1
|
Belamkar A, Luo Q, Mahajan N, Abhyankar S, Jones BA, Sodhi RK, Pattabiraman PP, Levi M, Bhatwadekar AD. Characterization of the Ocular Phenotype in a Col4a3 Knockout Mouse Model of Alport Syndrome. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 39680378 DOI: 10.1167/iovs.65.14.29] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Purpose Alport syndrome (AS) is a genetic condition caused by a dysfunctional collagen (IV) α3α4α5 heterotrimer, leading to basement membrane instability and, ultimately, abnormalities in the kidney, inner ear, and eyes. This study aimed to characterize ocular pathology of AS by focusing on inflammatory and fibrotic markers. Methods Col4a3tm1Dec knockout (KO) mice eyes were evaluated for the localization of collagen (IV) α3 and collagen (IV) α4, then stained for transforming growth factor-β1 (TGF-β1), TGF-β2, connective tissue growth factor (CTGF), and β-catenin. mRNA levels of the profibrotic genes S100a4, Acta2, Col1a1, Snai1, Snai2, and Twist1 were assessed using real-time reverse transcription quantitative PCR (RT-qPCR). Results Collagen (IV) α3 and collagen (IV) α4 were co-expressed in Descemet's and Bruch's membrane but not in the retina, lens, or other corneal substructures. Immunofluorescence quantitation revealed upregulation of TGF-β1 in the anterior lens and TGF-β2 in the retina of KO eyes. Conversely, CTGF and β-catenin were shown to be elevated in the corneal epithelium but not the retina or lens. RT-qPCR showed an increase in the transcription of Acta2, Col1a1, and Snai2 in the retinas and Snai2 in anterior segments of KO mice. Conclusions Col4a3 KO mice exhibited a differential inflammatory and profibrotic response in the cornea, retina, and lens, which may play a role in the ocular pathology of AS.
Collapse
Affiliation(s)
- Ameya Belamkar
- Indiana University of School of Medicine, Indiana, United States
| | - Qianyi Luo
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Neha Mahajan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Surabhi Abhyankar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Bryce A Jones
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC, United States
| | - Rupinder Kaur Sodhi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Padmanabhan P Pattabiraman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, United States
| | - Ashay D Bhatwadekar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
VanSlyke JK, Boswell BA, Musil LS. TGFβ overcomes FGF-induced transinhibition of EGFR in lens cells to enable fibrotic secondary cataract. Mol Biol Cell 2024; 35:ar75. [PMID: 38598298 PMCID: PMC11238076 DOI: 10.1091/mbc.e24-01-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
To cause vision-disrupting fibrotic secondary cataract (PCO), lens epithelial cells that survive cataract surgery must migrate to the posterior of the lens capsule and differentiate into myofibroblasts. During this process, the cells become exposed to the FGF that diffuses out of the vitreous body. In normal development, such relatively high levels of FGF induce lens epithelial cells to differentiate into lens fiber cells. It has been a mystery as to how lens cells could instead undergo a mutually exclusive cell fate, namely epithelial to myofibroblast transition, in the FGF-rich environment of the posterior capsule. We and others have reported that the ability of TGFβ to induce lens cell fibrosis requires the activity of endogenous ErbBs. We show here that lens fiber-promoting levels of FGF induce desensitization of ErbB1 (EGFR) that involves its phosphorylation on threonine 669 mediated by both ERK and p38 activity. Transinhibition of ErbB1 by FGF is overcome by a time-dependent increase in ErbB1 levels induced by TGFβ, the activation of which is increased after cataract surgery. Our studies provide a rationale for why TGFβ upregulates ErbB1 in lens cells and further support the receptor as a therapeutic target for PCO.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
3
|
Mao M, Kuo YM, Yu AK, Labelle-Dumais C, Ou Y, Gould DB. TGFβ Signaling Dysregulation May Contribute to COL4A1-Related Glaucomatous Optic Nerve Damage. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38717426 PMCID: PMC11090142 DOI: 10.1167/iovs.65.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 05/15/2024] Open
