1
|
Wei J, Gao C, Lu C, Wang L, Dong D, Sun M. The E2F family: a ray of dawn in cardiomyopathy. Mol Cell Biochem 2024:10.1007/s11010-024-05063-4. [PMID: 38985251 DOI: 10.1007/s11010-024-05063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
Cardiomyopathies are a group of heterogeneous diseases, characterized by abnormal structure and function of the myocardium. For many years, it has been a hot topic because of its high morbidity and mortality as well as its complicated pathogenesis. The E2Fs, a group of transcription factors found extensively in eukaryotes, play a crucial role in governing cell proliferation, differentiation, and apoptosis, meanwhile their deregulated activity can also cause a variety of diseases. Based on accumulating evidence, E2Fs play important roles in cardiomyopathies. In this review, we describe the structural and functional characteristics of the E2F family and its role in cardiomyocyte processes, with a focus on how E2Fs are associated with the onset and development of cardiomyopathies. Moreover, we discuss the great potential of E2Fs as biomarkers and therapeutic targets, aiming to provide a reference for future research.
Collapse
Affiliation(s)
- Jinwen Wei
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Can Gao
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Changxu Lu
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China
| | - Lijie Wang
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110033, Liaoning, People's Republic of China
| | - Dan Dong
- College of Basic Medical Science, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, People's Republic of China
| | - Mingli Sun
- College of Exercise and Health, Shenyang Sport University, No.36 Jinqiansong East Road, Shenyang, 110102, Liaoning, People's Republic of China.
| |
Collapse
|
2
|
Zhu C, Yuan T, Krishnan J. Targeting cardiomyocyte cell cycle regulation in heart failure. Basic Res Cardiol 2024; 119:349-369. [PMID: 38683371 PMCID: PMC11142990 DOI: 10.1007/s00395-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
Heart failure continues to be a significant global health concern, causing substantial morbidity and mortality. The limited ability of the adult heart to regenerate has posed challenges in finding effective treatments for cardiac pathologies. While various medications and surgical interventions have been used to improve cardiac function, they are not able to address the extensive loss of functioning cardiomyocytes that occurs during cardiac injury. As a result, there is growing interest in understanding how the cell cycle is regulated and exploring the potential for stimulating cardiomyocyte proliferation as a means of promoting heart regeneration. This review aims to provide an overview of current knowledge on cell cycle regulation and mechanisms underlying cardiomyocyte proliferation in cases of heart failure, while also highlighting established and novel therapeutic strategies targeting this area for treatment purposes.
Collapse
Affiliation(s)
- Chaonan Zhu
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany
| | - Ting Yuan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| | - Jaya Krishnan
- Department of Medicine III, Cardiology/Angiology/Nephrology, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
- Institute for Cardiovascular Regeneration, Goethe University, 60590, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research, Partner Site Rhein-Main, 60590, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute, Goethe University Hospital, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Secco I, Giacca M. Regulation of endogenous cardiomyocyte proliferation: The known unknowns. J Mol Cell Cardiol 2023; 179:80-89. [PMID: 37030487 PMCID: PMC10390341 DOI: 10.1016/j.yjmcc.2023.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Myocardial regeneration in patients with cardiac damage is a long-sought goal of clinical medicine. In animal species in which regeneration occurs spontaneously, as well as in neonatal mammals, regeneration occurs through the proliferation of differentiated cardiomyocytes, which re-enter the cell cycle and proliferate. Hence, the reprogramming of the replicative potential of cardiomyocytes is an achievable goal, provided that the mechanisms that regulate this process are understood. Cardiomyocyte proliferation is under the control of a series of signal transduction pathways that connect extracellular cues to the activation of specific gene transcriptional programmes, eventually leading to the activation of the cell cycle. Both coding and non-coding RNAs (in particular, microRNAs) are involved in this regulation. The available information can be exploited for therapeutic purposes, provided that a series of conceptual and technical barriers are overcome. A major obstacle remains the delivery of pro-regenerative factors specifically to the heart. Improvements in the design of AAV vectors to enhance their cardiotropism and efficacy or, alternatively, the development of non-viral methods for nucleic acid delivery in cardiomyocytes are among the challenges ahead to progress cardiac regenerative therapies towards clinical application.
Collapse
Affiliation(s)
- Ilaria Secco
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences and British Heart Foundation Centre of Research Excellence, King's College London, London, United Kingdom.
| |
Collapse
|
4
|
Gene Therapy for Cardiomyocyte Renewal: Cell Cycle, a Potential Therapeutic Target. Mol Diagn Ther 2023; 27:129-140. [PMID: 36512179 PMCID: PMC10123801 DOI: 10.1007/s40291-022-00625-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 12/14/2022]
Abstract
Heart disease is the primary cause of death worldwide. Even though extensive research has been done, and many pharmacological and surgical treatments have been introduced to treat heart disease, the mortality rate still remains high. Gene therapy is widely used to understand molecular mechanisms of myocardial infarction and to treat cardiomyocyte loss. It was reported that adult cardiomyocytes proliferate at a very low rate; thus, targeting their proliferation has become a new regenerative therapeutic approach. Currently, re-activating cardiomyocyte proliferation appears to be one of the most promising methods to promote adult cardiomyocyte renewal. In this article, we highlight gene therapeutic targets of cell proliferation presently being pursued to re-activate the cell cycle of cardiomyocytes, including cell cycle regulators, transcription factors, microRNAs, signal transduction, and other contributing factors. We also summarize gene delivery vectors that have been used in cardiac research and major challenges to be overcome in the translation to the clinical approach and future directions.
Collapse
|
5
|
Boikova A, Bywater MJ, Quaife-Ryan GA, Straube J, Thompson L, Ascanelli C, Littlewood TD, Evan GI, Hudson JE, Wilson CH. HRas and Myc synergistically induce cell cycle progression and apoptosis of murine cardiomyocytes. Front Cardiovasc Med 2022; 9:948281. [PMID: 36337898 PMCID: PMC9630352 DOI: 10.3389/fcvm.2022.948281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Adult mammalian cardiomyocytes are incapable of significant proliferation, limiting regeneration after myocardial injury. Overexpression of the transcription factor Myc has been shown to drive proliferation in the adult mouse heart, but only when combined with Cyclin T1. As constitutive HRas activity has been shown to stabilise Cyclin T1 in vivo, we aimed to establish whether Myc and HRas could also act cooperatively to induce proliferation in adult mammalian cardiomyocytes in vivo. Methods and results Using a genetically modified mouse model, we confirmed that constitutive HRas activity (HRas G 12 V ) increased Cyclin T1 expression. HRas G 12 V and constitutive Myc expression together co-operate to drive cell-cycle progression of adult mammalian cardiomyocytes. However, stimulation of endogenous cardiac proliferation by the ectopic expression of HRas G 12 V and Myc also induced cardiomyocyte death, while Myc and Cyclin T1 expression did not. Conclusion Co-expression of Cyclin T1 and Myc may be a therapeutically tractable approach for cardiomyocyte neo-genesis post injury, while cell death induced by HRas G 12 V and Myc expression likely limits this option as a regenerative therapeutic target.
Collapse
Affiliation(s)
- Aleksandra Boikova
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Megan J. Bywater
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | | | - Jasmin Straube
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Lucy Thompson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Camilla Ascanelli
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | | - Gerard I. Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - James E. Hudson
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Catherine H. Wilson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Chen J, Xia P, Liu Y, Kogan C, Cheng Z. Loss of Rbl2 (Retinoblastoma-Like 2) Exacerbates Myocardial Ischemia/Reperfusion Injury. J Am Heart Assoc 2022; 11:e024764. [PMID: 36129061 DOI: 10.1161/jaha.121.024764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The postmitotic state of adult cardiomyocytes, maintained by the cell cycle repressor Rbl2 (retinoblastoma-like 2), is associated with considerable resistance to apoptosis. However, whether Rbl2 regulates cardiomyocyte apoptosis remains unknown. Methods and Results Here, we show that ablation of Rbl2 increased cardiomyocyte apoptosis following acute myocardial ischemia/reperfusion injury, leading to diminished cardiac function and exaggerated ventricular remodeling in the long term. Mechanistically, ischemia/reperfusion induced expression of the proapoptotic protein BCL2 interacting protein 3 (Bnip3), which was augmented by deletion of Rbl2. Because the Bnip3 promoter contains an adenoviral early region 2 binding factor (E2F)-binding site, we further showed that loss of Rbl2 upregulated the transcriptional activator E2F1 but downregulated the transcriptional repressor E2F4. In cultured cardiomyocytes, treatment with H2O2 markedly increased the levels of E2F1 and Bnip3, resulting in mitochondrial depolarization and apoptosis. Depletion of Rbl2 significantly augmented H2O2-induced mitochondrial damage and apoptosis in vitro. Conclusions Rbl2 deficiency enhanced E2F1-mediated Bnip3 expression, resulting in aggravated cardiomyocyte apoptosis and ischemia/reperfusion injury. Our results uncover a novel antiapoptotic role for Rbl2 in cardiomyocytes, suggesting that the cell cycle machinery may directly regulate apoptosis in postmitotic cardiomyocytes. These findings may be exploited to develop new strategies to limit ischemia/reperfusion injury in the treatment of acute myocardial infarction.
