1
|
Gill SK, Sugiman-Marangos SN, Beilhartz GL, Mei E, Taipale M, Melnyk RA. An enhanced intracellular delivery platform based on a distant diphtheria toxin homolog that evades pre-existing antitoxin antibodies. EMBO Mol Med 2024; 16:2638-2651. [PMID: 39160301 PMCID: PMC11473700 DOI: 10.1038/s44321-024-00116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/21/2024] Open
Abstract
Targeted intracellular delivery of therapeutic proteins remains a significant unmet challenge in biotechnology. A promising approach is to leverage the intrinsic capabilities of bacterial toxins like diphtheria toxin (DT) to deliver a potent cytotoxic enzyme into cells with an associated membrane translocation moiety. Despite showing promising clinical efficacy, widespread deployment of DT-based therapeutics is complicated by the prevalence of pre-existing antibodies in the general population arising from childhood DT toxoid vaccinations, which impact the exposure, efficacy, and safety of these potent molecules. Here, we describe the discovery and characterization of a distant DT homolog from the ancient reptile pathogen Austwickia chelonae that we have dubbed chelona toxin (ACT). We show that ACT is comparable to DT structure and function in all respects except that it is not recognized by pre-existing anti-DT antibodies circulating in human sera. Furthermore, we demonstrate that ACT delivers heterologous therapeutic cargos into target cells more efficiently than DT. Our findings highlight ACT as a promising new chassis for building next-generation immunotoxins and targeted delivery platforms with improved pharmacokinetic and pharmacodynamic properties.
Collapse
Affiliation(s)
- Shivneet K Gill
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S1A8, Canada
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Seiji N Sugiman-Marangos
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Greg L Beilhartz
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Elizabeth Mei
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S1A8, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Roman A Melnyk
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S1A8, Canada.
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
2
|
Guo T, Xu J. Cancer-associated fibroblasts: a versatile mediator in tumor progression, metastasis, and targeted therapy. Cancer Metastasis Rev 2024; 43:1095-1116. [PMID: 38602594 PMCID: PMC11300527 DOI: 10.1007/s10555-024-10186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
Tumor microenvironment (TME) has been demonstrated to play a significant role in tumor initiation, progression, and metastasis. Cancer-associated fibroblasts (CAFs) are the major component of TME and exhibit heterogeneous properties in their communication with tumor cells. This heterogeneity of CAFs can be attributed to various origins, including quiescent fibroblasts, mesenchymal stem cells (MSCs), adipocytes, pericytes, endothelial cells, and mesothelial cells. Moreover, single-cell RNA sequencing has identified diverse phenotypes of CAFs, with myofibroblastic CAFs (myCAFs) and inflammatory CAFs (iCAFs) being the most acknowledged, alongside newly discovered subtypes like antigen-presenting CAFs (apCAFs). Due to these heterogeneities, CAFs exert multiple functions in tumorigenesis, cancer stemness, angiogenesis, immunosuppression, metabolism, and metastasis. As a result, targeted therapies aimed at the TME, particularly focusing on CAFs, are rapidly developing, fueling the promising future of advanced tumor-targeted therapy.
Collapse
Affiliation(s)
- Tianchen Guo
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
| | - Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
3
|
Yang Y, Zheng Y, Sun X, Zhao A, Wu Y. Antibody drug conjugate, a level-up version of monoclonal antibody? Int J Surg 2024; 110:5944-5948. [PMID: 38833359 PMCID: PMC11392205 DOI: 10.1097/js9.0000000000001748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Affiliation(s)
- Yuqi Yang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center,West China Hospital, Sichuan University
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yue Zheng
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center,West China Hospital, Sichuan University
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University
| | - Xu Sun
- Department of Hematology West China Hospital, Sichuan University
| | - Ailin Zhao
- Department of Hematology West China Hospital, Sichuan University
| | - Yijun Wu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center,West China Hospital, Sichuan University
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University
| |
Collapse
|
4
|
Sun H, Wienkers LC, Lee A. Beyond cytotoxic potency: disposition features required to design ADC payload. Xenobiotica 2024; 54:442-457. [PMID: 39017706 DOI: 10.1080/00498254.2024.2381139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
1. Antibody-drug conjugates (ADCs) have demonstrated impressive clinical usefulness in treating several types of cancer, with the notion of widening of the therapeutic index of the cytotoxic payload through the minimisation of the systemic toxicity. Therefore, choosing the most appropriate payload molecule is a particularly important part of the early design phase of ADC development, especially given the highly competitive environment ADCs find themselves in today.2. The focus of the current review is to describe critical attributes/considerations needed in the discovery and ultimately development of cytotoxic payloads in support of ADC design. In addition to potency, several key dispositional characteristics including solubility, permeability and bystander effect, pharmacokinetics, metabolism, and drug-drug interactions, are described as being an integral part of the integrated activities required in the design of clinically safe and useful ADC therapeutic agents.
Collapse
Affiliation(s)
- Hao Sun
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Larry C Wienkers
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Anthony Lee
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| |
Collapse
|
5
|
Zuo X, Kiyasu Y, Liu Y, Deguchi Y, Liu F, Moussalli M, Tan L, Wei B, Wei D, Yang P, Shureiqi I. Colorectal ALOX15 as a host factor determinant of EPA and DHA effects on colorectal carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592224. [PMID: 38746303 PMCID: PMC11092629 DOI: 10.1101/2024.05.02.592224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), omega-3 polyunsaturated fatty acids (ω-3 PUFAs) derived from fish oil, are widely used as dietary supplements and FDA-approved treatments for hypertriglyceridemia. However, studies investigating the effects of EPA and DHA on colorectal carcinogenesis (CRC) have yielded conflicting results. The factors that determine these discrepant results remain unknown. Resolvins, oxidative metabolites of EPA and DHA, inhibit key pro-tumorigenic cytokine and chemokine signaling of colorectal cancer (e.g., IL-6, IL-1β, and CCL2). 15-lipoxygenase-1 (ALOX15), a critical enzyme for resolvin generation is commonly lost during human CRC. Whether ALOX15 expression, as a host factor, modulates the effects of EPA and DHA on CRC remains unknown. Therefore, we evaluated the effects of ALOX15 transgenic expression in colonic epithelial cells on resolvin generation by EPA and DHA and CRC in mouse models representative of human CRC. Our results revealed that 1) EPA and DHA effects on CRC were diverse, ranging from suppressive to promotive, and these effects were occasionally altered by the formulations of EPA and DHA (free fatty acid, ethyl ester, triglyceride); 2) EPA and DHA uniformly suppressed CRC in the presence of intestinal ALOX15 transgenic expression, which induced the production of resolvins, decreased colonic CCL3-5 and CXCL-5 expression and tumor associated macrophages while increasing CD8 T cell abundance in tumor microenvironment; and 3) RvD5, the predominant resolvin produced by ALOX15, inhibited macrophage generation of pro-tumorigenic cytokines. These findings demonstrate the significance of intestinal ALOX15 expression as a host factor in determining the effects of EPA and DHA on CRC. Significance Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are widely used as dietary supplements and FDA-approved treatments for hypertriglyceridemia. Studies of EPA and DHA effects on colorectal carcinogenesis (CRC) have revealed inconsistencies; factors determining the direction of their impact on CRC have remained unidentified. Our data show that EPA and DHA effects on CRC were divergent and occasionally influenced by their formulations. More importantly, intestinal 15-lipoxgenase-1 (ALOX15) expression modulated EPA and DHA effects on CRC, leading to their consistent suppression of CRC. ALOX15 promoted EPA and DHA oxidative metabolism to generate resolvins, which inhibited key pro-tumorigenic inflammatory cytokines and chemokines, including IL-6. IL-1β, and CCL2. ALOX15 is therefore an important host factor in determining EPA and DHA effects on CRC.
Collapse
|
6
|
Khosravi G, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond) 2024; 44:521-553. [PMID: 38551889 PMCID: PMC11110955 DOI: 10.1002/cac2.12539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
Tumors can be classified into distinct immunophenotypes based on the presence and arrangement of cytotoxic immune cells within the tumor microenvironment (TME). Hot tumors, characterized by heightened immune activity and responsiveness to immune checkpoint inhibitors (ICIs), stand in stark contrast to cold tumors, which lack immune infiltration and remain resistant to therapy. To overcome immune evasion mechanisms employed by tumor cells, novel immunologic modulators have emerged, particularly ICIs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 1/programmed death-ligand 1(PD-1/PD-L1). These agents disrupt inhibitory signals and reactivate the immune system, transforming cold tumors into hot ones and promoting effective antitumor responses. However, challenges persist, including primary resistance to immunotherapy, autoimmune side effects, and tumor response heterogeneity. Addressing these challenges requires innovative strategies, deeper mechanistic insights, and a combination of immune interventions to enhance the effectiveness of immunotherapies. In the landscape of cancer medicine, where immune cold tumors represent a formidable hurdle, understanding the TME and harnessing its potential to reprogram the immune response is paramount. This review sheds light on current advancements and future directions in the quest for more effective and safer cancer treatment strategies, offering hope for patients with immune-resistant tumors.
Collapse
Affiliation(s)
- Gholam‐Reza Khosravi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Samaneh Mostafavi
- Department of ImmunologyFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Sanaz Bastan
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Narges Ebrahimi
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Roya Safari Gharibvand
- Department of ImmunologySchool of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Nahid Eskandari
- Department of Medical ImmunologySchool of MedicineIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
7
|
Przyklenk M, Karmacharya S, Bonasera D, Pasanen-Zentz AL, Kmoch S, Paulsson M, Wagener R, Liccardi G, Schiavinato A. ANTXR1 deficiency promotes fibroblast senescence: implications for GAPO syndrome as a progeroid disorder. Sci Rep 2024; 14:9321. [PMID: 38653789 PMCID: PMC11039612 DOI: 10.1038/s41598-024-59901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
ANTXR1 is one of two cell surface receptors mediating the uptake of the anthrax toxin into cells. Despite substantial research on its role in anthrax poisoning and a proposed function as a collagen receptor, ANTXR1's physiological functions remain largely undefined. Pathogenic variants in ANTXR1 lead to the rare GAPO syndrome, named for its four primary features: Growth retardation, Alopecia, Pseudoanodontia, and Optic atrophy. The disease is also associated with a complex range of other phenotypes impacting the cardiovascular, skeletal, pulmonary and nervous systems. Aberrant accumulation of extracellular matrix components and fibrosis are considered to be crucial components in the pathogenesis of GAPO syndrome, contributing to the shortened life expectancy of affected individuals. Nonetheless, the specific mechanisms connecting ANTXR1 deficiency to the clinical manifestations of GAPO syndrome are largely unexplored. In this study, we present evidence that ANTXR1 deficiency initiates a senescent phenotype in human fibroblasts, correlating with defects in nuclear architecture and actin dynamics. We provide novel insights into ANTXR1's physiological functions and propose GAPO syndrome to be reconsidered as a progeroid disorder highlighting an unexpected role for an integrin-like extracellular matrix receptor in human aging.