Abstract
Purpose Mutations in the genes encoding type IV collagen alpha 1 (COL4A1) and alpha 2 (COL4A2) cause a multisystem disorder that includes ocular anterior segment dysgenesis (ASD) and glaucoma. We previously showed that transforming growth factor beta (TGFβ) signaling was elevated in developing anterior segments from Col4a1 mutant mice and that reducing TGFβ signaling ameliorated ASD, supporting a role for the TGFβ pathway in disease pathogenesis. Here, we tested whether altered TGFβ signaling also contributes to glaucoma-related phenotypes in Col4a1 mutant mice. Methods To test the role of TGFβ signaling in glaucoma-relevant phenotypes, we genetically reduced TGFβ signaling using mice with mutated Tgfbr2, which encodes the common receptor for all TGFβ ligands in Col4a1+/G1344D mice. We performed slit-lamp biomicroscopy and optical coherence tomography for qualitative and quantitative analyses of anterior and posterior ocular segments, histological analyses of ocular tissues and optic nerves, and intraocular pressure assessments using rebound tonometry. Results Col4a1+/G1344D mice showed defects of the ocular drainage structures, including iridocorneal adhesions, and phenotypes consistent with glaucomatous neurodegeneration, including thinning of the nerve fiber layer, retinal ganglion cell loss, optic nerve head excavation, and optic nerve degeneration. We found that reducing TGFβ receptor 2 (TGFBR2) was protective for ASD, ameliorated ocular drainage structure defects, and protected against glaucomatous neurodegeneration in Col4a1+/G1344D mice. Conclusions Our results suggest that elevated TGFβ signaling contributes to glaucomatous neurodegeneration in Col4a1 mutant mice.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Alfred K. Yu
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Douglas B. Gould
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
- Department of Anatomy, Institute for Human Genetics, Cardiovascular Research Institute, and Bakar Aging Research Institute, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
4
|
Fan C, Wang C, Wang Y, Jiang J. Transcriptome exploration of ferroptosis-related genes in TGFβ- induced lens epithelial to mesenchymal transition during posterior capsular opacification development. BMC Genomics 2024; 25:352. [PMID: 38594623 PMCID: PMC11003017 DOI: 10.1186/s12864-024-10244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Posterior capsular opacification (PCO) is the main reason affecting the long-term postoperative result of cataract patient, and it is well accepted that fibrotic PCO is driven by transforming growth factor beta (TGFβ) signaling. Ferroptosis, closely related to various ocular diseases, but has not been explored in PCO. METHODS RNA sequencing (RNA-seq) was performed on both TGF-β2 treated and untreated primary lens epithelial cells (pLECs). Differentially expressed genes (DEGs) associated with ferroptosis were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) to investigate their biological function. Additionally, protein-to-protein interactions among selected ferroptosis-related genes by PPI network and the top 10 genes with the highest score (MCC algorithm) were selected as the hub genes. The top 20 genes with significant fold change values were validated using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Our analysis revealed 1253 DEGs between TGF-β2 treated and untreated pLECs, uncovering 38 ferroptosis-related genes between two groups. Among these 38 ferroptosis-related genes,the most prominent GO enrichment analysis process involved in the response to oxidative stress (BPs), apical part of cell (CCs),antioxidant activity (MFs). KEGG were mainly concentrated in fluid shear stress and atherosclerosis, IL-17 and TNF signaling pathways, and validation of top 20 genes with significant fold change value were consistent with RNA-seq. CONCLUSIONS Our RNA-Seq data identified 38 ferroptosis-related genes in TGF-β2 treated and untreated pLECs, which is the first observation of ferroptosis related genes in primary human lens epithelial cells under TGF-β2 stimulation.
Collapse
Affiliation(s)
- Cong Fan
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, USA
| | - Jian Jiang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China.