Collapse
Affiliation(s)
- Jingrui Chen
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| | - Peng Xia
- Department of Pharmaceutical Sciences Washington State University Spokane Washington.,Cardiovascular Research Center, Department of Medicine Massachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Yuening Liu
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| | - Clark Kogan
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences Washington State University Spokane Washington
| |
Collapse
|
7
|
Defining the molecular underpinnings controlling cardiomyocyte proliferation. Clin Sci (Lond) 2022; 136:911-934. [PMID: 35723259 DOI: 10.1042/cs20211180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022]
Abstract
Shortly after birth, mammalian cardiomyocytes (CM) exit the cell cycle and cease to proliferate. The inability of adult CM to replicate renders the heart particularly vulnerable to injury. Restoration of CM proliferation would be an attractive clinical target for regenerative therapies that can preserve contractile function and thus prevent the development of heart failure. Our review focuses on recent progress in understanding the tight regulation of signaling pathways and their downstream molecular mechanisms that underly the inability of CM to proliferate in vivo. In this review, we describe the temporal expression of cell cycle activators e.g., cyclin/Cdk complexes and their inhibitors including p16, p21, p27 and members of the retinoblastoma gene family during gestation and postnatal life. The differential impact of members of the E2f transcription factor family and microRNAs on the regulation of positive and negative cell cycle factors is discussed. This review also highlights seminal studies that identified the coordination of signaling mechanisms that can potently activate CM cell cycle re-entry including the Wnt/Ctnnb1, Hippo, Pi3K-Akt and Nrg1-Erbb2/4 pathways. We also present an up-to-date account of landmark studies analyzing the effect of various genes such as Argin, Dystrophin, Fstl1, Meis1, Pitx2 and Pkm2 that are responsible for either inhibition or activation of CM cell division. All these reports describe bona fide therapeutically targets that could guide future clinical studies toward cardiac repair.
Collapse
|
8
|
Schoger E, Lelek S, Panáková D, Zelarayán LC. Tailoring Cardiac Synthetic Transcriptional Modulation Towards Precision Medicine. Front Cardiovasc Med 2022; 8:783072. [PMID: 35097003 PMCID: PMC8795974 DOI: 10.3389/fcvm.2021.783072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Molecular and genetic differences between individual cells within tissues underlie cellular heterogeneities defining organ physiology and function in homeostasis as well as in disease states. Transcriptional control of endogenous gene expression has been intensively studied for decades. Thanks to a fast-developing field of single cell genomics, we are facing an unprecedented leap in information available pertaining organ biology offering a comprehensive overview. The single-cell technologies that arose aided in resolving the precise cellular composition of many organ systems in the past years. Importantly, when applied to diseased tissues, the novel approaches have been immensely improving our understanding of the underlying pathophysiology of common human diseases. With this information, precise prediction of regulatory elements controlling gene expression upon perturbations in a given cell type or a specific context will be realistic. Simultaneously, the technological advances in CRISPR-mediated regulation of gene transcription as well as their application in the context of epigenome modulation, have opened up novel avenues for targeted therapy and personalized medicine. Here, we discuss the fast-paced advancements during the recent years and the applications thereof in the context of cardiac biology and common cardiac disease. The combination of single cell technologies and the deep knowledge of fundamental biology of the diseased heart together with the CRISPR-mediated modulation of gene regulatory networks will be instrumental in tailoring the right strategies for personalized and precision medicine in the near future. In this review, we provide a brief overview of how single cell transcriptomics has advanced our knowledge and paved the way for emerging CRISPR/Cas9-technologies in clinical applications in cardiac biomedicine.
Collapse
Affiliation(s)
- Eric Schoger
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
| | - Sara Lelek
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Daniela Panáková
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Daniela Panáková
| | - Laura Cecilia Zelarayán
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Goettingen, Goettingen, Germany
- *Correspondence: Laura Cecilia Zelarayán
| |
Collapse
|
9
|
Bongiovanni C, Sacchi F, Da Pra S, Pantano E, Miano C, Morelli MB, D'Uva G. Reawakening the Intrinsic Cardiac Regenerative Potential: Molecular Strategies to Boost Dedifferentiation and Proliferation of Endogenous Cardiomyocytes. Front Cardiovasc Med 2021; 8:750604. [PMID: 34692797 PMCID: PMC8531484 DOI: 10.3389/fcvm.2021.750604] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Despite considerable efforts carried out to develop stem/progenitor cell-based technologies aiming at replacing and restoring the cardiac tissue following severe damages, thus far no strategies based on adult stem cell transplantation have been demonstrated to efficiently generate new cardiac muscle cells. Intriguingly, dedifferentiation, and proliferation of pre-existing cardiomyocytes and not stem cell differentiation represent the preponderant cellular mechanism by which lower vertebrates spontaneously regenerate the injured heart. Mammals can also regenerate their heart up to the early neonatal period, even in this case by activating the proliferation of endogenous cardiomyocytes. However, the mammalian cardiac regenerative potential is dramatically reduced soon after birth, when most cardiomyocytes exit from the cell cycle, undergo further maturation, and continue to grow in size. Although a slow rate of cardiomyocyte turnover has also been documented in adult mammals, both in mice and humans, this is not enough to sustain a robust regenerative process. Nevertheless, these remarkable findings opened the door to a branch of novel regenerative approaches aiming at reactivating the endogenous cardiac regenerative potential by triggering a partial dedifferentiation process and cell cycle re-entry in endogenous cardiomyocytes. Several adaptations from intrauterine to extrauterine life starting at birth and continuing in the immediate neonatal period concur to the loss of the mammalian cardiac regenerative ability. A wide range of systemic and microenvironmental factors or cell-intrinsic molecular players proved to regulate cardiomyocyte proliferation and their manipulation has been explored as a therapeutic strategy to boost cardiac function after injuries. We here review the scientific knowledge gained thus far in this novel and flourishing field of research, elucidating the key biological and molecular mechanisms whose modulation may represent a viable approach for regenerating the human damaged myocardium.
Collapse
Affiliation(s)
- Chiara Bongiovanni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Francesca Sacchi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Silvia Da Pra
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Elvira Pantano
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Carmen Miano
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| | - Marco Bruno Morelli
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Milan, Italy
| | - Gabriele D'Uva
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy.,National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems (INBB), Bologna, Italy
| |
Collapse
|
10
|
Aslan GS, Polat F, Eren SN, Yucel D, Arbatli S, Cumbul A, Kocabas F. Identification of Novel and Potent Modulators Involved in Neonatal Cardiac Regeneration. Pediatr Cardiol 2021; 42:1554-1566. [PMID: 34046720 DOI: 10.1007/s00246-021-02640-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022]
Abstract
Neonatal mammalian heart has been shown to possess the capacity to regenerate substantially after an injury. This remarkable regenerative capacity is lost in a week. This transition has been marked with cardiomyocyte cell cycle arrest and induction of fibrotic response similar to what occurs after myocardial infarction in adult hearts. Recent studies outlined the function of several cardiogenic factors that play a pivotal role in neonatal cardiac regeneration. However, underlying molecular mechanisms of neonatal cardiac regeneration and other cardiogenic factors remained elusive. Here, we investigated the involvement of novel putative cardiogenic factors in neonatal cardiac regeneration and cardiomyocyte cell cycle withdrawal. We have shown that Cbl, Dnmt3a, and Itch are significantly downregulated during neonatal cardiac regeneration process after cardiac injury in vivo. Intriguingly, several of studied factors are upregulated in non-regenerative period of 7-day-old mice after cardiac injury. Knockdown of Cbl, Dnmt3a and Itch in rat neonatal cardiomyocytes lead to the induction of cardiomyocyte proliferation. Cardiomyocyte proliferation accompanies upregulation of positive regulators of cardiomyocyte division and downregulation of CDKIs. Taken together, our findings suggest that Cbl, Dnmt3a, and Itch may be involved in the regulation of cardiomyocyte cell cycle withdrawal and may represent new targets for the induction of cardiac regeneration.