Collapse
Affiliation(s)
- Matthias Przyklenk
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Shreya Karmacharya
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Debora Bonasera
- Genetic Instability, Cell Death and Inflammation Laboratory, Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Arthur-Lauri Pasanen-Zentz
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Stanislav Kmoch
- Research Unit of Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Gianmaria Liccardi
- Genetic Instability, Cell Death and Inflammation Laboratory, Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany
| | - Alvise Schiavinato
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Balakrishnan S, Goud I, Teegala ML. Prenatal onset GAPO syndrome with a novel ANTXR1 variant in an Indian child: Expansion of the phenotype & literature review. Eur J Med Genet 2024; 68:104929. [PMID: 38423276 DOI: 10.1016/j.ejmg.2024.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/21/2023] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
GAPO syndrome is a rare genetic condition caused by bi-allelic variants in ANTXR1 gene & is an abbreviation for its core features - growth retardation, alopecia, pseudo-anodontia & optic atrophy. Certain additional features involving various other systems have been reported over the years & contribute to the expanding spectrum of this evolving phenotype. We report GAPO syndrome in a 3.75 year old Indian female child, who presented with some unique features such as sagittal craniosynostosis with scaphocephaly & bilateral choroid plexus cysts, alongside the core phenotype. We also report a novel frameshift variant in our patient & offer first evidence for the prenatal onset of some features.
Collapse
|
9
|
Yang L, Sheets TP, Feng Y, Yu G, Bajgain P, Hsu KS, So D, Seaman S, Lee J, Lin L, Evans CN, Guest MR, Chari R, St. Croix B. Uncovering receptor-ligand interactions using a high-avidity CRISPR activation screening platform. SCIENCE ADVANCES 2024; 10:eadj2445. [PMID: 38354234 PMCID: PMC10866537 DOI: 10.1126/sciadv.adj2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The majority of clinically approved drugs target proteins that are secreted or cell surface bound. However, further advances in this area have been hindered by the challenging nature of receptor deorphanization, as there are still many secreted and cell-bound proteins with unknown binding partners. Here, we developed an advanced screening platform that combines CRISPR-CAS9 guide-mediated gene activation (CRISPRa) and high-avidity bead-based selection. The CRISPRa platform incorporates serial enrichment and flow cytometry-based monitoring, resulting in substantially improved screening sensitivity for well-known yet weak interactions of the checkpoint inhibitor family. Our approach has successfully revealed that siglec-4 exerts regulatory control over T cell activation through a low affinity trans-interaction with the costimulatory receptor 4-1BB. Our highly efficient screening platform holds great promise for identifying extracellular interactions of uncharacterized receptor-ligand partners, which is essential to develop next-generation therapeutics, including additional immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Timothy P. Sheets
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Guojun Yu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Kuo-Sheng Hsu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Daeho So
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Jaewon Lee
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Ling Lin
- Proteomic Instability of Cancer Section, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Christine N. Evans
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Mary R. Guest
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Lab for Cancer Research, Frederick, MD 21702, USA
| | - Brad St. Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| |
Collapse
|
10
|
Feng Y, Lee J, Yang L, Hilton MB, Morris K, Seaman S, Edupuganti VVSR, Hsu KS, Dower C, Yu G, So D, Bajgain P, Zhu Z, Dimitrov DS, Patel NL, Robinson CM, Difilippantonio S, Dyba M, Corbel A, Basuli F, Swenson RE, Kalen JD, Suthe SR, Hussain M, Italia JS, Souders CA, Gao L, Schnermann MJ, St Croix B. Engineering CD276/B7-H3-targeted antibody-drug conjugates with enhanced cancer-eradicating capability. Cell Rep 2023; 42:113503. [PMID: 38019654 PMCID: PMC10872261 DOI: 10.1016/j.celrep.2023.113503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
CD276/B7-H3 represents a promising target for cancer therapy based on widespread overexpression in both cancer cells and tumor-associated stroma. In previous preclinical studies, CD276 antibody-drug conjugates (ADCs) exploiting a talirine-type pyrrolobenzodiazepine (PBD) payload showed potent activity against various solid tumors but with a narrow therapeutic index and dosing regimen higher than that tolerated in clinical trials using other antibody-talirine conjugates. Here, we describe the development of a modified talirine PBD-based fully human CD276 ADC, called m276-SL-PBD, that is cross-species (human/mouse) reactive and can eradicate large 500-1,000-mm3 triple-negative breast cancer xenografts at doses 10- to 40-fold lower than the maximum tolerated dose. By combining CD276 targeting with judicious genetic and chemical ADC engineering, improved ADC purification, and payload sensitivity screening, these studies demonstrate that the therapeutic index of ADCs can be substantially increased, providing an advanced ADC development platform for potent and selective targeting of multiple solid tumor types.
Collapse
Affiliation(s)
- Yang Feng
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Jaewon Lee
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Mary Beth Hilton
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Karen Morris
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA; Basic Research Program, Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | | | - Kuo-Sheng Hsu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Christopher Dower
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Guojun Yu
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Daeho So
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Pradip Bajgain
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702, USA
| | - Nimit L Patel
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Christina M Robinson
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Simone Difilippantonio
- Animal Research Technical Support, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Marzena Dyba
- Biophysics Resource in the Center for Structural Biology, NCI, NIH, Frederick, MD, USA
| | - Amanda Corbel
- Invention Development Program, Technology Transfer Center, NCI, Frederick, MD 21701, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, NIH, Rockville, MD 20850, USA
| | - Joseph D Kalen
- Small Animal Imaging Program, FNLCR, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | | | | | | | | | - Ling Gao
- Veterans Affairs Long Beach Healthcare System, Long Beach, CA 90822, USA
| | - Martin J Schnermann
- Organic Synthesis Section, Chemical Biology Laboratory, CCR, NCI, Frederick, MD 21702, USA
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| |
Collapse
|
11
|
Kareff SA, Corbett V, Hallenbeck P, Chauhan A. TEM8 in Oncogenesis: Protein Biology, Pre-Clinical Agents, and Clinical Rationale. Cells 2023; 12:2623. [PMID: 37998358 PMCID: PMC10670355 DOI: 10.3390/cells12222623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
The TEM8 protein represents an emerging biomarker in many solid tumor histologies. Given the various roles it plays in oncogenesis, including but not limited to angiogenesis, epithelial-to-mesenchymal transition, and cell migration, TEM8 has recently served and will continue to serve as the target of novel oncologic therapies. We review herein the role of TEM8 in oncogenesis. We review its normal function, highlight the additional roles it plays in the tumor microenvironment, and synthesize pre-clinical and clinical data currently available. We underline the protein's prognostic and predictive abilities in various solid tumors by (1) highlighting its association with more aggressive disease biology and poor clinical outcomes and (2) assessing its associated clinical trial landscape. Finally, we offer future directions for clinical studies involving TEM8, including incorporating pre-clinical agents into clinical trials and combining previously tested oncologic therapies with currently available treatments, such as immunotherapy.
Collapse
Affiliation(s)
- Samuel A. Kareff
- University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33136, USA
| | | | | | - Aman Chauhan
- Division of Medical Oncology, Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
12
|
Song CH, Jeong M, In H, Kim JH, Lin CW, Han KH. Trends in the Development of Antibody-Drug Conjugates for Cancer Therapy. Antibodies (Basel) 2023; 12:72. [PMID: 37987250 PMCID: PMC10660735 DOI: 10.3390/antib12040072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
In cancer treatment, the first-generation, cytotoxic drugs, though effective against cancer cells, also harmed healthy ones. The second-generation targeted cancer cells precisely to inhibit their growth. Enter the third-generation, consisting of immuno-oncology drugs, designed to combat drug resistance and bolster the immune system's defenses. These advanced therapies operate by obstructing the uncontrolled growth and spread of cancer cells through the body, ultimately eliminating them effectively. Within the arsenal of cancer treatment, monoclonal antibodies offer several advantages, including inducing cancer cell apoptosis, precise targeting, prolonged presence in the body, and minimal side effects. A recent development in cancer therapy is Antibody-Drug Conjugates (ADCs), initially developed in the mid-20th century. The second generation of ADCs addressed this issue through innovative antibody modification techniques, such as DAR regulation, amino acid substitutions, incorporation of non-natural amino acids, and enzymatic drug attachment. Currently, a third generation of ADCs is in development. This study presents an overview of 12 available ADCs, reviews 71 recent research papers, and analyzes 128 clinical trial reports. The overarching objective is to gain insights into the prevailing trends in ADC research and development, with a particular focus on emerging frontiers like potential targets, linkers, and drug payloads within the realm of cancer treatment.
Collapse
Affiliation(s)
- Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Minchan Jeong
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Hyukmin In
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Ji Hoe Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406, Taiwan;
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| |
Collapse
|
13
|
Wittwer NL, Brown MP, Liapis V, Staudacher AH. Antibody drug conjugates: hitting the mark in pancreatic cancer? J Exp Clin Cancer Res 2023; 42:280. [PMID: 37880707 PMCID: PMC10598980 DOI: 10.1186/s13046-023-02868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic cancer is one of the most common causes of cancer-related death, and the 5-year survival rate has only improved marginally over the last decade. Late detection of the disease means that in most cases the disease has advanced locally and/or metastasized, and curative surgery is not possible. Chemotherapy is still the first-line treatment however, this has only had a modest impact in improving survival, with associated toxicities. Therefore, there is an urgent need for targeted approaches to better treat pancreatic cancer, while minimizing treatment-induced side-effects. Antibody drug conjugates (ADCs) are one treatment option that could fill this gap. Here, a monoclonal antibody is used to deliver extremely potent drugs directly to the tumor site to improve on-target killing while reducing off-target toxicity. In this paper, we review the current literature for ADC targets that have been examined in vivo for treating pancreatic cancer, summarize current and on-going clinical trials using ADCs to treat pancreatic cancer and discuss potential strategies to improve their therapeutic window.
Collapse
Affiliation(s)
- Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| |
Collapse
|
14
|
Riccardi F, Dal Bo M, Macor P, Toffoli G. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy. Front Pharmacol 2023; 14:1274088. [PMID: 37790810 PMCID: PMC10544916 DOI: 10.3389/fphar.2023.1274088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody-Drug Conjugates (ADCs) represent an innovative class of potent anti-cancer compounds that are widely used in the treatment of hematologic malignancies and solid tumors. Unlike conventional chemotherapeutic drug-based therapies, that are mainly associated with modest specificity and therapeutic benefit, the three key components that form an ADC (a monoclonal antibody bound to a cytotoxic drug via a chemical linker moiety) achieve remarkable improvement in terms of targeted killing of cancer cells and, while sparing healthy tissues, a reduction in systemic side effects caused by off-tumor toxicity. Based on their beneficial mechanism of action, 15 ADCs have been approved to date by the market approval by the Food and Drug Administration (FDA), the European Medicines Agency (EMA) and/or other international governmental agencies for use in clinical oncology, and hundreds are undergoing evaluation in the preclinical and clinical phases. Here, our aim is to provide a comprehensive overview of the key features revolving around ADC therapeutic strategy including their structural and targeting properties, mechanism of action, the role of the tumor microenvironment and review the approved ADCs in clinical oncology, providing discussion regarding their toxicity profile, clinical manifestations and use in novel combination therapies. Finally, we briefly review ADCs in other pathological contexts and provide key information regarding ADC manufacturing and analytical characterization.
