1
|
Perez-Leighton C, Kerr B, Scherer PE, Baudrand R, Cortés V. The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol Rev Camb Philos Soc 2024; 99:653-674. [PMID: 38072002 DOI: 10.1111/brv.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 05/09/2024]
Abstract
Nutritional, endocrine, and neurological signals converge in multiple brain centres to control feeding behaviour and food intake as part of the allostatic regulation of energy balance. Among the several neuroendocrine systems involved, the leptin, glucocorticoid, and glucagon-like peptide 1 (GLP1) systems have been extensively researched. Leptin is at the top hierarchical level since its complete absence is sufficient to trigger severe hyperphagia. Glucocorticoids are key regulators of the energy balance adaptation to stress and their sustained excess leads to excessive adiposity and metabolic perturbations. GLP1 participates in metabolic adaptation to food intake, regulating insulin secretion and satiety by parallel central and peripheral signalling systems. Herein, we review the brain and peripheral targets of these three hormone systems that integrate to regulate food intake, feeding behaviour, and metabolic homeostasis. We examine the functional relationships between leptin, glucocorticoids, and GLP1 at the central and peripheral levels, including the cross-regulation of their circulating levels and their cooperative or antagonistic actions at different brain centres. The pathophysiological roles of these neuroendocrine systems in dysregulated intake are explored in the two extremes of body adiposity - obesity and lipodystrophy - and eating behaviour disorders.
Collapse
Affiliation(s)
- Claudio Perez-Leighton
- Departmento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Bredford Kerr
- Centro de Biología Celular y Biomedicina-CEBICEM, Facultad de Medicina y Ciencia, Universidad San Sebastián, Carmen Sylva 2444, Providencia, Santiago, Chile
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - René Baudrand
- Departmento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
- Centro Translacional de Endocrinología (CETREN), Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| | - Víctor Cortés
- Departmento de Nutrición, Diabetes y Metabolismo, Facultad de Medicina, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O'Higgins 340, Santiago, 830024, Chile
| |
Collapse
|
2
|
Toh P, Nicholson JL, Vetter AM, Berry MJ, Torres DJ. Selenium in Bodily Homeostasis: Hypothalamus, Hormones, and Highways of Communication. Int J Mol Sci 2022; 23:15445. [PMID: 36499772 PMCID: PMC9739294 DOI: 10.3390/ijms232315445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
The ability of the body to maintain homeostasis requires constant communication between the brain and peripheral tissues. Different organs produce signals, often in the form of hormones, which are detected by the hypothalamus. In response, the hypothalamus alters its regulation of bodily processes, which is achieved through its own pathways of hormonal communication. The generation and transmission of the molecules involved in these bi-directional axes can be affected by redox balance. The essential trace element selenium is known to influence numerous physiological processes, including energy homeostasis, through its various redox functions. Selenium must be obtained through the diet and is used to synthesize selenoproteins, a family of proteins with mainly antioxidant functions. Alterations in selenium status have been correlated with homeostatic disturbances in humans and studies with animal models of selenoprotein dysfunction indicate a strong influence on energy balance. The relationship between selenium and energy metabolism is complicated, however, as selenium has been shown to participate in multiple levels of homeostatic communication. This review discusses the role of selenium in the various pathways of communication between the body and the brain that are essential for maintaining homeostasis.
Collapse
Affiliation(s)
- Pamela Toh
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Jessica L. Nicholson
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Alyssa M. Vetter
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
- School of Human Nutrition, McGill University, Montreal, QC H3A 0G4, Canada
| | - Marla J. Berry
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Daniel J. Torres
- Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
3
|
Lee SK, Park CY, Kim J, Kim D, Choe H, Kim JH, Hong JP, Lee YJ, Heo Y, Park HS, Jang YJ. TRIB3 Is Highly Expressed in the Adipose Tissue of Obese Patients and Is Associated With Insulin Resistance. J Clin Endocrinol Metab 2022; 107:e1057-e1073. [PMID: 34718616 DOI: 10.1210/clinem/dgab780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The upregulation of TRIB3 (Tribbles homolog 3), a stress-inducible gene encoding a pseudokinase, has been implicated in the development of insulin resistance in the skeletal muscle and liver of patients with obesity and type 2 diabetes. However, there is little information regarding TRIB3 expression in human adipose tissue. OBJECTIVE To investigate whether TRIB3 expression is dysregulated in human adipose tissue in the context of obesity and type 2 diabetes and whether TRIB3 expression in adipose tissues is associated with insulin resistance. METHODS We measured metabolic parameters and TRIB3 expression in abdominal subcutaneous and visceral adipose tissue in obese (with or without type 2 diabetes) and normal-weight women. Regulation of TRIB3 expression was studied in human adipocytes. RESULTS TRIB3 expression in both fat depots was higher in patients with obesity and/or type 2 diabetes; in addition, the expression level was significantly associated with insulin resistance. Incubating adipocytes under conditions mimicking the microenvironment of obese adipose tissue, including increased endoplasmic reticulum (ER) stress, induced TRIB3 expression. In human adipocytes, the overexpression of TRIB3 impaired insulin-stimulated protein kinase B (AKT) phosphorylation and caused dysregulation of the transcription of genes encoding bioactive molecules released from adipocytes, such as proinflammatory cytokines, adiponectin, and leptin. Pioglitazone, an insulin-sensitizing agent, reduced both these effects of TRIB3 and the ER stressor-induced expression of TRB3. CONCLUSION Our data indicate that TRIB3 expression in adipose tissue is enhanced in patients with obesity and suggest that increased TRIB3 dysregulates adipocyte function, which may contribute to the development of insulin resistance.
Collapse
Affiliation(s)
- Seul Ki Lee
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Brexogen Research Center, Brexogen Inc., Seoul, Korea
| | - Chan Yoon Park
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Department of Food Science and Nutrition, The University of Suwon, Hwaseong, Korea
| | - Jimin Kim
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
- Brexogen Research Center, Brexogen Inc., Seoul, Korea
| | - Donguk Kim
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Hyeok Kim
- Department of Obstetrics and Gynecology, University of Ulsan College of Medicine, Seoul, Korea
| | - Joon Pio Hong
- Department of Plastic Surgery, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Ji Lee
- Department of Family Medicine, Inha University School of Medicine, Incheon, Korea
| | - Yoonseok Heo
- Department of General Surgery, Inha University School of Medicine, Incheon, Korea
| | - Hye Soon Park
- Department of Family Medicine, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Jin Jang
- Department of Physiology, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Vales-Villamarín C, de Dios O, Pérez-Nadador I, Gavela-Pérez T, Soriano-Guillén L, Garcés C. PPARγ2 Pro12Ala Polymorphism is Associated in Children With Traits Related to Susceptibility to Type 2 Diabetes. Front Pharmacol 2021; 12:763853. [PMID: 34887761 PMCID: PMC8650059 DOI: 10.3389/fphar.2021.763853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor that regulates glucose and lipid metabolism. Pharmacological activators of PPARγ are being used as a treatment of obesity related disorders such as dyslipidaemia and type 2 diabetes, but questions remain open regarding the effects of PPARγ on traits related to the development of type 2 diabetes. In our study, we have analyzed the relationship of the common variant Pro12Ala in the human PPARγ2 gene with the presence of obesity and with insulin, HOMA and lipid profile in a representative sample of 6-to 8-year-old children free from the confounding factors associated with adults. We found that Ala12Ala genotype was significantly more frequent in females with obesity than in those without obesity, with Ala12Ala carriers having significantly higher weight and body mass index (BMI), however the association disappeared when adjusting by leptin concentrations. The Ala12Ala genotype was associated with significantly higher HDL-cholesterol and apoA-I levels in males but not in females, independently of BMI. In a recessive model, in females, leptin levels appeared higher in Ala12Ala carriers. Although no apparent differences were observed in any sex when analyzing insulin levels and HOMA among genotypes without adjusting, lower insulin levels and lower HOMA appeared associated with Ala12Ala carriers when adjusting for BMI and leptin levels. In summary, our data showed that leptin seems to be having an effect on the association between the PPARγ2 Pro12Ala and BMI. Besides, after controlling for BMI and leptin, a protective effect of the Ala12Ala variant of the PPARγ2 Pro12Ala polymorphism on insulin sensitivity is evident already in prepubertal children.
