1
|
Boni C, Rossi M, Montali I, Tiezzi C, Vecchi A, Penna A, Doselli S, Reverberi V, Ceccatelli Berti C, Montali A, Schivazappa S, Laccabue D, Missale G, Fisicaro P. What Is the Current Status of Hepatitis B Virus Viro-Immunology? Clin Liver Dis 2023; 27:819-836. [PMID: 37778772 DOI: 10.1016/j.cld.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The natural history of hepatitis B virus (HBV) infection is closely dependent on the dynamic interplay between the host immune response and viral replication. Spontaneous HBV clearance in acute self-limited infection is the result of an adequate and efficient antiviral immune response. Instead, it is widely recognized that in chronic HBV infection, immunologic dysfunction contributes to viral persistence. Long-lasting exposure to high viral antigens, upregulation of multiple co-inhibitory receptors, dysfunctional intracellular signaling pathways and metabolic alterations, and intrahepatic regulatory mechanisms have been described as features ultimately leading to a hierarchical loss of effector functions up to full T-cell exhaustion.
Collapse
Affiliation(s)
- Carolina Boni
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sara Doselli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Reverberi
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Anna Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Simona Schivazappa
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Missale
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Paola Fisicaro
- Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
2
|
Guo G, He W, Zhou Z, Diao Y, Sui J, Li W. PreS1- targeting chimeric antigen receptor T cells diminish HBV infection in liver humanized FRG mice. Virology 2023; 586:23-34. [PMID: 37478771 DOI: 10.1016/j.virol.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/15/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Current therapies control but rarely achieve a cure for hepatitis B virus (HBV) infection. Restoration of the HBV-specific immunity by cell-based therapy represents a potential approach for a cure. In this study, we generated HBV specific CAR T cells based on an antibody 2H5-A14 targeting a preS1 region of the HBV large envelope protein. We show that the A14 CAR T cell is capable of killing hepatocytes infected by HBV with high specificity; adoptive transfer of A14 CAR T cells to HBV infected humanized FRG mice resulted in reductions of all serum and intrahepatic virological markers to levels below the detection limit. A14 CAR T cells treatment increased the levels of human IFN-γ, GM-CSF, and IL-8/CXCL-8 in the mice. These results show that A14 CAR T cells may be further developed for curative therapy against HBV infection by eliminating HBV-infected hepatocytes and inducing production of pro-inflammatory and antiviral cytokines.
Collapse
Affiliation(s)
- Guilan Guo
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Wenhui He
- National Institute of Biological Sciences, Beijing, China
| | - Zhongmin Zhou
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Yan Diao
- National Institute of Biological Sciences, Beijing, China; Zhongshan School of Medicine, Sun Yet-Sen University, Guangzhou, China
| | - Jianhua Sui
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| |
Collapse
|
3
|
Hoogeveen RC, Dijkstra S, Bartsch LM, Drescher HK, Aneja J, Robidoux MP, Cheney JA, Timm J, Gehring A, de Sousa PSF, Ximenez L, Peliganga LB, Pitts A, Evans FB, Boonstra A, Kim AY, Lewis-Ximenez LL, Lauer GM. Hepatitis B virus-specific CD4 T cell responses differentiate functional cure from chronic surface antigen + infection. J Hepatol 2022; 77:1276-1286. [PMID: 35716846 DOI: 10.1016/j.jhep.2022.05.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS With or without antiviral treatment, few individuals achieve sustained functional cure of chronic hepatitis B virus (HBV) infection. A better definition of what mediates functional cure is essential for improving immunotherapeutic strategies. We aimed to compare HBV-specific T cell responses in patients with different degrees of viral control. METHODS We obtained blood from 124 HBV-infected individuals, including those with acute self-limiting HBV infection, chronic infection, and chronic infection with functional cure. We screened for HBV-specific T cell specificities by ELISpot, assessed the function of HBV-specific T cells using intracellular cytokine staining, and characterized HBV-specific CD4 T cells using human leukocyte antigen (HLA) class II tetramer staining, all directly ex vivo. RESULTS ELISpot screening readily identified HBV-specific CD4 and CD8 T cell responses in acute resolving infection compared with more limited reactivity in chronic infection. Applying more sensitive assays revealed higher frequencies of functional HBV-specific CD4 T cells, but not CD8 T cells, in functional cure compared to chronic infection. Function independent analysis using HLA multimers also identified more HBV-specific CD4 T cell responses in functional cure compared to chronic infection, with the emergence of CD4 T cell memory both after acute and chronic infection. CONCLUSIONS Functional cure is associated with higher frequencies of functional HBV-specific CD4 memory T cell responses. Thus, immunotherapeutic approaches designed to induce HBV functional cure should also aim to improve CD4 T cell responses. LAY SUMMARY Immunotherapy is a form of treatment that relies on harnessing the power of an individual's immune system to target a specific disease or pathogen. Such approaches are being developed for patients with chronic HBV infection, in an attempt to mimic the immune response in patients who control HBV infection spontaneously, achieving a so-called functional cure. However, what exactly defines protective immune responses remains unclear. Herein, we show that functional cure is associated with robust responses by HBV-specific CD4 T cells (a type of immune cell).
Collapse
Affiliation(s)
- Ruben C Hoogeveen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Suzan Dijkstra
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Jasneet Aneja
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Maxwell P Robidoux
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - James A Cheney
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Joerg Timm
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lya Ximenez
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luis Baiao Peliganga
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Faculdade de Medicina da Universidade Agostinho Neto, Luanda, Angola; Ministério da Saúde de Angola, Luanda, Angola
| | - Anita Pitts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Fiona B Evans
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
4
|
Saitta C, Pollicino T, Raimondo G. Occult Hepatitis B Virus Infection: An Update. Viruses 2022; 14:v14071504. [PMID: 35891484 PMCID: PMC9318873 DOI: 10.3390/v14071504] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Occult hepatitis B virus (HBV) infection (OBI) refers to a condition in which replication-competent viral DNA is present in the liver (with detectable or undetectable HBV DNA in the serum) of individuals testing negative for the HBV surface antigen (HBsAg). In this peculiar phase of HBV infection, the covalently closed circular DNA (cccDNA) is in a low state of replication. Many advances have been made in clarifying the mechanisms involved in such a suppression of viral activity, which seems to be mainly related to the host's immune control and epigenetic factors. OBI is diffused worldwide, but its prevalence is highly variable among patient populations. This depends on different geographic areas, risk factors for parenteral infections, and assays used for HBsAg and HBV DNA detection. OBI has an impact in several clinical contexts: (a) it can be transmitted, causing a classic form of hepatitis B, through blood transfusion or liver transplantation; (b) it may reactivate in the case of immunosuppression, leading to the possible development of even fulminant hepatitis; (c) it may accelerate the progression of chronic liver disease due to different causes toward cirrhosis; (d) it maintains the pro-oncogenic properties of the "overt" infection, favoring the development of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Carlo Saitta
- Division of Medicine and Hepatology, University Hospital of Messina, 98124 Messina, Italy;
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Teresa Pollicino
- Department of Human Pathology, University Hospital of Messina, 98124 Messina, Italy;
| | - Giovanni Raimondo
- Division of Medicine and Hepatology, University Hospital of Messina, 98124 Messina, Italy;
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
- Correspondence: ; Tel.: +39-(0)-902212392
| |
Collapse
|
5
|
Franzè MS, Pollicino T, Raimondo G, Squadrito G. Occult hepatitis B virus infection in hepatitis C virus negative chronic liver diseases. Liver Int 2022; 42:963-972. [PMID: 35246933 PMCID: PMC9310828 DOI: 10.1111/liv.15233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 01/09/2022] [Accepted: 02/16/2022] [Indexed: 01/26/2023]
Abstract
Data concerning the prevalence of hepatitis B virus (HBV) occult infection (OBI) varies greatly in the different studies according to the sensitivity and specificity of the diagnostic approaches and the HBV prevalence in the different populations examined. The clinical implications of OBI are still debated. While the impact of OBI in HBV transmission as well as in HBV reactivation under immunosuppression are well established, the role of OBI in liver disease and hepatocellular carcinoma (HCC) development are still not definitively elucidated. It has been hypothesized that OBI might contribute to worsening the liver disease course when other causes of liver damage co-exist. Furthermore, much evidence suggests a role of OBI in the hepato-carcinogenesis processes through both indirect and direct oncogenic mechanisms that might favour HCC development. Data on the OBI clinical implications mainly come from studies performed in patients with hepatitis C virus (HCV) infection. However, HCV prevalence has dramatically fallen in the past years also because of the advent of specific and highly effective direct acting antivirals, with a consequent abrupt change of the worldwide scenario of chronic liver disease. Information about OBI prevalence and possible clinical impact in non-HCV-related liver disease are fragmentary, and the objective of this review is to critically summarize the available data in this field.