Collapse
Affiliation(s)
- Galip Servet Aslan
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt, Germany.,Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.,Faculty of Biological Science, Goethe University, Frankfurt, Germany
| | - Feyza Polat
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Seyma Nur Eren
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Dogacan Yucel
- Faculty of Medicine, University of Minnesota, Minnesota, USA
| | | | - Alev Cumbul
- Department of Histology and Embryology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fatih Kocabas
- Regenerative Biology Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
11
|
Gene Therapy: Targeting Cardiomyocyte Proliferation to Repopulate the Ischemic Heart. J Cardiovasc Pharmacol 2021; 78:346-360. [PMID: 34516452 DOI: 10.1097/fjc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adult mammalian cardiomyocytes show scarce division ability, which makes the heart ineffective in replacing lost contractile cells after ischemic cardiomyopathy. In the past decades, there have been increasing efforts in the search for novel strategies to regenerate the injured myocardium. Among them, gene therapy is one of the most promising ones, based on recent and emerging studies that support the fact that functional cardiomyocyte regeneration can be accomplished by the stimulation and enhancement of the endogenous ability of these cells to achieve cell division. This capacity can be targeted by stimulating several molecules, such as cell cycle regulators, noncoding RNAs, transcription, and metabolic factors. Therefore, the proposed target, together with the selection of the vector used, administration route, and the experimental animal model used in the development of the therapy would determine the success in the clinical field.
Collapse
|
12
|
Johnson J, Mohsin S, Houser SR. Cardiomyocyte Proliferation as a Source of New Myocyte Development in the Adult Heart. Int J Mol Sci 2021; 22:ijms22157764. [PMID: 34360531 PMCID: PMC8345975 DOI: 10.3390/ijms22157764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac diseases such as myocardial infarction (MI) can lead to adverse remodeling and impaired contractility of the heart due to widespread cardiomyocyte death in the damaged area. Current therapies focus on improving heart contractility and minimizing fibrosis with modest cardiac regeneration, but MI patients can still progress to heart failure (HF). There is a dire need for clinical therapies that can replace the lost myocardium, specifically by the induction of new myocyte formation from pre-existing cardiomyocytes. Many studies have shown terminally differentiated myocytes can re-enter the cell cycle and divide through manipulations of the cardiomyocyte cell cycle, signaling pathways, endogenous genes, and environmental factors. However, these approaches result in minimal myocyte renewal or cardiomegaly due to hyperactivation of cardiomyocyte proliferation. Finding the optimal treatment that will replenish cardiomyocyte numbers without causing tumorigenesis is a major challenge in the field. Another controversy is the inability to clearly define cardiomyocyte division versus myocyte DNA synthesis due to limited methods. In this review, we discuss several studies that induced cardiomyocyte cell cycle re-entry after cardiac injury, highlight whether cardiomyocytes completed cytokinesis, and address both limitations and methodological advances made to identify new myocyte formation.
Collapse
|
13
|
Induced Cardiomyocyte Proliferation: A Promising Approach to Cure Heart Failure. Int J Mol Sci 2021; 22:ijms22147720. [PMID: 34299340 PMCID: PMC8303201 DOI: 10.3390/ijms22147720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/31/2022] Open
Abstract
Unlike some lower vertebrates which can completely regenerate their heart, the human heart is a terminally differentiated organ. Cardiomyocytes lost during cardiac injury and heart failure cannot be replaced due to their limited proliferative capacity. Therefore, cardiac injury generally leads to progressive failure. Here, we summarize the latest progress in research on methods to induce cardiomyocyte cell cycle entry and heart repair through the alteration of cardiomyocyte plasticity, which is emerging as an effective strategy to compensate for the loss of functional cardiomyocytes and improve the impaired heart functions.
Collapse
|
14
|
Zheng L, Du J, Wang Z, Zhou Q, Zhu X, Xiong JW. Molecular regulation of myocardial proliferation and regeneration. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:13. [PMID: 33821373 PMCID: PMC8021683 DOI: 10.1186/s13619-021-00075-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Heart regeneration is a fascinating and complex biological process. Decades of intensive studies have revealed a sophisticated molecular network regulating cardiac regeneration in the zebrafish and neonatal mouse heart. Here, we review both the classical and recent literature on the molecular and cellular mechanisms underlying heart regeneration, with a particular focus on how injury triggers the cell-cycle re-entry of quiescent cardiomyocytes to replenish their massive loss after myocardial infarction or ventricular resection. We highlight several important signaling pathways for cardiomyocyte proliferation and propose a working model of how these injury-induced signals promote cardiomyocyte proliferation. Thus, this concise review provides up-to-date research progresses on heart regeneration for investigators in the field of regeneration biology.
Collapse
Affiliation(s)
- Lixia Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Jianyong Du
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Zihao Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Qinchao Zhou
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China.
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Braga L, Ali H, Secco I, Giacca M. Non-coding RNA therapeutics for cardiac regeneration. Cardiovasc Res 2021; 117:674-693. [PMID: 32215566 PMCID: PMC7898953 DOI: 10.1093/cvr/cvaa071] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/02/2020] [Accepted: 03/20/2020] [Indexed: 12/19/2022] Open
Abstract
A growing body of evidence indicates that cardiac regeneration after myocardial infarction can be achieved by stimulating the endogenous capacity of cardiomyocytes (CMs) to replicate. This process is controlled, both positively and negatively, by a large set of non-coding RNAs (ncRNAs). Some of the microRNAs (miRNAs) that can stimulate CM proliferation is expressed in embryonic stem cells and is required to maintain pluripotency (e.g. the miR-302∼367 cluster). Others also govern the proliferation of different cell types, including cancer cells (e.g. the miR-17∼92 cluster). Additional miRNAs were discovered through systematic screenings (e.g. miR-199a-3p and miR-590-3p). Several miRNAs instead suppress CM proliferation and are involved in the withdrawal of CMs from the cell cycle after birth (e.g. the let-7 and miR-15 families). Similar regulatory roles on CM proliferation are also exerted by a few long ncRNAs. This body of information has obvious therapeutic implications, as miRNAs with activator function or short antisense oligonucleotides against inhibitory miRNAs or lncRNAs can be administered to stimulate cardiac regeneration. Expression of miRNAs can be achieved by gene therapy using adeno-associated vectors, which transduce CMs with high efficiency. More effective and safer for therapeutic purposes, small nucleic acid therapeutics can be obtained as chemically modified, synthetic molecules, which can be administered through lipofection or inclusion in lipid or polymer nanoparticles for efficient cardiac delivery. The notion that it is possible to reprogramme CMs into a regenerative state and that this property can be enhanced by ncRNA therapeutics remains exciting, however extensive experimentation in large mammals and rigorous assessment of safety are required to advance towards clinical application.
Collapse
Affiliation(s)
- Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ilaria Secco
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
16
|
Soraya AS, Tali H, Rona S, Tom F, Roy K, Ami A. ATF3 expression in cardiomyocytes and myofibroblasts following transverse aortic constriction displays distinct phenotypes. IJC HEART & VASCULATURE 2020; 32:100706. [PMID: 33437861 PMCID: PMC7786009 DOI: 10.1016/j.ijcha.2020.100706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 10/30/2022]
Abstract
Background Activating transcription 3 (ATF3) is a member of the basic leucine zipper family of transcription factors. ATF3 is an immediate early gene expressed following various cellular stresses. ATF3 acts through binding to cyclic AMP response elements found in the promoters of key regulatory proteins that determine cell fate. In the heart, multiple cardiac stresses result in chronic ATF3 expression. Transgenic mice with ATF3 expression in cardiomyocytes clearly demonstrate that ATF3 serves a leading role in heart hypertrophy, cardiac fibrosis, cardiac dysfunction and death. In contrast, the use of ATF3 whole body knockout mice resulted non-conclusive results. The heart is composed of various cell types such as cardiomyocytes, fibroblasts, endothelial and immune cells. The question that we addressed in this study is whether ablation of ATF3 in unique cell types in the heart results in diverse cardiac phenotypes. Methods ATF3-flox mice were crossed with αMHC and Postn specific promoters directing CRE expression and thus ATF3 ablation in cardiomyocytes and myofibroblast cells. Mice were challenged with transverse aortic constriction (TAC) for eight weeks and heart function, ventricle weight, hypertrophic markers, fibrosis markers and ATF3 expression were assessed by qRT-PCR. Results The results of the study show that ATF3 deletion in cardiomyocytes followed by TAC resulted in reduced heart growth and dampened fibrosis response while ATF3 ablation in myofibroblasts displayed a reduced hypertrophic gene program. Conclusions TAC-operation results in increased ATF3 expression in both myofibroblasts and cardiomyocytes that promotes a hypertrophic program and fibrotic cardiac growth, respectively.