Collapse
Affiliation(s)
| | - Olaya de Dios
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Iris Pérez-Nadador
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | | | | | - Carmen Garcés
- Lipid Research Laboratory, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
5
|
Abaj F, Sotoudeh G, Karimi E, Rafiee M, Koohdani F. Interaction between the dietary indices and PPAR-γ Pro12Ala gene variants on cardiovascular risk factors in patients with type 2 diabetes mellitus. Int J Clin Pract 2021; 75:e14307. [PMID: 33930247 DOI: 10.1111/ijcp.14307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/27/2021] [Indexed: 01/18/2023] Open
Abstract
AIMS We investigated the interaction between peroxisome proliferator-activated receptor gamma (PPAR-γ) Pro12Ala polymorphism and healthy eating index (HEI), Dietary Quality Index-International (DQI-I), and dietary phytochemical index (DPI) on cardiovascular disease (CVD) risk factors in patients with type 2 diabetes mellitus (T2DM). METHODS This cross-sectional study was conducted on 393 diabetic patients. PPAR-γ Pro12Ala was genotyped by the PCR-RFLP method. Biochemical markers including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), superoxide dismutase (SOD), C-reactive protein (CRP), total antioxidant capacity (TAC), pentraxin-3 (PTX3), isoprostaneF2α (PGF2α). Interleukin 18 (IL18), leptin, and ghrelin were measured by standard protocol. Food-frequency questionnaires (FFQ) were used for dietary indices (DQI-I, DPI, HEI) calculation. RESULTS Homozygous carriers of the rs1801282 C allele showed higher leptin compared G allele carriers (P = .015). The rs1801282-DQI-I interactions were significant on waist circumference (WC) (P = .019). Thus, C-allele carriers in the higher tertile of DQI-I had higher WC compared with GG homozygous. Further, an interaction was observed between PPAR rs1801282 polymorphism and DQI-I on serum IL-18 level (P = .032). Besides, a significant rs1801282-DPI interaction was shown on HDL concentration (P = .041), G allele carriers who were in the highest tertile of DPI, had lower HDL. Moreover, there were significant rs1801282-HEI interactions on serum leptin (P = .021). Individuals with (CC, CG) genotypes in the higher tertile of HEI, had lower leptin concentration. CONCLUSION Higher dietary indices (DQI-I, DPI, HEI) may affect the relationship between PPAR-γ Pro12Ala polymorphism and WC, ghrelin, leptin, HDL, and IL-18 concentration in patients with T2DM.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Gity Sotoudeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Elmira Karimi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoumeh Rafiee
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Fariba Koohdani
- Department of Cellular, Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
6
|
Kim YK, Hwang JG, Park MK. No Relevant Pharmacokinetic Drug-Drug Interaction Between the Sodium-Glucose Co-Transporter-2 Inhibitor Empagliflozin and Lobeglitazone, a Peroxisome Proliferator-Activated Receptor-γ Agonist, in Healthy Subjects. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1725-1734. [PMID: 33953542 PMCID: PMC8089085 DOI: 10.2147/dddt.s302215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022]
Abstract
Purpose Combination therapy with insulin-independent sodium-glucose cotransporter 2 inhibitors and thiazolidinedione drugs, such as lobeglitazone, has been reported to elicit potential additive efficacy in glycemic control in type 2 diabetes mellitus. This study was conducted to evaluate the pharmacokinetic (PK) drug–drug interactions between empagliflozin and lobeglitazone in healthy subjects. Subjects and Methods A randomized, open-label, multiple-dose study was conducted in 30 healthy subjects using a three-treatment, six-sequence, three-way crossover design. Subjects received one of the following treatments once daily for 5 days in each period: 25 mg empagliflozin, 0.5 mg lobeglitazone sulfate, or a combination. Serial blood sampling before every dose and up to 24 h after the last dose was performed during each treatment period. The PK parameters were estimated using noncompartmental methods with the plasma empagliflozin and lobeglitazone concentrations. The absence of a PK interaction was construed as the 90% confidence interval (90% CI) of maximum concentration at steady state (Cmax,ss) and area under the concentration-time curve over the dosing interval (AUCtau) for combination therapy-to-monotherapy ratios within the limits of 0.80–1.25. Results The steady-state plasma empagliflozin and lobeglitazone concentration-time profiles of combination therapy and monotherapy were comparable in the 25 subjects who completed the study. Coadministration of empagliflozin with lobeglitazone did not affect empagliflozin PK (with 90% CIs of 0.956–1.150 and 0.945–1.133 for Cmax,ss and AUCtau, respectively). Likewise, empagliflozin did not affect lobeglitazone Cmax,ss or AUCtau (with 90% CIs of 0.869–0.995 and 0.851–1.018, respectively). All treatment groups tolerated mild adverse events well. Conclusion The lack of PK interactions between lobeglitazone and empagliflozin in combination therapy, along with their good tolerability, indicates that the two drugs can be coadministered without dose adjustment. Trial Registration Number NCT02854748, Registered on August 7, 2016.
Collapse
Affiliation(s)
- Yu Kyong Kim
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University College of Medicine and Hospital, Cheongju, Republic of Korea
| | - Jun Gi Hwang
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University College of Medicine and Hospital, Cheongju, Republic of Korea
| | - Min Kyu Park
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University College of Medicine and Hospital, Cheongju, Republic of Korea.,Department of Pharmacology and Clinical Pharmacology, Dong-A University College of Medicine, Dong-A University Hospital, Busan, Republic of Korea
| |
Collapse
|
7
|
Tardelli M, Stulnig TM. Aquaporin regulation in metabolic organs. VITAMINS AND HORMONES 2021; 112:71-93. [PMID: 32061350 DOI: 10.1016/bs.vh.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aquaporins (AQPs) are a family of 13 small trans-membrane proteins, which facilitate shuttling of glycerol, water and urea. The peculiar role of AQPs in glycerol transport makes them attractive targets in metabolic organs since glycerol represents the backbone of triglyceride synthesis. Importantly, AQPs are known to be regulated by various nuclear receptors which in turn govern lipid and glucose metabolism as well as inflammatory cascades. Here, we review the role of AQPs regulation in metabolic organs exploring their physiological impact in health and disease.
Collapse
Affiliation(s)
- Matteo Tardelli
- Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Cornell Department of Medicine, Weill Cornell Medical College, New York, NY, United States; Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas M Stulnig
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
8
|
Ievleva KD, Danusevich IN, Suturina LV. [Role of leptin and nuclear receptor PPARγ in PCOS pathogenesis]. ACTA ACUST UNITED AC 2020; 66:74-80. [PMID: 33481370 DOI: 10.14341/probl12620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 12/06/2020] [Indexed: 11/06/2022]
Abstract
Polycystic ovary syndrome (PCOS) is the most common cause of female endocrine infertility. Insulin resistanсе is supposed to be one of the essential factors of this disease pathways. At the same time, the mechanisms of PCOS development in insulin-resistant patients have not been completely established. Leptin and Peroxisome Proliferator-Activated Receptor γ(PPARγ) are involved in carbohydrate metabolism and reproduction function regulation. It indicates that leptin and PPARγ possibly play a role in the pathways of PCOS. This article is a review of publications on this issue. The purpose of this review was to systematize the available information on the molecular mechanisms that determine the role of leptin and PPARγ in the development of PCOS. The literature search was carried out from 04/05/2020 to 05/17/2020 using the scientific literature databases: NCBI PubMed (foreign sources) and Cyberleninka (domestic sources). We analyzed publications for the period 1990-2020.The review presents the current understanding of the possible role of leptin and PPARγ in the regulation of endocrine, immune systems, and reproductive function, as well as in the development of PCOS. Currently, no studies cover the mechanisms of interaction between leptin and PPARγ in the pathways of this syndrome. The available studies indicating the individual contribution and association of leptin and PPARγ with PCOS are conflicting and have many limitations. Therefore, more studies of direct and indirect interaction of leptin and PPARγ, as well as their role in PCOS pathways, are needed.
Collapse
Affiliation(s)
- K D Ievleva
- Scientific Сentre for Family Health and Human Reproduction Problems
| | - I N Danusevich
- Scientific Сentre for Family Health and Human Reproduction Problems
| | - L V Suturina
- Scientific Сentre for Family Health and Human Reproduction Problems
| |
Collapse
|
9
|
Almeida M, Kim H, Han L, Zhou D, Thostenson J, Porter RM, Ambrogini E, Manolagas SC, Jilka RL. Increased marrow adipogenesis does not contribute to age-dependent appendicular bone loss in female mice. Aging Cell 2020; 19:e13247. [PMID: 33048436 PMCID: PMC7681065 DOI: 10.1111/acel.13247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/14/2020] [Accepted: 08/30/2020] [Indexed: 01/13/2023] Open
Abstract
Marrow adipocytes and osteoblasts differentiate from common mesenchymal progenitors in a mutually exclusive manner, and diversion of these progenitors toward adipocytes in old age has been proposed to account for the decline in osteoblasts and the development of involutional osteoporosis. This idea has been supported by evidence that thiazolidinedione (TZD)‐induced activation of PPARγ, the transcription factor required for adipocyte differentiation, increases marrow fat and causes bone loss. We functionally tested this hypothesis using C57BL/6J mice with conditional deletion of PPARγ from early mesenchymal progenitors targeted by the Prx1‐Cre transgene. Using a longitudinal littermate‐controlled study design, we observed that PPARγ is indispensable for TZD‐induced increase in marrow adipocytes in 6‐month‐old male mice, and age‐associated increase in marrow adipocytes in 22‐month‐old female mice. In contrast, PPARγ is dispensable for the loss of cortical and trabecular bone caused by TZD or old age. Instead, PPARγ restrains age‐dependent development of cortical porosity. These findings do not support the long‐standing hypothesis that increased marrow adipocyte differentiation contributes to bone loss in old age but reveal a novel role of mesenchymal cell PPARγ in the maintenance of cortical integrity.
Collapse
Affiliation(s)
- Maria Almeida
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Ha‐Neui Kim
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Li Han
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Daohong Zhou
- Department of Pharmacodynamics College of Pharmacy University of Florida Gainesville FL USA
| | - Jeff Thostenson
- Department of Biostatistics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Ryan M. Porter
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
| | - Elena Ambrogini
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
- The Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Stavros C. Manolagas
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
- The Central Arkansas Veterans Healthcare System Little Rock AR USA
| | - Robert L. Jilka
- Center for Osteoporosis and Metabolic Bone Diseases University of Arkansas for Medical Sciences Little Rock AR USA
- The Central Arkansas Veterans Healthcare System Little Rock AR USA
| |
Collapse
|
10
|
Platko K, Lebeau PF, Byun JH, Poon SV, Day EA, MacDonald ME, Holzapfel N, Mejia-Benitez A, Maclean KN, Krepinsky JC, Austin RC. GDF10 blocks hepatic PPARγ activation to protect against diet-induced liver injury. Mol Metab 2019; 27:62-74. [PMID: 31288993 PMCID: PMC6717799 DOI: 10.1016/j.molmet.2019.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Growth differentiation factors (GDFs) and bone-morphogenic proteins (BMPs) are members of the transforming growth factor β (TGFβ) superfamily and are known to play a central role in the growth and differentiation of developing tissues. Accumulating evidence, however, demonstrates that many of these factors, such as BMP-2 and -4, as well as GDF15, also regulate lipid metabolism. GDF10 is a divergent member of the TGFβ superfamily with a unique structure and is abundantly expressed in brain and adipose tissue; it is also secreted by the latter into the circulation. Although previous studies have demonstrated that overexpression of GDF10 reduces adiposity in mice, the role of circulating GDF10 on other tissues known to regulate lipid, like the liver, has not yet been examined. METHODS Accordingly, GDF10-/- mice and age-matched GDF10+/+ control mice were fed either normal control diet (NCD) or high-fat diet (HFD) for 12 weeks and examined for changes in liver lipid homeostasis. Additional studies were also carried out in primary and immortalized human hepatocytes treated with recombinant human (rh)GDF10. RESULTS Here, we show that circulating GDF10 levels are increased in conditions of diet-induced hepatic steatosis and, in turn, that secreted GDF10 can prevent excessive lipid accumulation in hepatocytes. We also report that GDF10-/- mice develop an obese phenotype as well as increased liver triglyceride accumulation when fed a NCD. Furthermore, HFD-fed GDF10-/- mice develop increased steatosis, endoplasmic reticulum (ER) stress, fibrosis, and injury of the liver compared to HFD-fed GDF10+/+ mice. To explain these observations, studies in cultured hepatocytes led to the observation that GDF10 attenuates nuclear peroxisome proliferator-activated receptor γ (PPARγ) activity; a transcription factor known to induce de novo lipogenesis. CONCLUSION Our work delineates a hepatoprotective role of GDF10 as an adipokine capable of regulating hepatic lipid levels by blocking de novo lipogenesis to protect against ER stress and liver injury.