Collapse
Affiliation(s)
- Federico Riccardi
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
15
|
Keinänen O, Sarrett SM, Delaney S, Rodriguez C, Dayts EJ, Capone E, Sauniere F, Ippoliti R, Sala G, Iacobelli S, Zeglis BM. Visualizing Galectin-3 Binding Protein Expression with ImmunoPET. Mol Pharm 2023; 20:3241-3248. [PMID: 37191353 PMCID: PMC10245371 DOI: 10.1021/acs.molpharmaceut.3c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Galectin-3 binding protein (Gal-3BP) is a glycoprotein that is overexpressed and secreted by several cancers and has been implicated as a marker of both tumor progression and poor prognosis in melanoma, non-small cell lung cancer, head and neck squamous cell carcinoma, and breast cancer. The expression of Gal-3BP by a variety of neoplasms makes it an enticing target for both diagnostics and therapeutics, including immuno-positron emission tomography (immunoPET) probes and antibody-drug conjugates (ADCs). Herein, we report the development, in vitro characterization, and in vivo evaluation of a pair of Gal-3BP-targeting radioimmunoconjugates for 89Zr-immunoPET. A humanized anti-Gal-3BP antibody, 1959, and its corresponding ADC, 1959-sss/DM4 (DM4 = ravtansine), were modified with desferrioxamine (DFO) to yield DFO-1959 and DFO-1959-sss/DM4 immunoconjugates bearing 1-2 DFO/monoclonal antibody. Both DFO-modified immunoconjugates retained their affinity for Gal-3BP in enzyme-linked immunosorbent assay experiments. The chelator-bearing antibodies were radiolabeled with zirconium-89 (t1/2 ≈ 3.3 d) to produce radioimmunoconjugates ─ [89Zr]Zr-DFO-1959 and [89Zr]Zr-DFO-1959-sss/DM4 ─ with high specific activity (>444 MBq/mg, >12 mCi/mg) and stability (>80% intact after 168 h in human serum at 37 °C). In mice bearing subcutaneous Gal-3BP-secreting A375-MA1 xenografts, [89Zr]Zr-DFO-1959 clearly delineated tumor tissue, reaching a maximum tumoral activity concentration (54.8 ± 15.8%ID/g) and tumor-to-background contrast (tumor-to-blood = 8.0 ± 4.6) at 120 h post-injection. The administration of [89Zr]Zr-DFO-1959 to mice bearing subcutaneous Gal-3BP-expressing melanoma patient-derived xenografts produced similarly promising results. [89Zr]Zr-DFO-1959 and [89Zr]Zr-DFO-1959-sss/DM4 exhibited nearly identical pharmacokinetic profiles in the mice bearing A375-MA1 tumors, though the latter produced higher uptake in the spleen and kidneys. Both [89Zr]Zr-DFO-1959 and [89Zr]Zr-DFO-1959-sss/DM4 effectively visualized Gal-3BP-secreting tumors in murine models of melanoma. These results suggest that both probes could play a role in the clinical imaging of Gal-3BP-expressing malignancies, particularly as companion theranostics for the identification of patients likely to respond to Gal-3BP-targeted therapeutics such as 1959-sss/DM4.
Collapse
Affiliation(s)
- Outi Keinänen
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Chemistry, University of Helsinki, Helsinki 00014, Finland
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
| | - Samantha M. Sarrett
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
- Ph.D.
Program in Biochemistry, Graduate Center
of the City University of New York, New York 10016, New
York, United States
| | - Samantha Delaney
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
- Ph.D.
Program in Biochemistry, Graduate Center
of the City University of New York, New York 10016, New
York, United States
| | - Cindy Rodriguez
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York 10016, New
York, United States
| | - Eric J. Dayts
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
| | - Emily Capone
- Department
of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti 66100, Italy
- Mediapharma
srl, Chieti 66013, Italy
- Center
for Advanced Studies and Technology, Chieti 66100, Italy
| | | | - Rodolfo Ippoliti
- Department
of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila 67100, Italy
| | - Gianluca Sala
- Department
of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti 66100, Italy
- Mediapharma
srl, Chieti 66013, Italy
- Center
for Advanced Studies and Technology, Chieti 66100, Italy
| | | | - Brian M. Zeglis
- Department
of Chemistry, Hunter College, City University
of New York, New York 10021, New York, United
States
- Department
of Radiology, Memorial Sloan Kettering Cancer
Center, New York 10065, New York, United
States
- Ph.D.
Program in Biochemistry, Graduate Center
of the City University of New York, New York 10016, New
York, United States
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York 10016, New
York, United States
- Department
of Radiology, Weill Cornell Medical College, New York 10021, New York, United States
| |
Collapse
|
16
|
Bordeau BM, Nguyen TD, Polli JR, Chen P, Balthasar JP. Payload-Binding Fab Fragments Increase the Therapeutic Index of MMAE Antibody-Drug Conjugates. Mol Cancer Ther 2023; 22:459-470. [PMID: 36723609 PMCID: PMC10073278 DOI: 10.1158/1535-7163.mct-22-0440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/12/2022] [Accepted: 01/27/2023] [Indexed: 02/02/2023]
Abstract
Monomethyl auristatin E (MMAE) is a potent tubulin inhibitor that is used as the payload for four FDA-approved antibody-drug conjugates (ADC). Deconjugated MMAE readily diffuses into untargeted cells, resulting in off-target toxicity. Here, we report the development and evaluation of a humanized Fab fragment (ABC3315) that enhances the therapeutic selectivity of MMAE ADCs. ABC3315 increased the IC50 of MMAE against human cancer cell lines by > 500-fold with no impact on the cytotoxicity of MMAE ADCs, including polatuzumab vedotin (PV) and trastuzumab-vc-MMAE (TvcMMAE). Coadministration of ABC3315 did not reduce the efficacy of PV or TvcMMAE in xenograft tumor models. Coadministration of ABC3315 with 80 mg/kg TvcMMAE significantly (P < 0.0001) increased the cumulative amount of MMAE that was excreted in urine 0 to 4 days after administration from 789.4±19.0 nanograms (TvcMMAE alone) to 2625±206.8 nanograms (for mice receiving TvcMMAE with coadministration of ABC3315). Mice receiving 80 mg/kg TvcMMAE and PBS exhibited a significant drop in white blood cell counts (P = 0.025) and red blood cell counts (P = 0.0083) in comparison with control mice. No significant differences, relative to control mice, were found for white blood cell counts (P = 0.15) or for red blood cell counts (P = 0.23) for mice treated with 80 mg/kg TvcMMAE and ABC3315. Coadministration of ABC3315 with 120 mg/kg PV significantly (P = 0.045) decreased the percentage body weight loss at nadir for treated mice from 11.9%±7.0% to 4.1%±2.1%. Our results demonstrate that ABC3315, an anti-MMAE Fab fragment, decreases off-target toxicity while not decreasing antitumor efficacy, increasing the therapeutic window of MMAE ADCs.
Collapse
Affiliation(s)
- Brandon M. Bordeau
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Toan Duc Nguyen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Joseph Ryan Polli
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Ping Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| | - Joseph P. Balthasar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214
| |
Collapse
|
17
|
ANTXR1 as a potential sensor of extracellular mechanical cues. Acta Biomater 2023; 158:80-86. [PMID: 36638946 DOI: 10.1016/j.actbio.2023.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
Cell adhesion molecules mediate cell-cell or cell-matrix interactions, some of which are mechanical sensors, such as integrins. Emerging evidence indicates that anthrax toxin receptor 1 (ANTXR1), a newly identified cell adhesion molecule, can also sense extracellular mechanical signals such as hydrostatic pressure and extracellular matrix (ECM) rigidity. ANTXR1 can interact with ECM through connecting intracellular cytoskeleton and ECM molecules (just like integrins) to regulate numerous biological processes, such as cell adhesion, cell migration or ECM homeostasis. Although with high structural similarity to integrins, its functions and downstream signal transduction are independent from those of integrins. In this perspective, based on existing evidence in literature, we analyzed the structural and functional evidence that ANTXR1 can act as a potential sensor for extracellular mechanical cues. To our knowledge, this is the first in-depth overview of ANTXR1 from the perspective of mechanobiology. STATEMENT OF SIGNIFICANCE: An overview of ANTXR1 from the perspective of mechanobiology; An analysis of mechanical sensitivity of ANTXR1 in structure and function; A summary of existing evidence of ANTXR1 as a potential mechanosensor.
Collapse
|
18
|
Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol 2023; 16:3. [PMID: 36650546 PMCID: PMC9847035 DOI: 10.1186/s13045-022-01397-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is a fast moving class of targeted biotherapeutics that currently combines the selectivity of monoclonal antibodies with the potency of a payload consisting of cytotoxic agents. For many years microtubule targeting and DNA-intercalating agents were at the forefront of ADC development. The recent approval and clinical success of trastuzumab deruxtecan (Enhertu®) and sacituzumab govitecan (Trodelvy®), two topoisomerase 1 inhibitor-based ADCs, has shown the potential of conjugating unconventional payloads with differentiated mechanisms of action. Among future developments in the ADC field, payload diversification is expected to play a key role as illustrated by a growing number of preclinical and clinical stage unconventional payload-conjugated ADCs. This review presents a comprehensive overview of validated, forgotten and newly developed payloads with different mechanisms of action.
Collapse
|
19
|
Progresses, Challenges, and Prospects of CRISPR/Cas9 Gene-Editing in Glioma Studies. Cancers (Basel) 2023; 15:cancers15020396. [PMID: 36672345 PMCID: PMC9856991 DOI: 10.3390/cancers15020396] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Glioma refers to a tumor that is derived from brain glial stem cells or progenitor cells and is the most common primary intracranial tumor. Due to its complex cellular components, as well as the aggressiveness and specificity of the pathogenic site of glioma, most patients with malignant glioma have poor prognoses following surgeries, radiotherapies, and chemotherapies. In recent years, an increasing amount of research has focused on the use of CRISPR/Cas9 gene-editing technology in the treatment of glioma. As an emerging gene-editing technology, CRISPR/Cas9 utilizes the expression of certain functional proteins to repair tissues or treat gene-deficient diseases and could be applied to immunotherapies through the expression of antigens, antibodies, or receptors. In addition, some research also utilized CRISPR/Cas9 to establish tumor models so as to study tumor pathogenesis and screen tumor prognostic targets. This paper mainly discusses the roles of CRISPR/Cas9 in the treatment of glioma patients, the exploration of the pathogenesis of neuroglioma, and the screening targets for clinical prognosis. This paper also raises the future research prospects of CRISPR/Cas9 in glioma, as well as the opportunities and challenges that it will face in clinical treatment in the future.