Collapse
Affiliation(s)
- Abu-Sharki Soraya
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Haas Tali
- The Pre-Clinical Research Authority Unit, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shofti Rona
- The Pre-Clinical Research Authority Unit, Technion - Israel Institute of Technology, Haifa, Israel
| | - Friedman Tom
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Cardiac Surgery, Rambam Medical Center, Haifa, Israel
| | - Kalfon Roy
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Aronheim Ami
- Department of Cell Biology and Cancer Science, The Ruth and Bruce Rappaport, Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
17
|
Zhu F, Meng Q, Yu Y, Shao L, Shen Z. Adult Cardiomyocyte Proliferation: a New Insight for Myocardial Infarction Therapy. J Cardiovasc Transl Res 2020; 14:457-466. [PMID: 32820393 DOI: 10.1007/s12265-020-10067-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/10/2020] [Indexed: 12/20/2022]
Abstract
Myocardial infarction leads to cardiomyocyte loss, ensuing ventricular pathological remodeling, dramatic impairment of cardiac function, and ultimately heart failure. Unfortunately, the existing therapeutical treatments cannot directly replenish the lost myocytes in the injured myocardium and the long-term prognosis of heart failure after myocardial infarction remains poor. Growing investigations have demonstrated that the adult mammalian cardiomyocytes possess very limited proliferation capacity, and that was not enough to restore the injured heart. Recently, many studies were targeting to promote cardiomyocyte proliferation via inducing cardiomyocyte cell cycle re-entry for cardiac repair after myocardial infarction. Indeed, these results showed it is a feasible way to stimulate terminally differentiated cardiomyocyte proliferation. Here, we reviewed the major mechanisms and the potential targets for stimulating mammalian adult cardiomyocyte proliferation specifically. This will provide a new therapeutic strategy for the clinical treatment of myocardial infarction by activating the endogenous regeneration. Graphical abstract.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Qingyou Meng
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
18
|
Abstract
Purpose of Review Until recently, cardiac regeneration after myocardial infarction has remained a holy grail in cardiology. Failure of clinical trials using adult stem cells and scepticism about the actual existence of such cells has reinforced the notion that the heart is an irreversibly post-mitotic organ. Recent evidence has drastically challenged this conclusion. Recent Findings Cardiac regeneration can successfully be obtained by at least two strategies. First, new cardiomyocytes can be generated from embryonic stem cells or induced pluripotent stem cells and administered to the heart either as cell suspensions or upon ex vivo generation of contractile myocardial tissue. Alternatively, the endogenous capacity of cardiomyocytes to proliferate can be stimulated by the delivery of individual genes or, more successfully, of selected microRNAs. Summary Recent experimental success in large animals by both strategies now fuels the notion that cardiac regeneration is indeed possible. Several technical hurdles, however, still need to be addressed and solved before broad and successful clinical application is achieved.
Collapse
Affiliation(s)
- Mauro Giacca
- King's College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, SE5 9NU London, United Kingdom. .,Department of Medical, Surgical and Health Sciences, University of Trieste, 34127, Trieste, Italy.
| |
Collapse
|
19
|
Pereira AHM, Cardoso AC, Consonni SR, Oliveira RR, Saito A, Vaggione MLB, Matos-Souza JR, Carazzolle MF, Gonçalves A, Fernandes JL, Ribeiro GCA, Lopes MM, Molkentin JD, Franchini KG. MEF2C repressor variant deregulation leads to cell cycle re-entry and development of heart failure. EBioMedicine 2020; 51:102571. [PMID: 31911274 PMCID: PMC6948164 DOI: 10.1016/j.ebiom.2019.11.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022] Open
Abstract
Background A pathophysiological link exists between dysregulation of MEF2C transcription factors and heart failure (HF), but the underlying mechanisms remain elusive. Alternative splicing of MEF2C exons α, β and γ provides transcript diversity with gene activation or repression functionalities. Methods Neonatal and adult rat ventricular myocytes were used to overexpress MEF2C splicing variants γ+ (repressor) or γ-, or the inactive MEF2Cγ+23/24 (K23T/R24L). Phenotypic alterations in cardiomyocytes were determined by confocal and electron microscopy, flow cytometry and DNA microarray. We used transgenic mice with cardiac-specific overexpression of MEF2Cγ+ or MEF2Cγ− to explore the impact of MEF2C variants in cardiac phenotype. Samples of non-infarcted areas of the left ventricle from patients and mouse model of myocardial infarction were used to detect the expression of MEF2Cγ+ in failing hearts. Findings We demonstrate a previously unrealized upregulation of the transrepressor MEF2Cγ+ isoform in human and mouse failing hearts. We show that adenovirus-mediated overexpression of MEF2Cγ+ downregulates multiple MEF2-target genes, and drives incomplete cell-cycle reentry, partial dedifferentiation and apoptosis in the neonatal and adult rat. None of these changes was observed in cardiomyocytes overexpressing MEF2Cγ-. Transgenic mice overexpressing MEF2Cγ+, but not the MEF2Cγ-, developed dilated cardiomyopathy, correlated to cell-cycle reentry and apoptosis of cardiomyocytes. Interpretation Our results provide a mechanistic link between MEF2Cγ+ and deleterious abnormalities in cardiomyocytes, supporting the notion that splicing dysregulation in MEF2C towards the selection of the MEF2Cγ+ variant contributes to the pathogenesis of HF by promoting cardiomyocyte dropout. Funding São Paulo Research Foundation (FAPESP); Brazilian National Research Council (CNPq).
Collapse
Affiliation(s)
- Ana Helena M Pereira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Alisson C Cardoso
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Silvio R Consonni
- Department of Biochemistry and Tissue Biology, University of Campinas, Campinas, Brazil
| | - Renata R Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Angela Saito
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Maria Luisa B Vaggione
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | - Jose R Matos-Souza
- Department of Internal Medicine, University of Campinas, Campinas, Brazil
| | | | - Anderson Gonçalves
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil
| | | | | | | | - Jeffery D Molkentin
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, USA
| | - Kleber G Franchini
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, Sao Paulo, Brazil; Department of Internal Medicine, University of Campinas, Campinas, Brazil.
| |
Collapse
|
20
|
Vujic A, Natarajan N, Lee RT. Molecular mechanisms of heart regeneration. Semin Cell Dev Biol 2019; 100:20-28. [PMID: 31587963 DOI: 10.1016/j.semcdb.2019.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/20/2019] [Accepted: 09/11/2019] [Indexed: 12/27/2022]
Abstract
The adult mammalian heart is incapable of clinically relevant regeneration. The regenerative deficit in adult mammalian heart contrasts with the fetal and neonatal heart, which demonstrate substantial regenerative capacity after injury. This deficiency in adult mammals is attributable to the lack of resident stem cells after birth, combined with an inability of pre-existing cardiomyocytes to complete cytokinesis. Studies of neonatal heart regeneration in mammals suggest that latent regenerative potential can be re-activated. Dissecting the cellular and molecular mechanisms that promote cardiomyocyte proliferation is key to stimulating true regeneration in adult humans. Here, we review recent advances in our understanding of cardiomyocyte proliferation that suggest molecular approaches to heart regeneration.
Collapse
Affiliation(s)
- Ana Vujic
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Niranjana Natarajan
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA; Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
21
|
Hashmi S, Ahmad HR. Molecular switch model for cardiomyocyte proliferation. CELL REGENERATION 2019; 8:12-20. [PMID: 31205684 PMCID: PMC6557755 DOI: 10.1016/j.cr.2018.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/03/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023]
Abstract
This review deals with the human adult cardiomyocyte proliferation as a potential source for heart repair after injury. The mechanism to regain the proliferative capacity of adult cardiomyocytes is a challenge. However, recent studies are promising in showing that the ‘locked’ cell cycle of adult cardiomyocytes could be released through modulation of cell cycle checkpoints. In support of this are the signaling pathways of Notch, Hippo, Wnt, Akt and Jak/Stat that facilitate or inhibit the transition at cell cycle checkpoints. Cyclins and cyclin dependant kinases (CDKs) facilitate this transition which in turn is regulated by inhibitory action of pocket protein e.g. p21, p27 and p57. Transcription factors e.g. E2F, GATA4, TBx20 up regulate Cyclin A, A2, D, E, and CDK4 as promoters of cell cycle and Meis-1 and HIF-1 alpha down regulate cyclin D and E to inhibit the cell cycle. Paracrine factors like Neuregulin-1, IGF-1 and Oncostatin M and Extracellular Matrix proteins like Agrin have been involved in cardiomyocyte proliferation and dedifferentiation processes. A molecular switch model is proposed that transforms the post mitotic cell into an actively dividing cell. This model shows how the cell cycle is regulated through on- and off switch mechanisms through interaction of transcription factors and signaling pathways with proteins of the cell cycle checkpoints. Signals triggered by injury may activate the right combination of the various pathways that can ‘switch on’ the proliferation signals leading to myocardial regeneration.