Collapse
Affiliation(s)
- Khrystyna Platko
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Paul F Lebeau
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Jae Hyun Byun
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Samantha V Poon
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Emily A Day
- The Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 4A6, Canada
| | - Melissa E MacDonald
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Nicholas Holzapfel
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Aurora Mejia-Benitez
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Kenneth N Maclean
- The Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Joan C Krepinsky
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada
| | - Richard C Austin
- Department of Medicine, McMaster University, The Research Institute of St. Joe's Hamilton, Hamilton Centre for Kidney Research, Hamilton, Ontario, L8N 4A6, Canada.
| |
Collapse
|
11
|
Luo T, Miranda-Garcia O, Sasaki G, Wang J, Shay NF. Genistein and daidzein decrease food intake and body weight gain in mice, and alter LXR signaling in vivo and in vitro. Food Funct 2018; 9:6257-6267. [PMID: 30402623 DOI: 10.1039/c8fo01718b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The study is designed to determine whether consumption of the soy isoflavones, genistein and daidzein, differentially influence metabolic syndrome, and to further investigate the involvement of Liver X Receptor (LXR) regulation. C57BL/6J mice were fed diets as follows: low fat diet (LF), western-style diet (WD), and WD containing 0.16% (w/w) of genistein (WD + G) or daidzein (WD + D) for 10 weeks. Intake of WD + G and WD + D produced a robust decrease in body weight gain by 40% and 19%, respectively (p < 0.05). Genistein reduced energy intake by 26%, and daidzein decreased energy intake by 8% (p < 0.05). A glucose tolerance test indicated that genistein consumption significantly decreased the incremental areas under the curve (AUC) from 60-120 min, compared to WD-fed mice. Gene array profiling of hepatic mRNA, and cell studies utilizing transiently-transfected HepG2 cells and mouse embryonic fibroblast cells devoid of or expressing LXRα, indicate that genistein and daidzein induce LXR-mediated pathways. In summary, addition of genistein, compared to daidzein, to a western-style diet, more profoundly decreased food intake, body weight gain, while both appear to regulate LXR-mediated pathways.
Collapse
Affiliation(s)
- Ting Luo
- Food Science and Technology, Oregon State University, Corvallis, OR 97330, USA.
| | | | | | | | | |
Collapse
|
12
|
Tardelli M, Claudel T, Bruschi FV, Trauner M. Nuclear Receptor Regulation of Aquaglyceroporins in Metabolic Organs. Int J Mol Sci 2018; 19:E1777. [PMID: 29914059 PMCID: PMC6032257 DOI: 10.3390/ijms19061777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors, such as the farnesoid X receptor (FXR) and the peroxisome proliferator-activated receptors gamma and alpha (PPAR-γ, -α), are major metabolic regulators in adipose tissue and the liver, where they govern lipid, glucose, and bile acid homeostasis, as well as inflammatory cascades. Glycerol and free fatty acids are the end products of lipid droplet catabolism driven by PPARs. Aquaporins (AQPs), a family of 13 small transmembrane proteins, facilitate the shuttling of water, urea, and/or glycerol. The peculiar role of AQPs in glycerol transport makes them pivotal targets in lipid metabolism, especially considering their tissue-specific regulation by the nuclear receptors PPARγ and PPARα. Here, we review the role of nuclear receptors in the regulation of glycerol shuttling in liver and adipose tissue through the function and expression of AQPs.
Collapse
Affiliation(s)
- Matteo Tardelli
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Francesca Virginia Bruschi
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology & Hepatology, Internal Medicine III, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
13
|
A noncanonical PPARγ/RXRα-binding sequence regulates leptin expression in response to changes in adipose tissue mass. Proc Natl Acad Sci U S A 2018; 115:E6039-E6047. [PMID: 29891714 PMCID: PMC6042069 DOI: 10.1073/pnas.1806366115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leptin gene expression is highly correlated with the lipid content of individual fat cells, suggesting that it is regulated by a “fat-sensing” signal transduction pathway. This possibility is thus analogous to the identification of a cholesterol-sensing pathway by studying the regulation of the LDL receptor gene by intracellular cholesterol. Several lines of investigation have suggested that, in addition to adipocytes, liver, neurons, and other cell types can sense changes in lipid content, although the molecular mechanisms are unknown. The data here provide a critical step toward elucidating the components of this putative system, which would be of great importance. These studies also identify a previously underappreciated role of the PPARγ/RXRα complex to regulate leptin expression. Leptin expression decreases after fat loss and is increased when obesity develops, and its proper quantitative regulation is essential for the homeostatic control of fat mass. We previously reported that a distant leptin enhancer 1 (LE1), 16 kb upstream from the transcription start site (TSS), confers fat-specific expression in a bacterial artificial chromosome transgenic (BACTG) reporter mouse. However, this and the other elements that we identified do not account for the quantitative changes in leptin expression that accompany alterations of adipose mass. In this report, we used an assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) to identify a 17-bp noncanonical peroxisome proliferator-activated receptor gamma (PPARγ)/retinoid X receptor alpha (RXRα)-binding site, leptin regulatory element 1 (LepRE1), within LE1, and show that it is necessary for the fat-regulated quantitative control of reporter (luciferase) expression. While BACTG reporter mice with mutations in this sequence still show fat-specific expression, luciferase is no longer decreased after food restriction and weight loss. Similarly, the increased expression of leptin reporter associated with obesity in ob/ob mice is impaired. A functionally analogous LepRE1 site is also found in a second, redundant DNA regulatory element 13 kb downstream of the TSS. These data uncouple the mechanisms conferring qualitative and quantitative expression of the leptin gene and further suggest that factor(s) that bind to LepRE1 quantitatively control leptin expression and might be components of a lipid-sensing system in adipocytes.
Collapse
|
14
|
|
15
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Electroacupuncture Reduces Weight Gain Induced by Rosiglitazone through PPARγ and Leptin Receptor in CNS. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8098561. [PMID: 26904147 PMCID: PMC4745334 DOI: 10.1155/2016/8098561] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/30/2015] [Indexed: 01/13/2023]
Abstract
We investigate the effect of electroacupuncture (EA) on protecting the weight gain side effect of rosiglitazone (RSG) in type 2 diabetes mellitus (T2DM) rats and its possible mechanism in central nervous system (CNS). Our study showed that RSG (5 mg/kg) significantly increased the body weight and food intake of the T2DM rats. After six-week treatment with RSG combined with EA, body weight, food intake, and the ratio of IWAT to body weight decreased significantly, whereas the ratio of BAT to body weight increased markedly. HE staining indicated that the T2DM-RSG rats had increased size of adipocytes in their IWAT, but EA treatment reduced the size of adipocytes. EA effectively reduced the lipid contents without affecting the antidiabetic effect of RSG. Furthermore, we noticed that the expression of PPARγ gene in hypothalamus was reduced by EA, while the expressions of leptin receptor and signal transducer and activator of transcription 3 (STAT3) were increased. Our results suggest that EA is an effective approach for inhibiting weight gain in T2DM rats treated by RSG. The possible mechanism might be through increased levels of leptin receptor and STAT3 and decreased PPARγ expression, by which food intake of the rats was reduced and RSG-induced weight gain was inhibited.
Collapse
|
17
|
Jang H, Kim HJ, Kim DH, Park JK, Sun WS, Hwang S, Oh KB, Jang WG, Lee JW. Small heterodimer partner-interacting leucine zipper protein inhibits adipogenesis by regulating peroxisome proliferator-activated receptor γ activity. Life Sci 2015; 132:49-54. [PMID: 25896661 DOI: 10.1016/j.lfs.2015.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/10/2015] [Accepted: 03/20/2015] [Indexed: 01/28/2023]
Abstract
AIMS Adipocytes play a critical role in energy balance. Growth of fat tissue is achieved via an increase in adipocyte mass and the formation of newly differentiated adipocytes from precursor cells. Understanding the cellular and molecular mechanisms of adipocyte differentiation is crucial for the study of obesity- and fat-related diseases. The present study was designed to study whether small heterodimer partner-interacting leucine zipper protein (SMILE), a novel co-repressor, could regulate differentiation of adipocyte in 3T3-L1 cells. MATERIALS AND METHODS Treatment of endoplasmic stress inducers, thapsigargin and tunicamycin, inhibited adipocyte differentiation, stimulated Smile mRNA expression, and repressed the expression of adiponectin (Adipoq) in 3T3-L1 pre-adipocyte. Overexpression of SMILE in 3T3-L1 cells decreased the expression of the mRNA encoding Adipoq, a major marker of adipocytes, significantly. Furthermore, knockdown of SMILE recovered the thapsigargin-mediated repression of Adipoq transcription. Co-immunoprecipitation experiments revealed that SMILE interacted physically with PPARγ in 3T3-L1 cells. In addition, chromatin immunoprecipitation experiments revealed that SMILE suppressed the binding affinity of PPARγ for the Adipoq promoter. KEY FINDINGS We demonstrate that SMILE controls adipocyte differentiation by regulating the transactivity of peroxisome proliferator-activated receptor γ (PPARγ). SIGNIFICANCE These findings demonstrate that SMILE represses adipocyte differentiation by regulating PPARγ transactivity; hence, SMILE is a potential regulator of PPARγ-related diseases.
