1
|
Sadleir KR, Gomez KP, Edwards AE, Patel AJ, Ley ML, Khatri AW, Guo J, Mahesh S, Watkins EA, Popovic J, Karunakaran DKP, Prokopenko D, Tanzi RE, Bustos B, Lubbe SJ, Demonbruen AR, McNally EM, Vassar R. Annexin A6 membrane repair protein protects against amyloid-induced dystrophic neurites and tau phosphorylation in Alzheimer's disease model mice. Acta Neuropathol 2025; 149:51. [PMID: 40411591 PMCID: PMC12103342 DOI: 10.1007/s00401-025-02888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/23/2025] [Accepted: 04/30/2025] [Indexed: 05/26/2025]
Abstract
In Alzheimer's disease, accumulation of amyloid-β (Aβ) peptide is thought to cause formation of neurofibrillary tangles composed of hyperphosphorylated tau protein, which correlates with neuronal loss and cognitive impairment, but the mechanism linking Aβ and tau pathologies is unknown. Dystrophic neurites, which surround Aβ plaques and accumulate phosphorylated tau and other proteins, may play a role in seeding and spreading of pathologic tau. Here, we investigate the novel hypothesis that improved membrane repair capacity decreases dystrophic neurite formation by protecting axons from Aβ-induced membrane damage. Using a ratiometric calcium sensor and a FRET-based calpain cleavage sensor, we demonstrate that dystrophic neurites in 5XFAD mice have elevated resting calcium levels and calpain activity because of putative membrane damage. Annexin A6, a plasma membrane repair in muscle and neurons, is present at plasma membrane of neurons and dystrophic neurites in murine and human brains. Overexpression of annexin A6 in brains of 5XFAD mice decreased size and quantity of dystrophic neurites and accumulation of phospho-tau181, an early biomarker of amyloid pathology. Phospho-tau231, another early amyloid biomarker, and phosphorylated of tau kinases, c-jun N-terminal kinase (JNK) and Calmodulin Kinase II (CaMKII) accumulate in dystrophic neurites in the brains of amyloid pathology mice and humans with AD, suggesting that dystrophic neurites are sites of active tau phosphorylation. Overexpression of dominant-negative annexin A6 in 5XFAD mice increased dystrophic neurites and phospho-tau181. Intracerebral injection of recombinant annexin A6 in 5XFAD and APP-NLGF knock-in mice resulted in localization of recombinant A6 to membranes of dystrophic neurites, suggesting therapeutic potential of recombinant annexin A6 for AD. In conclusion, dystrophic neurites have Aβ-induced membrane damage characterized by calcium elevation, calpain activation, and accumulation of tau kinases and phosphorylated tau. Overexpression of annexin A6 reduces dystrophic neurites and phospho-tau accumulation, suggesting that annexin A6-mediated membrane repair may represent a novel therapeutic approach for AD.
Collapse
Affiliation(s)
- Katherine R Sadleir
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| | - Karen P Gomez
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Abigail E Edwards
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Armana J Patel
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Makenna L Ley
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ammaarah W Khatri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Joanna Guo
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Shreya Mahesh
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Elyse A Watkins
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jelena Popovic
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | | | - Dmitry Prokopenko
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Rudolph E Tanzi
- Department of Neurology, Genetics and Aging Research Unit and the McCance Center for Brain Health, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Bernabe Bustos
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Steven J Lubbe
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Simpson Querrey Center for Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis R Demonbruen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Loreti M, Cecchini A, Kaufman CD, Stamenkovic C, Renero A, Nicoletti C, Kervadec A, Guarnaccia G, Mayer D, Colas A, Lorenzo Puri P, Sacco A. Tenascin-C from the tissue microenvironment promotes muscle stem cell self-renewal through Annexin A2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620732. [PMID: 39554125 PMCID: PMC11565721 DOI: 10.1101/2024.10.29.620732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Skeletal muscle tissue self-repair occurs through the finely timed activation of resident muscle stem cells (MuSC). Following perturbation, MuSC exit quiescence, undergo myogenic commitment, and differentiate to regenerate the injured muscle. This process is coordinated by signals present in the tissue microenvironment, however the precise mechanisms by which the microenvironment regulates MuSC activation are still poorly understood. Here, we identified Tenascin-C (TnC), an extracellular matrix (ECM) glycoprotein, as a key player in promoting of MuSC self-renewal and function. We show that fibro-adipogenic progenitors (FAPs) are the primary cellular source of TnC during muscle repair, and that MuSC sense TnC signaling through cell the surface receptor Annexin A2. We provide in vivo evidence that TnC is required for efficient muscle repair, as mice lacking TnC exhibit a regeneration phenotype of premature aging. We propose that the decline of TnC in physiological aging contributes to inefficient muscle regeneration in aged muscle. Taken together, our results highlight the pivotal role of TnC signaling during muscle repair in healthy and aging skeletal muscle.
Collapse
Affiliation(s)
- Mafalda Loreti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: J&J, 3880 Murphy Canyon Rd, San Diego, CA 92123, USA
| | - Alessandra Cecchini
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Collin D. Kaufman
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Cedomir Stamenkovic
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alma Renero
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Chiara Nicoletti
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Anais Kervadec
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
- Current affiliation: Avidity Biosciences, Inc., 10578 Science Center Drive Suite 125, San Diego, CA 92121, USA
| | - Gabriele Guarnaccia
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Daphne Mayer
- Rice University, 6100 Main St, Huston, TX 77005, USA
| | - Alexandre Colas
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Pier Lorenzo Puri
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Alessandra Sacco
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Bulgart HR, Lopez Perez MA, Tucker A, Giarrano GN, Banford K, Miller O, Bonser SWG, Wold LE, Scharre D, Weisleder N. Plasma membrane repair defect in Alzheimer's disease neurons is driven by the reduced dysferlin expression. FASEB J 2024; 38:e70099. [PMID: 39400395 PMCID: PMC11486262 DOI: 10.1096/fj.202401731rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, and a defect in neuronal plasma membrane repair could exacerbate neurotoxicity, neuronal death, and disease progression. In this study, application of AD patient cerebrospinal fluid (CSF) and recombinant human Aβ to otherwise healthy neurons induces defective neuronal plasma membrane repair in vitro and ex vivo. We identified Aβ as the biochemical component in patient CSF leading to compromised repair capacity and depleting Aβ rescued repair capacity. These elevated Aβ levels reduced expression of dysferlin, a protein that facilitates membrane repair, by altering autophagy and reducing dysferlin trafficking to sites of membrane injury. Overexpression of dysferlin and autophagy inhibition rescued membrane repair. Overall, these findings indicate an AD pathogenic mechanism where Aβ impairs neuronal membrane repair capacity and increases susceptibility to cell death. This suggests that membrane repair could be therapeutically targeted in AD to restore membrane integrity and reduce neurotoxicity and neuronal death.
Collapse
Affiliation(s)
- Hannah R. Bulgart
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Miguel A. Lopez Perez
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Alexis Tucker
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Gianni N. Giarrano
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kassidy Banford
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Olivia Miller
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Sidney W. G. Bonser
- Department of Applied Statistics and Research MethodsUniversity of Northern ColoradoGreeleyColoradoUSA
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Douglas Scharre
- Department of NeurologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Molecular and Cellular BiochemistryUniversity of Kentucky College of MedicineLexingtonKentuckyUSA
| |
Collapse
|
4
|
Sakwe NI, Vuong NB, Black PJ, Ball DD, Thomas P, Beasley HK, Hinton A, Ochieng J, Sakwe AM. Annexin A6 modulates the secretion of pro-inflammatory cytokines and exosomes via interaction with SNAP23 in triple negative breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619710. [PMID: 39484394 PMCID: PMC11527025 DOI: 10.1101/2024.10.22.619710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pro-inflammatory cytokines are secreted via the classical pathway from secretory vesicles or the non-classical pathway via extracellular vesicles (EVs), that together, play critical roles in triple-negative breast cancer (TNBC) progression. Annexin A6 (AnxA6) is a Ca 2+ -dependent membrane-binding protein that in TNBC is implicated in cell growth and invasiveness. AnxA6 is associated with EVs, but whether it affects the secretion of proinflammatory cytokines and/or EVs remains to be fully elucidated. To assess if AnxA6 influences the secretion of cytokines and extracellular vesicles, we used cytokine arrays to analyze secreted factors in cleared culture supernatants from control AnxA6 expressing and AnxA6 downregulated MDA-MB-468 TNBC cells. This revealed the diminished secretion of monocyte chemoattractant protein 1 (MCP-1/CCL2), interleukin 8 (IL-8), dickkopf1 (DKK1), throbospondin-1 (TSP-1), and osteopontin (OPN) following AnxA6 downregulation. We also show that the secretion of small EVs is strongly reduced in AnxA6 downregulated cells and that upregulation of AnxA6 promoted the secretion of treatment was also associated with increased EVs associated Rab7, cholesterol, and MCP-1 levels. Moreover, cholesterol content in EVs was significantly higher in AnxA6-expressing cells than in AnxA6 downregulated cells and following chronic lapatinib induced upregulation of AnxA6. Mechanistically, we demonstrate that the secretion of MCP-1 and/or EVs is AnxA6 dependent and that this requires the translocation of AnxA6 to cellular membranes and its interaction with SNAP23. AnxA6 neutralizing antibodies strongly diminished the survival of AnxA6 low TNBC cells but had minimal effects on the survival of TNBC cells expressing relatively high levels of the protein. Together, these data suggest that AnxA6 facilitates the secretion of EVs and proinflammatory cytokines that may be critical for TNBC progression.