Collapse
Affiliation(s)
- Satwat Hashmi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi
| | - H R Ahmad
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi
| |
Collapse
|
22
|
Evolving approaches to heart regeneration by therapeutic stimulation of resident cardiomyocyte cell cycle. Anatol J Cardiol 2018; 16:881-886. [PMID: 27872447 PMCID: PMC5324893 DOI: 10.14744/anatoljcardiol.2016.7245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Heart has long been considered a terminally differentiated organ. Recent studies, however, have suggested that there is a modest degree of cardiomyocyte (CM) turnover in adult mammalian heart, albeit not sufficient for replacement of lost CMs following cardiac injuries. Cardiac regeneration studies in various model organisms including zebrafish, newt, and more recently in neonatal mouse, have demonstrated that CM dedifferentiation and concomitant proliferation play important roles in replacement of lost CMs and restoration of cardiac contractility. Further studies with neonatal cardiac regeneration mouse model suggested that major source of new CMs is existing CMs, with the possibility of involvement of cardiac stem cells. Numerous studies have now been conducted on induction of cardiac regeneration and have identified various cardiogenic factors, cardiogenic micro ribonucleic acid and cardiogenic small molecules. This report is a review of studies regarding generation of CM and prospects for application.
Collapse
|
23
|
Abstract
Death of adult cardiac myocytes and supportive tissues resulting from cardiovascular diseases such as myocardial infarction is the proximal driver of pathological ventricular remodeling that often culminates in heart failure. Unfortunately, no currently available therapeutic barring heart transplantation can directly replenish myocytes lost from the injured heart. For decades, the field has struggled to define the intrinsic capacity and cellular sources for endogenous myocyte turnover in pursuing more innovative therapeutic strategies aimed at regenerating the injured heart. Although controversy persists to this day as to the best therapeutic regenerative strategy to use, a growing consensus has been reached that the very limited capacity for new myocyte formation in the adult mammalian heart is because of proliferation of existing cardiac myocytes but not because of the activity of an endogenous progenitor cell source of some sort. Hence, future therapeutic approaches should take into consideration the fundamental biology of myocyte renewal in designing strategies to potentially replenish these cells in the injured heart.
Collapse
Affiliation(s)
| | - Jeffery D Molkentin
- From the Department of Pediatrics (R.J.V., J.D.M.)
- Howard Hughes Medical Institute (J.D.M.)
| | - Steven R Houser
- Cincinnati Children's Hospital Medical Center, OH; and the Lewis Katz School of Medicine, Cardiovascular Research Center, Temple University, Philadelphia, PA (S.R.H.)
| |
Collapse
|
24
|
Hauck L, Stanley-Hasnain S, Fung A, Grothe D, Rao V, Mak TW, Billia F. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death. PLoS One 2017; 12:e0189861. [PMID: 29267372 PMCID: PMC5739440 DOI: 10.1371/journal.pone.0189861] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm) mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.
Collapse
Affiliation(s)
- Ludger Hauck
- Toronto General Research Institute, Toronto, Ontario, Canada
| | | | - Amelia Fung
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Daniela Grothe
- Toronto General Research Institute, Toronto, Ontario, Canada
| | - Vivek Rao
- Division of Cardiovascular Surgery, UHN, Toronto, Ontario, Canada
| | - Tak W. Mak
- Campbell Family Cancer Research Institute, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Filio Billia
- Toronto General Research Institute, Toronto, Ontario, Canada
- Division of Cardiology, University Health Network (UHN), Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario Canada
- * E-mail:
| |
Collapse
|
25
|
E2F6 protein levels modulate drug induced apoptosis in cardiomyocytes. Cell Signal 2017; 40:230-238. [PMID: 28964969 DOI: 10.1016/j.cellsig.2017.09.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/18/2022]
Abstract
The E2F/Rb pathway regulates cell growth, differentiation, and death. In particular, E2F1 promotes apoptosis in all cells including those of the heart. E2F6, which represses E2F activity, was found to induce dilated cardiomyopathy in the absence of apoptosis in murine post-natal heart. Here we evaluate the anti-apoptotic potential of E2F6 in neonatal cardiomyocytes (NCM) from E2F6-Tg hearts which showed significantly less caspase-3 cleavage, a lower Bax/Bcl2 ratio, and improved cell viability in response to CoCl2 exposure. This correlated with a decrease in the pro-apoptotic E2F3 protein levels. In contrast, no difference in apoptotic markers or cell viability was observed in response to Doxorubicin (Dox) treatment between Wt and Tg-NCM. Dox caused a rapid and dramatic loss of the E2F6 protein in Tg-NCM within 6h and was undetectable after 12h. The level of e2f6 transcript was unchanged in Wt NCM, but was dramatically decreased in Tg cells in response to both Dox and CoCl2. This was related to an impact of the drugs on the α-myosin heavy chain promoter used to drive the E2F6 transgene. By comparison in HeLa, Dox induced apoptosis through upregulation of endogenous E2F1 involving post-transcriptional mechanisms, while E2F6 was down regulated with induction of the Checkpoint kinase-1 and proteasome degradation. These data imply that E2F6 serves to modulate E2F activity and protect cells including cardiomyocytes from apoptosis and improve survival. Strategies to modulate E2F6 levels may be therapeutically useful to mitigate cell death associated disorders.
Collapse
|
26
|
Signaling Pathways in Cardiac Myocyte Apoptosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9583268. [PMID: 28101515 PMCID: PMC5215135 DOI: 10.1155/2016/9583268] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/20/2016] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation.
Collapse
|
27
|
|
28
|
Zhou J, Ahmad F, Parikh S, Hoffman NE, Rajan S, Verma VK, Song J, Yuan A, Shanmughapriya S, Guo Y, Gao E, Koch W, Woodgett JR, Madesh M, Kishore R, Lal H, Force T. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy. Circ Res 2016; 118:1208-22. [PMID: 26976650 DOI: 10.1161/circresaha.116.308544] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. OBJECTIVE To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. METHODS AND RESULTS We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. CONCLUSIONS Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jibin Zhou
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Firdos Ahmad
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Shan Parikh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Nichole E Hoffman
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Sudarsan Rajan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Vipin K Verma
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Jianliang Song
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Ancai Yuan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Santhanam Shanmughapriya
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Yuanjun Guo
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Erhe Gao
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Walter Koch
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - James R Woodgett
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Muniswamy Madesh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Raj Kishore
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Hind Lal
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| | - Thomas Force
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| |
Collapse
|
29
|
ASLAN GS, MISIR DG, KOCABAŞ F. Underlying mechanisms and prospects of heart regeneration. Turk J Biol 2016. [DOI: 10.3906/biy-1506-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
30
|
Matrone G, Wilson KS, Maqsood S, Mullins JJ, Tucker CS, Denvir MA. CDK9 and its repressor LARP7 modulate cardiomyocyte proliferation and response to injury in the zebrafish heart. J Cell Sci 2015; 128:4560-71. [PMID: 26542022 PMCID: PMC4696495 DOI: 10.1242/jcs.175018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin dependent kinase (Cdk)9 acts through the positive transcription elongation factor-b (P-TEFb) complex to activate and expand transcription through RNA polymerase II. It has also been shown to regulate cardiomyocyte hypertrophy, with recent evidence linking it to cardiomyocyte proliferation. We hypothesised that modification of CDK9 activity could both impair and enhance the cardiac response to injury by modifying cardiomyocyte proliferation. Cdk9 expression and activity were inhibited in the zebrafish (Danio rerio) embryo. We show that dephosphorylation of residue Ser2 on the C-terminal domain of RNA polymerase II is associated with impaired cardiac structure and function, and cardiomyocyte proliferation and also results in impaired functional recovery following cardiac laser injury. In contrast, de-repression of Cdk9 activity, through knockdown of La-related protein (Larp7) increases phosphorylation of Ser2 in RNA polymerase II and increases cardiomyocyte proliferation. Larp7 knockdown rescued the structural and functional phenotype associated with knockdown of Cdk9. The balance of Cdk9 and Larp7 plays a key role in cardiomyocyte proliferation and response to injury. Larp7 represents a potentially novel therapeutic target to promote cardiomyocyte proliferation and recovery from injury. Summary: The balance of CDK9 and LARP7 plays a key role in cardiomyocyte proliferation and response to injury. LARP7 represents a potentially novel therapeutic target in promoting recovery from injury.