Collapse
Affiliation(s)
- Hoon Jang
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Functional Genomics, School of Engineering, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Hyoung-Joo Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Dong-Hwan Kim
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Functional Genomics, School of Engineering, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea
| | - Jae-Kyung Park
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Wu-Sheng Sun
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Seongsoo Hwang
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Keon-Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon, Republic of Korea
| | - Won-Gu Jang
- Department of Biotechnology, School of Engineering, Daegu University, Gyeongbuk 712-714, Republic of Korea.
| | - Jeong-Woong Lee
- Functional Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Functional Genomics, School of Engineering, University of Science and Technology (UST), Daejeon 305-806, Republic of Korea.
| |
Collapse
|
18
|
Rollins DA, Coppo M, Rogatsky I. Minireview: nuclear receptor coregulators of the p160 family: insights into inflammation and metabolism. Mol Endocrinol 2015; 29:502-17. [PMID: 25647480 DOI: 10.1210/me.2015-1005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptor coactivators (NCOAs) are multifunctional transcriptional coregulators for a growing number of signal-activated transcription factors. The members of the p160 family (NCOA1/2/3) are increasingly recognized as essential and nonredundant players in a number of physiological processes. In particular, accumulating evidence points to the pivotal roles that these coregulators play in inflammatory and metabolic pathways, both under homeostasis and in disease. Given that chronic inflammation of metabolic tissues ("metainflammation") is a driving force for the widespread epidemic of obesity, insulin resistance, cardiovascular disease, and associated comorbidities, deciphering the role of NCOAs in "normal" vs "pathological" inflammation and in metabolic processes is indeed a subject of extreme biomedical importance. Here, we review the evolving and, at times, contradictory, literature on the pleiotropic functions of NCOA1/2/3 in inflammation and metabolism as related to nuclear receptor actions and beyond. We then briefly discuss the potential utility of NCOAs as predictive markers for disease and/or possible therapeutic targets once a better understanding of their molecular and physiological actions is achieved.
Collapse
Affiliation(s)
- David A Rollins
- Hospital for Special Surgery (D.A.R., M.C., I.R.), The David Rosensweig Genomics Center, New York, New York 10021; and Graduate Program in Immunology and Microbial Pathogenesis (D.A.R., I.R.), Weill Cornell Graduate School of Medical Sciences, New York, New York 10021
| | | | | |
Collapse
|
19
|
Kurtovic S, Ng TT, Gupta A, Arumugaswami V, Chaiboonma KL, Aminzadeh MA, Makkar R, Dafoe DC, Talavera-Adame D. Leptin enhances endothelial cell differentiation and angiogenesis in murine embryonic stem cells. Microvasc Res 2014; 97:65-74. [PMID: 25250519 DOI: 10.1016/j.mvr.2014.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 01/01/2023]
Abstract
The metabolic regulation of leptin and its angiogenic effects have been well characterized in adult mammals. However, the role of leptin in the differentiation of embryonic stem cells (ESCs) to endothelial cells (ECs) has not been characterized. We hypothesized that leptin enhances the generation of ECs derived from ESCs and, in this way, promotes angiogenesis in embryonic vessels. To address this hypothesis, we utilized an in vitro model consisting of murine ESCs-derived embryoid bodies (EBs). Vascular density, EC and angiogenesis markers as well as phosphorylation levels of signal transducer and activator of transcription 3 (pSTAT3) were investigated in leptin-treated EBs and in untreated EBs as controls. ESC-derived ECs were isolated by magnetic sorting based on the expression of platelet endothelial cell adhesion molecule (PECAM-1/CD31). Significant upregulation of EC and angiogenic markers as well as higher vessel density were found in leptin-treated EBs compared to controls. CD31 positive enriched cells derived from leptin-treated EBs had improved proliferation and survival rate and showed higher levels of pSTAT3. These results suggested that leptin promotes EC differentiation and angiogenesis in mouse EBs and that janus tyrosine kinase (JAK)/STAT pathway can play a role in this biological process. Leptin-mediated EC differentiation and angiogenesis in ESCs can be a useful application towards regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Silvia Kurtovic
- Comprehensive Transplant Center, Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Tina T Ng
- Comprehensive Transplant Center, Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Ankur Gupta
- Comprehensive Transplant Center, Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Vaithilingaraja Arumugaswami
- Comprehensive Transplant Center, Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Kira L Chaiboonma
- Comprehensive Transplant Center, Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Mohammad Amin Aminzadeh
- The Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Raj Makkar
- The Heart Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA
| | - Donald C Dafoe
- Comprehensive Transplant Center, Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| | - Dodanim Talavera-Adame
- Comprehensive Transplant Center, Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; The Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA.
| |
Collapse
|
20
|
Mazaki-Tovi M, Abood SK, Schenck PA. Fish oil supplementation increases concentration of adiponectin in healthy dogs. J Small Anim Pract 2014; 55:247-53. [DOI: 10.1111/jsap.12194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Mazaki-Tovi
- Diagnostic Center for Population and Animal Health; Michigan State University; East Lansing MI 48824 USA
| | - S. K. Abood
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine; Michigan State University; East Lansing MI 48824 USA
| | | |
Collapse
|
21
|
Greene-Schloesser D, Payne V, Peiffer AM, Hsu FC, Riddle DR, Zhao W, Chan MD, Metheny-Barlow L, Robbins ME. The peroxisomal proliferator-activated receptor (PPAR) α agonist, fenofibrate, prevents fractionated whole-brain irradiation-induced cognitive impairment. Radiat Res 2014; 181:33-44. [PMID: 24397438 DOI: 10.1667/rr13202.1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We hypothesized that dietary administration of the peroxisomal proliferator-activated receptor α agonist, fenofibrate, to young adult male rats would prevent the fractionated whole-brain irradiation (fWBI)-induced reduction in cognitive function and neurogenesis and prevent the fWBI-induced increase in the total number of activated microglia. Eighty 12-14-week-old young adult male Fischer 344 × Brown Norway rats received either: (1) sham irradiation, (2) 40 Gy of fWBI delivered as two 5 Gy fractions/week for 4 weeks, (3) sham irradiation + dietary fenofibrate (0.2% w/w) starting 7 days prior to irradiation, or (4) fWBI + fenofibrate. Cognitive function was measured 26-29 weeks after irradiation using: (1) the perirhinal cortex (PRh)-dependent novel object recognition task; (2) the hippocampal-dependent standard Morris water maze (MWM) task; (3) the hippocampal-dependent delayed match-to-place version of the MWM task; and (4) a cue strategy preference version of the MWM to distinguish hippocampal from striatal task performance. Neurogenesis was assessed 29 weeks after fWBI in the granular cell layer and subgranular zone of the dentate gyrus using a doublecortin antibody. Microglial activation was assessed using an ED1 antibody in the dentate gyrus and hilus of the hippocampus. A significant impairment in perirhinal cortex-dependent cognitive function was measured after fWBI. In contrast, fWBI failed to alter hippocampal-dependent cognitive function, despite a significant reduction in hippocampal neurogenesis. Continuous administration of fenofibrate prevented the fWBI-induced reduction in perirhinal cortex-dependent cognitive function, but did not prevent the radiation-induced reduction in neurogenesis or the radiation-induced increase in activated microglia. These data suggest that fenofibrate may be a promising therapeutic for the prevention of some modalities of radiation-induced cognitive impairment in brain cancer patients.
Collapse
|
22
|
Haakonsson AK, Stahl Madsen M, Nielsen R, Sandelin A, Mandrup S. Acute genome-wide effects of rosiglitazone on PPARγ transcriptional networks in adipocytes. Mol Endocrinol 2013; 27:1536-49. [PMID: 23885096 DOI: 10.1210/me.2013-1080] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation, and genome-wide studies indicate that it is involved in the induction of most adipocyte genes. Here we report, for the first time, the acute effects of the synthetic PPARγ agonist rosiglitazone on the transcriptional network of PPARγ in adipocytes. Treatment with rosiglitazone for 1 hour leads to acute transcriptional activation as well as repression of a number of genes as determined by genome-wide RNA polymerase II occupancy. Unlike what has been shown for many other nuclear receptors, agonist treatment does not lead to major changes in the occurrence of PPARγ binding sites. However, rosiglitazone promotes PPARγ occupancy at many preexisting sites, and this is paralleled by increased occupancy of the mediator subunit MED1. The increase in PPARγ and MED1 binding is correlated with an increase in transcription of nearby genes, indicating that rosiglitazone, in addition to activating the receptor, also promotes its association with DNA, and that this is causally linked to recruitment of mediator and activation of genes. Notably, both rosiglitazone-activated and -repressed genes are induced during adipogenesis. However, rosiglitazone-activated genes are markedly more associated with PPARγ than repressed genes and are highly dependent on PPARγ for expression in adipocytes. By contrast, repressed genes are associated with the other key adipocyte transcription factor CCAAT-enhancer binding proteinα (C/EBPα), and their expression is more dependent on C/EBPα. This suggests that the relative occupancies of PPARγ and C/EBPα are critical for whether genes will be induced or repressed by PPARγ agonist.
Collapse
Affiliation(s)
- Anders Kristian Haakonsson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| | | | | | | | | |
Collapse
|
23
|
de Godoy MRC, Swanson KS. COMPANION ANIMALS SYMPOSIUM: Nutrigenomics: Using gene expression and molecular biology data to understand pet obesity1. J Anim Sci 2013; 91:2949-64. [DOI: 10.2527/jas.2012-5860] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- M. R. C. de Godoy
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
| | - K. S. Swanson
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, IL 61801
| |
Collapse
|
24
|
Basu S, Nachat-Kappes R, Caldefie-Chézet F, Vasson MP. Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid Redox Signal 2013; 18:323-60. [PMID: 22746381 DOI: 10.1089/ars.2011.4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation is one of the foremost risk factors for different types of malignancies, including breast cancer. Additional risk factors of this pathology in postmenopausal women are weight gain, obesity, estrogen secretion, and an imbalance in the production of adipokines, such as leptin and adiponectin. Various signaling products of transcription factor, nuclear factor-kappaB, in particular inflammatory eicosanoids, reactive oxygen species (ROS), and cytokines, are thought to be involved in chronic inflammation-induced cancer. Together, these key components have an influence on inflammatory reactions in malignant tissue damage when their levels are deregulated endogenously. Prostaglandins (PGs) are well recognized in inflammation and cancer, and they are solely biosynthesized through cyclooxygenases (COXs) from arachidonic acid. Concurrently, ROS give rise to bioactive isoprostanes from arachidonic acid precursors that are also involved in acute and chronic inflammation, but their specific characteristics in breast cancer are less demonstrated. Higher aromatase activity, a cytochrome P-450 enzyme, is intimately connected to tumor growth in the breast through estrogen synthesis, and is interrelated to COXs that catalyze the formation of both inflammatory and anti-inflammatory PGs such as PGE(2), PGF(2α), PGD(2), and PGJ(2) synchronously under the influence of specific mediators and downstream enzymes. Some of the latter compounds upsurge the intracellular cyclic adenosine monophosphate concentration and appear to be associated with estrogen synthesis. This review discusses the role of COX- and ROS-catalyzed eicosanoids and adipokines in breast cancer, and therefore ranges from their molecular mechanisms to clinical aspects to understand the impact of inflammation.
