: 01/14/2023] Open
Abstract
Exposure to an adverse environment in utero appears to programme physiology and metabolism permanently, with long-term consequences for health of the fetus or offspring. It was observed that the offspring from dams submitted to high-sodium intake during pregnancy present disturbances in renal development and in blood pressure. These alterations were associated with lower plasma levels of angiotensin II (AII) and changes in renal AII receptor I (AT1) and mitogen-activated protein kinase (MAPK) expressions during post natal kidney development. Clinical and experimental evidence show that the renin-angiotensin system (RAS) participates in renal development. Many effects of AII are mediated through MAPK pathways. Extracellular signal-regulated protein kinases (ERKs) play a pivotal role in cellular proliferation and differentiation. In conclusion, high-sodium intake during pregnancy and lactation can provoke disturbances in renal development in offspring leading to functional and structural alterations that persist in adult life. These changes can be related at least in part with the decrease in RAS activity considering that this system has an important role in renal development.
Collapse
|
44
|
Wilkinson L, Kurniawan ND, Phua YL, Nguyen MJ, Li J, Galloway GJ, Hashitani H, Lang RJ, Little MH. Association between congenital defects in papillary outgrowth and functional obstruction in Crim1 mutant mice. J Pathol 2012; 227:499-510. [PMID: 22488641 DOI: 10.1002/path.4036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/09/2012] [Accepted: 03/29/2012] [Indexed: 12/25/2022]
Abstract
Crim1 hypomorphic (Crim1(KST264/KST264)) mice display progressive renal disease characterized by glomerular defects, leaky peritubular vasculature, and progressive interstitial fibrosis. Here we show that 27% of these mice also present with hydronephrosis, suggesting obstructive nephropathy. Dynamic magnetic resonance imaging using Magnevist showed fast development of hypo-intense signal in the kidneys of Crim1(KST264/KST264) mice, suggesting pooling of filtrate within the renal parenchyma. Rhodamine dextran (10 kDa) clearance was also delayed in Crim1(KST264/KST264) mice. Pyeloureteric peristalsis, while present, was less co-ordinated in Crim1(KST264/KST264) mice. However, isolated renal pelvis preparations suggest normal pelvic smooth muscle contractile responses. An analysis of maturation during the immediate postnatal period [postnatal day (P) 0-15] revealed defects in papillary extension in Crim1({KST264/KST264) mice. While Crim1 expression is weak in pelvic smooth muscle, strong expression is seen in the interstitium and loops of Henle of the extending papilla, commencing at the tip of the P1 papilla and disseminating throughout the papilla by P15. These results, as well as implicating Crim1 in papillary extension and pelvic smooth muscle contractility, highlight the previously unrecognized association between defects in papillary development and progression to chronic kidney disease later in life.
Collapse
Affiliation(s)
- Lorine Wilkinson
- Institute for Molecular Bioscience, The University of Queensland, QLD 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Song R, Preston G, Khalili A, El-Dahr SS, Yosypiv IV. Angiotensin II regulates growth of the developing papillas ex vivo. Am J Physiol Renal Physiol 2012; 302:F1112-20. [PMID: 22301625 DOI: 10.1152/ajprenal.00435.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We tested the hypothesis that lack of angiotensin (ANG) II production in angiotensinogen (AGT)-deficient mice or pharmacologic antagonism of ANG II AT(1) receptor (AT(1)R) impairs growth of the developing papillas ex vivo, thus contributing to the hypoplastic renal medulla phenotype observed in AGT- or AT(1)R-null mice. Papillas were dissected from Hoxb7(GFP+) or AGT(+/+), (+/-), (-/-) mouse metanephroi on postnatal day P3 and grown in three-dimentional collagen matrix gels in the presence of media (control), ANG II (10(-5) M), or the specific AT(1)R antagonist candesartan (10(-6) M) for 24 h. Percent reduction in papillary length was attenuated in AGT(+/+) and in AGT(+/-) compared with AGT(-/-) (-18.4 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, -22.8 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, respectively). ANG II blunted the decrease in papilla length observed in respective media-treated controls in Hoxb7(GFP+) (-1.5 ± 0.3 vs. -10.0 ± 1.4%, P < 0.05) or AGT(+/+), (+/-), and (-/-) papillas (-12.8 ± 0.7 vs. -18.4 ± 1.3%, P < 0.05, -16.8 ± 1.1 vs. -23 ± 1.2%, P < 0.05; -26.2 ± 1.6 vs. -32.2 ± 1.6%, P < 0.05, respectively). In contrast, percent decrease in the length of Hoxb7(GFP+) papillas in the presence of the AT(1)R antagonist candesartan was higher compared with control (-24.3 ± 2.1 vs. -10.5 ± 1.8%, P < 0.05). The number of proliferating phospho-histone H3 (pH3)-positive collecting duct cells was lower, whereas the number of caspase 3-positive cells undergoing apoptosis was higher in candesartan- vs. media-treated papillas (pH3: 12 ± 1.4 vs. 21 ± 2.1, P < 0.01; caspase 3: 3.8 ± 0.5 vs. 1.7 ± 0.2, P < 0.01). Using quantitative RT-PCR, we demonstrate that AT(1)R signaling regulates the expression of genes implicated in morphogenesis of the renal medulla. We conclude that AT(1)R prevents shrinkage of the developing papillas observed ex vivo via control of Wnt7b, FGF7, β-catenin, calcineurin B1, and α3 integrin gene expression, collecting duct cell proliferation, and survival.