Collapse
Affiliation(s)
- Maria Stella Franzè
- Department of Clinical and Experimental MedicineMessina UniversityMessinaItaly,Division of Medicine and HepatologyMessina University HospitalMessinaItaly
| | - Teresa Pollicino
- Department of Human PathologyMessina UniversityMessinaItaly,Division of Advanced Diagnostic LaboratoriesMessina University HospitalMessinaItaly
| | - Giovanni Raimondo
- Department of Clinical and Experimental MedicineMessina UniversityMessinaItaly,Division of Medicine and HepatologyMessina University HospitalMessinaItaly
| | - Giovanni Squadrito
- Department of Clinical and Experimental MedicineMessina UniversityMessinaItaly,Division of Internal MedicineMessina University HospitalMessinaItaly
| |
Collapse
|
6
|
Zhou J, Guo X, Huang P, Tan S, Lin R, Zhan H, Wu X, Li T, Huang M, Huang M. HBV Infection Status Indicates Different Risks of Synchronous and Metachronous Liver Metastasis in Colorectal Cancer: A Retrospective Study of 3132 Patients with a 5-Year Follow-Up. Cancer Manag Res 2022; 14:1581-1594. [PMID: 35509873 PMCID: PMC9059988 DOI: 10.2147/cmar.s350276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/20/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Patients and Methods Results Conclusion
Collapse
Affiliation(s)
- Jiaming Zhou
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaoyan Guo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Pinzhu Huang
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Shuyun Tan
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Rongwan Lin
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Huanmiao Zhan
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaofeng Wu
- Department of Medical Records Management, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Tuoyang Li
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Mingzhe Huang
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
| | - Meijin Huang
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
- Correspondence: Meijin Huang, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, People’s Republic of China, Tel +8613924073322, Fax +8620-38254221, Email
| |
Collapse
|
7
|
Abstract
The hepatitis B virus (HBV) is a member of the Hepadnaviridae family, which includes small DNA enveloped viruses that infect primates, rodents, and birds and is the causative factor of chronic hepatitis B. A common feature of all these viruses is their great specificity by species and cell type, as well as a peculiar genomic and replication organization similar to that of retroviruses. The HBV virion consists of an external lipid envelope and an internal icosahedral protein capsid containing the viral genome and a DNA polymerase, which also functions as a reverse transcriptase.
Collapse
Affiliation(s)
- Alessandro Loglio
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy
| | - Mauro Viganò
- Hepatology Division, San Giuseppe Hospital Multimedica Spa, Via San Vittore 12, 20123 Milan, Italy
| | - Pietro Lampertico
- Division of Gastroenterology and Hepatology, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy; Department of Pathophysiology and Transplantation, CRC "A. M. and A. Migliavacca" Center for Liver Disease, University of Milan, Via F. Sforza 35, Milan 20122, Italy.
| |
Collapse
|
8
|
Mak LY, Seto WK, Yuen MF. Novel Antivirals in Clinical Development for Chronic Hepatitis B Infection. Viruses 2021; 13:1169. [PMID: 34207458 PMCID: PMC8235765 DOI: 10.3390/v13061169] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/06/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Globally, chronic hepatitis B (CHB) infection is one of the leading causes of liver failure, decompensated cirrhosis, and hepatocellular carcinoma. Existing antiviral therapy can suppress viral replication but not fully eradicate the virus nor the risk of liver-related complications. Novel treatments targeting alternative steps of the viral cycle or to intensify/restore the host's immunity are being developed. We discuss novel drugs that have already entered clinical phases of development. Agents that interfere with specific steps of HBV replication include RNA interference, core protein allosteric modulation, and inhibition of viral entry or viral protein excretion (NAPs and STOPS). Agents that target the host's immunity include toll-like receptor agonists, therapeutic vaccines, immune checkpoint modulators, soluble T-cell receptors, and monoclonal antibodies. Most have demonstrated favorable results in suppression of viral proteins and genomic materials (i.e., HBV DNA and/or pre-genomic RNA), and/or evidence on host-immunity restoration including cytokine responses and T-cell activation. Given the abundant clinical experience and real-world safety data with the currently existing therapy, any novel agent for CHB should be accompanied by convincing safety data. Combination therapy of nucleos(t)ide analogue, a novel virus-directing agent, and/or an immunomodulatory agent will be the likely approach to optimize the chance of a functional cure in CHB.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road 102, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Wai-Kay Seto
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road 102, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Man-Fung Yuen
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam Road 102, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Buschow SI, Jansen DTSL. CD4 + T Cells in Chronic Hepatitis B and T Cell-Directed Immunotherapy. Cells 2021; 10:cells10051114. [PMID: 34066322 PMCID: PMC8148211 DOI: 10.3390/cells10051114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
The impaired T cell responses observed in chronic hepatitis B (HBV) patients are considered to contribute to the chronicity of the infection. Research on this impairment has been focused on CD8+ T cells because of their cytotoxic effector function; however, CD4+ T cells are crucial in the proper development of these long-lasting effector CD8+ T cells. In this review, we summarize what is known about CD4+ T cells in chronic HBV infection and discuss the importance and opportunities of including CD4+ T cells in T cell-directed immunotherapeutic strategies to cure chronic HBV.
Collapse
|
10
|
HBV-Integration Studies in the Clinic: Role in the Natural History of Infection. Viruses 2021; 13:v13030368. [PMID: 33652619 PMCID: PMC7996909 DOI: 10.3390/v13030368] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major global health problem causing acute and chronic liver disease that can lead to liver cirrhosis and hepatocellular carcinoma (HCC). HBV covalently closed circular DNA (cccDNA) is essential for viral replication and the establishment of a persistent infection. Integrated HBV DNA represents another stable form of viral DNA regularly observed in the livers of infected patients. HBV DNA integration into the host genome occurs early after HBV infection. It is a common occurrence during the HBV life cycle, and it has been detected in all the phases of chronic infection. HBV DNA integration has long been considered to be the main contributor to liver tumorigenesis. The recent development of highly sensitive detection methods and research models has led to the clarification of some molecular and pathogenic aspects of HBV integration. Though HBV integration does not lead to replication-competent transcripts, it can act as a stable source of viral RNA and proteins, which may contribute in determining HBV-specific T-cell exhaustion and favoring virus persistence. The relationship between HBV DNA integration and the immune response in the liver microenvironment might be closely related to the development and progression of HBV-related diseases. While many new antiviral agents aimed at cccDNA elimination or silencing have been developed, integrated HBV DNA remains a difficult therapeutic challenge.
Collapse
|
11
|
Chua C, Salimzadeh L, Gehring AJ. Immunopathogenesis of Hepatitis B Virus Infection. HEPATITIS B VIRUS AND LIVER DISEASE 2021:73-97. [DOI: 10.1007/978-981-16-3615-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Jiaming Z, Pinzhu H, Xiaoyan G, Shuyun T, Rongwan L, Huanmiao Z, Xiaofeng W, Yuanlv X, Mingzhe H, Hongen Y, Meijin H, Jianping W. HBV infection may reduce the risk of metachronous liver metastasis in postoperative pathological stage 2 colorectal cancer. Int J Colorectal Dis 2020; 35:2205-2217. [PMID: 32728919 DOI: 10.1007/s00384-020-03712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 03/30/2025]
Abstract
PURPOSE To analyze whether HBV infection can reduce the risk of colorectal liver metastasis (CRLM) in stage 2 colorectal cancer (CRC). METHODS The data of postoperative pathological stage 2 CRC patients treated at the Sixth Affiliated Hospital of Sun Yat-sen University between 2013 and 2015 were analyzed. The patients were divided into an infection group (group A) and a non-infection group (group B). The correlations between HBV infection and CRLM, 5-year liver disease-free survival, and 5-year overall survival were compared. RESULTS A total of 884 patients who met the inclusion criteria were included in the study. Group A included 297 patients (33.60%), and 5 patients (1.68%) had CRLM. Group B included 587 patients (66.40%), and 31 patients (5.28%) had CRLM. The results of correlation analysis and logistic regression analysis showed that HBV infection (P = 0.013, HR = 0.29, 95% CI 0.11-0.77) was a protective factor for CRLM, while CEA > 5 ng/ml (P = 0.002, HR = 3.12, 95% CI 1.51-6.47) and hypertension (P = 0.010, HR = 3.50, 95% CI 1.34-9.09) were risk factors for CRLM. Group A had a significantly better 5-year liver disease-free survival than group B (P = 0.011, HR = 0.31, 95% CI 0.16-0.63), but there was no significant difference in the 5-year overall survival (P = 0.433). CONCLUSION HBV infection may reduce the risk of metachronous liver metastasis in stage 2 colorectal cancer.
Collapse
Affiliation(s)
- Zhou Jiaming
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huang Pinzhu
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guo Xiaoyan
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tan Shuyun
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Rongwan
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhan Huanmiao
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wu Xiaofeng
- Department of Medical Records Management, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Yuanlv
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huang Mingzhe
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Hongen
- Department of Chemotherapy, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huang Meijin
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wang Jianping
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Rashidi S, Farhadi L, Ghasemi F, Sheikhesmaeili F, Mohammadi A. The potential role of HLA-G in the pathogenesis of HBV infection: Immunosuppressive or immunoprotective? INFECTION GENETICS AND EVOLUTION 2020; 85:104580. [PMID: 33022425 DOI: 10.1016/j.meegid.2020.104580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
The non-classical human leukocyte antigens (HLA)-G could be generally considered as a potent tolerogenic molecule, which modulates immune responses. HLA-G due to the immunosuppressive properties may play an important role in the pathogenesis of infections related to the liver. HLA-G may display two distinct activities in the pathological conditions so that it could be protective in the autoimmune and inflammatory diseases or could be suppressive of the immune system in the infections or cancers. HLA-G might be used as a novel therapeutic target for liver diseases in the future. Indeed, new therapeutic agents targeting HLA-G expression or antibodies which block HLA-G activity are being developed and tested. However, further consideration of the HLA-G function in liver disease is required. This review aims to summarize the role of HLA-G in the liver of patients with HBV infection.