Collapse
Affiliation(s)
- Samar Basu
- Biochemistry, Molecular Biology and Nutrition, University of Auvergne, Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
25
|
Berberoglu Z, Yazici AC, Bayraktar N, Demirag NG. Rosiglitazone decreases fasting plasma peptide YY3-36 in type 2 diabetic women: a possible role in weight gain? Acta Diabetol 2012; 49 Suppl 1:S115-22. [PMID: 22101910 DOI: 10.1007/s00592-011-0352-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Rosiglitazone often results in weight gain. We hypothesized that rosiglitazone may modulate circulating levels of ghrelin and peptide YY(3-36) and this modulation may be related to weight-gaining effect of this agent. This study was designed as an open-label, randomized, controlled trial of 3-month duration. Women with newly diagnosed type 2 diabetes were studied. Twenty-eight of the 55 eligible participants were randomly assigned to receive rosiglitazone (4 mg/d). Twenty-seven patients with diabetes matched for age and body mass index served as controls on diet alone. We evaluated the effects of 3 months of rosiglitazone treatment on fasting peptide YY(3-36) and ghrelin levels, and anthropometric measurements. The 3-month administration of rosiglitazone reduced fasting plasma peptide YY(3-36) levels by 25%, the between-group difference was statistically significant. No effect of this thiazolidinedione compound on fasting ghrelin concentrations was observed at the end of study. The ghrelin/body mass index ratio also did not change significantly after treatment. Seventy-five percent of the women with diabetes complained of increased hunger at the end of study. Nevertheless, all subjects exhibited a decrease in fasting PYY levels after 3 months of rosiglitazone therapy, irrespective of the levels of hunger. There was no significant correlation between changes in peptide YY(3-36) and those in anthropometric parameters and insulin sensitivity at the end of the study. Rosiglitazone-induced decrease in fasting peptide YY(3-36) levels may in part contribute to orexigenic and weight-gaining effect of this thiazolidinedione derivative.
Collapse
Affiliation(s)
- Zehra Berberoglu
- Department of Endocrinology and Metabolism, Turkiye Yuksek Ihtisas Education and Research Hospital, Kızılay sokak, 06100 Sihhiye, Ankara, Turkey.
| | | | | | | |
Collapse
|
26
|
Hartig SM, He B, Newberg JY, Ochsner SA, Loose DS, Lanz RB, McKenna NJ, Buehrer BM, McGuire SE, Marcelli M, Mancini MA. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes. CHEMISTRY & BIOLOGY 2012; 19:1126-41. [PMID: 22999881 PMCID: PMC4259876 DOI: 10.1016/j.chembiol.2012.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/05/2012] [Accepted: 07/09/2012] [Indexed: 01/03/2023]
Abstract
We compared transcriptomes of terminally differentiated mouse 3T3-L1 and human adipocytes to identify cell-specific differences. Gene expression and high content analysis (HCA) data identified the androgen receptor (AR) as both expressed and functional, exclusively during early human adipocyte differentiation. The AR agonist dihydrotestosterone (DHT) inhibited human adipocyte maturation by downregulation of adipocyte marker genes, but not in 3T3-L1. It is interesting that AR induction corresponded with dexamethasone activation of the glucocorticoid receptor (GR); however, when exposed to the differentiation cocktail required for adipocyte maturation, AR adopted an antagonist conformation and was transcriptionally repressed. To further explore effectors within the cocktail, we applied an image-based support vector machine (SVM) classification scheme to show that adipocyte differentiation components inhibit AR action. The results demonstrate human adipocyte differentiation, via GR activation, upregulates AR but also inhibits AR transcriptional activity.
Collapse
Affiliation(s)
- Sean M. Hartig
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Bin He
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Justin Y. Newberg
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott A. Ochsner
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - David S. Loose
- Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX, USA
| | - Rainer B. Lanz
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Neil J. McKenna
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Sean E. McGuire
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marco Marcelli
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey VA Medical Center and Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Michael A. Mancini
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
27
|
Mazaki-Tovi M, Abood SK, Schenck PA. Effect of omega-3 polyunsaturated fatty acids and body condition on serum concentrations of adipokines in healthy dogs. Am J Vet Res 2012; 73:1273-81. [DOI: 10.2460/ajvr.73.8.1273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Sgarra L, Addabbo F, Potenza MA, Montagnani M. Determinants of evolving metabolic and cardiovascular benefit/risk profiles of rosiglitazone therapy during the natural history of diabetes: molecular mechanisms in the context of integrated pathophysiology. Am J Physiol Endocrinol Metab 2012; 302:E1171-82. [PMID: 22374753 DOI: 10.1152/ajpendo.00038.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rosiglitazone is a thiazolidinedione, a synthetic PPARγ receptor agonist with insulin-sensitizing properties that is used as an antidiabetic drug. In addition to improving glycemic control through actions in metabolic target tissues, rosiglitazone has numerous biological actions that impact on cardiovascular homeostasis. Some of these actions are helpful (e.g., improving endothelial function), whereas others are potentially harmful (e.g., promoting fluid retention). Since cardiovascular morbidity and mortality are major endpoints for diabetes, it is essential to understand how the natural history of diabetes alters the net benefits and risks of rosiglitazone therapy. This complex issue is an important determinant of optimal use of rosiglitazone and is critical for understanding cardiovascular safety issues. We give special attention to the effects of rosiglitazone in diabetic patients with stable coronary artery disease and the impact of rosiglitazone actions on atherosclerosis and plaque instability. This provides a rational conceptual framework for predicting evolving benefit/risk profiles that inform optimal use of rosiglitazone in the clinical setting and help explain the results of recent large clinical intervention trials where rosiglitazone had disappointing cardiovascular outcomes. Thus, in this perspective, we describe what is known about the molecular mechanisms of action of rosiglitazone on cardiovascular targets in the context of the evolving pathophysiology of diabetes over its natural history.
Collapse
Affiliation(s)
- Luca Sgarra
- Department of Biomedical Sciences and Human Oncology, Medical School, University of Bari, Bari, Italy
| | | | | | | |
Collapse
|
29
|
Chaubey A, Ross KJ, Leadbetter MR, Gomillion CT, Burg KJL. Characterization of the Differentiation and Leptin Secretion Profile of Adult Stem Cells on Patterned Polylactide Films. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:1163-77. [DOI: 10.1163/156856209x444484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Aditya Chaubey
- a Department of Bioengineering, 501 Rhodes Engineering Research Center, Clemson University, Clemson, SC 29634, USA
| | - Kevin J. Ross
- b Department of Statistics & Operations Research, 332 Hanes Hall, CB 3260, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Malcolm R. Leadbetter
- c Department of Statistics & Operations Research, 332 Hanes Hall, CB 3260, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cheryl T. Gomillion
- d Department of Bioengineering, 501 Rhodes Engineering Research Center, Clemson University, Clemson, SC 29634, USA
| | - Karen J. L. Burg
- e Department of Bioengineering, 501 Rhodes Engineering Research Center, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
30
|
Silva E, Paczkowski M, Krisher RL. The effect of leptin on maturing porcine oocytes is dependent on glucose concentration. Mol Reprod Dev 2012; 79:296-307. [PMID: 22368147 DOI: 10.1002/mrd.22029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 01/27/2012] [Indexed: 12/23/2022]
Abstract
Increased body weight is often accompanied by increased circulating levels of leptin and glucose, which alters glucose metabolism in various tissues, including perhaps the oocyte. Alteration of glucose metabolism impacts oocyte function and may contribute to the subfertility often associated with obese individuals. The objective of this study was to determine the effect of leptin (0, 10, and 100 ng/ml) on the oocyte and cumulus cells during in vitro maturation under differing glucose concentrations. We examined the effects of leptin on oocyte maturation, blastocyst development, and/or gene expression in oocytes and cumulus cells (IRS1, IGF1, PPARγ, IL6, GLUT1) in a physiological glucose (2 mM) and high glucose (50 mM) environment. We also evaluated the effect of leptin on glucose metabolism via glycolysis and the pentose phosphate pathway. In a physiological glucose environment, leptin did not have an influence on oocyte maturation, blastocyst development, or oocyte gene expression. Expression of GLUT1 in cumulus cells was downregulated with 100 ng/ml leptin treatment, but did not affect oocyte glucose metabolism. In a high glucose environment, oocyte maturation and glycolysis were decreased, but in the presence of 100 ng/ml leptin, these parameters were improved to levels similar to control. This effect is potentially mediated by an upregulation of oocyte IRS1 and a correction of cumulus cell IGF1 expression. The present study demonstrates that in a physiological glucose concentration, leptin plays a negligible role in oocyte function. However, leptin appears to modulate the deleterious impact of a high glucose environment on oocyte function.
Collapse
Affiliation(s)
- Elena Silva
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | | |
Collapse
|
31
|
Quercetin/adenosine combination may induce insulin resistance in high fat diet-fed mice. Obes Res Clin Pract 2012; 6:e1-e90. [DOI: 10.1016/j.orcp.2011.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/18/2011] [Accepted: 05/22/2011] [Indexed: 11/19/2022]
|
32
|
Villarroya J, Dorado B, Vilà MR, Garcia-Arumí E, Domingo P, Giralt M, Hirano M, Villarroya F. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice. PLoS One 2011; 6:e29691. [PMID: 22216345 PMCID: PMC3246498 DOI: 10.1371/journal.pone.0029691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/02/2011] [Indexed: 12/13/2022] Open
Abstract
Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues.