Collapse
|
5
|
Wang D, Liu XY, He QF, Zheng FZ, Chen L, Zheng Y, Zeng MH, Lin YH, Lin X, Chen HZ, Lin MT, Wang N, Wang ZQ, Lin F. Comprehensive Proteomic Analysis of Dysferlinopathy Unveiling Molecular Mechanisms and Biomarkers Linked to Pathological Progression. CNS Neurosci Ther 2024; 30:e70065. [PMID: 39350328 PMCID: PMC11442333 DOI: 10.1111/cns.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS Previous proteomics studies in dysferlinopathy muscle have been limited in scope, often utilizing 2D-electrophoresis and yielding only a small number of differential expression calls. To address this gap, this study aimed to employ high-resolution proteomics to explore the proteomic landscapes of dysferlinopathy and analyze the correlation between muscle pathological changes and alterations in protein expression in muscle biopsies. METHODS We conducted a comprehensive approach to investigate the proteomic profile and disease-associated changes in the muscle tissue proteome from 15 patients with dysferlinopathy, exhibiting varying degrees of dystrophic pathology, alongside age-matched controls. Our methodology encompasses tandem mass tag (TMT)-labeled liquid chromatography-mass spectrometry (LC-MS/MS)-based proteomics, protein-protein interaction (PPI) network analysis, weighted gene co-expression network analysis, and differential expression analysis. Subsequently, we examined the correlation between the expression of key proteins and the clinical characteristics of the patients to identify pathogenic targets associated with DYSF mutations in dysferlinopathy. RESULTS A total of 1600 differentially expressed proteins were identified, with 1321 showing high expression levels and 279 expressed at lower levels. Our investigation yields a molecular profile delineating the altered protein networks in dysferlinopathy-afflicted skeletal muscle, uncovering dysregulation across numerous cellular pathways and molecular processes, including mRNA metabolic processes, regulated exocytosis, immune response, muscle system processes, energy metabolic processes, and calcium transmembrane transport. Moreover, we observe significant associations between the protein expression of ANXA1, ANXA2, ANXA4, ANXA5, LMNA, PYGM, and the extent of histopathologic changes in muscle biopsies from patients with dysferlinopathy, validated through immunoblotting and immunofluorescence assays. CONCLUSIONS Through the aggregation of expression data from dysferlinopathy-impacted muscles exhibiting a range of pathological alterations, we identified multiple key proteins associated with the dystrophic pathology of patients with dysferlinopathy. These findings provide novel insights into the pathogenesis of dysferlinopathy and propose promising targets for future therapeutic endeavors.
Collapse
Affiliation(s)
- Di Wang
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yi Liu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qi-Fang He
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Fu-Ze Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ming-Hui Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yu-Hua Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xin Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hai-Zhu Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Feng Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Waters EA, Haney CR, Vaught LA, McNally EM, Demonbreun AR. Distribution of MRI-derived T2 values as a biomarker for in vivo rapid screening of phenotype severity in mdx mice. PLoS One 2024; 19:e0310551. [PMID: 39298449 DOI: 10.1371/journal.pone.0310551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND The pathology in Duchenne muscular dystrophy (DMD) is characterized by degenerating muscle fibers, inflammation, fibro-fatty infiltrate, and edema, and these pathological processes replace normal healthy muscle tissue. The mdx mouse model is one of the most commonly used preclinical models to study DMD. Mounting evidence has emerged illustrating that muscle disease progression varies considerably in mdx mice, with inter-animal differences as well as intra-muscular differences in pathology in individual mdx mice. This variation is important to consider when conducting assessments of drug efficacy and in longitudinal studies. We developed a magnetic resonance imaging (MRI) segmentation and analysis pipeline to rapidly and non-invasively measure the severity of muscle disease in mdx mice. METHODS Wildtype and mdx mice were imaged with MRI and T2 maps were obtained axially across the hindlimbs. A neural network was trained to rapidly and semi-automatically segment the muscle tissue, and the distribution of resulting T2 values was analyzed. Interdecile range and Pearson Skew were identified as biomarkers to quickly and accurately estimate muscle disease severity in mice. RESULTS The semiautomated segmentation tool reduced image processing time approximately tenfold. Measures of Pearson skew and interdecile range based on that segmentation were repeatable and reflected muscle disease severity in healthy wildtype and diseased mdx mice based on both qualitative observation of images and correlation with Evans blue dye uptake. CONCLUSION Use of this rapid, non-invasive, semi-automated MR image segmentation and analysis pipeline has the potential to transform preclinical studies, allowing for pre-screening of dystrophic mice prior to study enrollment to ensure more uniform muscle disease pathology across treatment groups, improving study outcomes.
Collapse
MESH Headings
- Animals
- Mice, Inbred mdx
- Magnetic Resonance Imaging/methods
- Mice
- Muscular Dystrophy, Duchenne/diagnostic imaging
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/metabolism
- Biomarkers/metabolism
- Muscle, Skeletal/diagnostic imaging
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Disease Models, Animal
- Phenotype
- Severity of Illness Index
- Male
- Mice, Inbred C57BL
- Image Processing, Computer-Assisted
Collapse
Affiliation(s)
- Emily A Waters
- Chemistry of Life Processes Institute and Biomedical Engineering, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Chad R Haney
- Chemistry of Life Processes Institute and Biomedical Engineering, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Lauren A Vaught
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States of America
| |
Collapse
|
7
|
Fullenkamp DE, Willis AB, Curtin JL, Amaral AP, Dittloff KT, Harris SI, Chychula IA, Holgren CW, Burridge PW, Russell B, Demonbreun AR, McNally EM. Physiological stress improves stem cell modeling of dystrophic cardiomyopathy. Dis Model Mech 2024; 17:dmm050487. [PMID: 38050701 PMCID: PMC10820750 DOI: 10.1242/dmm.050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Heart failure contributes to Duchenne muscular dystrophy (DMD), which arises from mutations that ablate dystrophin, rendering the plasma membrane prone to disruption. Cardiomyocyte membrane breakdown in patients with DMD yields a serum injury profile similar to other types of myocardial injury with the release of creatine kinase and troponin isoforms. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly useful but can be improved. We generated hiPSC-CMs from a patient with DMD and subjected these cells to equibiaxial mechanical strain to mimic in vivo stress. Compared to healthy cells, DMD hiPSC-CMs demonstrated greater susceptibility to equibiaxial strain after 2 h at 10% strain. We generated an aptamer-based profile of proteins released from hiPSC-CMs both at rest and subjected to strain and identified a strong correlation in the mechanical stress-induced proteome from hiPSC-CMs and serum from patients with DMD. We exposed hiPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced biomarker release in DMD and control hiPSC-CMs subjected to strain. Thus, the application of mechanical strain to hiPSC-CMs produces a model that reflects an in vivo injury profile, providing a platform to assess pharmacologic intervention.
Collapse
Affiliation(s)
- Dominic E. Fullenkamp
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jodi L. Curtin
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ansel P. Amaral
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kyle T. Dittloff
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sloane I. Harris
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ivana A. Chychula
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cory W. Holgren
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Paul W. Burridge
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Quinn CJ, Cartwright EJ, Trafford AW, Dibb KM. On the role of dysferlin in striated muscle: membrane repair, t-tubules and Ca 2+ handling. J Physiol 2024; 602:1893-1910. [PMID: 38615232 DOI: 10.1113/jp285103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024] Open
Abstract
Dysferlin is a 237 kDa membrane-associated protein characterised by multiple C2 domains with a diverse role in skeletal and cardiac muscle physiology. Mutations in DYSF are known to cause various types of human muscular dystrophies, known collectively as dysferlinopathies, with some patients developing cardiomyopathy. A myriad of in vitro membrane repair studies suggest that dysferlin plays an integral role in the membrane repair complex in skeletal muscle. In comparison, less is known about dysferlin in the heart, but mounting evidence suggests that dysferlin's role is similar in both muscle types. Recent findings have shown that dysferlin regulates Ca2+ handling in striated muscle via multiple mechanisms and that this becomes more important in conditions of stress. Maintenance of the transverse (t)-tubule network and the tight coordination of excitation-contraction coupling are essential for muscle contractility. Dysferlin regulates the maintenance and repair of t-tubules, and it is suspected that dysferlin regulates t-tubules and sarcolemmal repair through a similar mechanism. This review focuses on the emerging complexity of dysferlin's activity in striated muscle. Such insights will progress our understanding of the proteins and pathways that regulate basic heart and skeletal muscle function and help guide research into striated muscle pathology, especially that which arises due to dysferlin dysfunction.
Collapse
Affiliation(s)
- C J Quinn
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - E J Cartwright
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - A W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - K M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| |
Collapse
|
9
|
Long AM, Kwon JM, Lee G, Reiser NL, Vaught LA, O'Brien JG, Page PGT, Hadhazy M, Reynolds JC, Crosbie RH, Demonbreun AR, McNally EM. The extracellular matrix differentially directs myoblast motility and differentiation in distinct forms of muscular dystrophy: Dystrophic matrices alter myoblast motility. Matrix Biol 2024; 129:44-58. [PMID: 38582404 PMCID: PMC11104166 DOI: 10.1016/j.matbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Extracellular matrix (ECM) pathologic remodeling underlies many disorders, including muscular dystrophy. Tissue decellularization removes cellular components while leaving behind ECM components. We generated "on-slide" decellularized tissue slices from genetically distinct dystrophic mouse models. The ECM of dystrophin- and sarcoglycan-deficient muscles had marked thrombospondin 4 deposition, while dysferlin-deficient muscle had excess decorin. Annexins A2 and A6 were present on all dystrophic decellularized ECMs, but annexin matrix deposition was excessive in dysferlin-deficient muscular dystrophy. Muscle-directed viral expression of annexin A6 resulted in annexin A6 in the ECM. C2C12 myoblasts seeded onto decellularized matrices displayed differential myoblast mobility and fusion. Dystrophin-deficient decellularized matrices inhibited myoblast mobility, while dysferlin-deficient decellularized matrices enhanced myoblast movement and differentiation. Myoblasts treated with recombinant annexin A6 increased mobility and fusion like that seen on dysferlin-deficient decellularized matrix and demonstrated upregulation of ECM and muscle cell differentiation genes. These findings demonstrate specific fibrotic signatures elicit effects on myoblast activity.