Collapse
Affiliation(s)
- Saadyeh Rashidi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Farhadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Farshad Sheikhesmaeili
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
14
|
Occult hepatitis B infection and hepatocellular carcinoma: Epidemiology, virology, hepatocarcinogenesis and clinical significance. J Hepatol 2020; 73:952-964. [PMID: 32504662 DOI: 10.1016/j.jhep.2020.05.042] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
Occult hepatitis B infection (OBI) refers to a condition where replication-competent HBV DNA is present in the liver, with or without HBV DNA in the blood, in individuals with serum HBsAg negativity assessed by currently available assays. The episomal covalently closed circular DNA (cccDNA) in OBI is in a low replicative state. Viral gene expression is mediated by epigenetic control of HBV transcription, including the HBV CpG island methylation pathway and post-translational modification of cccDNA-bound histone, with a different pattern from patients with chronic HBV infection. The prevalence of OBI varies tremendously across patient populations owing to numerous factors, such as geographic location, assay characteristics, host immune response, coinfection with other viruses, and vaccination status. Apart from the risk of viral reactivation upon immunosuppression and the risk of transmission of HBV, OBI has been implicated in hepatocellular carcinoma (HCC) development in patients with chronic HCV infection, those with cryptogenic or known liver disease, and in patients with HBsAg seroclearance after chronic HBV infection. An increasing number of prospective studies and meta-analyses have reported a higher incidence of HCC in patients with HCV and OBI, as well as more advanced tumour histological grades and earlier age of HCC diagnosis, compared with patients without OBI. The proposed pathogenetic mechanisms of OBI-related HCC include the influence of HBV DNA integration on the hepatocyte cell cycle, the production of pro-oncogenic proteins (HBx protein and mutated surface proteins), and persistent low-grade necroinflammation (contributing to the development of fibrosis and cirrhosis). There remain uncertainties about exactly how, and in what order, these mechanisms drive the development of tumours in patients with OBI.
Collapse
|
15
|
Abstract
Hepatitis B virus (HBV) infection causes chronic hepatitis and has long term complications. Individuals ever infected with HBV are at risk of viral reactivation under certain circumstances. This review summarizes studies on HBV persistence and reactivation with a focus on the definitions and mechanisms. Emphasis is placed on the interplay between HBV replication and host immunity as this interplay determines the patterns of persistence following viral acquisition. Chronic infections exhibit as overt persistence when a defective immune response fails to control the viral replication. The HBV genome persists despite an immune response in the form of covalently closed circular DNA (cccDNA) and integrated DNA, rendering an occult state of viral persistence in individuals whose infection appears to have been resolved. We have described HBV reactivation that occurs because of changes in the virus or the immune system. This review aims to raise the awareness of HBV reactivation and to understand how HBV persists, and discusses the risks of HBV reactivation in a variety of clinical settings.
Collapse
Affiliation(s)
- Yu Shi
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, China
| | - Min Zheng
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, China
| |
Collapse
|
16
|
Abstract
Abstract
Purpose of Review
Chronic Hepatitis B Virus (HBV) Infection is a major global health burden. Currently, a curative therapy does not exist; thus, there is an urgent need for new therapeutical options. Viral elimination in the natural course of infection results from a robust and multispecific T and B cell response that, however, is dysfunctional in chronically infected patients. Therefore, immunomodulatory therapies that strengthen the immune responses are an obvious approach trying to control HBV infection. In this review, we summarize the rationale and current options of immunological cure of chronic HBV infection.
Recent Findings
Recently, among others, drugs that stimulate the innate immune system or overcome CD8+ T cell exhaustion by checkpoint blockade, and transfer of HBV-specific engineered CD8+ T cells emerged as promising approaches.
Summary
HBV-specific immunity is responsible for viral control, but also for immunopathogenesis. Thus, the development of immunomodulatory therapies is a difficult process on a thin line between viral control and excessive immunopathology. Some promising agents are under investigation. Nevertheless, further research is indispensable in order to optimally orchestrate immunostimulation.
Collapse
|
17
|
Hepatitis B surface antigen seroclearance: Immune mechanisms, clinical impact, importance for drug development. J Hepatol 2020; 73:409-422. [PMID: 32333923 DOI: 10.1016/j.jhep.2020.04.013] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022]
Abstract
HBsAg seroclearance occurs rarely in the natural history of chronic hepatitis B (CHB) infection and is associated with improved clinical outcomes. Many factors are associated with HBsAg seroconversion, including immune and viral factors. However, the immune mechanisms associated with HBsAg seroclearance are still difficult to elucidate. HBsAg seroclearance is the ideal aim of HBV treatment. Unfortunately, this goal is rarely achieved with current treatments. Understanding the mechanisms of HBsAg loss appears to be important for the development of curative HBV treatments. While studies from animal models give insights into the potential immune mechanisms and interactions occurring between the immune system and HBsAg, they do not recapitulate all features of CHB in humans and are subject to variability due to their complexity. In this article, we review recent studies on these immune factors, focusing on their influence on CHB progression and HBsAg seroconversion. These data provide new insights for the development of therapeutic approaches to partially restore the anti-HBV immune response. Targeting HBsAg will ideally relieve the immunosuppressive effects on the immune system and help to restore anti-HBV immune responses.
Collapse
|
18
|
Michalak TI. Diverse Virus and Host-Dependent Mechanisms Influence the Systemic and Intrahepatic Immune Responses in the Woodchuck Model of Hepatitis B. Front Immunol 2020; 11:853. [PMID: 32536912 PMCID: PMC7267019 DOI: 10.3389/fimmu.2020.00853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Woodchuck infected with woodchuck hepatitis virus (WHV) represents the pathogenically nearest model of hepatitis B and associated hepatocellular carcinoma (HCC). This naturally occurring animal model also is highly valuable for development and preclinical evaluation of new anti-HBV agents and immunotherapies against chronic hepatitis (CH) B and HCC. Studies in this system uncovered a number of molecular and immunological processes which contribute or likely contribute to the immunopathogenesis of liver disease and modulation of the systemic and intrahepatic innate and adaptive immune responses during hepadnaviral infection. Among them, inhibition of presentation of the class I major histocompatibility complex on chronically infected hepatocytes and a role of WHV envelope proteins in this process, as well as augmented hepatocyte cytotoxicity mediated by constitutively expressed components of CD95 (Fas) ligand- and perforin-dependent pathways, capable of eliminating cells brought to contact with hepatocyte surface, including activated T lymphocytes, were uncovered. Other findings pointed to a role of autoimmune response against hepatocyte asialoglycoprotein receptor in augmenting severity of liver damage in hepadnaviral CH. It was also documented that WHV in the first few hours activates intrahepatic innate immunity that transiently decreases hepatic virus load. However, this activation is not translated in a timely manner to induction of virus-specific T cell response which appears to be hindered by defective activation of antigen presenting cells and presentation of viral epitopes to T cells. The early WHV infection also induces generalized polyclonal activation of T cells that precedes emergence of virus-specific T lymphocyte reactivity. The combination of these mechanisms hinder recognition of virus allowing its dissemination in the initial, asymptomatic stages of infection before adaptive cellular response became apparent. This review will highlight a range of diverse mechanisms uncovered in the woodchuck model which affect effectiveness of the anti-viral systemic and intrahepatic immune responses, and modify liver disease outcomes. Further exploration of these and other mechanisms, either already discovered or yet unknown, and their interactions should bring more comprehensive understanding of HBV pathogenesis and help to identify novel targets for therapeutic and preventive interventions. The woodchuck model is uniquely positioned to further contribute to these advances.
Collapse
Affiliation(s)
- Tomasz I Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
19
|
Ferrari C, Barili V, Varchetta S, Mondelli MU. Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis. THE LIVER 2020:821-850. [DOI: 10.1002/9781119436812.ch63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Wang H, Luo H, Wan X, Fu X, Mao Q, Xiang X, Zhou Y, He W, Zhang J, Guo Y, Tan W, Deng G. TNF-α/IFN-γ profile of HBV-specific CD4 T cells is associated with liver damage and viral clearance in chronic HBV infection. J Hepatol 2020; 72:45-56. [PMID: 31499130 DOI: 10.1016/j.jhep.2019.08.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS The role of hepatitis B virus (HBV)-specific CD4 T cells in patients with chronic HBV infection is not clear. Thus, we aimed to elucidate this in patients with chronic infection, and those with hepatitis B flares. METHODS Through intracellular IFN-γ and TNF-α staining, HBV-specific CD4 T cells were analyzed in 68 patients with chronic HBV infection and alanine aminotransferase (ALT) <2x the upper limit of normal (ULN), and 28 patients with a hepatitis B flare. HBV-specific HLA-DRB1*0803/HLA-DRB1*1202-restricted CD4 T cell epitopes were identified. RESULTS TNF-α producing cells were the dominant population in patients' HBV-specific CD4 T cells. In patients with ALT <2xULN, both the frequency and the dominance of HBV-specific IFN-γ producing CD4 T cells increased sequentially in patients with elevated levels of viral clearance: HBV e antigen (HBeAg) positive, HBeAg negative, and HBV surface antigen (HBsAg) negative. In patients with a hepatitis B flare, the frequency of HBV core-specific TNF-α producing CD4 T cells was positively correlated with patients' ALT and total bilirubin levels, and the frequency of those cells changed in parallel with the severity of liver damage. Patients with HBeAg/HBsAg loss after flare showed higher frequency and dominance of HBV-specific IFN-γ producing CD4 T cells, compared to patients without HBeAg/HBsAg loss. Both the frequency and the dominance of HBV S-specific IFN-γ producing CD4 T cells were positively correlated with the decrease of HBsAg during flare. A differentiation process from TNF-α producing cells to IFN-γ producing cells in HBV-specific CD4 T cells was observed during flare. Eight and 9 HBV-derived peptides/pairs were identified as HLA-DRB1*0803 restricted epitopes and HLA-DRB1*1202 restricted epitopes, respectively. CONCLUSIONS HBV-specific TNF-α producing CD4 T cells are associated with liver damage, while HBV-specific IFN-γ producing CD4 T cells are associated with viral clearance in patients with chronic HBV infection. LAY SUMMARY TNF-α producing cells are the dominant population of hepatitis B virus (HBV)-specific CD4 T cells in patients with chronic HBV infection. This population of cells might contribute to the aggravation of liver damage in patients with a hepatitis B flare. HBV-specific IFN-γ producing CD4 T cells are associated with HBV viral clearance. Differentiation from HBV-specific TNF-α producing CD4 T cells into HBV-specific IFN-γ producing CD4 T cells might favor HBV viral clearance.