Collapse
Affiliation(s)
- Joan Villarroya
- Departament de Bioquímica i Biologia Molecular, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sathyanarayana P, Jogi M, Muthupillai R, Krishnamurthy R, Samson SL, Bajaj M. Effects of combined exenatide and pioglitazone therapy on hepatic fat content in type 2 diabetes. Obesity (Silver Spring) 2011; 19:2310-5. [PMID: 21660077 DOI: 10.1038/oby.2011.152] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effects of combined pioglitazone (peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist) and exenatide (GLP-1 receptor agonist) therapy on hepatic fat content and plasma adiponectin levels in patients with type 2 diabetes (T2DM). Twenty-one T2DM patients (age = 52 ± 3 years, BMI = 32.0 ± 1.5, hemoglobin A(1c) (HbA(1c)) = 8.2 ± 0.4%) on diet and/or metformin received additional treatment with either pioglitazone 45 mg/day for 12 months (n = 10) or combined therapy with pioglitazone (45 mg/day) and exenatide (10 µg subcutaneously twice daily) for 12 months (n = 11). At baseline, hepatic fat content and plasma adiponectin levels were similar between the two treatment groups. Pioglitazone reduced fasting plasma glucose (FPG) (P < 0.05), fasting free fatty acid (FFA) (P < 0.05), and HbA(1c) (Δ = 1.0%, P < 0.01), while increasing plasma adiponectin concentration by 86% (P < 0.05). Hepatic fat (magnetic resonance spectroscopy (MRS)) was significantly reduced following pioglitazone treatment (11.0 ± 3.1 to 6.5 ± 1.9%, P < 0.05). Plasma triglyceride concentration decreased by 14% (P < 0.05) and body weight increased significantly (Δ = 3.7 kg). Combined pioglitazone and exenatide therapy was associated with a significantly greater increase in plasma adiponectin (Δ = 193%) and a significantly greater decrease in hepatic fat (12.1 ± 1.7 to 4.7 ± 1.3%) and plasma triglyceride (38%) vs. pioglitazone therapy despite the lack of a significant change in body weight (Δ = 0.2 kg). Hepatic injury biomarkers aspartate aminotransferase and alanine aminotransferase (ALT) were significantly decreased by both treatments; however, the reduction in ALT was significantly greater following combined pioglitazone and exenatide therapy. We conclude that combined in patients with T2DM, pioglitazone and exenatide therapy is associated with a greater reduction in hepatic fat content as compared to the addition of pioglitazone therapy (Δ = 61% vs. 41%, P < 0.05).
Collapse
Affiliation(s)
- Padma Sathyanarayana
- Diabetes and Endocrinology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
34
|
Association of serum lipid/lipoprotein with Pro12Ala polymorphism in PPAR-γ2 among Chinese nonagenarians/centenarians. Arch Med Res 2011; 42:613-9. [PMID: 22001700 DOI: 10.1016/j.arcmed.2011.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/08/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS In previous studies, the Pro12Ala polymorphism in the peroxisome proliferator-activated receptor gamma 2 (PPAR-γ2) was shown to be associated with both lipid metabolism and longevity. We examined whether the polymorphism continued to be associated with abnormal levels of serum lipid/lipoprotein among elderly subjects (≥90 years). METHODS The Pro12Ala variant was examined using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP). Abnormal levels of serum lipid/lipoprotein were defined according to the criteria provided by the Chinese Medical Association (2004). Abnormal criteria were triglyceride (TG) >5.18 mmol/l, total cholesterol (TC) >1.7 mmol/l, low-density lipoprotein cholesterol (LDL-C) >3.37 mmol/l and high-density lipoprotein cholesterol (HDL-C) <1.04 mmol/l). RESULTS The sample included 673 unrelated Chinese individuals aged 90-108 years (mean age: 93.54 ± 3.54 years) and 67.3% females. Genotype frequencies of the Pro12Ala polymorphism were 0% Ala12Ala, 8.9% Pro12Ala, 91.1% Pro12Pro. Neither differences in the levels of serum lipid/lipoprotein nor the prevalence of their abnormal levels was significant between subjects who were or were not 12Ala carriers. Unadjusted and adjusted multiple logistic regressions showed that the odds ratios (OR) for abnormal levels of serum lipid/lipoprotein were not associated with the Pro12Ala polymorphism in PPAR-γ2. CONCLUSIONS Levels of serum lipid/lipoprotein were not associated with the Pro12Ala polymorphism in PPAR-γ2 among Chinese nonagenarians and centenarians, which was different from the general population.
Collapse
|
35
|
Hexarelin Signaling to PPARgamma in Metabolic Diseases. PPAR Res 2011; 2008:364784. [PMID: 18288286 PMCID: PMC2233980 DOI: 10.1155/2008/364784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 11/27/2007] [Indexed: 12/23/2022] Open
Abstract
Investigating the metabolic functions of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) has been extremely rewarding over the past years.
Uncovering the biologic roles of PPARγ and its mechanism of action has greatly advanced our understanding of the transcriptional control of lipid and glucose metabolism, and compounds such as thiazolidinediones which directly regulate PPARγ have proven to exhibit potent insulin-sensitizer effects in the treatment of diabetes. We review here recent advances on the emerging role of growth hormone releasing peptides in regulating PPARγ through interaction with scavenger receptor CD36 and ghrelin GHS-R1a receptor. With the impact that these peptides exert on the metabolic pathways involved in lipid metabolism and energy homeostasis, it is hoped that the development of novel approaches in the regulation of PPAR functions will bring additional therapeutic possibilities to face problems related to metabolic diseases.
Collapse
|
36
|
PPAR Gamma: Coordinating Metabolic and Immune Contributions to Female Fertility. PPAR Res 2011; 2008:243791. [PMID: 18309368 PMCID: PMC2246065 DOI: 10.1155/2008/243791] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/02/2007] [Indexed: 01/10/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARG) regulates cellular functions such as adipogenesis and immune cell activation. However, new information has indicated additional roles of PPARG directing the cyclic changes that occur within ovarian tissue of female mammals, including those that facilitate the release of oocytes each estrous cycle. In addition to ovarian PPARG expression and function, many PPARG actions within adipocytes and macrophages have additional direct and indirect implications for ovarian function and female fertility. This encompasses the regulation of lipid uptake and transport, insulin sensitivity, glucose metabolism, and the regulation of inflammatory mediator synthesis and release. This review discusses the developing links between PPARG activity and female reproductive function, and highlights several mechanisms that may facilitate such a relationship.
Collapse
|
37
|
Do PPARgamma Ligands Suppress the Growth of Cholangiocarcinoma or the Cholangiohepatitis Induced by the Tumor? PPAR Res 2011; 2008:587401. [PMID: 18615198 PMCID: PMC2443545 DOI: 10.1155/2008/587401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 06/09/2008] [Indexed: 11/17/2022] Open
Abstract
Cholangiocarcinoma is a predominantly fatal cancer, which can be difficult to treat. It has been reported that the administration of pioglitazone temporarily improved not only diabetic control, but also bile duct carcinoma-induced cholangiohepatitis. Pioglitazone is considered to have both direct and indirect mechanisms of action on the tumor-related hepatitis. Several molecules induced by thiazolidinedione, including Smad pathway-related molecules, adipokines, and other lipid metabolism-related proteins, may directly or indirectly suppress tumor development and/or tumor-induced cholangiohepatitis. Although the most frequent and critical side effect of thiazolidinedione is drug-induced hepatitis, it can probably be avoided by careful monitoring of serum hepatic enzyme levels. Thiazolidinedione should be considered for management of tumor-induced hepatitis in the presence of diabetes unless severe side effects occur.
Collapse
|
38
|
In vivo and in vitro evidence that PPARγ ligands are antagonists of leptin signaling in breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1030-40. [PMID: 21704006 DOI: 10.1016/j.ajpath.2011.04.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/30/2011] [Accepted: 04/22/2011] [Indexed: 12/19/2022]
Abstract
Obesity is a major risk factor for the development and progression of breast cancer. Leptin, a cytokine mainly produced by adipocytes, plays a crucial role in mammary carcinogenesis and is elevated in hyperinsulinemia and insulin resistance. The antidiabetic thiazolidinediones inhibit leptin gene expression through ligand activation of the peroxisome proliferator-activated receptor-γ (PPARγ) and exert antiproliferative and apoptotic effects on breast carcinoma. In this study, we investigated the ability of PPARγ ligands to counteract leptin stimulatory effects on breast cancer growth in either in vivo or in vitro models. The results show that activation of PPARγ prevented the development of leptin-induced MCF-7 tumor xenografts and inhibited the increased cell-cell aggregation and proliferation observed on leptin exposure. PPARγ ligands abrogated the leptin-induced up-regulation of leptin gene expression and its receptors in breast cancer. PPARγ-mediated repression of leptin gene involved the recruitment of nuclear receptor corepressor protein and silencing mediator of retinoid and thyroid hormone receptors corepressors on the glucocorticoid responsive element site in the leptin gene expression regulatory region in the presence of glucocorticoid receptor and PPARγ. In addition, PPARγ ligands inhibited leptin signaling mediated by MAPK/STAT3/Akt phosphorylation and counteracted leptin stimulatory effect on estrogen signaling. These findings suggest that PPARγ ligands may have potential therapeutic benefits in the treatment of breast cancer.