Collapse
|
20
|
Hsu KS, Dunleavey JM, Szot C, Yang L, Hilton MB, Morris K, Seaman S, Feng Y, Lutz EM, Koogle R, Tomassoni-Ardori F, Saha S, Zhang XM, Zudaire E, Bajgain P, Rose J, Zhu Z, Dimitrov DS, Cuttitta F, Emenaker NJ, Tessarollo L, St. Croix B. Cancer cell survival depends on collagen uptake into tumor-associated stroma. Nat Commun 2022; 13:7078. [PMID: 36400786 PMCID: PMC9674701 DOI: 10.1038/s41467-022-34643-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/01/2022] [Indexed: 11/19/2022] Open
Abstract
Collagen I, the most abundant protein in humans, is ubiquitous in solid tumors where it provides a rich source of exploitable metabolic fuel for cancer cells. While tumor cells were unable to exploit collagen directly, here we show they can usurp metabolic byproducts of collagen-consuming tumor-associated stroma. Using genetically engineered mouse models, we discovered that solid tumor growth depends upon collagen binding and uptake mediated by the TEM8/ANTXR1 cell surface protein in tumor-associated stroma. Tumor-associated stromal cells processed collagen into glutamine, which was then released and internalized by cancer cells. Under chronic nutrient starvation, a condition driven by the high metabolic demand of tumors, cancer cells exploited glutamine to survive, an effect that could be reversed by blocking collagen uptake with TEM8 neutralizing antibodies. These studies reveal that cancer cells exploit collagen-consuming stromal cells for survival, exposing an important vulnerability across solid tumors with implications for developing improved anticancer therapy.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - James M. Dunleavey
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Christopher Szot
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Liping Yang
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Mary Beth Hilton
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA ,grid.418021.e0000 0004 0535 8394Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702 USA
| | - Karen Morris
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA ,grid.418021.e0000 0004 0535 8394Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702 USA
| | - Steven Seaman
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Yang Feng
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Emily M. Lutz
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Robert Koogle
- grid.418021.e0000 0004 0535 8394MCGP, NCI, Frederick, MD 21702 USA
| | | | - Saurabh Saha
- BioMed Valley Discoveries, Inc, Kansas City, MO 64111 USA ,Present Address: Centessa Pharmaceuticals, Cambridge, MA 02139 USA
| | - Xiaoyan M. Zhang
- BioMed Valley Discoveries, Inc, Kansas City, MO 64111 USA ,Present Address: Ikena Oncology, Cambridge, MA 02210 USA
| | - Enrique Zudaire
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA ,Present Address: Janssen Pharmaceutical Companies, J&J, R&D, Welsh Road McKean Road, Spring House, PA 19477 USA
| | - Pradip Bajgain
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Joshua Rose
- grid.48336.3a0000 0004 1936 8075Biomolecular Structure Section, Center for Structural Biology, NCI, NIH, Frederick, MD 21702 USA
| | - Zhongyu Zhu
- grid.48336.3a0000 0004 1936 8075Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702 USA ,grid.420872.bPresent Address: Lentigen Technology, Inc. 1201 Clopper Road, Gaithersburg, MD 20878 USA
| | - Dimiter S. Dimitrov
- grid.48336.3a0000 0004 1936 8075Protein Interactions Section, Cancer and Inflammation Program, NCI, NIH, Frederick, MD 21702 USA ,grid.21925.3d0000 0004 1936 9000Present Address: Center for Antibody Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 USA
| | - Frank Cuttitta
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Nancy J. Emenaker
- grid.48336.3a0000 0004 1936 8075Division of Cancer Prevention, NCI, NIH, Bethesda, MD 20892 USA
| | - Lino Tessarollo
- grid.48336.3a0000 0004 1936 8075Neural Development Section, MCGP, NCI, NIH, Frederick, MD 21702 USA
| | - Brad St. Croix
- grid.48336.3a0000 0004 1936 8075Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| |
Collapse
|
21
|
Metzger D, Miller K, Lyon W, Migliozzi R, Pangburn HA, Saldanha R. Host Cell Transcriptional Tuning with CRISPR/dCas9 to Mitigate the Effects of Toxin Exposure. ACS Synth Biol 2022; 11:3657-3668. [PMID: 36318971 DOI: 10.1021/acssynbio.2c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anthrax infection is caused byBacillus anthracis, a bacterium that once established within the host releases lethal toxin (LeTx). Anthrax LeTx is internalized by the capillary morphogenesis protein 2/anthrax toxin receptor 2 (CMG2/ANTXR2) cell surface receptor on mammalian cells. Once inside the cell, LeTx cleaves mitogen-activated protein kinases (MAPKs), ultimately leading to cell death. Previous reports have shown that decreased expression of ANTXR2 reduces cell susceptibility to LeTx. By ablating the ANTXR2 gene in cells in vitro, we observed complete resistance to LeTx-induced cell death. Here, we directed CRISPR/dCas9-based tools to the ANTXR2 promoter to modulate ANTXR2 expression without altering the underlying gene sequence in human cell lines that express the receptor at high levels. We hypothesized that downregulating the expression of the ANTXR2 gene at the genomic level would mitigate the impact of toxin exposure. In one epigenetic editing approach, we employed the fusion of DNMT3A DNA methyltransferase and dCas9 (dCas9-DNMT3A) to methylate CpGs within the CpG island of the ANTXR2 promoter and found this repressed ANTXR2 gene expression resulting in significant resistance to LeTx-induced cell death. Furthermore, by multiplexing gRNAs to direct dCas9-DNMT3A to multiple sites in the ANTXR2 promoter, we applied a broader distribution of CpG methylation along the gene promoter resulting in enhanced repression and resistance to LeTx. In parallel, we directed the dCas9-KRAB-MeCP2 transcriptional repressor to the ANTXR2 promoter to quickly and robustly repress ANTXR2 expression. With this approach, in as little as two weeks, we created resistance to LeTx at a similar level to ANTXR2 gene-ablated cells. Overall, we present a transcriptional tuning approach to inhibit the effects of LeTx and provide a framework to repress toxin-binding cell surface receptors.
Collapse
Affiliation(s)
- David Metzger
- UES, Inc., assigned to 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45432, United States
| | - Kennedy Miller
- UES, Inc., assigned to 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45432, United States
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16801, United States
| | - Wanda Lyon
- Airman Bioengineering Division, 711 Human Performance Wing, Air Force Research Lab, Wright-Patterson AFB, Ohio 45433, United States
| | - Rebecca Migliozzi
- UES, Inc., assigned to 711 Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45432, United States
| | - Heather A Pangburn
- Airman Bioengineering Division, 711 Human Performance Wing, Air Force Research Lab, Wright-Patterson AFB, Ohio 45433, United States
| | - Roland Saldanha
- Airman Bioengineering Division, 711 Human Performance Wing, Air Force Research Lab, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
22
|
Wu M, Huang W, Yang N, Liu Y. Learn from antibody–drug conjugates: consideration in the future construction of peptide-drug conjugates for cancer therapy. Exp Hematol Oncol 2022; 11:93. [DOI: 10.1186/s40164-022-00347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCancer is one of the leading causes of death worldwide due to high heterogeneity. Although chemotherapy remains the mainstay of cancer therapy, non-selective toxicity and drug resistance of mono-chemotherapy incur broad criticisms. Subsequently, various combination strategies have been developed to improve clinical efficacy, also known as cocktail therapy. However, conventional “cocktail administration” is just passable, due to the potential toxicities to normal tissues and unsatisfactory synergistic effects, especially for the combined drugs with different pharmacokinetic properties. The drug conjugates through coupling the conventional chemotherapeutics to a carrier (such as antibody and peptide) provide an alternative strategy to improve therapeutic efficacy and simultaneously reduce the unspecific toxicities, by virtue of the advantages of highly specific targeting ability and potent killing effect. Although 14 antibody–drug conjugates (ADCs) have been approved worldwide and more are being investigated in clinical trials so far, several limitations have been disclosed during clinical application. Compared with ADCs, peptide-drug conjugates (PDCs) possess several advantages, including easy industrial synthesis, low cost, high tissue penetration and fast clearance. So far, only a handful of PDCs have been approved, highlighting tremendous development potential. Herein, we discuss the progress and pitfalls in the development of ADCs and underline what can learn from ADCs for the better construction of PDCs in the future.
Collapse
|
23
|
Takahashi K, Yasui H, Taki S, Shimizu M, Koike C, Taki K, Yukawa H, Baba Y, Kobayashi H, Sato K. Near-infrared-induced drug release from antibody-drug double conjugates exerts a cytotoxic photo-bystander effect. Bioeng Transl Med 2022; 7:e10388. [PMID: 36176626 PMCID: PMC9471993 DOI: 10.1002/btm2.10388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/21/2022] [Accepted: 07/16/2022] [Indexed: 11/23/2022] Open
Abstract
Ideal cancer treatments specifically target and eradicate tumor cells without affecting healthy cells. Therefore, antibody-based therapies that specifically target cancer antigens can be considered ideal cancer therapies. Antibodies linked with small-molecule drugs (i.e., antibody-drug conjugates [ADCs]) are widely used in clinics as antibody-based therapeutics. However, because tumors express antigens heterogeneously, greater target specificity and stable binding of noncleavable linkers in ADCs limit their antitumor effects. To overcome this problem, strategies, including decreasing the binding strength, conjugating more drugs, and targeting tumor stroma, have been applied, albeit with limited success. Thus, further technological advancements are required to remotely control the ADCs. Here, we described a drug that is photo-releasable from an ADC created via simple double conjugation and its antitumor effects both on target and nontarget tumor cells. Specifically, noncleavable T-DM1 was conjugated with IR700DX to produce T-DM1-IR700. Although T-DM1-IR700 itself is noncleavable, with NIR-light irradiation, it can release DM1-derivatives which elicited antitumor effect in vitro mixed culture and in vivo mixed tumor model which are mimicking heterogeneous tumor-antigen expression same as real clinical tumors. This cytotoxic photo-bystander effect occurred in various types mixed cultures in vitro, and changing antibodies also exerted photo-bystander effects, suggesting that this technology can be used for targeting various specific cancer antigens. These findings can potentially aid the development of strategies to address challenges associated with tumor expression of heterogeneous antigen.
Collapse
Affiliation(s)
- Kazuomi Takahashi
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Hirotoshi Yasui
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Shunichi Taki
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Misae Shimizu
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
| | - Chiaki Koike
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
| | - Kentaro Taki
- Division for Medical Research EngineeringNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
| | - Hiroshi Yukawa
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
- Institute of Nano‐Life‐Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- Department of Biomolecular EngineeringNagoya University Graduate School of EngineeringNagoyaJapan
| | - Yoshinobu Baba
- Institute of Nano‐Life‐Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- Department of Biomolecular EngineeringNagoya University Graduate School of EngineeringNagoyaJapan
| | - Hisataka Kobayashi
- Molecular Imaging ProgramNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Kazuhide Sato
- Department of Respiratory MedicineNagoya University Graduate School of MedicineShowa‐kuNagoyaJapan
- Nagoya University Institute for Advanced ResearchAdvanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 UnitShowa‐kuNagoyaJapan
- Institute of Nano‐Life‐Systems, Institutes of Innovation for Future SocietyNagoya UniversityNagoyaJapan
- FOREST‐Souhatsu, CREST, JSTChiyoda‐kuTokyoJapan
- Nagoya University Institute for Advanced Research, S‐YLCJapan
| |
Collapse
|
24
|
Kaminski MF, Bendzick L, Hopps R, Kauffman M, Kodal B, Soignier Y, Hinderlie P, Walker JT, Lenvik TR, Geller MA, Miller JS, Felices M. TEM8 Tri-specific Killer Engager binds both tumor and tumor stroma to specifically engage natural killer cell anti-tumor activity. J Immunother Cancer 2022; 10:e004725. [PMID: 36162918 PMCID: PMC9516302 DOI: 10.1136/jitc-2022-004725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The tumor microenvironment contains stromal cells, including endothelial cells and fibroblasts, that aid tumor growth and impair immune cell function. Many solid tumors remain difficult to cure because of tumor-promoting stromal cells, but current therapies targeting tumor stromal cells are constrained by modest efficacy and toxicities. TEM8 is a surface antigen selectively upregulated on tumor and tumor stromal cells, endothelial cells and fibroblasts that may be targeted with specific natural killer (NK) cell engagement. METHODS A Tri-specific Killer Engager (TriKE) against TEM8-'cam1615TEM8'-was generated using a mammalian expression system. Its function on NK cells was assessed by evaluation of degranulation, inflammatory cytokine production, and killing against tumor and stroma cell lines in standard co-culture and spheroid assays. cam1615TEM8-mediated proliferation and STAT5 phosphorylation in NK cells was tested and compared with T cells by flow cytometry. NK cell proliferation, tumor infiltration, and tumor and tumor-endothelium killing by cam1615TEM8 and interleukin-15 (IL-15) were assessed in NOD scid gamma (NSG) mice. RESULTS cam1615TEM8 selectively stimulates NK cell degranulation and inflammatory cytokine production against TEM8-expressing tumor and stromal cell lines. The increased activation translated to superior NK cell killing of TEM8-expressing tumor spheroids. cam1615TEM8 selectively stimulated NK cell but not T cell proliferation in vitro and enhanced NK cell proliferation, survival, and tumor infiltration in vivo. Finally, cam1615TEM8 stimulated NK cell killing of tumor and tumor endothelial cells in vivo. CONCLUSIONS Our findings indicate that the cam1615TEM8 TriKE is a novel anti-tumor, anti-stroma, and anti-angiogenic cancer therapy for patients with solid tumors. This multifunctional molecule works by selectively targeting and activating NK cells by costimulation with IL-15, and then targeting that activity to TEM8+ tumor cells and TEM8+ tumor stroma.