Collapse
Affiliation(s)
- Ashlee M Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason M Kwon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nina L Reiser
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lauren A Vaught
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph G O'Brien
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Patrick G T Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph C Reynolds
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA; Department of Neurology David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA; Department of Neurology David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
10
|
Chong MC, Shah AD, Schittenhelm RB, Silva A, James PF, Wu SSX, Howitt J. Acute exercise-induced release of innate immune proteins via small extracellular vesicles changes with aerobic fitness and age. Acta Physiol (Oxf) 2024; 240:e14095. [PMID: 38243724 DOI: 10.1111/apha.14095] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/04/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024]
Abstract
AIM Physical exercise triggers the secretion of small extracellular vesicles (sEVs) into the circulation in humans, enabling signalling crosstalk between tissues. Exercise-derived EVs and their cargo have been proposed to mediate adaptations to exercise; however, our understanding of how exercise-derived EV protein cargo is modulated by factors such as aerobic fitness and age of an individual is currently unknown. Here, we examined the circulating sEV proteome following aerobic exercise in healthy males of different ages and aerobic fitness to understand exercise-induced EV response during the aging process. METHODS Twenty-eight healthy men completed a bout of 20-min cycling exercise at 70% estimated VO2peak . Small EVs were isolated from blood samples collected before and immediately after exercise, and then quantified using particle analysis and Western blotting. Small EV proteome was examined using quantitative proteomic analysis. RESULTS We identified a significant increase in 13 proteins in small plasma EVs following moderate-to-vigorous intensity exercise. We observed distinct changes in sEV proteome after exercise in young, mature, unfit, and fit individuals, highlighting the impact of aerobic fitness and age on sEV protein secretion. Functional enrichment and pathway analysis identified that the majority of the significantly altered sEV proteins are associated with the innate immune system, including proteins known to be damage-associated molecular patterns (DAMPs). CONCLUSION Together, our findings suggest that exercise-evoked acute stress can positively challenge the innate immune system through the release of signalling molecules such as DAMPs in sEVs, proposing a novel EV-based mechanism for moderate-to-vigorous intensity exercise in immune surveillance pathways.
Collapse
Affiliation(s)
- Mee Chee Chong
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Anup D Shah
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Victoria, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Victoria, Australia
| | - Anabel Silva
- Exopharm Limited, Melbourne, Victoria, Australia
| | | | - Sam Shi Xuan Wu
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Jason Howitt
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Iverson Health Innovation Institute, Swinburne University of Technology, Hawthorn, Victoria, Australia
| |
Collapse
|
11
|
Gerke V, Gavins FNE, Geisow M, Grewal T, Jaiswal JK, Nylandsted J, Rescher U. Annexins-a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat Commun 2024; 15:1574. [PMID: 38383560 PMCID: PMC10882027 DOI: 10.1038/s41467-024-45954-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Annexins are cytosolic proteins with conserved three-dimensional structures that bind acidic phospholipids in cellular membranes at elevated Ca2+ levels. Through this they act as Ca2+-regulated membrane binding modules that organize membrane lipids, facilitating cellular membrane transport but also displaying extracellular activities. Recent discoveries highlight annexins as sensors and regulators of cellular and organismal stress, controlling inflammatory reactions in mammals, environmental stress in plants, and cellular responses to plasma membrane rupture. Here, we describe the role of annexins as Ca2+-regulated membrane binding modules that sense and respond to cellular stress and share our view on future research directions in the field.
Collapse
Affiliation(s)
- Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| | - Felicity N E Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UK
| | - Michael Geisow
- The National Institute for Medical Research, Mill Hill, London, UK
- Delta Biotechnology Ltd, Nottingham, UK
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Research and Innovation Campus, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jesper Nylandsted
- Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
- Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21-25, Odense, Denmark
| | - Ursula Rescher
- Research Group Cellular Biochemistry, Institute of Molecular Virology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| |
Collapse
|
12
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
13
|
Long AM, Lee G, Demonbreun AR, McNally EM. Extracellular matrix contribution to disease progression and dysfunction in myopathy. Am J Physiol Cell Physiol 2023; 325:C1244-C1251. [PMID: 37746696 PMCID: PMC10855263 DOI: 10.1152/ajpcell.00182.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/27/2023] [Accepted: 09/13/2023] [Indexed: 09/26/2023]
Abstract
Myopathic processes affect skeletal muscle and heart. In the muscular dystrophies, which are a subset of myopathies, muscle cells are gradually replaced by fibrosis and fat, impairing muscle function as well as regeneration and repair. In addition to skeletal muscle, these genetic disorders often also affect the heart, where fibrofatty infiltration progressively accumulates in the myocardium, impairing heart function. Although considerable effort has focused on gene-corrective and gene-replacement approaches to stabilize myofibers and cardiomyocytes, the continual and ongoing deposition of extracellular matrix itself contributes to tissue and organ dysfunction. Transcriptomic and proteomic profiling, along with high-resolution imaging and biophysical measurements, have been applied to define extracellular matrix components and their role in contributing to cardiac and skeletal muscle weakness. More recently, decellularization methods have been adapted to an on-slide format to preserve the spatial geography of the extracellular matrix, allowing new insight into matrix remodeling and its direct role in suppressing regeneration in muscle. This review highlights recent literature with focus on the extracellular matrix and molecular mechanisms that contribute to muscle and heart fibrotic disorders. We will also compare how the myopathic matrix differs from healthy matrix, emphasizing how the pathological matrix contributes to disease.
Collapse
Affiliation(s)
- Ashlee M Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
14
|
Yang J, Pei T, Su G, Duan P, Liu X. AnnexinA6: a potential therapeutic target gene for extracellular matrix mineralization. Front Cell Dev Biol 2023; 11:1201200. [PMID: 37727505 PMCID: PMC10506415 DOI: 10.3389/fcell.2023.1201200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/10/2023] [Indexed: 09/21/2023] Open
Abstract
The mineralization of the extracellular matrix (ECM) is an essential and crucial process for physiological bone formation and pathological calcification. The abnormal function of ECM mineralization contributes to the worldwide risk of developing mineralization-related diseases; for instance, vascular calcification is attributed to the hyperfunction of ECM mineralization, while osteoporosis is due to hypofunction. AnnexinA6 (AnxA6), a Ca2+-dependent phospholipid-binding protein, has been extensively reported as an essential target in mineralization-related diseases such as osteoporosis, osteoarthritis, atherosclerosis, osteosarcoma, and calcific aortic valve disease. To date, AnxA6, as the largest member of the Annexin family, has attracted much attention due to its significant contribution to matrix vesicles (MVs) production and release, MVs-ECM interaction, cytoplasmic Ca2+ influx, and maturation of hydroxyapatite, making it an essential target in ECM mineralization. In this review, we outlined the recent advancements in the role of AnxA6 in mineralization-related diseases and the potential mechanisms of AnxA6 under normal and mineralization-related pathological conditions. AnxA6 could promote ECM mineralization for bone regeneration in the manner described previously. Therefore, AnxA6 may be a potential osteogenic target for ECM mineralization.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
de Souza Ferreira LP, da Silva RA, Gil CD, Geisow MJ. Annexin A1, A2, A5, and A6 involvement in human pathologies. Proteins 2023; 91:1191-1204. [PMID: 37218507 DOI: 10.1002/prot.26512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
The human genome codes for 12 annexins with highly homologous membrane-binding cores and unique amino termini, which endow each protein with its specific biological properties. Not unique to vertebrate biology, multiple annexin orthologs are present in almost all eukaryotes. Their ability to combine either dynamically or constitutively with membrane lipid bilayers is hypothetically the key property that has led to their retention and multiple adaptation in eukaryotic molecular cell biology. Annexin genes are differentially expressed in many cell types but their disparate functions are still being discovered after more than 40 years of international research. A picture is emerging from gene knock down and knock out studies of individual annexins that these are important supporters rather than critical players in organism development and normal cell and tissue function. However, they appear to be highly significant "early responders" toward challenges arising from cell and tissue abiotic or biotic stress. In humans, recent focus has been on involvement of the annexin family for its involvement in diverse pathologies, especially cancer. From what has become an exceedingly broad field of investigation, we have selected four annexins in particular: AnxA1, 2, 5, and 6. Present both within and external to cells, these annexins are currently under intensive investigation in translational research as biomarkers of cellular dysfunction and as potential therapeutic targets for inflammatory conditions, neoplasia, and tissue repair. Annexin expression and release in response to biotic stress appears to be a balancing act. Under- or over-expression in different circumstances appears to damage rather than restore a healthy homeostasis. This review reflects briefly on what is already known of the structures and molecular cell biology of these selected annexins and considers their actual and potential roles in human health and disease.
Collapse
Affiliation(s)
- Luiz Philipe de Souza Ferreira
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Cristiane D Gil
- Department of Morphology and Genetics, Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo, Brazil
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Michael J Geisow
- National Institute for Medical Research, Mill Hill, London UK & Delta Biotechnology Ltd, Nottingham, UK
| |
Collapse
|
16
|
Abdelrahman SA, Khattab MA, Youssef MS, Mahmoud AA. Granulocyte-colony stimulating factor ameliorates di-ethylhexyl phthalate-induced cardiac muscle injury via stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms. J Mol Histol 2023; 54:349-363. [PMID: 37428366 PMCID: PMC10412672 DOI: 10.1007/s10735-023-10137-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Phthalates are common plasticizers present in medical-grade plastics and other everyday products. Di-ethylhexyl phthalate (DEHP) has been noted as a causative risk factor for the initiation and augmentation of cardiovascular functional disorders. G-CSF is a glycoprotein found in numerous tissues throughout the body and is currently applied in clinical practice and has been tested in congestive heart failure. We aimed to examine in depth the effect of DEHP on the histological and biochemical structure of the cardiac muscle in adult male albino rats and the mechanisms underlying the possible ameliorative effect of G-CSF. Forty-eight adult male albino rats were divided into control group, DEHP group, DEHP+ G-CSF group and DEHP-recovery group. We measured serum levels of aspartate aminotransferase (AST), creatine kinase MB isoenzyme (CK-MB) and lactate dehydrogenase (LDH). Left ventricular sections were processed for light and electron microscope examination, and immunohistochemical staining of Desmin, activated Caspase-3 and CD34. DEHP significantly increased enzyme levels, markedly distorted the normal architecture of cardiac muscle fibers, downregulated Desmin protein levels and enhanced fibrosis, and apoptosis. G-CSF treatment significantly decreased the enzyme levels compared to DEHP group. It enhanced CD34 positive stem cells recruitment to injured cardiac muscle, therefore improved the ultrastructural features of most cardiac muscle fibers via anti-fibrotic and anti-apoptotic effects in addition to increased Desmin protein expression levels. The recovery group showed partial improvement due to persistent DEHP effect. In conclusion, administration of G-CSF effectively corrected the histopathological, immunohistochemical and biochemical alterations in the cardiac muscle after DEHP administration by stem cells recruitment, Desmin protein regulation, antifibrotic and antiapoptotic mechanisms.