Collapse
Affiliation(s)
- Haoliang Wang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Heng Luo
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xing Wan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaolan Fu
- Institute of Immunology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiaomei Xiang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yi Zhou
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiwei He
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Juan Zhang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yanzhi Guo
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenting Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| |
Collapse
|
21
|
Ostankova YV, Semenov AV, Totolian AA. [The quantitative determination method of covalently closed circular DNA HBV in puncture biopsy specimens of the liver.]. Klin Lab Diagn 2019; 64:565-570. [PMID: 31610110 DOI: 10.18821/0869-2084-2019-64-9-565-570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
To analyze the method HBV covalent-closed circular DNA quantitative determination in liver puncture biopsies and evaluate its significance in identifying HBsAg-negative viral hepatitis B. In this work, samples of liver tissue biopsy material were used from 128 patients living in St. Petersburg, in various regions of the Russian Federation, as well as in the Republic of Uzbekistan. For quantitative analysis of HBV covalently closed circular DNA in a biopsy material a method was developed based on real-time PCR using TaqMan probes for the target fragment and for the endogenous reference gene, based on the detecting ccc HBV DNA method of Pollicino T. et al. When quantifying ccc DNA HBV in liver tissue of 18 moderately HBV activity with HBV DNA PCR positive results patients and 16 inactive HBsAg carriers, the ccc DNA HBV content was significantly different between groups (p<0.034) and in terms 1 copy of the β-globin gene among moderate activity HBV patients amounted to 1.71±1.32 copies/cell, and for inactive HBsAg carriers 0.15±0.14 copies/cell. In the group of patients with severe liver fibrosis and cirrhosis, the amount of ccc DNA HBV in liver tissue in patients with HBV averaged 2.5±0.4 copies/cell, in patients with HBV + D on average 0.7±0.25 copies/cell, in patients with HCV + HBV co-infection 0.45±0.07 copies/cell, in patients with a preliminary diagnosis of chronic hepatitis C hepatitis, on average 0.12±0.04 copies/cell, in patients with cryptogenic hepatitis 0.2± 0.05 copies/cell. A significant difference was shown between the group of patients with chronic hepatitis B with marked fibrosis and cirrhosis of the liver with other patients groups, except for the group of 18 moderate activity chronic hepatitis B patients. The values of Student's t-test when compared with other groups were respectively: for patients with a HCV preliminary diagnosis t=5,92 p<0,05 f = 19, patients with cryptogenic hepatitis t=5,71 p<0,05 f = 18, with «inactive HBsAg carriage» t=5,55 p<0,05 f = 29, with HCV + HBV co-infection t=5,05 p<0,05 f = 15 and HBV + D co-infection t=3,82 p<0,05 f = 17. The covalently closed circular DNA HBV quantitative assessment method in liver puncture biopsies allows identifying HBsAgnegative chronic viral hepatitis B forms and also reflects the virus replication activity, which, in turn, makes it possible to assume further disease progression and evaluate the antiviral therapy effectiveness.
Collapse
Affiliation(s)
- Yu V Ostankova
- Saint-Petersburg Pasteur Institute, 197191, Saint Petersburg, Russia
| | - A V Semenov
- Saint-Petersburg Pasteur Institute, 197191, Saint Petersburg, Russia.,Saint-Petersburg State Medical University n.a. acad. I.P. Pavlov, 197022, Saint Petersburg, Russia.,North-West State Medical University n.a. I.I. Mechnikov, 191015, Saint Petersburg, Russia
| | - A A Totolian
- Saint-Petersburg Pasteur Institute, 197191, Saint Petersburg, Russia.,Saint-Petersburg State Medical University n.a. acad. I.P. Pavlov, 197022, Saint Petersburg, Russia
| |
Collapse
|
22
|
Maini MK, Burton AR. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat Rev Gastroenterol Hepatol 2019; 16:662-675. [PMID: 31548710 DOI: 10.1038/s41575-019-0196-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Abstract
Multiple new therapeutic approaches are currently being developed to achieve sustained, off-treatment suppression of HBV, a persistent hepatotropic infection that kills ~2,000 people a day. A fundamental therapeutic goal is the restoration of robust HBV-specific adaptive immune responses that are able to maintain prolonged immunosurveillance of residual infection. Here, we provide insight into key components of successful T cell and B cell responses to HBV, discussing the importance of different specificities and effector functions, local intrahepatic immunity and pathogenic potential. We focus on the parallels and interactions between T cell and B cell responses, highlighting emerging areas for future investigation. We review the potential for different immunotherapies in development to restore or release endogenous adaptive immunity by direct or indirect approaches, including limitations and risks. Finally, we consider an alternative HBV treatment strategy of replacing failed endogenous immunity with infusions of highly targeted T cells or antibodies.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK.
| | - Alice R Burton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|
23
|
Expression and detection of anti-HBs antibodies after hepatitis B virus infection or vaccination in the context of protective immunity. Arch Virol 2019; 164:2645-2658. [DOI: 10.1007/s00705-019-04369-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
|
24
|
Raimondo G, Locarnini S, Pollicino T, Levrero M, Zoulim F, Lok AS. Update of the statements on biology and clinical impact of occult hepatitis B virus infection. J Hepatol 2019; 71:397-408. [PMID: 31004683 DOI: 10.1016/j.jhep.2019.03.034] [Citation(s) in RCA: 335] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/20/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
In October 2018 a large number of international experts with complementary expertise came together in Taormina to participate in a workshop on occult hepatitis B virus infection (OBI). The objectives of the workshop were to review the existing knowledge on OBI, to identify issues that require further investigation, to highlight both existing controversies and newly emerging perspectives, and ultimately to update the statements previously agreed in 2008. This paper represents the output from the workshop.
Collapse
Affiliation(s)
- Giovanni Raimondo
- Division of Clinical and Molecular Hepatology, University of Messina, Messina, Italy; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
| | - Stephen Locarnini
- Victorian Infectious Diseases Reference Laboratory at the Doherty Institute, Melbourne, Victoria, Australia
| | - Teresa Pollicino
- Division of Clinical and Molecular Hepatology, University of Messina, Messina, Italy; Department of Human Pathology, University of Messina, Messina, Italy
| | - Massimo Levrero
- Cancer Research Center of Lyon, INSERM U1052, Hospices Civils de Lyon, Lyon University, Lyon, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon, INSERM U1052, Hospices Civils de Lyon, Lyon University, Lyon, France
| | - Anna S Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Zhang X, Liu B, Tang L, Su Q, Hwang N, Sehgal M, Cheng J, Ma J, Zhang X, Tan Y, Zhou Y, Duan Z, DeFilippis VR, Viswanathan U, Kulp J, Du Y, Guo JT, Chang J. Discovery and Mechanistic Study of a Novel Human-Stimulator-of-Interferon-Genes Agonist. ACS Infect Dis 2019; 5:1139-1149. [PMID: 31060350 PMCID: PMC7082846 DOI: 10.1021/acsinfecdis.9b00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stimulator of interferon genes (STING) is an integral ER-membrane protein that can be activated by 2'3'-cGAMP synthesized by cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) upon binding of double-stranded DNA. It activates interferon (IFN) and inflammatory cytokine responses to defend against infection by microorganisms. Pharmacologic activation of STING has been demonstrated to induce an antiviral state and boost antitumor immunity. We previously reported a cell-based high-throughput-screening assay that allowed for identification of small-molecule cGAS-STING-pathway agonists. We report herein a compound, 6-bromo-N-(naphthalen-1-yl)benzo[d][1,3]dioxole-5-carboxamide (BNBC), that induces a proinflammatory cytokine response in a human-STING-dependent manner. Specifically, we showed that BNBC induced type I and III IFN dominant cytokine responses in primary human fibroblasts and peripheral-blood mononuclear cells (PBMCs). BNBC also induced cytokine response in PBMC-derived myeloid dendritic cells and promoted their maturation, suggesting that STING-agonist treatment could potentially regulate the activation of CD4+ and CD8+ T lymphocytes. As anticipated, treatment of primary human fibroblast cells with BNBC induced an antiviral state that inhibited the infection of several kinds of flaviviruses. Taken together, our results indicate that BNBC is a human-STING agonist that not only induces innate antiviral immunity against a broad spectrum of viruses but may also stimulate the activation of adaptive immune responses, which is important for the treatment of chronic viral infections and tumors.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Fengtai, Beijing 100069, China
| | - Bowei Liu
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
- Department of Gastroenterology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, 7 Weiwu Rd., Jinshui, Zhengzhou, Henan 450016, China
| | - Liudi Tang
- Microbiology and Immunology graduate program, Drexel University College of Medicine, 2900 W Queen Ln, Philadelphia, Philadelphia, Pennsylvania 19129, USA
| | - Qing Su
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Nicky Hwang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Mohit Sehgal
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Junjun Cheng
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Julia Ma
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Xuexiang Zhang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Yinfei Tan
- Genomics Facilities, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia 19111, Pennsylvania, USA
| | - Yan Zhou
- Bioinformatics and Biostatistics Facility, Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia 19111, USA
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, 8 Xitoutiao, Fengtai, Beijing 100069, China
| | - Victor R. DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | - Usha Viswanathan
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - John Kulp
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Yanming Du
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Ju-Tao Guo
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| | - Jinhong Chang
- Department of Experimental Medicine, Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, Pennsylvania 18902, USA
| |
Collapse
|
26
|
Fabrizi F, Bunnapradist S, Lunghi G, Villa M, Martin P. Transplanting Solid Organs from HBsAg Negative Donors Positive for Antibody to Hepatitis B Core Antigen: The Implications. Int J Artif Organs 2018; 26:972-83. [PMID: 14708825 DOI: 10.1177/039139880302601102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- F Fabrizi
- Division of Nephrology, Dialysis and Transplantation, Institute of Hygiene and Preventive Medicine, Policlinico IRCCS, Milan, Italy.