Collapse
Affiliation(s)
- Michael F Kaminski
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Laura Bendzick
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Rachel Hopps
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Marissa Kauffman
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Behiye Kodal
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Yvette Soignier
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Peter Hinderlie
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Joshua T Walker
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Todd R Lenvik
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Melissa A Geller
- Obstetrics, Gynecology and Women's Health, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Jeffrey S Miller
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Martin Felices
- Hematology, Oncology, and Transplantation, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| |
Collapse
|
25
|
Corbett V, Hallenbeck P, Rychahou P, Chauhan A. Evolving role of seneca valley virus and its biomarker TEM8/ANTXR1 in cancer therapeutics. Front Mol Biosci 2022; 9:930207. [PMID: 36090051 PMCID: PMC9458967 DOI: 10.3389/fmolb.2022.930207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have made a significant inroad in cancer drug development. Numerous clinical trials are currently investigating oncolytic viruses both as single agents or in combination with various immunomodulators. Oncolytic viruses (OV) are an integral pillar of immuno-oncology and hold potential for not only delivering durable anti-tumor responses but also converting “cold” tumors to “hot” tumors. In this review we will discuss one such promising oncolytic virus called Seneca Valley Virus (SVV-001) and its therapeutic implications. SVV development has seen seismic evolution over the past decade and now boasts of being the only OV with a practically applicable biomarker for viral tropism. We discuss relevant preclinical and clinical data involving SVV and how bio-selecting for TEM8/ANTXR1, a negative tumor prognosticator can lead to first of its kind biomarker driven oncolytic viral cancer therapy.
Collapse
Affiliation(s)
- Virginia Corbett
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Piotr Rychahou
- Department of Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Aman Chauhan
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Aman Chauhan,
| |
Collapse
|
26
|
Miyazaki T, Chen S, Florinas S, Igarashi K, Matsumoto Y, Yamasoba T, Xu ZQ, Wu H, Gao C, Kataoka K, Christie RJ, Cabral H. A Hoechst Reporter Enables Visualization of Drug Engagement In Vitro and In Vivo: Toward Safe and Effective Nanodrug Delivery. ACS NANO 2022; 16:12290-12304. [PMID: 35942986 DOI: 10.1021/acsnano.2c03170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Assessment of drug activation and subsequent interaction with targets in living tissues could guide nanomedicine design, but technologies enabling insight into how a drug reaches and binds its target are limited. We show that a Hoechst-based reporter system can monitor drug release and engagement from a nanoparticle delivery system in vitro and in vivo, elucidating differences in target-bound drug distribution related to drug-linker and nanoparticle properties. Drug engagement is defined as chemical detachment of drug or reporter from a nanoparticle and subsequent binding to a subcellular target, which in the case of Hoechst results in a fluorescence signal. Hoechst-based nanoreporters for drug activation contain prodrug elements such as dipeptide linkers, conjugation handles, and nanoparticle modifications such as targeting ligands to determine how nanomedicine design affects distribution of drug engaged with a subcellular target, which is tracked via cellular nuclear fluorescence in situ. Furthermore, the nanoplatform is amenable toward common maleimide-based linkers found in many prodrug-based delivery systems including polymer-, peptide-, and antibody-drug conjugates. Findings from the Hoechst reporter system were applied to develop highly potent, targeted, anticancer micelle nanoparticles delivering a monomethyl auristatin E (MMAE) prodrug comprising the same linkers employed in Hoechst studies. MMAE nanomedicine with the optimal drug-linker resulted in effective tumor growth inhibition in mice without associated acute toxicity, whereas the nonoptimal linker that showed broader drug activation in Hoechst reporter studies resulted in severe toxicity. Our results demonstrate the potential to synergize direct visualization of drug engagement with nanomedicine drug-linker design to optimize safety and efficacy.
Collapse
Affiliation(s)
- Takuya Miyazaki
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Shaoyi Chen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Stelios Florinas
- Antibody Discovery and Protein Engineering, AstraZeneca R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Kazunori Igarashi
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yu Matsumoto
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ze-Qi Xu
- SynChem, Inc., Elk Grove Village, Illinois 60007, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering, AstraZeneca R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering, AstraZeneca R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - R James Christie
- Antibody Discovery and Protein Engineering, AstraZeneca R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
- Biologics Engineering, AstraZeneca Oncology R&D, 1 MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
27
|
Matikonda SS, McLaughlin R, Shrestha P, Lipshultz C, Schnermann MJ. Structure-Activity Relationships of Antibody-Drug Conjugates: A Systematic Review of Chemistry on the Trastuzumab Scaffold. Bioconjug Chem 2022; 33:1241-1253. [PMID: 35801843 DOI: 10.1021/acs.bioconjchem.2c00177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) are a rapidly growing class of cancer therapeutics that seek to overcome the low therapeutic index of conventional cytotoxic agents. However, realizing this goal has been a significant challenge. ADCs comprise several independently modifiable components, including the antibody, payload, linker, and bioconjugation method. Many approaches have been developed to improve the physical properties, potency, and selectivity of ADCs. The anti-HER-2 antibody trastuzumab, first approved in 1998, has emerged as an exceptional targeting agent for ADCs, as well as a broadly used platform for testing new technologies. The extensive work in this area enables the comparison of various linker strategies, payloads, drug-to-antibody ratios (DAR), and mode of attachment. In this review, these conjugates, ranging from the first clinically approved trastuzumab ADC, ado-trastuzumab emtansine (Kadcyla), to the latest variants are described with the goal of providing a broad overview, as well as enabling the comparison of existing and emerging conjugate technologies.
Collapse
Affiliation(s)
- Siddharth S Matikonda
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Ryan McLaughlin
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Pradeep Shrestha
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Carol Lipshultz
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, NIH/NCI/CCR, 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
28
|
Kim I, Choi S, Yoo S, Lee M, Kim IS. Cancer-Associated Fibroblasts in the Hypoxic Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14143321. [PMID: 35884382 PMCID: PMC9320406 DOI: 10.3390/cancers14143321] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cancers have regions of low oxygen concentration where hypoxia-related signaling pathways are activated. The hypoxic tumor microenvironment has been widely accepted as a hallmark of cancer and shown to be a critical factor in the crosstalk between cancer and stromal cells. Fibroblasts are one of the most abundant cellular components in the tumor stroma and are also significantly affected by oxygen deprivation. In this case, we discuss the molecular and cellular mechanisms that regulate fibroblasts under hypoxic conditions and their effect on cancer development and progression. Unraveling these regulatory mechanisms could be exploited in developing potential fibroblast-specific therapeutics for cancer. Abstract Solid cancers are composed of malignant cells and their surrounding matrix components. Hypoxia plays a critical role in shaping the tumor microenvironment that contributes to cancer progression and treatment failure. Cancer-associated fibroblasts (CAFs) are one of the most prominent components of the tumor microenvironment. CAFs are highly sensitive to hypoxia and participates in the crosstalk with cancer cells. Hypoxic CAFs modulate several mechanisms that induce cancer malignancy, such as extracellular matrix (ECM) remodeling, immune evasion, metabolic reprogramming, angiogenesis, metastasis, and drug resistance. Key signaling molecules regulating CAFs in hypoxia include transforming growth factor (TGF-β) and hypoxia-inducible factors (HIFs). In this article, we summarize the mechanisms underlying the hypoxic regulation of CAFs and how hypoxic CAFs affect cancer development and progression. We also discuss the potential therapeutic strategies focused on targeting CAFs in the hypoxic tumor microenvironment.
Collapse
Affiliation(s)
- Iljin Kim
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, Korea; (S.C.); (S.Y.)
- Correspondence: (I.K.); (I.-S.K.)
| | - Sanga Choi
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, Korea; (S.C.); (S.Y.)
| | - Seongkyeong Yoo
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, Korea; (S.C.); (S.Y.)
| | - Mingyu Lee
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, Korea
- Correspondence: (I.K.); (I.-S.K.)
| |
Collapse
|
29
|
Jin Y, Edalatian Zakeri S, Bahal R, Wiemer AJ. New Technologies Bloom Together for Bettering Cancer Drug Conjugates. Pharmacol Rev 2022; 74:680-711. [PMID: 35710136 PMCID: PMC9553120 DOI: 10.1124/pharmrev.121.000499] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug conjugates, including antibody-drug conjugates, are a step toward realizing Paul Ehrlich's idea from over 100 years ago of a "magic bullet" for cancer treatment. Through balancing selective targeting molecules with highly potent payloads, drug conjugates can target specific tumor microenvironments and kill tumor cells. A drug conjugate consists of three parts: a targeting agent, a linker, and a payload. In some conjugates, monoclonal antibodies act as the targeting agent, but new strategies for targeting include antibody derivatives, peptides, and even small molecules. Linkers are responsible for connecting the payload to the targeting agent. Payloads impact vital cellular processes to kill tumor cells. At present, there are 12 antibody-drug conjugates on the market for different types of cancers. Research on drug conjugates is increasing year by year to solve problems encountered in conjugate design, such as tumor heterogeneity, poor circulation, low drug loading, low tumor uptake, and heterogenous expression of target antigens. This review highlights some important preclinical research on drug conjugates in recent years. We focus on three significant areas: improvement of antibody-drug conjugates, identification of new conjugate targets, and development of new types of drug conjugates, including nanotechnology. We close by highlighting the critical barriers to clinical translation and the open questions going forward. SIGNIFICANCE STATEMENT: The development of anticancer drug conjugates is now focused in three broad areas: improvements to existing antibody drug conjugates, identification of new targets, and development of new conjugate forms. This article focuses on the exciting preclinical studies in these three areas and advances in the technology that improves preclinical development.