Collapse
Affiliation(s)
- Gianfranco Matrone
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Kathryn S Wilson
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Sana Maqsood
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - John J Mullins
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Carl S Tucker
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Martin A Denvir
- British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
31
|
Estrella NL, Clark AL, Desjardins CA, Nocco SE, Naya FJ. MEF2D deficiency in neonatal cardiomyocytes triggers cell cycle re-entry and programmed cell death in vitro. J Biol Chem 2015; 290:24367-80. [PMID: 26294766 DOI: 10.1074/jbc.m115.666461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Indexed: 01/04/2023] Open
Abstract
The cardiomyocyte cell cycle is a poorly understood process. Mammalian cardiomyocytes permanently withdraw from the cell cycle shortly after birth but can re-enter the cell cycle and proliferate when subjected to injury within a brief temporal window in the neonatal period. Thus, investigating the mechanisms of cell cycle regulation in neonatal cardiomyocytes may provide critical insight into the molecular events that prevent adult myocytes from proliferating in response to injury or stress. MEF2D is a key transcriptional mediator of pathological remodeling in the adult heart downstream of various stress-promoting insults. However, the specific gene programs regulated by MEF2D in cardiomyocytes are unknown. By performing genome-wide transcriptome analysis using MEF2D-depleted neonatal cardiomyocytes, we found a significant impairment in the cell cycle, characterized by the up-regulation of numerous positive cell cycle regulators. Expression of Pten, the primary negative regulator of PI3K/Akt, was significantly reduced in MEF2D-deficient cardiomyocytes and found to be a direct target gene of MEF2D. Consistent with these findings mutant cardiomyocytes showed activation of the PI3K/Akt survival pathway. Paradoxically, prolonged deficiency of MEF2D in neonatal cardiomyocytes did not trigger proliferation but instead resulted in programmed cell death, which is likely mediated by the E2F transcription factor. These results demonstrate a critical role for MEF2D in cell cycle regulation of post-mitotic, neonatal cardiomyocytes in vitro.
Collapse
Affiliation(s)
- Nelsa L Estrella
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Amanda L Clark
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Cody A Desjardins
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Sarah E Nocco
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
32
|
Abstract
This review article discusses the mechanisms of cardiomyogenesis in the adult heart. They include the re-entry of cardiomyocytes into the cell cycle; dedifferentiation of pre-existing cardiomyocytes, which assume an immature replicating cell phenotype; transdifferentiation of hematopoietic stem cells into cardiomyocytes; and cardiomyocytes derived from activation and lineage specification of resident cardiac stem cells. The recognition of the origin of cardiomyocytes is of critical importance for the development of strategies capable of enhancing the growth response of the myocardium; in fact, cell therapy for the decompensated heart has to be based on the acquisition of this fundamental biological knowledge.
Collapse
Affiliation(s)
- Annarosa Leri
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Marcello Rota
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Francesco S Pasqualini
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Polina Goichberg
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Piero Anversa
- From the Departments of Anesthesia and Medicine and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Abstract
Heart failure is a growing epidemic caused by cardiomyocyte depletion. Current therapies prolong survival by protecting remaining cardiomyocytes but are unable to overcome the fundamental problem of regenerating lost cardiomyocytes. Several strategies for promoting heart regeneration have emerged from decades of intensive study. Although some of these strategies remain confined to basic research, others are beginning to be tested in humans. We review strategies for cardiac regeneration and summarize progress of related clinical trials.
Collapse
Affiliation(s)
- Zhiqiang Lin
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA. Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
34
|
Senyo SE, Lee RT, Kühn B. Cardiac regeneration based on mechanisms of cardiomyocyte proliferation and differentiation. Stem Cell Res 2014; 13:532-41. [PMID: 25306390 PMCID: PMC4435693 DOI: 10.1016/j.scr.2014.09.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 09/10/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Cardiomyocyte proliferation and progenitor differentiation are endogenous mechanisms of myocardial development. Cardiomyocytes continue to proliferate in mammals for part of post-natal development. In adult mammals under homeostatic conditions, cardiomyocytes proliferate at an extremely low rate. Because the mechanisms of cardiomyocyte generation provide potential targets for stimulating myocardial regeneration, a deep understanding is required for developing such strategies. We will discuss approaches for examining cardiomyocyte regeneration, review the specific advantages, challenges, and controversies, and recommend approaches for interpretation of results. We will also draw parallels between developmental and regenerative principles of these mechanisms and how they could be targeted for treating heart failure.
Collapse
Affiliation(s)
- Samuel E Senyo
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Brigham Regenerative Medicine Center, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Richard T Lee
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Brigham Regenerative Medicine Center, Cambridge, MA 02139, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bernhard Kühn
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014; 157:565-79. [PMID: 24766806 DOI: 10.1016/j.cell.2014.03.032] [Citation(s) in RCA: 631] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/17/2014] [Accepted: 03/21/2014] [Indexed: 12/15/2022]
Abstract
The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.
Collapse
Affiliation(s)
- Bao N Puente
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wataru Kimura
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shalini A Muralidhar
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jesung Moon
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James F Amatruda
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kate L Phelps
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Grinsfelder
- Department of Clinical Science, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Beverly A Rothermel
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Chen
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A Garcia
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Celio X Santos
- Cardiovascular Division, King's College London BHF Centre of Research Excellence, School of Medicine, James Black Centre, London SE5 9NU, UK
| | - SuWannee Thet
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eiichiro Mori
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael T Kinter
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Paul M Rindler
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Serena Zacchigna
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Shibani Mukherjee
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David J Chen
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ahmed I Mahmoud
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02115, USA
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | | | - Asaithamby Aroumougame
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ajay M Shah
- Department of Clinical Science, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke I Szweda
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hesham A Sadek
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
36
|
Muralidhar SA, Mahmoud AI, Canseco D, Xiao F, Sadek HA. Harnessing the power of dividing cardiomyocytes. Glob Cardiol Sci Pract 2013; 2013:212-21. [PMID: 24689023 PMCID: PMC3963758 DOI: 10.5339/gcsp.2013.29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 09/20/2013] [Indexed: 12/13/2022] Open
Abstract
Lower vertebrates, such as newt and zebrafish, retain a robust cardiac regenerative capacity following injury. Recently, our group demonstrated that neonatal mammalian hearts have a remarkable regenerative potential in the first few days after birth. Although adult mammals lack this regenerative potential, it is now clear that there is measurable cardiomyocyte turnover that occurs in the adult mammalian heart. In both neonatal and adult mammals, proliferation of pre-existing cardiomyocytes appears to be the underlying mechanism of myocyte turnover. This review will highlight the advances and landmark studies that opened new frontiers in cardiac regeneration.
Collapse
Affiliation(s)
- Shalini A Muralidhar
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ahmed I Mahmoud
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | - Diana Canseco
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Feng Xiao
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hesham A Sadek
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
37
|
Anversa P, Leri A. Innate regeneration in the aging heart: healing from within. Mayo Clin Proc 2013; 88:871-83. [PMID: 23910414 PMCID: PMC3936323 DOI: 10.1016/j.mayocp.2013.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
Abstract
The concept of the heart as a terminally differentiated organ incapable of replacing damaged myocytes has been at the center of cardiovascular research and therapeutic development for the past 50 years. The progressive decline in myocyte number as a function of age and the formation of scarred tissue after myocardial infarction have been interpreted as irrefutable proofs of the postmitotic characteristic of the heart. However, emerging evidence supports a more dynamic view of the heart in which cell death and renewal are vital components of the remodeling process that governs cardiac homeostasis, aging, and disease. The identification of dividing myocytes in the adult and senescent heart raises the important question concerning the origin of these newly formed cells. In vitro and in vivo findings strongly suggest that replicating myocytes derive from lineage determination of resident primitive cells, supporting the notion that cardiomyogenesis is controlled by activation and differentiation of a stem cell compartment. It is the current view that the myocardium is an organ permissive of tissue regeneration mediated by exogenous and endogenous progenitor cells.
Collapse
Affiliation(s)
- Piero Anversa
- Department of Anesthesia, Department of Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | | |
Collapse
|
38
|
Circulation Research Thematic Synopsis: stem cells & cardiac progenitor cells. Circ Res 2013; 113:e10-29. [PMID: 23833297 DOI: 10.1161/circresaha.113.301919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Li Y, Hu S, Ma G, Yao Y, Yan G, Chen J, Li Y, Zhang Z. Acute myocardial infarction induced functional cardiomyocytes to re-enter the cell cycle. Am J Transl Res 2013; 5:327-335. [PMID: 23634243 PMCID: PMC3633975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 03/29/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Loss of cardiomyocytes after myocardial infarction (MI) causes heart failure. In this study, we investigate whether the in situ cardiomyocytes can re-enter the cell cycle and to what extent cell division of cardiomyocytes occurs after acute MI (AMI) in rats. METHODS Sprague Dawley (SD) rats were used in this study; the left anterior descending coronary artery was ligated. At time points (3 days, 1 week, 2 weeks, 3 weeks, and 4 weeks) after the operation, five rats were euthanized, respectively. An additional five sham-operated rats serves as a control group and were euthanized at 3 days post-operation. The expressions of cyclin A2, Ki-67, phospho-histone H3 (H3P), and Aurora B in myocardial tissues were detected by Western blot and immunofluorescence. RESULTS The expression levels of cyclin A2 were significantly higher in all groups with AMI except the 4-week group than those found in the sham-operated group (P < 0.01). The percentage of Ki-67-positive nuclei in the border zones was significantly higher than the percentage in the distant normal myocardium (P < 0.01). CONCLUSIONS our results demonstrate that cardiomyocytes re-enter the cell cycle after AMI and that cyclin A2 is a reliable marker for the detection of cell cycle activity in cardiomyocytes.