| | | | | | | | | |
Collapse
|
27
|
Rational design and evaluation of HBsAg polymeric nanoparticles as antigen delivery carriers. Int J Biol Macromol 2018; 111:804-812. [PMID: 29343454 DOI: 10.1016/j.ijbiomac.2018.01.073] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/21/2022]
Abstract
The present work is focused on the development and evaluation of single dose sustained-release Hepatitis B surface antigen (HBsAg) loaded nanovaccine for Hepatitis B. The conventional treatment suffers from repeated administration and hence requires a booster dose. Therefore, polymeric nanovaccine of HBsAg was developed by double emulsion solvent evaporation technique, utilizing central composite design for formulation optimization. The effects of independent variables (like polymer amount, stabilizer concentration, aqueous/organic phase ratio and homogenizer speed) were also studied on critical quality attributes like particle size and entrapment efficiency. Nanovaccine was characterized in terms of physicochemical parameters, release, internalization and in vivo immunological evaluation in BALB/c mice after administration by different routes such as oral, sub-cutaneous, nasal and intramuscular. The designed nanovaccine demonstrated nanometric size with smooth surface, negative zeta potential, maximum entrapment, sustained release and better internalization in macrophage and MRC-5 cell line. The immune-stimulating activity of nanovaccine administered by different routes was evaluated by measuring anti-HBsAg titre like specific immunoglobulin IgG and IgA response and cytokine level (interleukin-2, interferon-Y) measurement. The results indicated that the nanovaccine administered by intramuscular route produced better humoral as well as cellular responses and potential carriers for antigen delivery at single dose administration via intramuscular route.
Collapse
|
28
|
Dewangan HK, Pandey T, Singh S. Nanovaccine for immunotherapy and reduced hepatitis-B virus in humanized model. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:2033-2042. [PMID: 29179600 DOI: 10.1080/21691401.2017.1408118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic Hepatitis B Virus (HBV) infections are severe with weak antiviral immune responses. The lack of an appropriate small animal model for chronic hepatitis, a major hurdle for studying the immunotolerance and immunopathogenesis induced by hepatitis B viral (HBV) infection. In this study, for enhancing the antibody production efficiency the prepared polymeric HBsAg-loaded nanoparticles (nanovaccine) will be tested in immune-deficit mice, which suffer from chronic Hepatitis B virus. Vaccination of Balb/c mice by this prepared nanoparticles that were engrafted with peripheral blood mononuclear cells (PBMCs), which was already lethally irradiated and transplanted by the bone marrow of NOD (knockout mice) mice. In the present study, after the vaccination detected the high frequencies of immunoglobulin G (IgG)-secreting B cells and mitogen-responsive interferon-Y (IFN-Y) secreting T cells in serum, determined by specific ELISA technique. During the entire observation period, unvaccinated animals showed lower concentration of specific IgG secreting B cells and IFN-Y secreting T cells found in comparison to vaccinated mice group. Chronic HBV carrier PBMCs transplanted into the chimera failed to produce antigen and increased the antibodies production due to vaccination. Furthermore, another advantage was that the viral gene expression and viral DNA replication was no longer observed in vaccinated group. This prepared nanovaccine formulations is better for the cure of Hepatitis B viral infection carrier. Therefore, specific memory responses were elicited by vaccination with Hepatitis B virus surface (HBsAg) antigen of chimeric mice transplanted with PBMCs derived from HBV donors.
Collapse
Affiliation(s)
- Hitesh Kumar Dewangan
- a Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| | - Tarun Pandey
- b Anaesthesia and Critical Care , Sanjay Gandhi Memorial Hospital , New Delhi , India
| | - Sanjay Singh
- a Department of Pharmaceutics , Indian Institute of Technology (Banaras Hindu University) , Varanasi , India
| |
Collapse
|
29
|
Abstract
Chronic hepatitis B virus (HBV) infection is a global public health issue. There are >250 million people chronically infected with HBV, and these chronic carriers are at high risk of developing end-stage liver diseases and hepatocellular carcinoma. Patients with chronic hepatitis B (CHB) usually acquire the virus perinatally, while most patients infected during adulthood develop acute hepatitis B (AHB), which usually results in viral clearance. HBV infection is noncytopathic, and liver injury is mostly contributed by host immune responses. The virus is stealthy, since the infection rarely induces type I interferon response in the early phase. In AHB, viral infection is detected and restrained by the innate immune response, which is followed by a strong and robust adaptive immune response and accompanied by viral clearance. In patients with CHB, both innate and adaptive immune responses are weak and thus rarely lead to viral clearance. Interferon α and nucleos(t)ide analogues are 2 classes of approved antiviral therapies. The former treatment activates nature killer (NK) cells and NK T cells, which partially enhances the innate immune response, while the later treatment suppresses viral replication by inhibiting reverse transcriptase, which may restore the HBV-specific adaptive immune response. However, single or combined treatment are still far from achieving seroclearance of HBV surface antigen. Although the treatment response is unsatisfactory in current clinical trials using several immunomodulators for boosting antiviral immunity, immunotherapy that is able to induce immune surveillance is still the most promising modality for HBV cure in the future.
Collapse
Affiliation(s)
- Tai-Chung Tseng
- Department of Internal Medicine, National Taiwan University Hospital-Jinshan Branch, New Taipei City.,Hepatitis Research Center, National Taiwan University Hospital
| | - Li-Rung Huang
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei.,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
30
|
Vyas AK, Jindal A, Hissar S, Ramakrishna G, Trehanpati N. Immune balance in Hepatitis B Infection: Present and Future Therapies. Scand J Immunol 2017; 86:4-14. [PMID: 28387980 DOI: 10.1111/sji.12553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2022]
Abstract
Chronic hepatitis B virus (HBV) infection affects millions of people worldwide and about half a million people die every year. India represents the second largest pool of chronic HBV infections with an estimated 40 million chronically infected patients. Persistence or clearance of HBV infection mainly depends upon host immune responses. Chronically infected individuals remain in immune tolerant phase unless HBV flares and leads to the development of chronic active hepatitis or acute-on-chronic liver failure. Strategies based on inhibition of viral replication (nucleoside analogues) or immune modulation (interferons) as monotherapy, or in combination in sequential therapies, are currently being used globally for reducing HBV viral load and mediating HBsAg clearance. However, the immune status and current therapies for promoting sustained virological responses in HBV-infected patients remain suboptimal. Elimination of cccDNA is major challenge for future therapies, and new molecules such as NTCP, Toll-like receptor (TLR)7 agonist (GS9620) and cyclophilin have emerged as potential targets for preventing HBV entry and replication. Other than these, HBV cccDNA elimination is the major target for future therapies.
Collapse
Affiliation(s)
- A K Vyas
- Department of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - A Jindal
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - S Hissar
- Department of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - G Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - N Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| |
Collapse
|
31
|
Boeijen LL, Hoogeveen RC, Boonstra A, Lauer GM. Hepatitis B virus infection and the immune response: The big questions. Best Pract Res Clin Gastroenterol 2017; 31:265-272. [PMID: 28774408 DOI: 10.1016/j.bpg.2017.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/26/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
Clinical events and the host immune response during hepatitis B virus (HBV) infection are intricately linked. Despite decades of research, important questions concerning the immunopathogenesis of chronic HBV infection remain unanswered. For example, it is unclear which immune parameters facilitate persistence, and if HBV can be completely cleared from the human liver. Recent technological breakthroughs now allow researchers to address these seemingly basic, but essential questions surrounding HBV immunity. It will be important to better define the molecular underpinnings of immune cell function and dysfunction during chronic disease and in controlled infection, with particular focus on the liver, as little information is available on the intrahepatic compartment. In the near future, it may be possible to solve some of the controversy surrounding the immune responses to HBV, and establish the features of both the innate and adaptive arms of the immune system required to achieve sustained control of HBV infection.
Collapse
Affiliation(s)
- Lauke L Boeijen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ruben C Hoogeveen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
32
|
Phillips S, Mistry S, Riva A, Cooksley H, Hadzhiolova-Lebeau T, Plavova S, Katzarov K, Simonova M, Zeuzem S, Woffendin C, Chen PJ, Peng CY, Chang TT, Lueth S, De Knegt R, Choi MS, Wedemeyer H, Dao M, Kim CW, Chu HC, Wind-Rotolo M, Williams R, Cooney E, Chokshi S. Peg-Interferon Lambda Treatment Induces Robust Innate and Adaptive Immunity in Chronic Hepatitis B Patients. Front Immunol 2017; 8:621. [PMID: 28611778 PMCID: PMC5446997 DOI: 10.3389/fimmu.2017.00621] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
IFN-lambda (IFNλ) is a member of the type III IFN family and is reported to possess anti-pathogen, anti-cancer, and immunomodulatory properties; however, there are limited data regarding its impact on host immune responses in vivo. We performed longitudinal and comprehensive immunosurveillance to assess the ability of pegylated (peg)-IFNλ to augment antiviral host immunity as part of a clinical trial assessing the efficacy of peg-IFNλ in chronic hepatitis B (CHB) patients. These patients were pretreated with directly acting antiviral therapy (entecavir) for 12 weeks with subsequent addition of peg-IFNλ for up to 32 weeks. In a subgroup of patients, the addition of peg-IFNλ provoked high serum levels of antiviral cytokine IL-18. We also observed the enhancement of natural killer cell polyfunctionality and the recovery of a pan-genotypic HBV-specific CD4+ T cells producing IFN-γ with maintenance of HBV-specific CD8+ T cell antiviral and cytotoxic activities. It was only in these patients that we observed strong virological control with reductions in both viral replication and HBV antigen levels. Here, we show for the first time that in vivo peg-IFNλ displays significant immunostimulatory properties with improvements in the main effectors mediating anti-HBV immunity. Interestingly, the maintenance in HBV-specific CD8+ T cells in the presence of peg-IFNλ is in contrast to previous studies showing that peg-IFNα treatment for CHB results in a detrimental effect on the functionality of this important antiviral T cell compartment. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT01204762.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sameer Mistry
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Antonio Riva
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Helen Cooksley
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Slava Plavova
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Krum Katzarov
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Marieta Simonova
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Stephan Zeuzem
- Johann Wolfgang, Goethe University Medical Center, Frankfurt, Germany
| | - Clive Woffendin
- Oregon Clinical and Translational Research Institute, Portland, OR, United States
| | - Pei-Jer Chen
- National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | - Michael Dao
- Precision Diagnostic Laboratory, Santa Ana, CA, United States
| | | | | | - Megan Wind-Rotolo
- Research and Development, Bristol-Myers Squibb, Wallingford, CT, United States
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
33
|
Torres-Cornejo A, Lauer GM. Hurdles to the Development of Effective HBV Immunotherapies and HCV Vaccines. Pathog Immun 2017; 2:102-125. [PMID: 28664194 PMCID: PMC5486412 DOI: 10.20411/pai.v2i1.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic infections with HBV and HCV continue to be major public health problems, with hundreds of millions of people infected worldwide; this is despite the availability of both an effective prophylactic HBV vaccine for more than 3 decades and potent direct antivirals for HBV and, more recently, HCV infection. Consequently, development of HBV immunotherapies and prophylactic HCV vaccines remains extremely urgent, but limited funding and significant gaps in our understanding of the correlates of immune protection pose serious hurdles for the development of novel immune-based interventions. Here we discuss immunological questions related to HBV and HCV, some shared and some pertinent to only 1 of the viruses, that should be addressed for the rational design of HBV immunotherapies and HCV vaccines.