Collapse
Affiliation(s)
- Yiming Jin
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | | | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| | - Andrew J Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
30
|
Li M, Mei S, Yang Y, Shen Y, Chen L. Strategies to mitigate the on- and off-target toxicities of recombinant immunotoxins: an antibody engineering perspective. Antib Ther 2022; 5:164-176. [PMID: 35928456 PMCID: PMC9344849 DOI: 10.1093/abt/tbac014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 06/14/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Targeted cancer therapies using immunotoxins has achieved remarkable efficacies in hematological malignancies. However, the clinical development of immunotoxins is also faced with many challenges like anti-drug antibodies and dose-limiting toxicity issues. Such a poor efficacy/safety ratio is also the major hurdle in the research and development of antibody-drug conjugates. From an antibody engineering perspective, various strategies were summarized/proposed to tackle the notorious on target off tumor toxicity issues, including passive strategy (XTENylation of immunotoxins) and active strategies (modulating the affinity and valency of the targeting moiety of immunotoxins, conditionally activating immunotoxins in the tumor microenvironments and reconstituting split toxin to reduce systemic toxicity etc.). By modulating the functional characteristics of the targeting moiety and the toxic moiety of immunotoxins, selective tumor targeting can be augmented while sparing the healthy cells in normal tissues expressing the same target of interest. If successful, the improved therapeutic index will likely help to address the dose-limiting toxicities commonly observed in the clinical trials of various immunotoxins.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Postgraduate , Jiangxi University of Traditional Chinese Medicine, Nanchang, P.R. China
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
| | - Sen Mei
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
| | - Yi Yang
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Yuelei Shen
- Joint Graduate School , Yangtze Delta Drug Advanced Research Institute, Nantong, P.R. China
- Joint Graduate School , Yangtze Delta Pharmaceutical College, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
- Institute of Innovative Medicine , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| | - Lei Chen
- Biotherapeutics , Biocytogen Jiangsu Co. Ltd, Nantong, P.R. China
- Biotherapeutics , Biocytogen Pharmaceuticals (Beijing) Co, Ltd, Beijing, P.R. China
| |
Collapse
|
31
|
Menon S, Parakh S, Scott AM, Gan HK. Antibody-drug conjugates: beyond current approvals and potential future strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:252-277. [PMID: 36046842 PMCID: PMC9400743 DOI: 10.37349/etat.2022.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
The recent approvals for antibody-drug conjugates (ADCs) in multiple malignancies in recent years have fuelled the ongoing development of this class of drugs. These novel agents combine the benefits of high specific targeting of oncogenic cell surface antigens with the additional cell kill from high potency cytotoxic payloads, thus achieving wider therapeutic windows. This review will summarise the clinical activity of ADCs in tumour types not covered elsewhere in this issue, such as gastrointestinal (GI) and genitourinary (GU) cancers and glioblastoma (GBM). In addition to the ongoing clinical testing of existing ADCs, there is substantial preclinical and early phase testing of newer ADCs or ADC incorporating strategies. This review will provide selected insights into such future development, focusing on the development of novel ADCs against new antigen targets in the tumour microenvironment (TME) and combination of ADCs with immuno-oncology (IO) agents.
Collapse
Affiliation(s)
- Siddharth Menon
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Sagun Parakh
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Andrew M. Scott
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| | - Hui K. Gan
- Olivia Newton-John Cancer Centre at Austin Health, Olivia Newton-John Cancer Wellness & Research Centre, Heidelberg Victoria 3084, Australia;College of Science, Health and Engineering, La Trobe University, Melbourne Victoria 3086, Australia
| |
Collapse
|
32
|
Emerging Nanotherapeutic Approaches to Overcome Drug Resistance in Cancers with Update on Clinical Trials. Pharmaceutics 2022; 14:pharmaceutics14040866. [PMID: 35456698 PMCID: PMC9028322 DOI: 10.3390/pharmaceutics14040866] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
A key issue with modern cancer treatments is the emergence of resistance to conventional chemotherapy and molecularly targeted medicines. Cancer nanotherapeutics were created in order to overcome the inherent limitations of traditional chemotherapeutics. Over the last few decades, cancer nanotherapeutics provided unparalleled opportunities to understand and overcome drug resistance through clinical assessment of rationally designed nanoparticulate delivery systems. In this context, various design strategies such as passive targeting, active targeting, nano-drug, and multimodal nano-drug combination therapy provided effective cancer treatment. Even though cancer nanotherapy has made great technological progress, tumor biology complexity and heterogeneity and a lack of comprehensive knowledge of nano-bio interactions remain important roadblocks to future clinical translation and commercialization. The current developments and advancements in cancer nanotherapeutics employing a wide variety of nanomaterial-based platforms to overcome cancer treatment resistance are discussed in this article. There is also a review of various nanotherapeutics-based approaches to cancer therapy, including targeting strategies for the tumor microenvironment and its components, advanced delivery systems for specific targeting of cancer stem cells (CSC), as well as exosomes for delivery strategies, and an update on clinical trials. Finally, challenges and the future perspective of the cancer nanotherapeutics to reverse cancer drug resistance are discussed.
Collapse
|
33
|
Luo D, Wang H, Wang Q, Liang W, Liu B, Xue D, Yang Y, Ma B. Senecavirus A as an Oncolytic Virus: Prospects, Challenges and Development Directions. Front Oncol 2022; 12:839536. [PMID: 35371972 PMCID: PMC8968071 DOI: 10.3389/fonc.2022.839536] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have the capacity to selectively kill infected tumor cells and trigger protective immunity. As such, oncolytic virotherapy has become a promising immunotherapy strategy against cancer. A variety of viruses from different families have been proven to have oncolytic potential. Senecavirus A (SVA) was the first picornavirus to be tested in humans for its oncolytic potential and was shown to penetrate solid tumors through the vascular system. SVA displays several properties that make it a suitable model, such as its inability to integrate into human genome DNA and the absence of any viral-encoded oncogenes. In addition, genetic engineering of SVA based on the manipulation of infectious clones facilitates the development of recombinant viruses with improved therapeutic indexes to satisfy the criteria of safety and efficacy regulations. This review summarizes the current knowledge and strategies of genetic engineering for SVA, and addresses the current challenges and future directions of SVA as an oncolytic agent.
Collapse
Affiliation(s)
- Dankun Luo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haiwei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenping Liang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Yang
- Departments of Biochemistry and Molecular Biology and Oncology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
34
|
Liu T, Tao Y, Xia X, Zhang Y, Deng R, Wang Y. Analytical tools for antibody–drug conjugates: from in vitro to in vivo. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Corti C, Venetis K, Sajjadi E, Zattoni L, Curigliano G, Fusco N. CAR-T cell therapy for triple-negative breast cancer and other solid tumors: preclinical and clinical progress. Expert Opin Investig Drugs 2022; 31:593-605. [PMID: 35311430 DOI: 10.1080/13543784.2022.2054326] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Most breast cancer-related deaths arise from triple-negative breast cancer (TNBC). Molecular heterogeneity, aggressiveness and the lack of effective therapies are major hurdles to therapeutic progress. Chimeric antigen receptor (CAR)-T cells have emerged as a promising immunotherapeutic strategy in TNBC. This approach combines the antigen specificity of an antibody with the effector function of T cells. AREAS COVERED This review examines the opportunities provided by CAR-T cell therapies in solid tumors. Emerging targets, ongoing clinical trials, and prospective clinical implications in TNBC are considered later. An emphasis is placed on the key challenges and possible solutions for this therapeutic approach. EXPERT OPINION A challenge for CAR-T cell therapy is the selection of the optimal targets to minimize on-target/off-tumor toxicity. Tumor escape via antigen loss and intrinsic heterogeneity is a further hurdle. TROP2, GD2, ROR1, MUC1 and EpCAM are promising targets. Persistence and trafficking to tumor cells may be enhanced by the implementation of CARs with a chemokine receptor and/or constitutively activated interleukin receptors. Fourth-generation CARs (TRUCKs) may redirect T-cells for universal cytokine-mediated killing. Combinatorial approaches and the application of CARs to other immune cells could revert the suppressive immune environment that characterizes solid neoplasms.
Collapse
Affiliation(s)
- Chiara Corti
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lorenzo Zattoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
36
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
37
|
Zou W, Huang C, Sun Q, Zhao K, Gao H, Su R, Li Y. A stepwise mutagenesis approach using histidine and acidic amino acid to engineer highly pH-dependent protein switches. 3 Biotech 2022; 12:21. [PMID: 34956814 PMCID: PMC8686790 DOI: 10.1007/s13205-021-03079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/26/2021] [Indexed: 10/26/2022] Open
Abstract
Antibody-based drugs can be highly toxic, because they target normal tissue as well as tumor tissue. The pH value of the extracellular microenvironments around tumor tissues is lower than that of normal tissues. Therefore, antibodies that engage in pH-dependent binding at slightly acidic pH are crucial for improving the safety of antibody-based drugs. Thus, we implemented a stepwise mutagenesis approach to engineering pH-dependent antibodies capable of selective binding in the acidic microenvironment in this study. The first step involved single-residue histidine scanning mutagenesis of the antibody's complementarity-determining regions to prescreen for pH-dependent mutants and identify ionizable sensitive hot-spot residues that could be substituted by acidic amino acids to obtain pH-dependent antibodies. The second step involved single-acidic amino acid residue substitutions of the identified residues and the assessment of pH-dependent binding. We identified six ionizable sensitive hot-spot residues using single-histidine scanning mutagenesis. Nine pH-dependent antibodies were isolated using single-acidic amino acid residue mutagenesis at the six hot-spot residue positions. Relative to wild-type anti-CEA chimera antibody, the binding selectivity of the best performing mutant was improved by approximately 32-fold according to ELISA and by tenfold according to FACS assay. The mutant had a high affinity in the pH range of 5.5-6.0. This study supports the development of pH-dependent protein switches and increases our understanding of the role of ionizable residues in protein interfaces. The stepwise mutagenesis approach is rapid, general, and robust and is expected to produce pH-sensitive protein affinity reagents for various applications.
Collapse
Affiliation(s)
- Wenjun Zou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Chuncui Huang
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qing Sun
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Keli Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Huanyu Gao
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Rong Su
- Department of Clinical Laboratory, Foshan Hospital of Traditional Chinese Medicine, Foshan, 528000 Guangdong China
| | - Yan Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
38
|
Taeb S, Ashrafizadeh M, Zarrabi A, Rezapoor S, Musa AE, Farhood B, Najafi M. Role of Tumor Microenvironment in Cancer Stem Cells Resistance to Radiotherapy. Curr Cancer Drug Targets 2021; 22:18-30. [PMID: 34951575 DOI: 10.2174/1568009622666211224154952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Cancer is a chronic disorder that involves several elements of both the tumor and the host stromal cells. At present, the complex relationship between the various factors presents in the tumor microenvironment (TME) and tumor cells, as well as immune cells located within the TME, is still poorly known. Within the TME, the crosstalk of these factors and immune cells essentially determines how a tumor reacts to the treatment and how the tumor can ultimately be destroyed, remain dormant, or develop and metastasize. Also, in TME, reciprocal crosstalk between cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), hypoxia-inducible factor (HIF) intensifies the proliferation capacity of cancer stem cells (CSCs). CSCs are subpopulation of cells that reside within the tumor bulk and have the capacity to self-renew, differentiate, and repair DNA damage. These characteristics make CSCs develop resistance to a variety of treatments, such as radiotherapy (RT). RT is a frequent and often curative treatment for local cancer which mediates tumor elimination by cytotoxic actions. Also, cytokines and growth factors that are released into TME, have been involved in the activation of tumor radioresistance and the induction of different immune cells, altering local immune responses. In this review, we discuss the pivotal role of TME in resistance of CSCs to RT.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 , Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla 34956, Turkey
| | - Saeed Rezapoor
- Department of Radiology, Faculty of Paramedical, Tehran University of Medical Sciences, Iran
| | - Ahmed Eleojo Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences., Iraq
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Iran
| |
Collapse
|
39
|
Naz F, Shi M, Sajid S, Yang Z, Yu C. Cancer stem cells: a major culprit of intra-tumor heterogeneity. Am J Cancer Res 2021; 11:5782-5811. [PMID: 35018226 PMCID: PMC8727794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023] Open
Abstract
Cancer is recognized as a preeminent factor of the world's mortality. Although various modalities have been designed to cure this life-threatening ailment, a significant impediment in the effective output of cancer treatment is heterogeneity. Cancer is characterized as a heterogeneous health disorder that comprises a distinct group of transformed cells to assist anomalous proliferation of affected cells. Cancer stem cells (CSCs) are a leading cause of cancer heterogeneity that is continually transformed by cellular extrinsic and intrinsic factors. They intensify neoplastic cells aggressiveness by strengthening their dissemination, relapse and therapy resistance. Considering this viewpoint, in this review article we have discussed some intrinsic (transcription factors, cell signaling pathways, genetic alterations, epigenetic modifications, non-coding RNAs (ncRNAs) and epitranscriptomics) and extrinsic factors (tumor microenvironment (TME)) that contribute to CSC heterogeneity and plasticity, which may help scientists to meddle these processes and eventually improve cancer research and management. Besides, the potential role of CSCs heterogeneity in establishing metastasis and therapy resistance has been articulated which signifies the importance of developing novel anticancer therapies to target CSCs along with targeting bulk tumor mass to achieve an effective output.