Collapse
Affiliation(s)
- Renfang Song
- Division of Pediatric Nephrology, Department of Pediatrics, Hypertension, and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
46
|
Schnermann J, Briggs JP. Synthesis and secretion of renin in mice with induced genetic mutations. Kidney Int 2012; 81:529-38. [PMID: 22258323 DOI: 10.1038/ki.2011.451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The juxtaglomerular (JG) cell product renin is rate limiting in the generation of the bioactive octapeptide angiotensin II. Rates of synthesis and secretion of the aspartyl protease renin by JG cells are controlled by multiple afferent and efferent pathways originating in the CNS, cardiovascular system, and kidneys, and making critical contributions to the maintenance of extracellular fluid volume and arterial blood pressure. Since both excesses and deficits of angiotensin II have deleterious effects, it is not surprising that control of renin is secured by a complex system of feedforward and feedback relationships. Mice with genetic alterations have contributed to a better understanding of the networks controlling renin synthesis and secretion. Essential input for the setting of basal renin generation rates is provided by β-adrenergic receptors acting through cyclic adenosine monophosphate, the primary intracellular activation mechanism for renin mRNA generation. Other major control mechanisms include COX-2 and nNOS affecting renin through PGE2, PGI2, and nitric oxide. Angiotensin II provides strong negative feedback inhibition of renin synthesis, largely an indirect effect mediated by baroreceptor and macula densa inputs. Adenosine appears to be a dominant factor in the inhibitory arms of the baroreceptor and macula densa mechanisms. Targeted gene mutations have also shed light on a number of novel aspects related to renin processing and the regulation of renin synthesis and secretion.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
47
|
Gribouval O, Morinière V, Pawtowski A, Arrondel C, Sallinen SL, Saloranta C, Clericuzio C, Viot G, Tantau J, Blesson S, Cloarec S, Machet MC, Chitayat D, Thauvin C, Laurent N, Sampson JR, Bernstein JA, Clemenson A, Prieur F, Daniel L, Levy-Mozziconacci A, Lachlan K, Alessandri JL, Cartault F, Rivière JP, Picard N, Baumann C, Delezoide AL, Belar Ortega M, Chassaing N, Labrune P, Yu S, Firth H, Wellesley D, Bitzan M, Alfares A, Braverman N, Krogh L, Tolmie J, Gaspar H, Doray B, Majore S, Bonneau D, Triau S, Loirat C, David A, Bartholdi D, Peleg A, Brackman D, Stone R, DeBerardinis R, Corvol P, Michaud A, Antignac C, Gubler MC. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Hum Mutat 2011; 33:316-26. [PMID: 22095942 DOI: 10.1002/humu.21661] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/08/2011] [Indexed: 11/11/2022]
Abstract
Autosomal recessive renal tubular dysgenesis (RTD) is a severe disorder of renal tubular development characterized by early onset and persistent fetal anuria leading to oligohydramnios and the Potter sequence, associated with skull ossification defects. Early death occurs in most cases from anuria, pulmonary hypoplasia, and refractory arterial hypotension. The disease is linked to mutations in the genes encoding several components of the renin-angiotensin system (RAS): AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), and AGTR1 (angiotensin II receptor type 1). Here, we review the series of 54 distinct mutations identified in 48 unrelated families. Most of them are novel and ACE mutations are the most frequent, observed in two-thirds of families (64.6%). The severity of the clinical course was similar whatever the mutated gene, which underlines the importance of a functional RAS in the maintenance of blood pressure and renal blood flow during the life of a human fetus. Renal hypoperfusion, whether genetic or secondary to a variety of diseases, precludes the normal development/ differentiation of proximal tubules. The identification of the disease on the basis of precise clinical and histological analyses and the characterization of the genetic defects allow genetic counseling and early prenatal diagnosis.