Collapse
Affiliation(s)
- Shaimaa A Abdelrahman
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Maha A Khattab
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marian S Youssef
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Mahmoud
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Bulgart HR, Goncalves I, Weisleder N. Leveraging Plasma Membrane Repair Therapeutics for Treating Neurodegenerative Diseases. Cells 2023; 12:1660. [PMID: 37371130 DOI: 10.3390/cells12121660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Plasma membrane repair is an essential cellular mechanism that reseals membrane disruptions after a variety of insults, and compromised repair capacity can contribute to the progression of many diseases. Neurodegenerative diseases are marked by membrane damage from many sources, reduced membrane integrity, elevated intracellular calcium concentrations, enhanced reactive oxygen species production, mitochondrial dysfunction, and widespread neuronal death. While the toxic intracellular effects of these changes in cellular physiology have been defined, the specific mechanism of neuronal death in certain neurodegenerative diseases remains unclear. An abundance of recent evidence indicates that neuronal membrane damage and pore formation in the membrane are key contributors to neurodegenerative disease pathogenesis. In this review, we have outlined evidence supporting the hypothesis that membrane damage is a contributor to neurodegenerative diseases and that therapeutically enhancing membrane repair can potentially combat neuronal death.
Collapse
Affiliation(s)
- Hannah R Bulgart
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Isabella Goncalves
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Noah Weisleder
- Department of Physiology & Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
18
|
Waters EA, Haney CR, Vaught LA, McNally EM, Demonbreun AR. New semi-automated tool for the quantitation of MR imaging to estimate in vivo muscle disease severity in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541310. [PMID: 37293050 PMCID: PMC10245844 DOI: 10.1101/2023.05.23.541310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pathology in Duchenne muscular dystrophy (DMD) is characterized by degenerating muscle fibers, inflammation, fibro-fatty infiltrate, and edema, and these pathological processes replace normal healthy muscle tissue. The mdx mouse model is one of the most commonly used preclinical models to study DMD. Mounting evidence has emerged illustrating that muscle disease progression varies considerably in mdx mice, with inter-animal differences as well as intra-muscular differences in pathology in individual mdx mice. This variation is important to consider when conducting assessments of drug efficacy and in longitudinal studies. Magnetic resonance imaging (MRI) is a non-invasive method that can be used qualitatively or quantitatively to measure muscle disease progression in the clinic and in preclinical models. Although MR imaging is highly sensitive, image acquisition and analysis can be time intensive. The purpose of this study was to develop a semi-automated muscle segmentation and quantitation pipeline that can quickly and accurately estimate muscle disease severity in mice. Herein, we show that the newly developed segmentation tool accurately divides muscle. We show that measures of skew and interdecile range based on segmentation sufficiently estimate muscle disease severity in healthy wildtype and diseased mdx mice. Moreover, the semi-automated pipeline reduced analysis time by nearly 10-fold. Use of this rapid, non-invasive, semi-automated MR imaging and analysis pipeline has the potential to transform preclinical studies, allowing for pre-screening of dystrophic mice prior to study enrollment to ensure more uniform muscle disease pathology across treatment groups, improving study outcomes.
Collapse
Affiliation(s)
- Emily A. Waters
- Chemistry of Life Processes Institute and Biomedical Engineering, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chad R. Haney
- Chemistry of Life Processes Institute and Biomedical Engineering, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lauren. A Vaught
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Cao J, Wan S, Chen S, Yang L. ANXA6: a key molecular player in cancer progression and drug resistance. Discov Oncol 2023; 14:53. [PMID: 37129645 PMCID: PMC10154440 DOI: 10.1007/s12672-023-00662-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Annexin-A6 (ANXA6), a Ca2+-dependent membrane binding protein, is the largest of all conserved annexin families and highly expressed in the plasma membrane and endosomal compartments. As a multifunctional scaffold protein, ANXA6 can interact with phospholipid membranes and various signaling proteins. These properties enable ANXA6 to participate in signal transduction, cholesterol homeostasis, intracellular/extracellular membrane transport, and repair of membrane domains, etc. Many studies have demonstrated that the expression of ANXA6 is consistently altered during tumor formation and progression. ANXA6 is currently known to mediate different patterns of tumor progression in different cancer types through multiple cancer-type specific mechanisms. ANXA6 is a potentially valuable marker in the diagnosis, progression, and treatment strategy of various cancers. This review mainly summarizes recent findings on the mechanism of tumor formation, development, and drug resistance of ANXA6. The contents reviewed herein may expand researchers' understanding of ANXA6 and contribute to developing ANXA6-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
- Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.
| |
Collapse
|
20
|
Role of calcium-sensor proteins in cell membrane repair. Biosci Rep 2023; 43:232522. [PMID: 36728029 PMCID: PMC9970828 DOI: 10.1042/bsr20220765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Cell membrane repair is a critical process used to maintain cell integrity and survival from potentially lethal chemical, and mechanical membrane injury. Rapid increases in local calcium levels due to a membrane rupture have been widely accepted as a trigger for multiple membrane-resealing models that utilize exocytosis, endocytosis, patching, and shedding mechanisms. Calcium-sensor proteins, such as synaptotagmins (Syt), dysferlin, S100 proteins, and annexins, have all been identified to regulate, or participate in, multiple modes of membrane repair. Dysfunction of membrane repair from inefficiencies or genetic alterations in these proteins contributes to diseases such as muscular dystrophy (MD) and heart disease. The present review covers the role of some of the key calcium-sensor proteins and their involvement in membrane repair.
Collapse
|
21
|
Interplay of membrane crosslinking and curvature induction by annexins. Sci Rep 2022; 12:22568. [PMID: 36581673 PMCID: PMC9800579 DOI: 10.1038/s41598-022-26633-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Efficient plasma membrane repair (PMR) is required to repair damage sustained in the cellular life cycle. The annexin family of proteins, involved in PMR, are activated by Ca2+ influx from extracellular media at the site of injury. Mechanistic studies of the annexins have been overwhelmingly performed using a single annexin, despite the recruitment of multiple annexins to membrane damage sites in living cells. Hence, we investigate the effect of the presence of the crosslinking annexins, annexin A1, A2 and A6 (ANXA1, ANXA2 and ANXA6) on the membrane curvature induction of annexin A4 (ANXA4) in model membrane systems. Our data support a mechanistic model of PMR where ANXA4 induced membrane curvature and ANXA6 crosslinking promotes wound closure. The model now can be expanded to include ANXA1 and ANXA2 as specialist free edge membrane crosslinkers that act in concert with ANXA4 induced curvature and ANXA6 crosslinking.
Collapse
|
22
|
Kunishige R, Murata M, Kano F. Targeted protein degradation by Trim-Away using cell resealing coupled with microscopic image-based quantitative analysis. Front Cell Dev Biol 2022; 10:1027043. [PMID: 36601537 PMCID: PMC9806799 DOI: 10.3389/fcell.2022.1027043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
"Trim-Away" technology enables rapid degradation of endogenous proteins without prior modification of protein-coding genes or mRNAs through delivery of antibodies that target proteins of interest. Although this approach can be readily applied to almost any cytosolic protein, strategies for cytosolic antibody delivery have been limited to microinjection or electroporation, which require skill-dependent operation or specialized equipment. Thus, the development of antibody delivery methods that are convenient, scalable, and preferably do not require detachment of adherent cells is required to extend the versatility of the Trim-Away method. Here, we developed a cell resealing technique optimized for Trim-Away degradation, which uses the pore-forming toxin streptolysin O (SLO) to permeabilize the cell membrane and delivered the antibodies of interest into HEK293T, HeLa, and HK-2 cell lines. We demonstrated the ability of Trim-Away protein degradation using IKKα and mTOR as targets, and we showed the availability of the developed system in antibody screening for the Trim-Away method. Furthermore, we effectively coupled Trim-Away with cyclic immunofluorescence and microscopic image-based analysis, which enables single-cell multiplexed imaging analysis. Taking advantage of this new analysis strategy, we were able to compensate for low signal-to-noise due to cell-to-cell variation, which occurs in the Trim-Away method because of the heterogenous contents of the introduced antibody, target protein, and TRIM21 in individual cells. Therefore, the reported cell resealing technique coupled with microscopic image analysis enables Trim-Away users to elucidate target protein function and the effects of target protein degradation on various cellular functions in a more quantitative and precise manner.
Collapse
Affiliation(s)
- Rina Kunishige
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan,Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, Yokohama, Japan
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan,Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, Yokohama, Japan,International Research Center for Neurointelligence, Institutes for Advanced Study, The University of Tokyo, Tokyo, Japan
| | - Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan,Multimodal Cell Analysis Collaborative Research Cluster, Tokyo Institute of Technology, Yokohama, Japan,*Correspondence: Fumi Kano,
| |
Collapse
|
23
|
Demonbreun AR, Bogdanovic E, Vaught LA, Reiser NL, Fallon KS, Long AM, Oosterbaan CC, Hadhazy M, Page PG, Joseph PRB, Cowen G, Telenson AM, Khatri A, Sadleir KR, Vassar R, McNally EM. A conserved annexin A6-mediated membrane repair mechanism in muscle, heart, and nerve. JCI Insight 2022; 7:158107. [PMID: 35866481 PMCID: PMC9431694 DOI: 10.1172/jci.insight.158107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Membrane instability and disruption underlie myriad acute and chronic disorders. Anxa6 encodes the membrane-associated protein annexin A6 and was identified as a genetic modifier of muscle repair and muscular dystrophy. To evaluate annexin A6’s role in membrane repair in vivo, we inserted sequences encoding green fluorescent protein (GFP) into the last coding exon of Anxa6. Heterozygous Anxa6gfp mice expressed a normal pattern of annexin A6 with reduced annexin A6GFP mRNA and protein. High-resolution imaging of wounded muscle fibers showed annexin A6GFP rapidly formed a repair cap at the site of injury. Injured cardiomyocytes and neurons also displayed repair caps after wounding, highlighting annexin A6–mediated repair caps as a feature in multiple cell types. Using surface plasmon resonance, we showed recombinant annexin A6 bound phosphatidylserine-containing lipids in a Ca2+- and dose-dependent fashion with appreciable binding at approximately 50 μM Ca2+. Exogenously added recombinant annexin A6 localized to repair caps and improved muscle membrane repair capacity in a dose-dependent fashion without disrupting endogenous annexin A6 localization, indicating annexin A6 promotes repair from both intracellular and extracellular compartments. Thus, annexin A6 orchestrates repair in multiple cell types, and recombinant annexin A6 may be useful in additional chronic disorders beyond skeletal muscle myopathies.