Collapse
Affiliation(s)
- Faiza Naz
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Mengran Shi
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| | - Salvia Sajid
- Department of Biotechnology, Jinnah University for WomenKarachi 74600, Pakistan
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
- College of Life Science, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production and Construction Corps, Tarim UniversityAlar 843300, Xinjiang, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical TechnologyBeijing 100029, China
| |
Collapse
|
40
|
Si T, Ning X, Chen H, Hu Z, Dun L, Zheng N, Huang P, Yang L, Yi P. ANTXR1 as a potential prognostic biomarker for hepatitis B virus-related hepatocellular carcinoma identified by a weighted gene correlation network analysis. J Gastrointest Oncol 2021; 12:3079-3092. [PMID: 35070431 PMCID: PMC8748048 DOI: 10.21037/jgo-21-764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND With high incidence and mortality rates, hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. Chronic hepatitis B virus (HBV) infection is a leading cause of HCC, especially for Asians and blacks. However, the molecular mechanisms underlying HBV-related HCC are unclear. This study sought to identify novel prognostic biomarkers and explore the potential pathogenesis of HBV-related HCC. METHODS The gene expression profiles and corresponding clinical information of HCC from The Cancer Genome Atlas Liver Hepatocellular Carcinoma data set were analyzed by a weighted gene co-expression network analysis. Correlations between the co-expression modules and clinical traits were calculated. Next, key modules associated with HBV infection were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted for the genes in the key modules. The hub genes were identified based on the protein-protein interaction (PPI) network via the Cytoscape. Finally, an overall survival (OS) analysis was performed. RESULTS The two modules (i.e., the brown and yellow modules) most relevant to HBV infection were constructed. A functional enrichment analysis revealed that the genes in the two modules were mainly enriched in HCC-related pathways, such as the phosphatidylinositol-3-kinase and protein kinase B signaling pathway, focal adhesion, human papillomavirus infection, the Rap1 signaling pathway, and the cyclic guanosine monophosphate-dependent protein kinase (cGMP-PKG) signaling pathway. Ten hub genes [i.e., COL3A1, ANTXR1, COL14A1, THBS2, ADAMTS2, AEBP1, PRELP, EMILIN1, DCN and PODN] in the brown module, and 10 hub genes [i.e., USP34, SEC24C, ZNF770, STAG1, TSTD2, PKD1P6, CCNK, GFT2I, NT5C2 and SMG6] in the yellow module were identified. Among the hub genes, ANTXR1 (Anthrax-toxin receptor 1) was significantly correlated with HBV-related HCC patients' OS. CONCLUSIONS ANTXR1 represents a potential therapeutic target for HBV-related HCC. This study offers novel insights into the molecular mechanisms of HBV-induced tumorigenesis, which needs to be further validated by basic experiments and large-scale cohort studies.
Collapse
Affiliation(s)
- Tao Si
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Xuejian Ning
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Haihui Chen
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Zhengguo Hu
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Linglu Dun
- Department of Neurology Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Na Zheng
- Department of Neurology Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Ping Huang
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Liu Yang
- Department of Oncology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Ping Yi
- Department of Neurology Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| |
Collapse
|
41
|
Tsujii S, Serada S, Fujimoto M, Uemura S, Namikawa T, Nomura T, Murakami I, Hanazaki K, Naka T. Glypican-1 Is a Novel Target for Stroma and Tumor Cell Dual-Targeting Antibody-Drug Conjugates in Pancreatic Cancer. Mol Cancer Ther 2021; 20:2495-2505. [PMID: 34583978 DOI: 10.1158/1535-7163.mct-21-0335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/21/2021] [Accepted: 09/20/2021] [Indexed: 02/05/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a stroma-rich cancer. Extracellular matrix proteins produced by cancer-associated fibroblasts (CAFs) found in tumor stroma that impedes effective delivery of chemotherapeutic agents results in poor response in patients with PDAC. Previously, our group reported that glypican-1 (GPC1) was overexpressed in human PDAC and negatively correlated with patient survival. Immunohistochemical analysis of 25 patients with PDAC tumor specimens revealed elevated expression of GPC1 in stromal cells and pancreatic cancer cells in 80% of patients. Interestingly, GPC1 was expressed on CAFs in PDAC. We generated a GPC1 antibody-drug conjugate conjugated with monomethyl auristatin E [GPC1-ADC(MMAE)] and evaluated its preclinical antitumor activity by targeting GPC1-positive CAF and cancer cells in PDAC. GPC1-ADC(MMAE) inhibited the growth of GPC1-positive PDAC cell lines in vitro. Furthermore, GPC1-ADC(MMAE) showed a potent antitumor effect in the PDAC patient-derived tumor xenograft (PDX) model against GPC1-positive CAF and heterogeneous GPC1-expressing cancer cells. Notably, GPC1-ADC(MMAE) showed robust preclinical efficacy against GPC1 in a stroma-positive/cancer-negative PDAC PDX model. GPC1-ADC(MMAE) was delivered and internalized to CAFs. Although apoptosis was not observed in CAFs, the released MMAE from CAFs via MDR-1 induced apoptosis of cancer cells neighboring CAFs and efficiently inhibited PDAC tumor growth. GPC1-ADC(MMAE) exhibited potent and unique antitumor activity in GPC1-positive PDAC PDX models, which suggests that GPC1 is a novel therapeutic target in PDAC and other stromal GPC1-positive solid tumors. These findings show that targeting GPC1 on CAF using GPC1-ADC(MMAE) is a useful approach in case of stroma-rich tumors such as PDAC.
Collapse
Affiliation(s)
- Shigehiro Tsujii
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan.,Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Satoshi Serada
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan. .,Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba, Iwate, Japan
| | - Minoru Fujimoto
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan.,Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
| | - Sunao Uemura
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Tsutomu Namikawa
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Taisei Nomura
- Animal Models of Human Diseases, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Ichiro Murakami
- Department of Pathology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Kazuhiro Hanazaki
- Department of Surgery, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Tetsuji Naka
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan. .,Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba, Iwate, Japan.,Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
| |
Collapse
|
42
|
Matsumura Y. Barriers to antibody therapy in solid tumors, and their solutions. Cancer Sci 2021; 112:2939-2947. [PMID: 34032331 PMCID: PMC8353947 DOI: 10.1111/cas.14983] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Antibody drugs have become the mainstream of cancer treatment due to advances in cancer biology and Ab engineering. However, several barriers to Ab therapy have also been identified. These include various mechanisms for Ab drug resistance, such as heterogeneity of antigen expression in tumor cells and reduction in antitumor immunity due to expression diversity, polymorphism of Fc receptors (FcR) in effector cells, and reduced function of effector cells. Countermeasures to each resistance mechanism are being investigated. This review focuses on barriers that impede the delivery of Ab drugs due to features of the solid tumor microenvironment. Unlike hematological malignancies, in which the target tumor cells are in blood vessels, clinical solid tumors contain cancer stroma, which interferes with the delivery of Ab drugs. In addition, the cancer mass itself interferes with the penetration of Ab drugs. In this article, I will consider the etiology of cancer stroma and propose a new Ab drug development strategy for solid cancer treatment centering on cancer stromal targeting (CAST) therapy using anti-insoluble fibrin Ab-drug conjugate (ADC), which can overcome the cancer stroma barrier. The recent success of ADCs, chimeric antigen receptor T cells (CAR-Ts), and Bi-specific Abs is changing the category of Ab drugs from molecular-targeted drugs based on growth signal inhibition to cancer-specific targeted therapies. Therefore, at the end of this review, I argue that it is time to reorient the concept of Ab drug development.
Collapse
Affiliation(s)
- Yasuhiro Matsumura
- Department of Immune MedicineNational Cancer Center Research InstituteTokyoJapan
- Matsumura LabInnovation Center of NanoMedicineKawasakiJapan
- Tsukiji LabRINInstitute Inc.TokyoJapan
| |
Collapse
|
43
|
Lara H, Li Z, Abels E, Aeffner F, Bui MM, ElGabry EA, Kozlowski C, Montalto MC, Parwani AV, Zarella MD, Bowman D, Rimm D, Pantanowitz L. Quantitative Image Analysis for Tissue Biomarker Use: A White Paper From the Digital Pathology Association. Appl Immunohistochem Mol Morphol 2021; 29:479-493. [PMID: 33734106 PMCID: PMC8354563 DOI: 10.1097/pai.0000000000000930] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/12/2021] [Indexed: 01/19/2023]
Abstract
Tissue biomarkers have been of increasing utility for scientific research, diagnosing disease, and treatment response prediction. There has been a steady shift away from qualitative assessment toward providing more quantitative scores for these biomarkers. The application of quantitative image analysis has thus become an indispensable tool for in-depth tissue biomarker interrogation in these contexts. This white paper reviews current technologies being employed for quantitative image analysis, their application and pitfalls, regulatory framework demands, and guidelines established for promoting their safe adoption in clinical practice.
Collapse
Affiliation(s)
- Haydee Lara
- GlaxoSmithKline-R&D, Cellular Biomarkers, Collegeville, PA
| | - Zaibo Li
- The Ohio State University, Columbus, OH
| | | | - Famke Aeffner
- Translational Safety and Bioanalytical Sciences, Amgen Research, Amgen Inc
| | | | | | | | | | | | | | | | - David Rimm
- Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
44
|
Munekage E, Serada S, Tsujii S, Yokota K, Kiuchi K, Tominaga K, Fujimoto M, Kanda M, Uemura S, Namikawa T, Nomura T, Murakami I, Hanazaki K, Naka T. A glypican-1-targeted antibody-drug conjugate exhibits potent tumor growth inhibition in glypican-1-positive pancreatic cancer and esophageal squamous cell carcinoma. Neoplasia 2021; 23:939-950. [PMID: 34332450 PMCID: PMC8340053 DOI: 10.1016/j.neo.2021.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023]
Abstract
An antibody-drug conjugate (ADC) is a promising therapeutic modality because selective and effective delivery of an anti-cancer drug is achieved by drug-conjugated antibody-targeting cancer antigen. Glypican 1 (GPC1) is highly expressed in malignant tumors, including pancreatic ductal adenocarcinoma (PDAC) and esophageal squamous cell carcinoma (ESCC). Herein, we describe the usefulness of GPC1-targeting ADC. Humanized anti-GPC1 antibody (clone T2) was developed and conjugated with monomethyl auristatin E (MMAE) via maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl (mc-vc-PABC) linkers (humanized GPC1-ADC[MMAE]). Humanized GPC1-ADC(MMAE) inhibited the growth of GPC1-positive PDAC and ESCC cell lines via inducing cycle arrest in the G2/M phase and apoptosis in vitro. The binding activity of humanized GPC1-ADC(MMAE) with GPC1 was comparable with that of the unconjugated anti-GPC1 antibody. The humanized GPC1-ADC(MMAE) was effective in GPC1-positive BxPC-3 subcutaneously xenografted mice but not in GPC1-negative BxPC-3-GPC1-KO xenografted mice. To assess the bystander killing activity of the humanized GPC1-ADC(MMAE), a mixture of GPC1-positive BxPC-3 and GPC1-negative BxPC-3-GPC1-KO-Luc cells were subcutaneously inoculated, and a heterogenous GPC1-expressing tumor model was developed. The humanized GPC1-ADC(MMAE) inhibited the tumor growth and decreased the luciferase signal, measured with an in vivo imaging system (IVIS), which suggests that the suppression of the BxPC-3-GPC1-KO-Luc population. The humanized GPC1-ADC(MMAE) also inhibited the established liver metastases of BxPC-3 cells and significantly improved the overall survival of the mice. It exhibited a potent antitumor effect on the GPC1-positive PDAC and ESCC patient-derived xenograft (PDX) models. Our preclinical data demonstrate that GPC1 is a promising therapeutic target for ADC.