Collapse
|
39
|
Muruganandan S, Parlee SD, Rourke JL, Ernst MC, Goralski KB, Sinal CJ. Chemerin, a novel peroxisome proliferator-activated receptor gamma (PPARgamma) target gene that promotes mesenchymal stem cell adipogenesis. J Biol Chem 2011; 286:23982-95. [PMID: 21572083 DOI: 10.1074/jbc.m111.220491] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chemerin is an adipocyte-secreted protein that regulates adipogenesis and the metabolic function of mature adipocytes via activation of chemokine-like receptor 1 (CMKLR1). Herein we report the interaction of peroxisome proliferator-activated receptor γ (PPARγ) and chemerin in the context of adipogenesis. Knockdown of chemerin or CMKLR1 expression or antibody neutralization of secreted chemerin protein arrested adipogenic clonal expansion of bone marrow mesenchymal stem cells (BMSCs) by inducing a loss of G(2)/M cyclins (cyclin A2/B2) but not the G(1)/S cyclin D2. Forced expression of PPARγ in BMSCs did not completely rescue this loss of clonal expansion and adipogenesis following chemerin or CMKLR1 knockdown. However, forced expression and/or activation of PPARγ in BMSCs as well as non-adipogenic cell types such as NIH-3T3 embryonic fibroblasts and MCA38 colon carcinoma cells significantly induced chemerin expression and secretion. Sequence analysis revealed a putative PPARγ response element (PPRE) sequence within the chemerin promoter. This PPRE was able to confer PPARγ responsiveness on a heterologous promoter, and mutation of this sequence abolished activation of the chemerin promoter by PPARγ. Chromatin immunoprecipitation confirmed the direct association of PPARγ with this PPRE. Treatment of mice with rosiglitazone elevated chemerin mRNA levels in adipose tissue and bone marrow coincident with an increase in circulating chemerin levels. Together, these findings support a fundamental role for chemerin/CMKLR1 signaling in clonal expansion during adipocyte differentiation as well as a role for PPARγ in regulating chemerin expression.
Collapse
|
40
|
Villanueva CJ, Waki H, Godio C, Nielsen R, Chou WL, Vargas L, Wroblewski K, Schmedt C, Chao LC, Boyadjian R, Mandrup S, Hevener A, Saez E, Tontonoz P. TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab 2011; 13:413-427. [PMID: 21459326 PMCID: PMC3089971 DOI: 10.1016/j.cmet.2011.02.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/25/2010] [Accepted: 01/06/2011] [Indexed: 12/28/2022]
Abstract
PPARγ and Wnt signaling are central positive and negative regulators of adipogenesis, respectively. Here we identify the groucho family member TLE3 as a transcriptional integrator of the PPARγ and Wnt pathways. TLE3 is a direct target of PPARγ that participates in a feed-forward loop during adipocyte differentiation. TLE3 enhances PPARγ activity and functions synergistically with PPARγ on its target promoters to stimulate adipogenesis. At the same time, induction of TLE3 during differentiation provides a mechanism for termination of Wnt signaling. TLE3 antagonizes TCF4 activation by β-catenin in preadipocytes, thereby inhibiting Wnt target gene expression and reversing β-catenin-dependent repression of adipocyte gene expression. Transgenic expression of TLE3 in adipose tissue in vivo mimics the effects of PPARγ agonist and ameliorates high-fat-diet-induced insulin resistance. Our data suggest that TLE3 acts as a dual-function switch, driving the formation of both active and repressive transcriptional complexes that facilitate the adipogenic program.
Collapse
Affiliation(s)
- Claudio J Villanueva
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hironori Waki
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cristina Godio
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Wen-Ling Chou
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leo Vargas
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Kevin Wroblewski
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian Schmedt
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Lily C Chao
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rima Boyadjian
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Andrea Hevener
- Department of Medicine, Division of Endocrinology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Enrique Saez
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Peter Tontonoz
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Salomone S. Pleiotropic effects of glitazones: a double edge sword? Front Pharmacol 2011; 2:14. [PMID: 21687509 PMCID: PMC3108480 DOI: 10.3389/fphar.2011.00014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/05/2011] [Indexed: 01/22/2023] Open
Abstract
Glitazones (thiazolidinediones) are drugs used for diabetes mellitus type 2. By binding to peroxisome proliferator-activated receptor γ (PPARγ) they modulate transcription of genes of carbohydrate and lipid metabolism. Through PPARγ stimulation, however, glitazones also affect other genes, encompassing inflammation, cell growth and differentiation, angiogenesis, which broads their therapeutic potential. The gene expression profile induced by each glitazone shows peculiarities, which may affect its benefit/risk balance; indeed, troglitazone and rosiglitazone have been associated with liver failure and coronary disease, respectively; whether or not these severe adverse effects are solely related to PPARγ remains yet unclear, since glitazones exert also PPARγ-independent effects. Glitazone chemistry serves as scaffold for synthesizing new compounds with PPARγ-independent pharmacological properties and we report here a preliminary observation of inhibition of vasoconstriction by troglitazone in isolated vessels, an effect that appears fast, reversible, and PPARγ-independent. Pleiotropic effects of glitazones need specific attention in terms of drug safety, but also provide basis for drug development and novel experimental therapeutics.
Collapse
Affiliation(s)
- Salvatore Salomone
- Department of Clinical and Molecular Biomedicine, Catania University Catania, Italy
| |
Collapse
|
42
|
Rasineni K, Desireddy S. Preventive effect of Catharanthus roseus (Linn.) against high-fructose diet-induced insulin resistance and oxida-tive stress in male Wistar rats. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/jdm.2011.13010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Puglisi MJ, Hasty AH, Saraswathi V. The role of adipose tissue in mediating the beneficial effects of dietary fish oil. J Nutr Biochem 2010; 22:101-8. [PMID: 21145721 DOI: 10.1016/j.jnutbio.2010.07.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/14/2010] [Accepted: 07/28/2010] [Indexed: 12/22/2022]
Abstract
Fish oil improves several features of metabolic syndrome (MetS), such as dyslipidemia, insulin resistance and hepatic steatosis. Fish oil may mediate some of its beneficial effects by modulating the storage and/or secretory functions of adipose tissue (AT). The storage of triglycerides in AT is regulated by the availability of free fatty acids and the degree of lipolysis in AT. Fish oil has been shown to reduce lipolysis in several studies, indicating improved triglyceride storage. Importantly, AT secretes a variety of adipokines and fish oil feeding is associated with remarkable changes in the plasma levels of two key adipokines, adiponectin and leptin. Much attention has been focused on the contribution of adiponectin in fish oil-mediated improvements in MetS. However, emerging evidence also indicates a role of leptin in modulating the components of the MetS upon fish oil feeding. In addition to improving the storage and secretory functions of AT, fish oil, and the n-3 fatty acids found in fish oil, has been shown to reduce inflammation in AT. These effects may be in part a result of activation of peroxisome proliferator-activated receptor γ or inhibition of Toll-like receptor 4. Thus, there is compelling evidence that fish oil mediates its beneficial effects on MetS by improving AT storage and secretory functions and by reducing inflammation.
Collapse
Affiliation(s)
- Michael J Puglisi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232-0615, USA
| | | | | |
Collapse
|
44
|
Qi W, Holian J, Tan CYR, Kelly DJ, Chen XM, Pollock CA. The roles of Kruppel-like factor 6 and peroxisome proliferator-activated receptor-γ in the regulation of macrophage inflammatory protein-3α at early onset of diabetes. Int J Biochem Cell Biol 2010; 43:383-92. [PMID: 21109018 DOI: 10.1016/j.biocel.2010.11.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 11/11/2010] [Accepted: 11/16/2010] [Indexed: 02/06/2023]
Abstract
Macrophage inflammatory protein-3 alpha (MIP-3α) is known to be upregulated early in the development of diabetic nephropathy (DN). However, the transcriptional regulation of MIP-3α is unknown. We previously demonstrated that the transcription factors KLF6 and PPAR-γ play key roles in regulating renal fibrotic and inflammatory responses to factors inherent in diabetes mellitus. Hence we determined the role of these transcription factors in regulating MIP-3α expression. HK-2 cells and STZ-induced diabetic rats were used. siRNAs, over-expressing constructs and CHIP promoter binding assays were used to determine the role of KLF6 and PPAR-γ in MIP-3α transcriptional regulation. KLF6 overexpression increased MIP-3α which was inhibited by concurrent exposure to PPAR-γ agonists. PPAR-γ agonists attenuated high glucose-induced MIP-3α secretion. Furthermore, MIP-3α secretion was up-regulated in PPAR-γ silenced cells, suggesting both KLF6 and PPAR-γ antagonistically regulate high glucose-induced MIP-3α secretion. The CHIP promoter binding assay confirmed that PPAR-γ binds to the MIP-3α promoter and negatively regulates MIP-3α expression. PPAR-γ agonists increased the binding activity of the PPAR-γ-MIP-3α promoter. In contrast, promoter binding activity decreased in KLF6 over-expressing cells. PPAR-γ decreased in KLF6 over-expressing cells and increased in KLF6 silenced cells, while PPAR-γ siRNA had no effect on KLF6 expression, suggesting that KLF6 acted upstream of PPAR-γ in the regulation of MIP-3α. In diabetic rats, renal MIP-3α and the macrophage marker ED-1 expression increased, which was inhibited by exposure to PPAR-γ agonists. The recognition of MIP-3α as a significant pathogenic mediator in diabetic nephropathy reaffirms the increasingly recognized role of inflammation in the progression of DN. Targeting pro-inflammatory chemokine MIP-3α and its signaling pathways will provide novel strategy to treat diabetic kidney disease.