Collapse
Affiliation(s)
| | - Elena Bogdanovic
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauren A Vaught
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nina L Reiser
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine S Fallon
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ashlee M Long
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | - Gabrielle Cowen
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ammaarah Khatri
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Katherine R Sadleir
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert Vassar
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine.,Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
24
|
Vasconcelos-Cardoso M, Batista-Almeida D, Rios-Barros LV, Castro-Gomes T, Girao H. Cellular and molecular mechanisms underlying plasma membrane functionality and integrity. J Cell Sci 2022; 135:275922. [PMID: 35801807 DOI: 10.1242/jcs.259806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The plasma membrane not only protects the cell from the extracellular environment, acting as a selective barrier, but also regulates cellular events that originate at the cell surface, playing a key role in various biological processes that are essential for the preservation of cell homeostasis. Therefore, elucidation of the mechanisms involved in the maintenance of plasma membrane integrity and functionality is of utmost importance. Cells have developed mechanisms to ensure the quality of proteins that inhabit the cell surface, as well as strategies to cope with injuries inflicted to the plasma membrane. Defects in these mechanisms can lead to the development or onset of several diseases. Despite the importance of these processes, a comprehensive and holistic perspective of plasma membrane quality control is still lacking. To tackle this gap, in this Review, we provide a thorough overview of the mechanisms underlying the identification and targeting of membrane proteins that are to be removed from the cell surface, as well as the membrane repair mechanisms triggered in both physiological and pathological conditions. A better understanding of the mechanisms underlying protein quality control at the plasma membrane can reveal promising and unanticipated targets for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maria Vasconcelos-Cardoso
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Daniela Batista-Almeida
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Laura Valeria Rios-Barros
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Thiago Castro-Gomes
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, CEP 31270-901, Brazil
| | - Henrique Girao
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal.,University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal.,Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
25
|
An Overview of Cell Membrane Perforation and Resealing Mechanisms for Localized Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14040886. [PMID: 35456718 PMCID: PMC9031838 DOI: 10.3390/pharmaceutics14040886] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/09/2022] [Accepted: 04/14/2022] [Indexed: 01/04/2023] Open
Abstract
Localized and reversible plasma membrane disruption is a promising technique employed for the targeted deposition of exogenous therapeutic compounds for the treatment of disease. Indeed, the plasma membrane represents a significant barrier to successful delivery, and various physical methods using light, sound, and electrical energy have been developed to generate cell membrane perforations to circumvent this issue. To restore homeostasis and preserve viability, localized cellular repair mechanisms are subsequently triggered to initiate a rapid restoration of plasma membrane integrity. Here, we summarize the known emergency membrane repair responses, detailing the salient membrane sealing proteins as well as the underlying cytoskeletal remodeling that follows the physical induction of a localized plasma membrane pore, and we present an overview of potential modulation strategies that may improve targeted drug delivery approaches.
Collapse
|
26
|
Yim WWY, Yamamoto H, Mizushima N. Annexins A1 and A2 are recruited to larger lysosomal injuries independently of ESCRTs to promote repair. FEBS Lett 2022; 596:991-1003. [PMID: 35274304 DOI: 10.1002/1873-3468.14329] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
Damaged lysosomes can be repaired by calcium release-dependent recruitment of the ESCRT machinery. However, the involvement of annexins, another group of calcium-responding membrane repair proteins, has not been fully addressed. Here, we show that although all ubiquitously expressed annexins (ANXA1, A2, A4, A5, A6, A7, and A11) localize to damaged lysosomes, only ANXA1 and ANXA2 are important for repair. Their recruitment is calcium-dependent, ESCRT-independent, and selective towards lysosomes with large injuries. Lysosomal leakage was more severe when ANXA1 or ANXA2 was depleted compared to that of ESCRT components. These findings suggest that ANXA1 and ANXA2 constitute an additional repair mechanism that serves to minimize leakage from damaged lysosomes.
Collapse
Affiliation(s)
- Willa Wen-You Yim
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
27
|
Foltz S, Wu F, Ghazal N, Kwong JQ, Hartzell HC, Choo HJ. Sex differences in the involvement of skeletal and cardiac muscles in myopathic Ano5-/- mice. Am J Physiol Cell Physiol 2022; 322:C283-C295. [PMID: 35020501 PMCID: PMC8836717 DOI: 10.1152/ajpcell.00350.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/14/2021] [Accepted: 01/07/2022] [Indexed: 02/03/2023]
Abstract
Limb-girdle muscular dystrophy R12 (LGMD-R12) is caused by recessive mutations in the Anoctamin-5 gene (ANO5, TMEM16E). Although ANO5 myopathy is not X-chromosome linked, we performed a meta-analysis of the research literature and found that three-quarters of patients with LGMD-R12 are males. Females are less likely to present with moderate to severe skeletal muscle and/or cardiac pathology. Because these sex differences could be explained in several ways, we compared males and females in a mouse model of LGMD-R12. This model recapitulates the sex differences in human LGMD-R12. Only male Ano5-/- mice had elevated serum creatine kinase after exercise and exhibited defective membrane repair after laser injury. In contrast, by these measures, female Ano5-/- mice were indistinguishable from wild type. Despite these differences, both male and female Ano5-/- mice exhibited exercise intolerance. Although exercise intolerance of male mice can be explained by skeletal muscle dysfunction, echocardiography revealed that Ano5-/- female mice had features of cardiomyopathy that may be responsible for their exercise intolerance. These findings heighten concerns that mutations of ANO5 in humans may be linked to cardiac disease.
Collapse
Affiliation(s)
- Steven Foltz
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Fang Wu
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Nasab Ghazal
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Jennifer Q Kwong
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
- Division of Pediatric Cardiology, Department of Pediatrics, School of Medicine, Emory University and Children's Healthcare of Atlanta, Atlanta, Georgia
| | - H Criss Hartzell
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| | - Hyojung J Choo
- Department of Cell Biology, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
28
|
Houthaeve G, De Smedt SC, Braeckmans K, De Vos WH. The cellular response to plasma membrane disruption for nanomaterial delivery. NANO CONVERGENCE 2022; 9:6. [PMID: 35103909 PMCID: PMC8807741 DOI: 10.1186/s40580-022-00298-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Delivery of nanomaterials into cells is of interest for fundamental cell biological research as well as for therapeutic and diagnostic purposes. One way of doing so is by physically disrupting the plasma membrane (PM). Several methods that exploit electrical, mechanical or optical cues have been conceived to temporarily disrupt the PM for intracellular delivery, with variable effects on cell viability. However, apart from acute cytotoxicity, subtler effects on cell physiology may occur as well. Their nature and timing vary with the severity of the insult and the efficiency of repair, but some may provoke permanent phenotypic alterations. With the growing palette of nanoscale delivery methods and applications, comes a need for an in-depth understanding of this cellular response. In this review, we summarize current knowledge about the chronology of cellular events that take place upon PM injury inflicted by different delivery methods. We also elaborate on their significance for cell homeostasis and cell fate. Based on the crucial nodes that govern cell fitness and functionality, we give directions for fine-tuning nano-delivery conditions.
Collapse
Affiliation(s)
- Gaëlle Houthaeve
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
29
|
Lichocka M, Krzymowska M, Górecka M, Hennig J. Arabidopsis annexin 5 is involved in maintenance of pollen membrane integrity and permeability. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:94-109. [PMID: 34522949 DOI: 10.1093/jxb/erab419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
In Arabidopsis, a dry stigma surface enables a gradual hydration of pollen grains by a controlled release of water. Occasionally the grains may be exposed to extreme precipitations that cause rapid water influx and swelling, eventually leading to pollen membrane rupture. In metazoans, calcium- and phospholipid-binding proteins, referred to as annexins, participate in the repair of plasma membrane damages. It remains unclear, however, how this process is conducted in plants. Here, we examined whether plant annexin 5 (ANN5), the most abundant member of the annexin family in pollen, is involved in the restoration of pollen membrane integrity. We analyzed the cellular dynamics of ANN5 in pollen grains undergoing hydration in favorable or stress conditions. We observed a transient association of ANN5 with the pollen membrane during in vitro hydration that did not occur in the pollen grains being hydrated on the stigma. To simulate a rainfall, we performed spraying of the pollinated stigma with deionized water that induced ANN5 accumulation at the pollen membrane. Interestingly, calcium or magnesium application affected pollen membrane properties differently, causing rupture or shrinkage of pollen membrane, respectively. Both treatments, however, induced ANN5 recruitment to the pollen membrane. Our data suggest a model in which ANN5 is involved in the maintenance of membrane integrity in pollen grains exposed to osmotic or ionic imbalances.