Collapse
Affiliation(s)
- Eri Munekage
- Department of Surgery, Kochi University, Nankoku, Kochi, Japan; Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Satoshi Serada
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan; Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba, Iwate, Japan.
| | - Shigehiro Tsujii
- Department of Surgery, Kochi University, Nankoku, Kochi, Japan; Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Keiichiro Yokota
- Department of Surgery, Kochi University, Nankoku, Kochi, Japan; Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Keita Kiuchi
- Department of Medical course, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Kenji Tominaga
- Department of Medical course, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | - Minoru Fujimoto
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan; Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan
| | - Mizuki Kanda
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba, Iwate, Japan
| | - Sunao Uemura
- Department of Surgery, Kochi University, Nankoku, Kochi, Japan
| | | | - Taisei Nomura
- Animal Models of Human Diseases, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Ichiro Murakami
- Department of Pathology, School of Medicine, Kochi University, Nankoku, Kochi, Japan
| | | | - Tetsuji Naka
- Department of Clinical Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan; Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University, Yahaba, Iwate, Japan; Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Iwate, Japan.
| |
Collapse
|
45
|
Lucas AT, Moody A, Schorzman AN, Zamboni WC. Importance and Considerations of Antibody Engineering in Antibody-Drug Conjugates Development from a Clinical Pharmacologist's Perspective. Antibodies (Basel) 2021; 10:30. [PMID: 34449544 PMCID: PMC8395454 DOI: 10.3390/antib10030030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/04/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Antibody-drug conjugates (ADCs) appear to be in a developmental boom, with five FDA approvals in the last two years and a projected market value of over $4 billion by 2024. Major advancements in the engineering of these novel cytotoxic drug carriers have provided a few early success stories. Although the use of these immunoconjugate agents are still in their infancy, valuable lessons in the engineering of these agents have been learned from both preclinical and clinical failures. It is essential to appreciate how the various mechanisms used to engineer changes in ADCs can alter the complex pharmacology of these agents and allow the ADCs to navigate the modern-day therapeutic challenges within oncology. This review provides a global overview of ADC characteristics which can be engineered to alter the interaction with the immune system, pharmacokinetic and pharmacodynamic profiles, and therapeutic index of ADCs. In addition, this review will highlight some of the engineering approaches being explored in the creation of the next generation of ADCs.
Collapse
Affiliation(s)
- Andrew T. Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Amber Moody
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Allison N. Schorzman
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
| | - William C. Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (A.T.L.); (A.N.S.)
- Carolina Center of Cancer Nanotechnology Excellence, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Glolytics, LLC, Chapel Hill, NC 27517, USA
| |
Collapse
|
46
|
Li Y, Wang Q, Wang D, Fu W. KLF7 Promotes Gastric Carcinogenesis Through Regulation of ANTXR1. Cancer Manag Res 2021; 13:5547-5557. [PMID: 34285576 PMCID: PMC8285236 DOI: 10.2147/cmar.s308071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Elucidating the mechanism of gastric cancer progression is of great importance for the discovery of new therapy targets against gastric cancer. In this study, we investigated the function of Kruppel-like factor 7 (KLF7) in gastric cancer. METHODS qPCR and Western blot were performed to determine the expression of ANTXR1 after KLF7 inhibition. CCK-8, colony formation, apoptosis analysis, cell cycle analysis and transwell assay were performed to determine KLF7 functions in cellular proliferation, migration, apoptosis and cell cycle. Tumour xenograft experiments were performed to examine cell growth in vivo. RESULTS The results showed that KLF7 was upregulated in gastric cancer. The proliferation and migration of gastric cancer cells were suppressed by depletion of KLF7. In vivo tumour progression was also attenuated following the downregulation of KLF7. Meanwhile, overexpression of KLF7 promoted the proliferation and migration of gastric cancer cells. The results of the mechanistic analysis showed that KLF7 promoted gastric carcinogenesis via upregulation of ANTXR cell adhesion molecule 1 (ANTXR1). CONCLUSION Therefore, this study may provide a theoretical foundation for further clinical therapy of gastric cancer.
Collapse
Affiliation(s)
- Yuanchun Li
- Department of General Surgery, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang Province, People’s Republic of China
| | - Qingdong Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, People’s Republic of China
| | - DongWei Wang
- Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, People’s Republic of China,Correspondence: DongWei Wang Department of Anesthesiology, First Affiliated Hospital of Jiamusi University, No. 348, Dexiang Street, Jiamusi, Heilongjiang Province, 154002, People’s Republic of ChinaTel +86-0454-8605850 Email
| | - Weihua Fu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China,Weihua Fu Department of General Surgery, Tianjin Medical University General Hospital, No. 154, Anshan Road, Tianjin, 300052, People’s Republic of ChinaTel +022-60363901 Email
| |
Collapse
|
47
|
Wong JL, Rosenberg JE. Targeting nectin-4 by antibody-drug conjugates for the treatment of urothelial carcinoma. Expert Opin Biol Ther 2021; 21:863-873. [PMID: 34030536 PMCID: PMC8224177 DOI: 10.1080/14712598.2021.1929168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Nectin-4 is a tumor-associated antigen overexpressed in urothelial carcinoma and several other malignancies. It has emerged as a compelling target for novel tumor-directed therapies, particularly as a component of antibody-drug conjugates (ADCs), a growing class of anti-cancer therapeutic agents. Development of nectin-4-directed therapies has been led by enfortumab vedotin (EV), an ADC comprised of a fully human monoclonal antibody specific for nectin-4 conjugated via a cleavable linker to the microtubule inhibitor MMAE. EV was approved in 2019 as a first-in-class agent for the treatment of urothelial carcinoma. AREAS COVERED This article discusses general principles relevant to ADC design and our current understanding of nectin-4 in normal physiology and malignancy, followed by a review of the development of EV as well as additional drug conjugate strategies targeting nectin-4. EXPERT OPINION EV offers proof-of-concept for the clinical utility of nectin-4-directed therapies and provides further support for ADCs as an important class of anti-cancer agents. Future development of nectin-4-targeted approaches will benefit from a deeper understanding of nectin-4 biology in both health and disease, as well as a detailed exploration of the mechanisms underlying therapeutic activity and resistance.
Collapse
Affiliation(s)
- Jeffrey L. Wong
- Memorial Sloan Kettering Cancer Center, New York, NY
- Rockefeller University, New York, NY
| | - Jonathan E. Rosenberg
- Memorial Sloan Kettering Cancer Center, New York, NY
- Weill Cornell Medical College, New York, NY
| |
Collapse
|
48
|
Li WQ, Guo HF, Li LY, Zhang YF, Cui JW. The promising role of antibody drug conjugate in cancer therapy: Combining targeting ability with cytotoxicity effectively. Cancer Med 2021; 10:4677-4696. [PMID: 34165267 PMCID: PMC8290258 DOI: 10.1002/cam4.4052] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Introduction Traditional cancer therapy has many disadvantages such as low selectivity and high toxicity of chemotherapy, as well as insufficient efficacy of targeted therapy. To enhance the cytotoxic effect and targeting ability, while reducing the toxicity of antitumor drugs, an antibody drug conjugate (ADC) was developed to deliver small molecular cytotoxic payloads directly to tumor cells by binding to specific antibodies via linkers. Method By reviewing published literature and the current progress of ADCs, we aimed to summarize the basic characteristics, clinical progress, and challenges of ADCs to provide a reference for clinical practice and further research. Results ADC is a conjugate composed of three fundamental components, including monoclonal antibodies, cytotoxic payloads, and stable linkers. The mechanisms of ADC including the classical internalization pathway, antitumor activity of antibodies, bystander effect, and non‐internalizing mechanism. With the development of new drugs and advances in technology, various ADCs have achieved clinical efficacy. To date, nine ADCs have received US Food and Drug Administration (FDA) approval in the field of hematologic tumors and solid tumors, which have become routine clinical treatments. Conclusion ADC has changed traditional treatment patterns for cancer patients, which enable the same treatment for pancreatic cancer patients and promote individualized precision treatment. Further exploration of indications could focus on early‐stage cancer patients and combined therapy settings. Besides, the mechanisms of drug resistance, manufacturing techniques, optimized treatment regimens, and appropriate patient selection remain the major topics.
Collapse
Affiliation(s)
- Wen-Qian Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Han-Fei Guo
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ling-Yu Li
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yong-Fei Zhang
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiu-Wei Cui
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
49
|
De La Fuente A, Zilio S, Caroli J, Van Simaeys D, Mazza EMC, Ince TA, Bronte V, Bicciato S, Weed DT, Serafini P. Aptamers against mouse and human tumor-infiltrating myeloid cells as reagents for targeted chemotherapy. Sci Transl Med 2021; 12:12/548/eaav9760. [PMID: 32554710 DOI: 10.1126/scitranslmed.aav9760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/09/2019] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Local delivery of anticancer agents has the potential to maximize treatment efficacy and minimize the acute and long-term systemic toxicities. Here, we used unsupervised systematic evolution of ligands by exponential enrichment to identify four RNA aptamers that specifically recognized mouse and human myeloid cells infiltrating tumors but not their peripheral or circulating counterparts in multiple mouse models and from patients with head and neck squamous cell carcinoma (HNSCC). The use of these aptamers conjugated to doxorubicin enhanced the accumulation and bystander release of the chemotherapeutic drug in both primary and metastatic tumor sites in breast and fibrosarcoma mouse models. In the 4T1 mammary carcinoma model, these doxorubicin-conjugated aptamers outperformed Doxil, the first clinically approved highly optimized nanoparticle for targeted chemotherapy, promoting tumor regression after just three administrations with no detected changes in weight loss or blood chemistry. These RNA aptamers recognized tumor infiltrating myeloid cells in a variety of mouse tumors in vivo and from human HNSCC ex vivo. This work suggests the use of RNA aptamers for the detection of myeloid-derived suppressor cells in humans and for a targeted delivery of chemotherapy to the tumor microenvironment in multiple malignancies.
Collapse
Affiliation(s)
- Adriana De La Fuente
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Serena Zilio
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Jimmy Caroli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Dimitri Van Simaeys
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Emilia M C Mazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Tan A Ince
- Department of Pathology, Weill Cornell Medicine, Cornell University and New York Presbyterian Brooklyn Methodist Hospital, NY 11215, USA
| | - Vincenzo Bronte
- Department of Medicine, Verona University Hospital, Verona 37100, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy
| | - Donald T Weed
- Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Paolo Serafini
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA. .,Department of Otolaryngology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
50
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|