Collapse
Affiliation(s)
- Almudena Torres-Cornejo
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Georg M. Lauer
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
34
|
Control of Hepatitis B Virus by Cytokines. Viruses 2017; 9:v9010018. [PMID: 28117695 PMCID: PMC5294987 DOI: 10.3390/v9010018] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a major public health problem worldwide with more than 240 million individuals chronically infected. Current treatments can control HBV replication to a large extent, but cannot eliminate HBV infection. Cytokines have been shown to control HBV replication and contribute to HBV cure in different models. Cytokines play an important role in limiting acute HBV infection in patients and mediate a non-cytolytic clearance of the virus. In this review, we summarize the effects of cytokines and cytokine-induced cellular signaling pathways on different steps of the HBV life cycle, and discuss possible strategies that may contribute to the eradication of HBV through innate immune activation.
Collapse
|
35
|
Valaydon Z, Pellegrini M, Thompson A, Desmond P, Revill P, Ebert G. The role of tumour necrosis factor in hepatitis B infection: Jekyll and Hyde. Clin Transl Immunology 2016; 5:e115. [PMID: 28090316 PMCID: PMC5192060 DOI: 10.1038/cti.2016.68] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic hepatitis B (CHB) is a major health problem worldwide and is associated with significant long-term morbidity and mortality. The hepatitis B virus (HBV) is a hepatotropic virus that is capable of integrating in the host nucleus permanently resulting in lifelong infection. To date, there is no definitive cure for HBV, as our current treatments cannot eradicate the viral reservoir that has integrated in the liver. Elucidating the immunopathogenesis is key to finding a therapeutic target for HBV as the virus is not in itself cytopathic but the immune response to the virus causes the majority of the cellular injury. In most cases, the virus reaches a state of equilibrium with low viral replication constrained by host immunity. Multiple cytokines have been implicated in the pathogenesis of CHB. Tumor necrosis factor (TNF) has emerged as a key player; on one hand it can facilitate immune-mediated virological control but on the other hand it can cause collateral hepatocyte damage, cirrhosis and possibly promote hepatocellular carcinoma. In this review, we discuss the current understanding of the immunopathogenesis of HBV, focusing on TNF and whether it can be harnessed in therapeutic strategies to cure HBV infection.
Collapse
Affiliation(s)
- Zina Valaydon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Gastroenterology, St Vincent's Hospital, Fitzroy,Victoria, Australia; Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Thompson
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy,Victoria, Australia; Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul Desmond
- Department of Gastroenterology, St Vincent's Hospital, Fitzroy,Victoria, Australia; Division of Research and Molecular Development, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute, Parkville, Victoria, Australia; Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Revill
- Department of Medicine, Eastern Hill Academic Centre, The University of Melbourne, Parkville, Victoria, Australia; Department of Microbiology and Immunology, Peter Doherty Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
36
|
Saccà F, Pane C, De Rosa A, Matarazzo M, Brescia Morra V. Lamivudine and fingolimod co-administration in two patients with multiple sclerosis and occult hepatitis B virus infection. Neurol Sci 2016; 38:501-502. [DOI: 10.1007/s10072-016-2726-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/29/2016] [Indexed: 01/04/2023]
|
37
|
Han JW, Yang H, Lee HL, Bae SH, Choi JY, Lee JW, Kim HJ, Lee S, Cho SG, Min CK, Kim DW, Yoon SK. Risk factors and outcomes of hepatitis B virus reactivation in hepatitis B surface antigen negative patients with hematological malignancies. Hepatol Res 2016; 46:657-68. [PMID: 26445232 DOI: 10.1111/hepr.12603] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
AIM Current guidelines recommend all patients scheduled to receive chemotherapy should be screened for hepatitis B surface antigen (HBsAg) and antibodies to hepatitis B virus core antigen (anti-HBc) status. However, still, more research is needed to identify the risk factors for hepatitis B virus (HBV) reactivation. We retrospectively investigated the incidence, risk factors and outcome of HBV reactivation in HBsAg negative patients with hematological malignancies. METHODS Seven hundred and thirty-eight HBsAg negative patients with hematological malignancies were included in the study. HBV reactivation was defined as reverse seroconversion of HBsAg (HBsAg reappearance). Risk factors, cumulative incidence and overall survival of HBV reactivation were analyzed. RESULTS Reactivation occurred in 23 of the 738 (3.1%) enrolled patients. As expected, the reactivation rate of the anti-HBc positive group was significantly higher than that of the anti-HBc negative group (5.4% vs 0.8%). Multivariate analysis indicated that loss of antibody to the hepatitis B surface antigen (anti-HBs) was an independent risk factor. Patients with acute lymphoblastic leukemia and multiple myeloma showed significantly higher reactivation rate than those with other diseases. The cumulative incidence of HBV reactivation after starting chemotherapy in the anti-HBc positive subgroup was 0.3% at 1 year, 1.7% at 2 years and 10.5% at 3 years. CONCLUSION Close monitoring of HBV markers, including anti-HBs, should be performed for longer than 24 months. Further study is needed to establish a strategy to prevent HBV reactivation after chemotherapy in HBsAg negative patients with hematological malignancies.
Collapse
Affiliation(s)
- Ji Won Han
- Division of Hepatology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Hyun Yang
- Division of Hepatology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Hae Lim Lee
- Division of Hepatology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Si Hyun Bae
- Division of Hepatology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Jong Young Choi
- Division of Hepatology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Jong-Wook Lee
- Division of Hematology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Hee Je Kim
- Division of Hematology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Seok Lee
- Division of Hematology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Seok Goo Cho
- Division of Hematology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Chang Ki Min
- Division of Hematology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Dong Wook Kim
- Division of Hematology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| | - Seung Kew Yoon
- Division of Hepatology, Department of Internal Medicine, Seoul St Mary's Hospital, College of Medicine, The Catholic University of South Korea, Seoul, Korea
| |
Collapse
|
38
|
Bertoletti A, Ferrari C. Adaptive immunity in HBV infection. J Hepatol 2016; 64:S71-S83. [PMID: 27084039 DOI: 10.1016/j.jhep.2016.01.026] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
During hepatitis B virus (HBV) infection, the presence of HBV-specific antibody producing B cells and functional HBV-specific T cells (with helper or cytotoxic effects) ultimately determines HBV infection outcome. In this review, in addition to summarizing the present state of knowledge of HBV-adaptive immunity, we will highlight controversies and uncertainties concerning the HBV-specific B and T lymphocyte response, and propose future directions for research aimed at the generation of more efficient immunotherapeutic strategies.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Emerging Infectious Diseases (EID) Program, Duke-NUS Medical School, Singapore; Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*STAR), Singapore.
| | - Carlo Ferrari
- Divisione Malattie Infettive, Ospdale Maggiore Parma, Parma, Italy
| |
Collapse
|
39
|
|
40
|
Brinck-Jensen NS, Vorup-Jensen T, Leutscher PDC, Erikstrup C, Petersen E. Immunogenicity of twenty peptides representing epitopes of the hepatitis B core and surface antigens by IFN-γ response in chronic and resolved HBV. BMC Immunol 2015; 16:65. [PMID: 26526193 PMCID: PMC4630833 DOI: 10.1186/s12865-015-0127-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 10/15/2015] [Indexed: 01/10/2023] Open
Abstract
Background Patients with chronic hepatitis B virus infection (CHB) usually mount a modest T cell response against HBV epitopes. In order to determine immunogenic epitopes of HBV recognized by HBV-specific T cells, previous studies focused on previously confirmed HBV epitopes and assessed the T cell response by the number of HBV-specific T cells by IFN-γ ELISPOT. Methods We studied T cell functionality by combined in silico methods predicting HBV-specific epitopes and experimental investigations on the recognition of these epitopes. 30 chronic CHB patients and 10 patients with resolved HBV (RHB) were included in the study. We identified epitopes from the literature and by in silico analysis. These were evaluated for immunogenicity by use of synthetic peptides representing the epitopes through exposure to PBMCs from patients with CHB or RHB by IFN-γ ELISPOT. The number of IFN-γ producing cells (SFC), mean spot size (MSS) and stimulation index (SI) were recorded. Results The frequency of HBV-specific T cells producing IFN-γ after stimulation with HBV epitopes was similar in CHB and RHB patients. CHB patients had a higher MSS SI than RHB patients. Patients not carrying the HLA-A2 genotype had higher SFC SI and MSS SI. Patients with HLA-A11 had higher MSS SI compared to non- HLA-A11 allele patients. HBeAg-positive patients had a lower MSS SI, and none of the HBeAg positive patients had the HLA-A11 genotype. We found 3 immunogenic epitopes not described previously. Conclusion IFN-γ ELISPOT-determined MSS is an efficient marker for T cell recognition of epitopes. This experimental measure showed the in silico analysis for epitope prediction to be a valuable tool in future studies on HLA genotypes and HBV epitopes. This way our study now points to previously unappreciated consequences of carrying the HLA-A11 allele in terms of stronger immunity to HBV.