Collapse
Affiliation(s)
- Małgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Magdalena Krzymowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Magdalena Górecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
30
|
Mohanraj N, Joshi NS, Poulose R, Patil RR, Santhoshkumar R, Kumar A, Waghmare GP, Saha AK, Haider SZ, Markandeya YS, Dey G, Rao LT, Govindaraj P, Mehta B. A proteomic study to unveil lead toxicity-induced memory impairments invoked by synaptic dysregulation. Toxicol Rep 2022; 9:1501-1513. [DOI: 10.1016/j.toxrep.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
|
31
|
Sokołowska P, Siatkowska M, Białkowska K, Rosowski M, Komorowski P, Walkowiak B. Osteosarcoma cells in early and late stages as cancer in vitro progression model for assessing the responsiveness of cells to silver nanoparticles. J Biomed Mater Res B Appl Biomater 2021; 110:1319-1334. [PMID: 34953019 DOI: 10.1002/jbm.b.35002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/09/2021] [Accepted: 12/13/2021] [Indexed: 11/07/2022]
Abstract
Understanding of biology of osteosarcoma malignant progression is indispensable for enhancement of conventional chemotherapy by the use of silver nanoparticles (AgNPs). We presented an in vitro model of cancer progression closely resembling processes occurring in vivo in terms of protein profile. A comparison of cytotoxic and genotoxic potential of AgNPs in Saos-2 cells in early stages of cancerous progression (early passages) with the cells in advanced stages (late passages) demonstrated significantly reduced responsiveness of the late passage cells to nanoparticles toxicity. It was also confirmed by proteome analysis as we identified considerably higher number of differentially expressed proteins in Saos-2 cells in early passages compared to the late passage cells. Our studies showed that the ability of AgNPs as potential drug carriers to deliver a medication and/or to evoke toxic effects might be significantly diminished in advanced stages of cancer progression.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Department of Pharmacology and Toxicology, Medical University of Lodz, Lodz, Poland
| | | | - Kamila Białkowska
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marcin Rosowski
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Department of Chemical Textiles Technologies, Lukasiewicz Research Network, Textile Research Institute, Lodz, Poland
| | - Piotr Komorowski
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Division of Biophysics, Institute of Materials Science, Lodz University of Technology, Lodz, Poland
| | - Bogdan Walkowiak
- Molecular and Nanostructural Biophysics Laboratory, Bionanopark Ltd., Lodz, Poland.,Division of Biophysics, Institute of Materials Science, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
32
|
Moyle LA, Davoudi S, Gilbert PM. Innovation in culture systems to study muscle complexity. Exp Cell Res 2021; 411:112966. [PMID: 34906582 DOI: 10.1016/j.yexcr.2021.112966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/31/2021] [Accepted: 12/04/2021] [Indexed: 11/19/2022]
Abstract
Endogenous skeletal muscle development, regeneration, and pathology are extremely complex processes, influenced by local and systemic factors. Unpinning how these mechanisms function is crucial for fundamental biology and to develop therapeutic interventions for genetic disorders, but also conditions like sarcopenia and volumetric muscle loss. Ex vivo skeletal muscle models range from two- and three-dimensional primary cultures of satellite stem cell-derived myoblasts grown alone or in co-culture, to single muscle myofibers, myobundles, and whole tissues. Together, these systems provide the opportunity to gain mechanistic insights of stem cell behavior, cell-cell interactions, and mature muscle function in simplified systems, without confounding variables. Here, we highlight recent advances (published in the last 5 years) using in vitro primary cells and ex vivo skeletal muscle models, and summarize the new insights, tools, datasets, and screening methods they have provided. Finally, we highlight the opportunity for exponential advance of skeletal muscle knowledge, with spatiotemporal resolution, that is offered by guiding the study of muscle biology and physiology with in silico modelling and implementing high-content cell biology systems and ex vivo physiology platforms.
Collapse
Affiliation(s)
- Louise A Moyle
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Sadegh Davoudi
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada
| | - Penney M Gilbert
- Institute of Biomedical Engineering, Toronto, ON, M5S 3G9, Canada; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S 3E1, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
33
|
Maeda FY, van Haaren JJ, Langley DB, Christ D, Andrews NW, Song W. Surface-associated antigen induces permeabilization of primary mouse B-cells and lysosome exocytosis facilitating antigen uptake and presentation to T-cells. eLife 2021; 10:66984. [PMID: 34704555 PMCID: PMC8589448 DOI: 10.7554/elife.66984] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
B-cell receptor (BCR)-mediated antigen internalization and presentation are essential for humoral memory immune responses. Antigen encountered by B-cells is often tightly associated with the surface of pathogens and/or antigen-presenting cells. Internalization of such antigens requires myosin-mediated traction forces and extracellular release of lysosomal enzymes, but the mechanism triggering lysosomal exocytosis is unknown. Here, we show that BCR-mediated recognition of antigen tethered to beads, to planar lipid-bilayers or expressed on cell surfaces causes localized plasma membrane (PM) permeabilization, a process that requires BCR signaling and non-muscle myosin II activity. B-cell permeabilization triggers PM repair responses involving lysosomal exocytosis, and B-cells permeabilized by surface-associated antigen internalize more antigen than cells that remain intact. Higher affinity antigens cause more B-cell permeabilization and lysosomal exocytosis and are more efficiently presented to T-cells. Thus, PM permeabilization by surface-associated antigen triggers a lysosome-mediated B-cell resealing response, providing the extracellular hydrolases that facilitate antigen internalization and presentation.
Collapse
Affiliation(s)
- Fernando Y Maeda
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Jurriaan Jh van Haaren
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - David B Langley
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Daniel Christ
- Immunology, Garvan Institute of Medical Research, Darlinghurst/Sydney, Australia
| | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| |
Collapse
|
34
|
Roman W, Pinheiro H, Pimentel MR, Segalés J, Oliveira LM, García-Domínguez E, Gómez-Cabrera MC, Serrano AL, Gomes ER, Muñoz-Cánoves P. Muscle repair after physiological damage relies on nuclear migration for cellular reconstruction. Science 2021; 374:355-359. [PMID: 34648328 DOI: 10.1126/science.abe5620] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- William Roman
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003 Barcelona, Spain.,Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Helena Pinheiro
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mafalda R Pimentel
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Jessica Segalés
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003 Barcelona, Spain
| | - Luis M Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Esther García-Domínguez
- FreshAge Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Mari Carmen Gómez-Cabrera
- FreshAge Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, CIBERFES, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Antonio L Serrano
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003 Barcelona, Spain
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Pura Muñoz-Cánoves
- Department of Experimental & Health Sciences, University Pompeu Fabra, CIBERNED, 08003 Barcelona, Spain.,Centro Nacional de Investigaciones Cardiovasculares, 28019 Madrid, Spain.,ICREA, 08010 Barcelona, Spain
| |
Collapse
|
35
|
McNally EM, Demonbreun AR. Resealing and rebuilding injured muscle. Science 2021; 374:262-263. [PMID: 34648349 PMCID: PMC9112225 DOI: 10.1126/science.abm2240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Reconstructing an injured muscle involves nuclear and mitochondrial contributions.
Collapse
Affiliation(s)
- Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
36
|
Ebrahimi M, Lad H, Fusto A, Tiper Y, Datye A, Nguyen CT, Jacques E, Moyle LA, Nguyen T, Musgrave B, Chávez-Madero C, Bigot A, Chen C, Turner S, Stewart BA, Pegoraro E, Vitiello L, Gilbert PM. De novo revertant fiber formation and therapy testing in a 3D culture model of Duchenne muscular dystrophy skeletal muscle. Acta Biomater 2021; 132:227-244. [PMID: 34048976 DOI: 10.1016/j.actbio.2021.05.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The biological basis of Duchenne muscular dystrophy (DMD) pathology is only partially characterized and there are still few disease-modifying therapies available, therein underlying the value of strategies to model and study DMD. Dystrophin, the causative gene of DMD, is responsible for linking the cytoskeleton of muscle fibers to the extracellular matrix beyond the sarcolemma. We posited that disease-associated phenotypes not yet captured by two-dimensional culture methods would arise by generating multinucleated muscle cells within a three-dimensional (3D) extracellular matrix environment. Herein we report methods to produce 3D human skeletal muscle microtissues (hMMTs) using clonal, immortalized myoblast lines established from healthy and DMD donors. We also established protocols to evaluate immortalized hMMT self-organization and myotube maturation, as well as calcium handling, force generation, membrane stability (i.e., creatine kinase activity and Evans blue dye permeability) and contractile apparatus organization following electrical-stimulation. In examining hMMTs generated with a cell line wherein the dystrophin gene possessed a duplication of exon 2, we observed rare dystrophin-positive myotubes, which were not seen in 2D cultures. Further, we show that treating DMD hMMTs with a β1-integrin activating antibody, improves contractile apparatus maturation and stability. Hence, immortalized myoblast-derived DMD hMMTs offer a pre-clinical system with which to investigate the potential of duplicated exon skipping strategies and those that protect muscle cells from contraction-induced injury. STATEMENT OF SIGNIFICANCE: Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disorder that is caused by mutation of the dystrophin gene. The biological basis of DMD pathology is only partially characterized and there is no cure for this fatal disease. Here we report a method to produce 3D human skeletal muscle microtissues (hMMTs) using immortalized human DMD and healthy myoblasts. Morphological and functional assessment revealed DMD-associated pathophysiology including impaired calcium handling and de novo formation of dystrophin-positive revertant muscle cells in immortalized DMD hMMTs harbouring an exon 2 duplication, a feature of many DMD patients that has not been recapitulated in culture prior to this report. We further demonstrate that this "DMD in a dish" system can be used as a pre-clinical assay to test a putative DMD therapeutic and study the mechanism of action.