Collapse
Affiliation(s)
- Yongjun Li
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast UniversityNanjing, China
| | - Shengda Hu
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast UniversityNanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast UniversityNanjing, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast UniversityNanjing, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast UniversityNanjing, China
| | - Jia Chen
- RCIS, Cath & EP Lab, Inova Fairfax HospitalVirginia, USA
| | - Yefei Li
- Department of Cardiology, Zhongda Hospital, Medical School of Southeast UniversityNanjing, China
| | - Zhuoli Zhang
- Department of Radiology, Northwestern UniversityChicago, USA
| |
Collapse
|
40
|
Willis MS, Wadosky KM, Rodríguez JE, Schisler JC, Lockyer P, Hilliard EG, Glass DJ, Patterson C. Muscle ring finger 1 and muscle ring finger 2 are necessary but functionally redundant during developmental cardiac growth and regulate E2F1-mediated gene expression in vivo. Cell Biochem Funct 2013; 32:39-50. [PMID: 23512667 DOI: 10.1002/cbf.2969] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/03/2013] [Accepted: 02/14/2013] [Indexed: 12/12/2022]
Abstract
AIMS Muscle ring finger (MuRF) proteins have been implicated in the transmission of mechanical forces to nuclear cell signaling pathways through their association with the sarcomere. We recently reported that MuRF1, but not MuRF2, regulates pathologic cardiac hypertrophy in vivo. This was surprising given that MuRF1 and MuRF2 interact with each other and many of the same sarcomeric proteins experimentally. METHODS AND RESULTS Mice missing all four MuRF1 and MuRF2 alleles [MuRF1/MuRF2 double null (DN)] were born with a massive spontaneous hypertrophic cardiomyopathy and heart failure; mice that were null for one of the genes but heterozygous for the other (i.e. MuRF1(-/-) //MuRF2(+/-) or MuRF1(+/-) //MuRF2(-/-) ) were phenotypically identical to wild-type mice. Microarray analysis of genes differentially-expressed between MuRF1/MuRF2 DN, mice missing three of the four alleles and wild-type mice revealed a significant enrichment of genes regulated by the E2F transcription factor family. More than 85% of the differentially-expressed genes had E2F promoter regions (E2f:DP; P<0.001). Western analysis of E2F revealed no differences between MuRF1/MuRF2 DN hearts and wild-type hearts; however, chromatin immunoprecipitation studies revealed that MuRF1/MuRF2 DN hearts had significantly less binding of E2F1 in the promoter regions of genes previously defined to be regulated by E2F1 (p21, Brip1 and PDK4, P<0.01). CONCLUSIONS These studies suggest that MuRF1 and MuRF2 play a redundant role in regulating developmental physiologic hypertrophy, by regulating E2F transcription factors essential for normal cardiac development by supporting E2F localization to the nucleus, but not through a process that degrades the transcription factor.
Collapse
Affiliation(s)
- Monte S Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Dingar D, Konecny F, Zou J, Sun X, von Harsdorf R. Anti-apoptotic function of the E2F transcription factor 4 (E2F4)/p130, a member of retinoblastoma gene family in cardiac myocytes. J Mol Cell Cardiol 2012; 53:820-8. [PMID: 22985930 DOI: 10.1016/j.yjmcc.2012.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
Abstract
The E2F4-p130 transcriptional repressor complex is a cell-cycle inhibitor in mitotic cells. However, the role of E2F4/p130 in differentiated cells is largely unknown. We investigated the role of E2F4/p130 in the regulation of apoptosis in postmitotic cardiomyocytes. Here we demonstrate that E2F4 can inhibit hypoxia-induced cell death in isolated ventricular cardiomyocytes. As analyzed by chromatin immunoprecipitation, the E2F4-p130-repressor directly blocks transcription of essential apoptosis-related genes, E2F1, Apaf-1, and p73α through recruitment of histone deacetylase 1 (HDAC1). In contrast, diminution of the E2F4-p130-HDAC1-repressor and recruitment of E2F1 and histone acetylase activity to these E2F-regulated promoters is required for the execution of cell death. Expression of kinase-dead HDAC1.H141A or HDAC-binding deficient p130ΔHDAC1 abolishes the antiapoptotic effect of E2F4. Moreover, histological examination of E2F4(-/-) hearts revealed a markedly enhanced degree of cardiomyocyte apoptosis. Taken together, our genetic and biochemical data delineate an essential negative function of E2F4 in cardiac myocyte apoptosis.
Collapse
|
42
|
Abstract
Traditionally, the adult heart has been viewed as a terminally differentiated postmitotic organ in which the number of cardiomyocytes is established at birth and these cells persist throughout the life span of the organ and organism. However, the discovery that cardiac stem cells live in the heart and differentiate into the various cardiac cell lineages has dramatically changed our understanding of myocardial biology. Deciphering the biological processes that lead to myocyte renewal is a challenging task. Cardiac regeneration may be accomplished by (1) commitment of multipotent stem cells that generate all specialized lineages within the parenchyma, (2) activation of unipotent progenitors with restricted differentiation potential, (3) replication of pre-existing differentiated cells, (4) transdifferentiation of exogenous progenitors that undergo plastic conversion into cells different from the organ of origin, and (5) dedifferentiation of cardiomyocytes that re-enter the cell cycle and divide. These multiple mechanisms of cell growth may act in concert to regenerate complex structures and restore the function of the target organ.
Collapse
|
43
|
Circulation Research
Thematic Synopsis. Circ Res 2012. [DOI: 10.1161/res.0b013e3182614cf7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Westendorp B, Major JL, Nader M, Salih M, Leenen FHH, Tuana BS. The E2F6 repressor activates gene expression in myocardium resulting in dilated cardiomyopathy. FASEB J 2012; 26:2569-79. [PMID: 22403008 DOI: 10.1096/fj.11-203174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The E2F/Rb pathway regulates cardiac growth and development and holds great potential as a therapeutic target. The E2F6 repressor is a unique E2F member that acts independently of pocket proteins. Forced expression of E2F6 in mouse myocardium induced heart failure and mortality, with severity of symptoms correlating to E2F6 levels. Echocardiography demonstrated a 37% increase (P<0.05) in left ventricular end-diastolic diameter and reduced ejection fraction (<40%, P<0.05) in young transgenic (Tg) mice. Microarray and qPCR analysis revealed a paradoxical increase in E2F-responsive genes, which regulate the cell cycle, without changes in cardiomyocyte cell number or size in Tg mice. Young adult Tg mice displayed a 75% (P<0.01) decrease in gap junction protein connexin-43, resulting in abnormal electrocardiogram including a 24% (P<0.05) increase in PR interval. Further, mir-206, which targets connexin-43, was up-regulated 10-fold (P<0.05) in Tg myocardium. The mitogen-activated protein kinase pathway, which regulates the levels of miR-206 and connexin-43, was activated in Tg hearts. Thus, deregulated E2F6 levels evoked abnormal gene expression at transcriptional and post-transcriptional levels, leading to cardiac remodeling and dilated cardiomyopathy. The data highlight an unprecedented role for the strict regulation of the E2F pathway in normal postnatal cardiac function.
Collapse
Affiliation(s)
- Bart Westendorp
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
45
|
Loponen H, Ylikoski J, Albrecht JH, Pirvola U. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression. PLoS One 2011; 6:e27360. [PMID: 22073316 PMCID: PMC3206952 DOI: 10.1371/journal.pone.0027360] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/14/2011] [Indexed: 11/19/2022] Open
Abstract
Sensory hair cells and supporting cells of the mammalian inner ear are quiescent cells, which do not regenerate. In contrast, non-mammalian supporting cells have the ability to re-enter the cell cycle and produce replacement hair cells. Earlier studies have demonstrated cyclin D1 expression in the developing mouse supporting cells and its downregulation along maturation. In explant cultures of the mouse utricle, we have here focused on the cell cycle control mechanisms and proliferative potential of adult supporting cells. These cells were forced into the cell cycle through adenoviral-mediated cyclin D1 overexpression. Ectopic cyclin D1 triggered robust cell cycle re-entry of supporting cells, accompanied by changes in p27(Kip1) and p21(Cip1) expressions. Main part of cell cycle reactivated supporting cells were DNA damaged and arrested at the G2/M boundary. Only small numbers of mitotic supporting cells and rare cells with signs of two successive replications were found. Ectopic cyclin D1-triggered cell cycle reactivation did not lead to hyperplasia of the sensory epithelium. In addition, a part of ectopic cyclin D1 was sequestered in the cytoplasm, reflecting its ineffective nuclear import. Combined, our data reveal intrinsic barriers that limit proliferative capacity of utricular supporting cells.