Collapse
Affiliation(s)
- Nanna-Sophie Brinck-Jensen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Skejby, Denmark.
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Allé 4, 8000, Aarhus C, Denmark.
| | - Peter Derek Christian Leutscher
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Skejby, Denmark.
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Skejby, Denmark.
| | - Eskild Petersen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Skejby, Denmark.
| |
Collapse
|
41
|
Zhang E, Kosinska A, Lu M, Yan H, Roggendorf M. Current status of immunomodulatory therapy in chronic hepatitis B, fifty years after discovery of the virus: Search for the "magic bullet" to kill cccDNA. Antiviral Res 2015; 123:193-203. [PMID: 26476376 DOI: 10.1016/j.antiviral.2015.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022]
Abstract
Chronic hepatitis B (CHB) is currently treated with IFN-α and nucleos(t)ide analogues, which have many clinical benefits, but there is no ultimate cure. The major problem consists in the persistence of cccDNA in infected hepatocytes. Because no antiviral drug has been evaluated which significantly reduces copies of cccDNA, cytolytic and noncytolytic approaches are needed. Effective virus-specific T- and B-cell responses remain crucial in eliminating cccDNA-carrying hepatocytes and for the long-term control of HBV infection. Reduction of viremia by antiviral drugs provides a window for reconstitution of an HBV-specific immune response. Preclinical studies in mice and woodchucks have shown that immunostimulatory strategies, such as prime-boost vaccination and PD-1 blockade, can boost a weak virus-specific T cell response and lead to effective control of HBV infection. Based on data obtained in our preclinical studies, the combination of antiviral drugs and immunomodulators may control HBV viremia during a patient's drug-off period. In this article, we review current immune-modulatory approaches for the treatment of chronic hepatitis B and the elimination of cccDNA in preclinical models. This article forms part of a symposium in Antiviral Research on "An unfinished story: from the discovery of the Australia antigen to the development of new curative therapies for hepatitis".
Collapse
Affiliation(s)
- Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Anna Kosinska
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Michael Roggendorf
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Munich, Germany; Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
42
|
Mulrooney-Cousins PM, Michalak TI. Asymptomatic Hepadnaviral Persistence and Its Consequences in the Woodchuck Model of Occult Hepatitis B Virus Infection. J Clin Transl Hepatol 2015; 3:211-9. [PMID: 26623268 PMCID: PMC4663203 DOI: 10.14218/jcth.2015.00020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 02/06/2023] Open
Abstract
Woodchuck hepatitis virus (WHV) is molecularly and pathogenically closely related to hepatitis B virus (HBV). Both viruses display tropism towards hepatocytes and cells of the immune system and cause similar liver pathology, where acute hepatitis can progress to chronic hepatitis and to hepatocellular carcinoma (HCC). Two forms of occult hepadnaviral persistence were identified in the woodchuck-WHV model: secondary occult infection (SOI) and primary occult infection (POI). SOI occurs after resolution of a serologically apparent infection with hepatitis or after subclinical serologically evident virus exposure. POI is caused by small amounts of virus and progresses without serological infection markers, but the virus genome and its replication are detectable in the immune system and with time in the liver. SOI can be accompanied by minimal hepatitis, while the hallmark of POI is normal liver morphology. Nonetheless, HCC develops in about 20% of animals with SOI or POI within 3 to 5 years. The virus persists throughout the lifespan in both SOI and POI at serum levels rarely greater than 100 copies/mL, causes hepatitis and HCC when concentrated and administered to virus-naïve woodchucks. SOI is accompanied by virus-specific T and B cell immune responses, while only virus-specific T cells are detected in POI. SOI coincides with protection against reinfection, while POI does not and hepatitis develops after challenge with liver pathogenic doses >1000 virions. Both SOI and POI are associated with virus DNA integration into the liver and the immune system genomes. Overall, SOI and POI are two distinct forms of silent hepadnaviral persistence that share common characteristics. Here, we review findings from the woodchuck model and discuss the relevant observations made in human occult HBV infection (OBI).
Collapse
Affiliation(s)
| | - Tomasz I. Michalak
- Correspondence to: Tomasz I. Michalak, Molecular Virology and Hepatology Research Group, Faculty of Medicine, Health Sciences Centre, Memorial University, St. John’s, NL A1B 3V6, Canada. Tel: +1-709-777-7301, Fax: +1-709-777-8279, E-mail:
| |
Collapse
|
43
|
Human Cytotoxic T Lymphocyte-Mediated Acute Liver Failure and Rescue by Immunoglobulin in Human Hepatocyte Transplant TK-NOG Mice. J Virol 2015; 89:10087-96. [PMID: 26246560 DOI: 10.1128/jvi.01126-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/06/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis B virus (HBV)-specific cytotoxic T lymphocytes (CTLs) are critical in eliminating infection. We developed an animal model in which HBV-infected human hepatocytes are targeted by HBV-specific CTLs. After HBV inoculation in human hepatocyte-transplanted herpes simplex virus type-1 thymidine kinase-NOG mice, human peripheral blood mononuclear cells (PBMCs) were administered, and albumin, HBV DNA, alanine aminotransferase (ALT), and cytokine levels were analyzed. Histopathological and flow-cytometric analysis of infiltrating human immune cells were performed, and the efficacy of CTL-associated antigen-4 immunoglobulin (CTLA4Ig) against liver damage was evaluated. PBMC treatment resulted in massive hepatocyte damage with elevation of ALT, granzyme A, and gamma interferon and decrease in albumin and HBV DNA. The number of liver-infiltrating human lymphocytes and CD8-positive cells was significantly higher in HBV-infected mice. HBV-specific CTLs were detected by core and polymerase peptide-major histocompatibility complex-tetramer, and the population of regulatory T cells was significantly decreased in HBV-infected mice. Serum hepatitis B surface (HBs) antigen became negative, and HBs antibody appeared. CTLA4Ig treatment strongly inhibited infiltration of mononuclear cells. CTLA4Ig treatment will be used to treat patients who develop severe acute hepatitis B to prevent liver transplantation or lethality. This animal model is useful for virological and immunological analysis of HBV infection and to develop new therapies for severe acute hepatitis B. IMPORTANCE Without liver transplantation, some HBV-infected patients will die from severe liver damage due to acute overreaction of the immune system. No effective treatment exists, due in part to the lack of a suitable animal model. An animal model is necessary to investigate the mechanism of hepatitis and to develop therapeutic strategies to prevent acute liver failure in HBV infection. We developed an animal model in which HBV-infected human hepatocytes are targeted by human HBV-specific CTLs. In this model, HBV-infected human hepatocytes were transplanted into severely immunodeficient NOG mice in order to reconstruct elements of the human immune system. Using this model, we found that CTL-associated antigen-4 immunoglobulin was able to suppress damage to HBV-infected hepatocytes, suggesting an approach to treatment. This animal model is useful for virological and immunological analysis of HBV infection and to develop new therapies for severe acute hepatitis B.
Collapse
|
44
|
Stratta P, Bruschetta E, Minisini R, Barbè MC, Cornella C, Tognarelli G, Cena T, Magnani C, Fenoglio R, Toffolo K, Airoldi A, Pirisi M. Prevalence and clinical relevance of occult hepatitis B virus infection in patients on the waiting list for kidney transplantation. Transplant Proc 2015; 41:1132-7. [PMID: 19460498 DOI: 10.1016/j.transproceed.2009.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Occult hepatitis B virus (HBV) infection can be defined as the long-lasting persistence of viral genomes in the liver tissue, and sometimes also in the serum at low levels of viremia in individuals with undetectable HBV surface antigen (HBsAg). Viral replication can be reactivated by immunosuppressive therapies or immunologic diseases, leading to the development of typical hepatitis B. METHODS All patients on the waiting list for renal transplantation at the only 2 transplant centers in our region (Piemonte, Italy) were checked for the presence of occult HBV infection by an highly sensitive quantitative HBV-DNA polymerase chain reaction (PCR) assay (nested PCR); the only exclusion criterion was HBsAg-positivity. The enrollment lasted from October 1, 2006, to May 31, 2007. The prospective follow-up will continue for 5 years. RESULTS HBV-DNA sequences were detected in blood samples from 10 of 300 cases examined (3.3%), being more frequent among Asian (1/3; 33.3%) and African (1/16; 6.25%) subjects as compared with the Caucasians (8/281; 2.8%; P = .011), among anti-hepatitis C virus (HCV) positive versus HCV negative patients (3/32 [9.3%] vs 7/268 [2.6%]; P = .004) and mainly among patients with a previous history of overt liver diseases (3/22 [14%] vs 7/278 [2.5%]; P = .019). HBV-DNA sequences became undetectable at 1 month after renal transplantation in 3 patients; the follow-up is in progress for these and the other patients. CONCLUSION Occult HBV infection occurs in patients undergoing renal transplantation. Longer observation and prospective studies will clarify the clinical impact of this occult infection on transplant outcomes and the possibility of viral reactivation related to immunosuppressive therapy.