Collapse
Affiliation(s)
- Majid Ebrahimi
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Heta Lad
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Aurora Fusto
- Department of Neuroscience, University of Padua, Padua, 35128, Italy
| | - Yekaterina Tiper
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Asiman Datye
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Christine T Nguyen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - Erik Jacques
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Louise A Moyle
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Thy Nguyen
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Brennen Musgrave
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Carolina Chávez-Madero
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada
| | - Anne Bigot
- Sorbonne Universite, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, Paris UMRS974, France
| | - Chun Chen
- Pliant Therapeutics, Inc, South San Francisco, California 94080, USA
| | - Scott Turner
- Pliant Therapeutics, Inc, South San Francisco, California 94080, USA
| | - Bryan A Stewart
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada; Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L1C6, Canada
| | - Elena Pegoraro
- Department of Neuroscience, University of Padua, Padua, 35128, Italy
| | - Libero Vitiello
- Department of Biology, University of Padua, Padua 35131, Italy; Interuniversity Institute of Myology (IIM), Italy
| | - Penney M Gilbert
- Donnelly Centre, University of Toronto, Toronto, ON M5S3E1, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S3G9, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S3G5, Canada.
| |
Collapse
|
37
|
Demonbreun AR, Fallon KS, Oosterbaan CC, Vaught LA, Reiser NL, Bogdanovic E, Velez MP, Salamone IM, Page PGT, Hadhazy M, Quattrocelli M, Barefield DY, Wood LD, Gonzalez JP, Morris C, McNally EM. Anti-latent TGFβ binding protein 4 antibody improves muscle function and reduces muscle fibrosis in muscular dystrophy. Sci Transl Med 2021; 13:eabf0376. [PMID: 34516828 PMCID: PMC9559620 DOI: 10.1126/scitranslmed.abf0376] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Duchenne muscular dystrophy, like other muscular dystrophies, is a progressive disorder hallmarked by muscle degeneration, inflammation, and fibrosis. Latent transforming growth factor β (TGFβ) binding protein 4 (LTBP4) is an extracellular matrix protein found in muscle. LTBP4 sequesters and inhibits a precursor form of TGFβ. LTBP4 was originally identified from a genome-wide search for genetic modifiers of muscular dystrophy in mice, where there are two different alleles. The protective form of LTBP4, which contains an insertion of 12 amino acids in the protein’s hinge region, was linked to increased sequestration of latent TGFβ, enhanced muscle membrane stability, and reduced muscle fibrosis. The deleterious form of LTBP4 protein, lacking 12 amino acids, was more susceptible to proteolysis and promoted release of latent TGF-β, and together, these data underscored the functional role of LTBP4’s hinge. Here, we generated a monoclonal human anti-LTBP4 antibody directed toward LTBP4’s hinge region. In vitro, anti-LTBP4 bound LTBP4 protein and reduced LTBP4 proteolytic cleavage. In isolated myofibers, the LTBP4 antibody stabilized the sarcolemma from injury. In vivo, anti-LTBP4 treatment of dystrophic mice protected muscle against force loss induced by eccentric contraction. Anti-LTBP4 treatment also reduced muscle fibrosis and enhanced muscle force production, including in the diaphragm muscle, where respiratory function was improved. Moreover, the anti-LTBP4 in combination with prednisone, a standard of care for Duchenne muscular dystrophy, further enhanced muscle function and protected against injury in mdx mice. These data demonstrate the potential of anti-LTBP4 antibodies to treat muscular dystrophy.
Collapse
Affiliation(s)
- Alexis R Demonbreun
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - Katherine S Fallon
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Claire C Oosterbaan
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lauren A Vaught
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nina L Reiser
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elena Bogdanovic
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew P Velez
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Isabella M Salamone
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Patrick G T Page
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mattia Quattrocelli
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
38
|
Hagan ML, Balayan V, McGee-Lawrence ME. Plasma membrane disruption (PMD) formation and repair in mechanosensitive tissues. Bone 2021; 149:115970. [PMID: 33892174 PMCID: PMC8217198 DOI: 10.1016/j.bone.2021.115970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/26/2021] [Accepted: 04/17/2021] [Indexed: 01/04/2023]
Abstract
Mammalian cells employ an array of biological mechanisms to detect and respond to mechanical loading in their environment. One such mechanism is the formation of plasma membrane disruptions (PMD), which foster a molecular flux across cell membranes that promotes tissue adaptation. Repair of PMD through an orchestrated activity of molecular machinery is critical for cell survival, and the rate of PMD repair can affect downstream cellular signaling. PMD have been observed to influence the mechanical behavior of skin, alveolar, and gut epithelial cells, aortic endothelial cells, corneal keratocytes and epithelial cells, cardiac and skeletal muscle myocytes, neurons, and most recently, bone cells including osteoblasts, periodontal ligament cells, and osteocytes. PMD are therefore positioned to affect the physiological behavior of a wide range of vertebrate organ systems including skeletal and cardiac muscle, skin, eyes, the gastrointestinal tract, the vasculature, the respiratory system, and the skeleton. The purpose of this review is to describe the processes of PMD formation and repair across these mechanosensitive tissues, with a particular emphasis on comparing and contrasting repair mechanisms and downstream signaling to better understand the role of PMD in skeletal mechanobiology. The implications of PMD-related mechanisms for disease and potential therapeutic applications are also explored.
Collapse
Affiliation(s)
- Mackenzie L Hagan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Vanshika Balayan
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA
| | - Meghan E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd., CB1101, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
39
|
Peripheral Blood T Cell Gene Expression Responses to Exercise and HMB in Sarcopenia. Nutrients 2021; 13:nu13072313. [PMID: 34371826 PMCID: PMC8308783 DOI: 10.3390/nu13072313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Sarcopenia is a major health problem in older adults. Exercise and nutrient supplementation have been shown to be effective interventions but there are limited studies to investigate their effects on the management of sarcopenia and its possible underlying mechanisms. Here, we studied T cell gene expression responses to interventions in sarcopenia. Methods: The results of this study were part of a completed trial examining the effectiveness of a 12-week intervention with exercise and nutrition supplementation in community-dwelling Chinese older adults with sarcopenia, based on the available blood samples at baseline and 12 weeks from 46 randomized participants from three study groups, namely: exercise program alone (n = 11), combined-exercise program and nutrition supplement (n = 23), and waitlist control group (n = 12). T cell gene expression was evaluated, with emphasis on inflammation-related genes. Real-time PCR (RT-PCR) was performed on CD3 T cells in 38 selected genes. Correlation analysis was performed to relate the results of gene expression analysis with lower limb muscle strength performance, measured using leg extension tests. Results: Our results showed a significant improvement in leg extension for both the exercise program alone and the combined groups (p < 0.001). Nine genes showed significant pre- and post-difference in gene expression over 12 weeks of intervention in the combined group. Seven genes (RASGRP1, BIN1, LEF1, ANXA6, IL-7R, LRRN3, and PRKCQ) showed an interaction effect between intervention and gene expression levels on leg extension in the confirmatory analysis, with confounder variables controlled and FDR correction. Conclusions: Our findings showed that T cell-specific inflammatory gene expression was changed significantly after 12 weeks of intervention with combined exercise and HMB supplementation in sarcopenia, and that this was associated with lower limb muscle strength performance.
Collapse
|
40
|
Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22105276. [PMID: 34067866 PMCID: PMC8155887 DOI: 10.3390/ijms22105276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.
Collapse
|
41
|
Hasanzadeh Kafshgari M, Agiotis L, Largillière I, Patskovsky S, Meunier M. Antibody-Functionalized Gold Nanostar-Mediated On-Resonance Picosecond Laser Optoporation for Targeted Delivery of RNA Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007577. [PMID: 33783106 DOI: 10.1002/smll.202007577] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The rapid advances of genetic and genomic technology indicate promising therapeutic potential of genetic materials for regulating abnormal gene expressions causing diseases and disorders. However, targeted intracellular delivery of RNA therapeutics still remains a major challenge hindering the clinical translation. In this study, an elaborated plasmonic optoporation approach is proposed to efficiently and selectively transfect specific cells. The site-specific optoporation is obtained by tuning the spectral range of a supercontinuum pulsed picosecond laser in order for each individual cell binding gold nanostar with their unique resonance peak to magnify the local field strength in the near-infrared region and facilitate a selective delivery of small interfering RNA, messenger RNA, and Cas9-ribonucleoprotein into human retinal pigment epithelial cells. Numerical simulations indicate that optoporation is not due to a plasma-mediated process but rather due to a highly localized temperature rise both in time (few nanoseconds) and space (few nanometers). Taking advantage of the numerical simulation and fine-tuning of the optical strategy, the perforated lipid bilayer of targeted cells undergoes a membrane recovery process, important to retain their viability. The results signify the prospects of antibody functionalized nanostar-mediated optoporation as a simple and realistic gene delivery approach for future clinical practices.
Collapse
Affiliation(s)
| | - Leonidas Agiotis
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| | - Isabelle Largillière
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| | - Sergiy Patskovsky
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| | - Michel Meunier
- Department of Engineering Physics, Polytechnique Montreal, Montreal, QC, H3C3A7, Canada
| |
Collapse
|
42
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
43
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
44
|
Kim JA, Vetrivel P, Kim SM, Ha SE, Kim HH, Bhosale PB, Heo JD, Lee WS, Senthil K, Kim GS. Quantitative Proteomics Analysis for the Identification of Differential Protein Expression in Calf Muscles between Young and Old SD Rats Using Mass Spectrometry. ACS OMEGA 2021; 6:7422-7433. [PMID: 33778255 PMCID: PMC7992086 DOI: 10.1021/acsomega.0c05821] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/28/2021] [Indexed: 05/04/2023]
Abstract
Aging is associated with loss of muscle mass and strength that leads to a condition termed sarcopenia. Impaired conditions, morbidity, and malnutrition are the factors of devaluation of muscle fibers in aged animals. Satellite cells play an important role in maintaining muscle homeostasis during tissue regeneration and repair. Proteomic profiling on the skeletal muscle tissues of different age group rats helps to determine the differentially expressed (DE) proteins, which may eventually lead to the development of biomarkers in treating the conditions of sarcopenia. In this study, nanoscale liquid chromatography coupled to tandem mass spectrometry (nano-LC-MS/MS) analysis was implemented in the calf tissues of young and old groups of rats. The mass spectrometry (MS) analysis revealed the presence of 335 differentially expressed proteins between the two different age conditions, among which those based on log-fold change 25 proteins were upregulated and 77 were downregulated. The protein-protein interaction network analysis revealed 18 upregulated proteins with three distinct interconnected networks and 57 downregulated proteins with two networks. Further, gene ontology (GO) enrichment analysis showed the biological process, cellular component, and molecular function of the differential proteins. Pathway enrichment analysis of the DE proteins identified nine significantly enriched pathways with a list of eight significant genes (Cryab, Hspb2, Acat1, Ak1, Adssl1, Anxa5, Gys1, Ogdh, Gc, and Adssl1). Quantification of significant genes by quantitative real-time polymerase chain reaction (qRT-PCR) confirmed the downregulation at the mRNA level. Western blot analysis of their protein expression showed concordant results on two candidate proteins (Ogdh and annexin 5) confirming their differential regulation between the two age groups of rats. Thus, these proteomic approaches on young and aged rats provide insights into the development of protein targets in the treatment of sarcopenia (muscle loss).