Collapse
Affiliation(s)
- Olivier Gribouval
- Inserm U983, Faculté de Médecine Paris Descartes, Université Paris Descartes, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Local renin–angiotensin systems in the genitourinary tract. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:13-26. [DOI: 10.1007/s00210-011-0706-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/18/2011] [Indexed: 02/07/2023]
|
49
|
Pereira LG, Arnoni CP, Maquigussa E, Cristovam PC, Dreyfuss J, Boim MA. (Pro)renin receptor: another member of the system controlled by angiotensin II? J Renin Angiotensin Aldosterone Syst 2011; 13:1-10. [PMID: 21997900 DOI: 10.1177/1470320311423280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The prorenin receptor [(P)RR] is upregulated in the diabetic kidney and has been implicated in the high glucose (HG)-induced overproduction of profibrotic molecules by mesangial cells (MCs), which is mediated by ERK1/2 phosphorylation. The regulation of (P)RR gene transcription and the mechanisms by which HG increases (P)RR gene expression are not fully understood. Because intracellular levels of angiotensin II (AngII) are increased in MCs stimulated with HG, we used this in vitro system to evaluate the possible role of AngII in (P)RR gene expression and function by comparing the effects of AT1 receptor blockers (losartan or candesartan) and (P)RR mRNA silencing (siRNA) in human MCs (HMCs) stimulated with HG. HG induced an increase in (P)RR and fibronectin expression and in ERK1/2 phosphorylation. These effects were completely reversed by (P)RR siRNA and losartan but not by candesartan (an angiotensin receptor blocker that, in contrast to losartan, blocks AT1 receptor internalization). These results suggest that (P)RR gene activity may be controlled by intracellular AngII and that HG-induced ERK1/2 phosphorylation and fibronectin overproduction are primarily induced by (P)RR activation. This relationship between AngII and (P)RR may constitute an additional pathway of MC dysfunction in response to HG stimulation.
Collapse
Affiliation(s)
- Luciana G Pereira
- Department of Medicine, Renal Division, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
50
|
Yosypiv IV. Renin-angiotensin system in ureteric bud branching morphogenesis: insights into the mechanisms. Pediatr Nephrol 2011; 26:1499-512. [PMID: 21359618 DOI: 10.1007/s00467-011-1820-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/24/2011] [Accepted: 02/01/2011] [Indexed: 12/31/2022]
Abstract
Branching morphogenesis of the ureteric bud (UB) is a key developmental process that controls organogenesis of the entire metanephros. Notably, aberrant UB branching may result in a spectrum of congenital anomalies of the kidney and urinary tract (CAKUT). Genetic, biochemical and physiological studies have demonstrated that the renin-angiotensin system (RAS), a key regulator of the blood pressure and fluid/electrolyte homeostasis, also plays a critical role in kidney development. All the components of the RAS are expressed in the metanephros. Moreover, mutations in the genes encoding components of the RAS in mice or humans cause diverse types of CAKUT which include renal papillary hypoplasia, hydronephrosis, duplicated collecting system, renal tubular dysgenesis, renal vascular abnormalities, abnormal glomerulogenesis and urinary concentrating defect. Despite widely accepted role of the RAS in metanephric kidney and renal collecting system (ureter, pelvis, calyces and collecting ducts) development, the mechanisms by which an intact RAS exerts its morphogenetic actions are incompletely defined. Emerging evidence indicates that defects in UB branching morphogenesis may be causally linked to the pathogenesis of renal collecting system anomalies observed under conditions of aberrant RAS signaling. This review describes the role of the RAS in UB branching morphogenesis and highlights emerging insights into the cellular and molecular mechanisms whereby RAS regulates this critical morphogenetic process.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, SL-37 Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| |
Collapse
|