Collapse
Affiliation(s)
- P Stratta
- Department of Clinical and Experimental Medicine, Amedeo Avogadro University, Novara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang YY, Hu KQ. Rethinking the pathogenesis of hepatitis B virus (HBV) infection. J Med Virol 2015; 87:1989-99. [PMID: 25989114 DOI: 10.1002/jmv.24270] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/05/2015] [Accepted: 05/10/2015] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis B virus (HBV) infection affects approximately 375 million people worldwide. Current antiviral treatment effectively controls, but rarely clears chronic HBV infection. In addition, a significant portion of chronic HBV infected patients are not suitable for currently available antiviral therapy, and still face higher risk for cirrhosis and hepatocellular carcinoma. The poorly understood pathogenesis of HBV infection is the main barrier for developing more effective treatment strategies. HBV has long been viewed as non-cytopathic and the central hypothesis for HBV pathogenesis lies in the belief that hepatitis B is a host specific immunity-mediated liver disease. However, this view has been challenged by the accumulating experimental and clinical data that support a model of cytopathic HBV replication. In this article we systematically review the pathogenic role of HBV replication in hepatitis B and suggest possible HBV replication related mechanisms for HBV-mediated liver injury. We propose that a full understanding of HBV pathogenesis should consider the following elements. I. Liver injury can be caused by high levels of HBV replication and accumulation of viral products in the infected hepatocytes. II. HBV infection can be either directly cytopathic, non-cytopathic, or a mix of both in an individual patient depending upon accumulation levels of viral products that are usually associated with HBV replication activity in individual infected hepatocytes.
Collapse
Affiliation(s)
| | - Ke-Qin Hu
- Division of Gastroenterology and Hepatology, University of California, Irvine Medical Center, Orange, California
| |
Collapse
|
46
|
Laurenti L, Autore F, Innocenti I, Vannata B, Piccirillo N, Sorà F, Speziale D, Pompili M, Efremov D, Sica S. Prevalence, characteristics and management of occult hepatitis B virus infection in patients with chronic lymphocytic leukemia: a single center experience. Leuk Lymphoma 2015; 56:2841-6. [PMID: 25682966 DOI: 10.3109/10428194.2015.1017822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several reports have emphasized the risk of hepatitis B virus (HBV) reactivation in patients with lymphoproliferative disorders undergoing cytotoxic treatment. To determine the prevalence of occult B infection (OBI) in a population with chronic lymphocytic leukemia (CLL) and management with universal prophylaxis (UP) in all patients undergoing chemoimmunotherapy or targeted prophylaxis (TP) in patients experiencing seroreversion during therapy, we analyzed 397 patients with CLL from our database. The prevalence of OBI in our patients with CLL was 8.6% (34 patients). When comparing patients with OBI/CLL with those with CLL, we did not find any statistical difference among clinical-biological parameters and time dependent endpoints except for a lower peripheral blood lymphocyte count in the OBI/CLL group (p = 0.036). From 2000 to 2010 careful follow-up and TP were adopted; two out of 10 patients (20%) showed seroreversion. From June 2010 we adopted UP during and 12 months after immunosuppressive treatment in all patients with CLL with OBI; no evidence of seroreversion was detected.
Collapse
Affiliation(s)
- Luca Laurenti
- a Department of Hematology , Catholic University of the Sacre Heart , Rome , Italy
| | - Francesco Autore
- a Department of Hematology , Catholic University of the Sacre Heart , Rome , Italy
| | - Idanna Innocenti
- a Department of Hematology , Catholic University of the Sacre Heart , Rome , Italy
| | - Barbara Vannata
- a Department of Hematology , Catholic University of the Sacre Heart , Rome , Italy
| | - Nicola Piccirillo
- a Department of Hematology , Catholic University of the Sacre Heart , Rome , Italy
| | - Federica Sorà
- a Department of Hematology , Catholic University of the Sacre Heart , Rome , Italy
| | - Domenico Speziale
- b Department of Laboratory Medicine , Catholic University of the Sacre Heart , Rome , Italy
| | - Maurizio Pompili
- c Internal Medicine, Catholic University of the Sacre Heart , Rome , Italy
| | - Dimitar Efremov
- d ICGEB Outstation-Monterotondo, CNR Campus "A. Buzzati-Traverso" , Rome , Italy
| | - Simona Sica
- a Department of Hematology , Catholic University of the Sacre Heart , Rome , Italy
| |
Collapse
|
47
|
Thio CL, Hawkins C. Hepatitis B Virus and Hepatitis Delta Virus. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015:1815-1839.e7. [DOI: 10.1016/b978-1-4557-4801-3.00148-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
48
|
Abstract
Hepatitis B virus (HBV) infection acquired in adult life is generally self-limited while chronic persistence of the virus is the prevalent outcome when infection is acquired perinatally. Both control of infection and liver cell injury are strictly dependent upon protective immune responses, because hepatocyte damage is the price that the host must pay to get rid of intracellular virus. Resolution of acute hepatitis B is associated with functionally efficient, multispecific antiviral T-cell responses which are preceded by a poor induction of intracellular innate responses at the early stages of infection. Persistent control of infection is provided by long-lasting protective memory, which is probably sustained by continuous stimulation of the immune system by trace amounts of virus which are never totally eliminated, persisting in an occult episomic form in the nucleus of liver cells even after recovery from acute infection. Chronic virus persistence is instead characterized by a lack of protective T-cell memory maturation and by an exhaustion of HBV-specific T-cell responses. Persistent exposure of T cells to high antigen loads is a key determinant of functional T-cell impairment but also other mechanisms can contribute to T-cell inhibition, including the tolerogenic effect of the liver environment. The degree of T-cell impairment is variable and its severity is related to the level of virus replication and antigen load. The antiviral T-cell function is more efficient in patients who can control infection either partially, such as inactive HBsAg carriers with low levels of virus replication, or completely, such as patients who achieve HBsAg loss either spontaneously or after antiviral therapy. Thus, understanding the features of the immune responses associated with control of infection is needed for the successful design of novel immune modulatory therapies based on the reconstitution of efficient antiviral responses in chronic HBV patients.
Collapse
Affiliation(s)
- Carlo Ferrari
- Unit of Infectious Disease and Hepatology, Laboratory of Viral Immunopathology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
49
|
Kwak MS, Kim YJ. Occult hepatitis B virus infection. World J Hepatol 2014; 6:860-869. [PMID: 25544873 PMCID: PMC4269905 DOI: 10.4254/wjh.v6.i12.860] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/23/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Occult hepatitis B virus (HBV) infection (OBI) refers to the presence of HBV DNA in the absence of detectable hepatitis B surface antigen. Since OBI was first described in the late 1970s, there has been increasing interest in this topic. The prevalence of OBI varies according to the different endemicity of HBV infection, cohort characteristics, and sensitivity and specificity of the methods used for detection. Although the exact mechanism of OBI has not been proved, intra-hepatic persistence of viral covalently closed circular DNA under the host’s strong immune suppression of HBV replication and gene expression seems to be a cause. OBI has important clinical significance in several conditions. First, OBI can be transmitted through transfusion, organ transplantation including orthotopic liver transplantation, or hemodialysis. Donor screening before blood transfusion, prophylaxis for high-risk organ transplantation recipients, and dialysis-specific infection-control programs should be considered to reduce the risk of transmission. Second, OBI may reactivate and cause acute hepatitis in immunocompromised patients or those receiving chemotherapy. Close HBV DNA monitoring and timely antiviral treatment can prevent HBV reactivation and consequent clinical deterioration. Third, OBI may contribute to the progression of hepatic fibrosis in patients with chronic liver disease including hepatitis C. Finally, OBI seems to be a risk factor for hepatocellular carcinoma by its direct proto-oncogenic effect and by indirectly causing persistent hepatic inflammation and fibrosis. However, this needs further investigation. We review published reports in the literature to gain an overview of the status of OBI and emphasize the clinical importance of OBI.
Collapse
|
50
|
Kosinska AD, Liu J, Lu M, Roggendorf M. Therapeutic vaccination and immunomodulation in the treatment of chronic hepatitis B: preclinical studies in the woodchuck. Med Microbiol Immunol 2014; 204:103-14. [PMID: 25535101 PMCID: PMC4305085 DOI: 10.1007/s00430-014-0379-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022]
Abstract
Infection with hepatitis B virus (HBV) may lead to subclinical, acute or chronic hepatitis. In the prevaccination era, HBV infections were endemic due to frequent mother to child transmission in large regions of the world. However, there are still estimated 240 million chronic HBV carriers today and ca. 620,000 patients die per year due to HBV-related liver diseases. Recommended treatment of chronic hepatitis B with interferon-α and/or nucleos(t)ide analogues does not lead to satisfactory results. Induction of HBV-specific T cells by therapeutic vaccination or immunomodulation may be an innovative strategy to overcome virus persistence. Vaccination with commercially available HBV vaccines in patients with or without therapeutic reduction of viral load did not result in effective immune control of HBV infection, suggesting that combination of antiviral treatment with new formulations of therapeutic vaccines is needed. The woodchuck (Marmota monax) and its HBV-like woodchuck hepatitis virus are a useful preclinical animal model for developing new therapeutic approaches in chronic hepadnaviral infections. Several innovative approaches combining antiviral treatments using nucleos(t)ide analogues, with prime-boost vaccination using DNA vaccines, new hepadnaviral antigens or recombinant adenoviral vectors were tested in the woodchuck model. In this review, we summarize these encouraging results obtained with these therapeutic vaccines. In addition, we present potential innovations in immunostimulatory strategies by blocking the interaction of the inhibitory programmed death receptor 1 with its ligand in this animal model.
Collapse
Affiliation(s)
- Anna D Kosinska
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Virchowstrasse 179, 45122, Essen, Germany
| | | | | | | |
Collapse
|