Collapse
Affiliation(s)
- Jin A. Kim
- Department
of Physical Therapy, International University
of Korea, Jinju 52833, Republic of Korea
| | - Preethi Vetrivel
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Seong Min Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Sang Eun Ha
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Hun Hwan Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| | - Jeong Doo Heo
- Gyeongnam
Department of Environment Toxicology and Chemistry, Toxicity Screening
Research Center, Korea Institute of Toxicology, Munsan-eup, Jinju, Gyeongnam 52834, Republic of Korea
| | - Won Sup Lee
- Department
of Internal Medicine, Institute of Health Sciences, Gyeongsang National
University Hospital, Gyeongsang National
University School of Medicine, Jinju 660-702, Republic
of Korea
| | - Kalaiselvi Senthil
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, India
| | - Gon Sup Kim
- Research
Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Republic of Korea
| |
Collapse
|
45
|
Repairing plasma membrane damage in regulated necrotic cell death. Mol Biol Rep 2021; 48:2751-2759. [PMID: 33687702 DOI: 10.1007/s11033-021-06252-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
The plasma membrane performs a central role in maintaining cellular homeostasis and viability by acting as a semi-permeable barrier separating the cell from its surroundings. Under physiological conditions, it is constantly exposed to different kinds of stress, such as from pore-forming proteins/toxins and mechanical activity, that compromises its integrity resulting in cells developing various ways to cope with these dangers to survive. These plasma membrane repair mechanisms are initiated by the rapid influx of extracellular Ca2+ ions and are thus hinged on the activity of various Ca2+-binding proteins. The cell's response to membrane damage also depends on the nature and extent of the stimuli as well as the cell type, and the mechanisms involved are believed to be not mutually exclusive. In regulated necrotic cell death, specifically necroptosis, pyroptosis, and ferroptosis, plasma membrane damage ultimately causes cell lysis and the release of immunomodulating damage-associated molecular patterns. Here, I will discuss how these three cell death pathways are counterbalanced by the action of ESCRT (Endosomal Sorting Complex Required for Transport)-III-dependent plasma membrane repair mechanism, that eventually affects the profile of released cytokines and cell-to-cell communication. These highlight a crucial role that plasma membrane repair play in regulated necrosis, and its potential as a viable target to modulate the immune responses associated with these pathways in the context of the various human pathologies where these cell death modalities are implicated.
Collapse
|
46
|
Foltz SJ, Cui YY, Choo HJ, Hartzell HC. ANO5 ensures trafficking of annexins in wounded myofibers. J Cell Biol 2021; 220:e202007059. [PMID: 33496727 PMCID: PMC7844426 DOI: 10.1083/jcb.202007059] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations in ANO5 (TMEM16E) cause limb-girdle muscular dystrophy R12. Defective plasma membrane repair is a likely mechanism. Using myofibers from Ano5 knockout mice, we show that trafficking of several annexin proteins, which together form a cap at the site of injury, is altered upon loss of ANO5. Annexin A2 accumulates at the wound to nearly twice the level observed in WT fibers, while annexin A6 accumulation is substantially inhibited in the absence of ANO5. Appearance of annexins A1 and A5 at the cap is likewise diminished in the Ano5 knockout. These changes are correlated with an alteration in annexin repair cap fine structure and shedding of annexin-positive vesicles. We conclude that loss of annexin coordination during repair is disrupted in Ano5 knockout mice and underlies the defective repair phenotype. Although ANO5 is a phospholipid scramblase, abnormal repair is rescued by overexpression of a scramblase-defective ANO5 mutant, suggesting a novel, scramblase-independent role of ANO5 in repair.
Collapse
Affiliation(s)
| | | | - Hyojung J. Choo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - H. Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
47
|
Klenow MB, Heitmann ASB, Nylandsted J, Simonsen AC. Timescale of hole closure during plasma membrane repair estimated by calcium imaging and numerical modeling. Sci Rep 2021; 11:4226. [PMID: 33608587 PMCID: PMC7895973 DOI: 10.1038/s41598-021-82926-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Plasma membrane repair is essential for eukaryotic cell life and is triggered by the influx of calcium through membrane wounds. Repair consists of sequential steps, with closure of the membrane hole being the key event that allows the cell to recover, thus identifying the kinetics of hole closure as important for clarifying repair mechanisms and as a quantitative handle on repair efficiency. We implement calcium imaging in MCF7 breast carcinoma cells subject to laser damage, coupled with a model describing the spatio-temporal calcium distribution. The model identifies the time point of hole closure as the time of maximum calcium signal. Analysis of cell data estimates the closure time as: [Formula: see text] s and [Formula: see text] s using GCaMP6s-CAAX and GCaMP6s probes respectively. The timescale was confirmed by independent time-lapse imaging of a hole during sealing. Moreover, the analysis estimates the characteristic time scale of calcium removal, the penetration depth of the calcium wave and the diffusion coefficient. Probing of hole closure times emerges as a strong universal tool for quantification of plasma membrane repair.
Collapse
Affiliation(s)
- Martin Berg Klenow
- Department of Physics Chemistry and Pharmacy (FKF), Odense, Denmark
- University of Southern Denmark (SDU), Campusvej 55, 5230, Odense, Denmark
| | | | - Jesper Nylandsted
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3C, 2200, Copenhagen, Denmark
| | - Adam Cohen Simonsen
- Department of Physics Chemistry and Pharmacy (FKF), Odense, Denmark.
- University of Southern Denmark (SDU), Campusvej 55, 5230, Odense, Denmark.
| |
Collapse
|
48
|
Plasma membrane integrity in health and disease: significance and therapeutic potential. Cell Discov 2021; 7:4. [PMID: 33462191 PMCID: PMC7813858 DOI: 10.1038/s41421-020-00233-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of plasma membrane integrity is essential for normal cell viability and function. Thus, robust membrane repair mechanisms have evolved to counteract the eminent threat of a torn plasma membrane. Different repair mechanisms and the bio-physical parameters required for efficient repair are now emerging from different research groups. However, less is known about when these mechanisms come into play. This review focuses on the existence of membrane disruptions and repair mechanisms in both physiological and pathological conditions, and across multiple cell types, albeit to different degrees. Fundamentally, irrespective of the source of membrane disruption, aberrant calcium influx is the common stimulus that activates the membrane repair response. Inadequate repair responses can tip the balance between physiology and pathology, highlighting the significance of plasma membrane integrity. For example, an over-activated repair response can promote cancer invasion, while the inability to efficiently repair membrane can drive neurodegeneration and muscular dystrophies. The interdisciplinary view explored here emphasises the widespread potential of targeting plasma membrane repair mechanisms for therapeutic purposes.
Collapse
|
49
|
Defective membrane repair machinery impairs survival of invasive cancer cells. Sci Rep 2020; 10:21821. [PMID: 33311633 PMCID: PMC7733495 DOI: 10.1038/s41598-020-77902-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 11/08/2022] Open
Abstract
Cancer cells are able to reach distant tissues by migration and invasion processes. Enhanced ability to cope with physical stresses leading to cell membrane damages may offer to cancer cells high survival rate during metastasis. Consequently, down-regulation of the membrane repair machinery may lead to metastasis inhibition. We show that migration of MDA-MB-231 cells on collagen I fibrils induces disruptions of plasma membrane and pullout of membrane fragments in the wake of cells. These cells are able to reseal membrane damages thanks to annexins (Anx) that are highly expressed in invasive cancer cells. In vitro membrane repair assays reveal that MDA-MB-231 cells respond heterogeneously to membrane injury and some of them possess a very efficient repair machinery. Finally, we show that silencing of AnxA5 and AnxA6 leads to the death of migrating MDA-MB-231 cells due to major defect of the membrane repair machinery. Disturbance of the membrane repair process may therefore provide a new avenue for inhibiting cancer metastasis.
Collapse
|
50
|
Yue F, Song C, Huang D, Narayanan N, Qiu J, Jia Z, Yuan Z, Oprescu SN, Roseguini BT, Deng M, Kuang S. PTEN Inhibition Ameliorates Muscle Degeneration and Improves Muscle Function in a Mouse Model of Duchenne Muscular Dystrophy. Mol Ther 2020; 29:132-148. [PMID: 33068545 DOI: 10.1016/j.ymthe.2020.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 12/15/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by a mutation of the muscle membrane protein dystrophin and characterized by severe degeneration of myofibers, progressive muscle wasting, loss of mobility, and, ultimately, cardiorespiratory failure and premature death. Currently there is no cure for DMD. Herein, we report that skeletal muscle-specific knockout (KO) of the phosphatase and tensin homolog (Pten) gene in an animal model of DMD (mdx mice) alleviates myofiber degeneration and restores muscle function without increasing tumor incidence. Specifically, Pten KO normalizes myofiber size and prevents muscular atrophy, and it improves grip strength and exercise performance in mdx mice. Pten KO also reduces fibrosis and inflammation, and it ameliorates muscle pathology in mdx mice. Unbiased RNA sequencing reveals that Pten KO upregulates extracellular matrix and basement membrane components positively correlated with wound healing and suppresses negative regulators of wound healing and lipid biosynthesis, thus improving the integrity of muscle basement membrane at the ultrastructural level. Importantly, pharmacological inhibition of PTEN similarly ameliorates muscle pathology and improves muscle integrity and function in mdx mice. Our findings provide evidence that PTEN inhibition may represent a potential therapeutic strategy to restore muscle function in DMD.
Collapse
Affiliation(s)
- Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - Changyou Song
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Di Huang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Naagarajan Narayanan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zhihao Jia
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Zhengrong Yuan
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Stephanie N Oprescu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruno T Roseguini
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN 47907, USA
| | - Meng Deng
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA; Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|