Collapse
Affiliation(s)
- Weier Qi
- Kolling Institute, Dept of Medicine, Royal North Shore Hospital, University of Sydney, Sydney, Australia.
| | | | | | | | | | | |
Collapse
|
45
|
Collino M, Aragno M, Castiglia S, Miglio G, Tomasinelli C, Boccuzzi G, Thiemermann C, Fantozzi R. Pioglitazone improves lipid and insulin levels in overweight rats on a high cholesterol and fructose diet by decreasing hepatic inflammation. Br J Pharmacol 2010; 160:1892-902. [PMID: 20233219 PMCID: PMC2958635 DOI: 10.1111/j.1476-5381.2010.00671.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 10/29/2009] [Accepted: 11/29/2009] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE Nutrient overload leads to obesity and insulin resistance. Pioglitazone, a selective peroxisome proliferator-activated receptor (PPAR)gamma agonist, is currently used to manage insulin resistance, but the specific molecular mechanisms activated by PPARgamma are not yet fully understood. Recent studies suggest the involvement of suppressor of cytokine signalling (SOCS)-3 in the pathogenesis of insulin resistance. This study aimed to investigate the hepatic signalling pathway activated by PPARgamma activation in a non-genetic insulin-resistant animal model. EXPERIMENTAL APPROACH Male Wistar rats were maintained on a high-cholesterol fructose (HCF) diet for 15 weeks. Pioglitazone (3 mg x kg(-1)) was administered orally for the last 4 weeks of this diet. At the end of the treatment, serum was collected for biochemical analysis. Levels of PPARgamma, SOCS-3, pro-inflammatory markers, insulin receptor substrate-2 and Akt/glycogen synthase kinase-3beta phosphorylation were assessed in rat liver. KEY RESULTS Rats fed the HCF diet exhibited hyperlipidemia, hyperinsulinemia, impaired glucose tolerance and insulin resistance. Pioglitazone administration evoked a significant improvement in lipid metabolism and insulin responsiveness. This was accompanied by reduced hepatic expression of SOCS-3, interleukin-6, tumour necrosis factor-alpha and markers of neutrophil infiltration. Diet-induced PPARgamma expression was unaffected by the pioglitazone treatment. CONCLUSION AND IMPLICATIONS Chronic pioglitazone administration reduced hepatic inflammatory responses in rats fed a HCF diet. These effects were associated with changes in hepatic expression of SOCS-3, which may be a crucial link between the reduced local inflammation and the improved insulin signalling.
Collapse
Affiliation(s)
- Massimo Collino
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Adipokine expression and secretion by canine adipocytes: stimulation of inflammatory adipokine production by LPS and TNFalpha. Pflugers Arch 2010; 460:603-16. [PMID: 20473515 DOI: 10.1007/s00424-010-0845-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2010] [Revised: 04/12/2010] [Accepted: 04/30/2010] [Indexed: 02/06/2023]
Abstract
Adiposity and obesity are increasing in dogs. We have examined here the endocrine function of canine adipose tissue and the regulation of production of inflammation-related adipokines by dog adipocytes. Adiponectin, leptin, IL-6, MCP-1 and TNFalpha genes were expressed in the main adipose depots of dogs, but there were no major depot differences in mRNA levels. Each adipokine was expressed in canine adipocytes differentiated in culture and secreted into the medium (leptin undetected). IL-6, MCP-1 and TNFalpha were also expressed and secreted by preadipocytes; adiponectin and leptin were only expressed after adipocyte differentiation. The inflammatory mediators LPS and TNFalpha had major stimulatory effects on the expression and secretion of IL-6, MCP-1 and TNFalpha; there was a >5,000-fold increase in IL-6 mRNA level with LPS. IL-6 release into the medium was increased >50-fold over 24 h with LPS and TNFalpha, while MCP-1 release was increased 23- and 40-fold by TNFalpha and LPS, respectively. However, there was no effect, or small reductions, in adiponectin and leptin mRNA levels with the inflammatory mediators. Dexamethasone-stimulated leptin gene expression, had no effect on adiponectin expression, but decreased the expression and secretion of IL-6 and MCP-1. The PPARgamma agonist rosiglitazone stimulated both adiponectin and leptin expression and inhibited the expression of IL-6, MCP-1 and TNFalpha; MCP-1 secretion was reduced. These results demonstrate that canine adipocytes express and secrete key adipokines and show that adipocytes of this species are highly responsive to inflammatory mediators with the induction of major increases in the production of inflammation-related adipokines.
Collapse
|
47
|
Djaouti L, Jourdan T, Demizieux L, Chevrot M, Gresti J, Vergès B, Degrace P. Different effects of pioglitazone and rosiglitazone on lipid metabolism in mouse cultured liver explants. Diabetes Metab Res Rev 2010; 26:297-305. [PMID: 20503262 DOI: 10.1002/dmrr.1081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pioglitazone (PIO) and rosiglitazone (ROSI) are widely used as oral antidiabetic agents for treatment of type 2 diabetes. Although these medications exert similar effects on blood glucose, recent clinical studies indicated that PIO has a more pronounced beneficial effect on lipid parameters than ROSI. In order to get further insight into the lipid effects of both drugs, we tested whether PIO, compared to ROSI, could exert direct effects on lipid liver metabolism in relation with plasma lipids. METHODS We performed in vitro studies using mice liver slices incubated 21 h either with ROSI (1 micromol/L) or PIO (7.5 micromol/L). RESULTS We showed that both glitazones slightly reduced HMG-CoA reductase mRNA levels at the same degree but only PIO reduced intracellular cholesterol content, suggesting an alteration of cholesterol uptake rather than an inhibition of cholesterol biosynthesis. This concept was supported by the reduction of scavenger receptor class B type I expression, hepatic lipase activity and high-density lipoprotein cholesterol uptake in PIO-treated liver explants. Conversely, hepatic lipase mRNA levels were increased 3.5-fold. ROSI, but not PIO, induced acetyl-CoA carboxylase and fatty acid synthase gene expression and increased apoB secretion suggesting a stimulation of lipogenesis. Concurrently, peroxisome proliferator-activated receptor-gamma mRNA levels were induced by ROSI and not significantly changed by PIO. Besides, PIO appeared to be a more potent activator of AMP-Activated Protein Kinase than ROSI. CONCLUSIONS PIO and ROSI exert specific direct effects on liver and extrapolating these data to humans could explain the significant improvements in plasma lipids observed in diabetic patients treated with PIO.
Collapse
Affiliation(s)
- Louiza Djaouti
- UMR 866 INSERM-UB, Team Physiopathology of dyslipidemias, Faculty of Sciences Gabriel, University of Burgundy, Dijon 21000, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Sutanto MM, Ferguson KK, Sakuma H, Ye H, Brady MJ, Cohen RN. The silencing mediator of retinoid and thyroid hormone receptors (SMRT) regulates adipose tissue accumulation and adipocyte insulin sensitivity in vivo. J Biol Chem 2010; 285:18485-95. [PMID: 20371609 DOI: 10.1074/jbc.m110.107680] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The silencing mediator of retinoid and thyroid hormone receptors (SMRT) serves as a corepressor for nuclear receptors and other factors. Recent evidence suggests that SMRT is an important regulator of metabolism, but its role in adipocyte function in vivo remains unclear. We generated heterozygous SMRT knock-out (SMRT(+/-)) mice to investigate the function of SMRT in the adipocyte and the regulation of adipocyte insulin sensitivity. We show that SMRT(+/-) mice are normal weight on a regular diet, but develop increased adiposity on a high-fat diet (HFD). The mechanisms underlying this phenotype are complex, but appear to be due to a combination of an increased number of smaller subcutaneous adipocytes as well as decreased leptin expression, resulting in greater caloric intake. In addition, adipogenesis of mouse embryonic fibroblasts (MEFs) derived from these mice was increased. However, adipocyte insulin sensitivity, measured by insulin-induced Akt phosphorylation and insulin-mediated suppression of lipolysis, was enhanced in SMRT(+/-) adipocytes. These finding suggest that SMRT regulates leptin expression and limits the ability of fat mass to expand with increased caloric intake, but that SMRT also negatively regulates adipocyte insulin sensitivity.
Collapse
Affiliation(s)
- Maria M Sutanto
- Committee on Molecular Metabolism and Nutrition, Division of the Biological Sciences, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
49
|
Zhao M, Shao JQ, Du H. Effects of three antidiabetics on insulin and leptin in Chinese type 2 diabetes. Diabetes Metab Syndr 2010; 4:65-68. [DOI: 10.1016/j.dsx.2009.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Sanghera DK, Demirci FY, Been L, Ortega L, Ralhan S, Wander GS, Mehra NK, Singh J, Aston CE, Mulvihill JJ, Kamboh IM. PPARG and ADIPOQ gene polymorphisms increase type 2 diabetes mellitus risk in Asian Indian Sikhs: Pro12Ala still remains as the strongest predictor. Metabolism 2010; 59:492-501. [PMID: 19846176 PMCID: PMC2843807 DOI: 10.1016/j.metabol.2009.07.043] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Accepted: 07/29/2009] [Indexed: 01/22/2023]
Abstract
We have examined the association of 14 tagging single nucleotide polymorphisms (tagSNPs) in peroxisome proliferator activated receptor-gamma transcripts 1 and 2 (PPARG1 and 2) and 5 tagSNPs in adiponectin (ADIPOQ) genes for their effect on type 2 diabetes mellitus (T2D) risk in Asian Indian Sikhs. A total of 554 T2D cases and 527 normoglycemic controls were examined for association with T2D and other subphenotypes of T2D. With the exception of a strong association of PPARG2/Pro12Ala with T2D (odds ratio, 0.13; 95% confidence interval, 0.03-0.56; P = .0007), no other tagSNP in the PPARG locus revealed any significant association with T2D in this population. Similarly, none of the tagSNPs in the ADIPOQ gene was associated with T2D susceptibility in single-site analysis. However, haplotype analysis provided strong evidence of association of these loci with T2D. Three-site haplotype analysis in the PPARG locus using the 2 marginally associated SNPs (P/rs11715073 and P/rs3892175) in combination with Pro12 Ala (P/rs1801282) revealed a strong association of 1 "risk" (CGC) (P = .003, permutation P = .015) and 1 "protective" (CAC) (P = .001, permutation P = .005) haplotype associated with T2D. However, the major effect still appears to be driven by Pro12Ala, as the association of these haplotypes did not remain significant when analyzed conditional upon Pro12Ala (P = .262). In addition, 2-site haplotype analysis in the ADIPOQ locus using only 2 marginally associated SNPs (AD/rs182052 and AD/rs7649121) revealed a significant protective association of the GA haplotype with T2D (P = .009, permutation P = .026). Multiple linear regression analysis also revealed significant association of an ADIPOQ variant (AD/rs12495941) with total body weight (P = .010), waist (P = .024), and hip (P = .021), although these associations were not significant after adjusting for multiple testing. Our new findings strongly suggest that the genetic variation in PPARG and ADIPOQ loci could contribute to the risk for the development of T2D in Indian Sikhs. Identification of causal SNPs in these important biological and positional candidate genes would help determine the true physiologic significance of these loci in T2D and obesity.
Collapse
Affiliation(s)
- Dharambir Kaur Sanghera
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|