Collapse
Affiliation(s)
- Heidi Loponen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Jeffrey H. Albrecht
- Division of Gastroenterology, Hennepin County Medical Center, Minneapolis, Minnesota, United States of America
| | - Ulla Pirvola
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
46
|
Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circ Res 2011; 109:941-61. [PMID: 21960726 PMCID: PMC3299091 DOI: 10.1161/circresaha.111.243154] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/24/2011] [Indexed: 12/15/2022]
Abstract
For nearly a century, the human heart has been viewed as a terminally differentiated postmitotic organ in which the number of cardiomyocytes is established at birth, and these cells persist throughout the lifespan of the organ and organism. However, the discovery that cardiac stem cells live in the heart and differentiate into the various cardiac cell lineages has changed profoundly our understanding of myocardial biology. Cardiac stem cells regulate myocyte turnover and condition myocardial recovery after injury. This novel information imposes a reconsideration of the mechanisms involved in myocardial aging and the progression of cardiac hypertrophy to heart failure. Similarly, the processes implicated in the adaptation of the infarcted heart have to be dissected in terms of the critical role that cardiac stem cells and myocyte regeneration play in the restoration of myocardial mass and ventricular function. Several categories of cardiac progenitors have been described but, thus far, the c-kit-positive cell is the only class of resident cells with the biological and functional properties of tissue specific adult stem cells.
Collapse
Affiliation(s)
- Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
47
|
The role of E2F-1 and downstream target genes in mediating ischemia/reperfusion injury in vivo. J Mol Cell Cardiol 2011; 51:919-26. [PMID: 21964190 DOI: 10.1016/j.yjmcc.2011.09.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/30/2011] [Accepted: 09/14/2011] [Indexed: 01/11/2023]
Abstract
E2Fs are a family of transcription factors that regulate proliferation, differentiation and apoptosis in many cell types. E2F-1 is the prototypical E2F and the family member that has most often been implicated in also mediating apoptosis. To better understand the role of E2F-1 in mediating cardiomyocyte injury we initially analyzed E2F family member expression after ischemia/reperfusion (I/R) in vivo or simulated ischemia in vitro. I/R injury in vivo caused a 3.4-fold increase specifically in E2F-1 protein levels. Expression of other E2F family members did not change. To establish the role of E2F-1 in I/R we examined the response of germline deleted E2F-1 mice to I/R injury. Infarct size as a percentage of the area at risk was decreased 39.8% in E2F-1(-/-) mice compared to E2F-1(+/+) controls. Interestingly, expression of classic, E2F-1 apoptotic target genes was not altered in E2F-1 null cardiomyocytes after I/R. However, upregulation of the primary member of the Forkhead family of transcription factors, FoxO-1a, was attenuated. Consistent, with a role for FoxO-1a as an important target of E2F-1 in I/R, a number of proapoptotic FoxO-1a target genes were also altered. These results suggest that E2F-1 and FoxO-1a belong to a complex transcriptional network that may modulate myocardial cell death during I/R injury.
Collapse
|
48
|
Wolfram JA, Liner A, Richardson SL, Zhu X, Smith MA, Hoit BD, Lee HG. The role of E2F1 in the development of hypertrophic cardiomyopathy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2011; 4:521-525. [PMID: 21738823 PMCID: PMC3127073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/05/2011] [Indexed: 05/31/2023]
Abstract
The overexpression of the transcription factor, E2F1, induces hypertrophy and apoptosis with cell cycle re-entry in cardiomyocytes in vitro and in vivo, suggesting that targeting E2F1 may have therapeutic potential. Accordingly, we tested the hypothesis that blocking the E2F1-mediated signal transduction pathway prevents cardiac hypertrophy by treating E2F1 knockout mice (E2F1-/-) with either isoproterenol (ISO) or Angiotensin II (ANG). Echocardi-ography was used to measure left ventricular mass index and myocardial performance index, a measure of combined systolic and diastolic left ventricular function. In control mice (E2F1+/+) both ISO and ANG treatments induced cardiac hypertrophy, and impaired ventricular function in ANG treated mice. In contrast to previously published work, E2F1-/- mice also demonstrated a similar pattern of cardiac hypertrophy and function after either treatment. Atrial natriuretic peptide, a molecular marker of hypertrophy and necropsy-determined body weight-normalized left ventricle mass were similarly increased in ISO and ANG treated E2F1+/+ and E2F-/- mice, supporting the echocardiographic data. These data indicate that E2F1 is not necessary for the development of cardiac hypertrophy although studies using an overexpression approach suggest a causal role of E2F1. The reason for this discrepancy is unclear, although it is possible that other E2F-family members (e.g., E2F2) may play a compensatory role. In conclusion, our data demonstrate that cardiac hypertrophy can be induced in an E2F1-independent fashion and suggest that in contrast to previous reports, targeting E2F1 may not be a good therapeutic approach.
Collapse
Affiliation(s)
| | - Anna Liner
- Medicine, Case Western Reserve UniversityCleveland, Ohio, USA
| | | | | | | | - Brian D Hoit
- Medicine, Case Western Reserve UniversityCleveland, Ohio, USA
| | | |
Collapse
|
49
|
Mercola M, Ruiz-Lozano P, Schneider MD. Cardiac muscle regeneration: lessons from development. Genes Dev 2011; 25:299-309. [PMID: 21325131 DOI: 10.1101/gad.2018411] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The adult human heart is an ideal target for regenerative intervention since it does not functionally restore itself after injury yet has a modest regenerative capacity that could be enhanced by innovative therapies. Adult cardiac cells with regenerative potential share gene expression signatures with early fetal progenitors that give rise to multiple cardiac cell types, suggesting that the evolutionarily conserved regulatory networks that drive embryonic heart development might also control aspects of regeneration. Here we discuss commonalities of development and regeneration, and the application of the rich developmental biology heritage to achieve therapeutic regeneration of the human heart.
Collapse
Affiliation(s)
- Mark Mercola
- Muscle Development and Regeneration Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
50
|
Udayakumar TS, Stoyanova R, Hachem P, Ahmed MM, Pollack A. Adenovirus E2F1 overexpression sensitizes LNCaP and PC3 prostate tumor cells to radiation in vivo. Int J Radiat Oncol Biol Phys 2011; 79:549-58. [PMID: 21195876 DOI: 10.1016/j.ijrobp.2010.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/15/2010] [Accepted: 08/10/2010] [Indexed: 11/25/2022]
Abstract
PURPOSE We previously showed that E2F1 overexpression radiosensitizes prostate cancer cells in vitro. Here, we demonstrate the radiosensitization efficacy of adenovirus (Ad)-E2F1 infection in growing (orthotopic) LNCaP and (subcutaneous) PC3 nude mice xenograft tumors. METHODS AND MATERIALS Ad-E2F1 was injected intratumorally in LNCaP (3 × 10(8) plaque-forming units [PFU]) and PC3 (5 × 10(8) PFU) tumors treated with or without radiation. LNCaP tumor volumes (TV) were measured by magnetic resonance imaging, caliper were used to measure PC3 tumors, and serum prostate-specific antigen (PSA) levels were determined by enzyme-linked immunosorbent assay. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, and key proteins involved in cell death signaling were analyzed by Western blotting. RESULTS Intracellular overexpression of Ad-E2F1 had a significant effect on the regression of TV and reduction of PSA levels relative to that of adenoviral luciferase (Ad-Luc)-infected control. The in vivo regressing effect of Ad-E2F1 on LNCaP tumor growth was significant (PSA, 34 ng/ml; TV, 142 mm(3)) compared to that of Ad-Luc control (PSA, 59 ng/ml; TV, 218 mm(3); p <0.05). This effect was significantly enhanced by radiation therapy (compare: Ad-E2F1+RT/PSA, 16 ng/ml, and TV, 55 mm(3) to Ad-Luc+RT/PSA, 42 ng/ml, and TV, 174 mm(3), respectively; p <0.05). For PC3 tumors, the greatest effect was observed with Ad-E2F1 infection alone; there was little or no effect when radiotherapy (RT) was combined. However, addition of RT enhanced the level of in situ apoptosis in PC3 tumors. Molecularly, addition of Ad-E2F1 in a combination treatment abrogated radiation-induced BCL-2 protein expression and was associated with an increase in activated BAX, and together they caused a potent radiosensitizing effect, irrespective of p53 and androgen receptor functional status. CONCLUSIONS We show here for the first time that ectopic overexpression of E2F1 in vivo, using an adenoviral vector, significantly inhibits orthotopic p53 wild-type LNCaP tumors and subcutaneous p53-null PC3 tumors in nude mice. Furthermore, we demonstrate that E2F1 strongly sensitizes LNCaP tumors to RT. These findings suggest that E2F1 overexpression can sensitize prostate tumor cells in vivo, independent of p53 or androgen receptor status.
Collapse
Affiliation(s)
- Thirupandiyur S Udayakumar
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | | | | |
Collapse
|