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Hou M, Luo F, Ding Y, Bao X, Chen X, Liu L, Wu M. Let-7c-3p suppresses lens epithelial-mesenchymal transition by inhibiting cadherin-11 expression in fibrotic cataract. Mol Cell Biochem 2024; 479:743-759. [PMID: 37171723 DOI: 10.1007/s11010-023-04758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
Fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsule opacification, always lead to visual impairment. Epithelial-mesenchymal transition (EMT) is a well-known event that causes phenotypic alterations in lens epithelial cells (LECs) during lens fibrosis. Accumulating studies have demonstrated that microRNAs are important regulators of EMT and fibrosis. However, the evidence explaining how microRNAs modulate the behavior and alter the cellular phenotypes of the lens epithelium in fibrotic cataract is insufficient. In this study, we found that hsa-let-7c-3p is downregulated in LECs in human ASC in vivo as well as in TGFβ2-induced EMT in vitro, indicating that hsa-let-7c-3p may participate in modulating the profibrotic processes in the lens. We then demonstrated that overexpression of hsa-let-7c-3p markedly suppressed human LEC proliferation and migration and attenuated TGFβ2-induced EMT and injury-induced ASC in a mouse model. In addition, hsa-let-7c-3p mediated lens fibrosis by directly targeting the CDH11 gene, which encodes cadherin-11 protein, an important mediator in the EMT signaling pathway. It decreased cadherin-11 protein expression at the posttranscriptional level but not at the transcriptional level by binding to a specific site in the 3-untranslated region (3'-UTR) of CDH11 mRNA. Moreover, blockade of cadherin-11 expression with a specific short hairpin RNA reversed TGFβ2-induced EMT in LECs in vitro. Collectively, these data demonstrated that hsa-let-7c-3p plays a clear role in attenuating ASC development and may be a novel candidate therapeutic for halting fibrosis and maintaining vision.
Collapse
Affiliation(s)
- Min Hou
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Furong Luo
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Haikou, 570311, China
| | - Yujie Ding
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Xuan Bao
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Liangping Liu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510623, China.
| |
Collapse
|
6
|
VanSlyke JK, Boswell BA, Musil LS. Tonic ErbB signaling underlies TGFβ-induced activation of ERK and is required for lens cell epithelial to myofibroblast transition. Mol Biol Cell 2024; 35:ar35. [PMID: 38170570 PMCID: PMC10916858 DOI: 10.1091/mbc.e23-07-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Fibrosis is a major, but incompletely understood, component of many diseases. The most common vision-disrupting complication of cataract surgery involves differentiation of residual lens cells into myofibroblasts. In serum-free primary cultures of lens epithelial cells (DCDMLs), inhibitors of either ERK or of ErbB signaling prevent TGFβ from upregulating both early (fibronectin) and late (αSMA) markers of myofibroblast differentiation. TGFβ stimulates ERK in DCDMLs within 1.5 h. Kinase inhibitors of ErbBs, but not of several other growth factor receptors in lens cells, reduce phospho ERK to below basal levels in the absence or presence of TGFβ. This effect is attributable to constitutive ErbB activity playing a major role in regulating the basal levels pERK. Additional studies support a model in which TGFβ-generated reactive oxygen species serve to indirectly amplify ERK signaling downstream of tonically active ErbBs to mediate myofibroblast differentiation. ERK activity is in turn essential for expression of ErbB1 and ErbB2, major inducers of ERK signaling. By mechanistically linking TGFβ, ErbB, and ERK signaling to myofibroblast differentiation, our data elucidate a new role for ErbBs in fibrosis and reveal a novel mode by which TGFβ directs lens cell fate.
Collapse
Affiliation(s)
- Judy K. VanSlyke
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Bruce A. Boswell
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| | - Linda S. Musil
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
7
|
Taiyab A, Belahlou Y, Wong V, Pandi S, Shekhar M, Chidambaranathan GP, West-Mays J. Understanding the Role of Yes-Associated Protein (YAP) Signaling in the Transformation of Lens Epithelial Cells (EMT) and Fibrosis. Biomolecules 2023; 13:1767. [PMID: 38136638 PMCID: PMC10741558 DOI: 10.3390/biom13121767] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Fibrotic cataracts, posterior capsular opacification (PCO), and anterior subcapsular cataracts (ASC) are mainly attributed to the transforming growth factor-β (TGFβ)-induced epithelial-to-mesenchymal transition (EMT) of lens epithelial cells (LECs). Previous investigations from our laboratory have shown the novel role of non-canonical TGFβ signaling in the progression of EMT in LECs. In this study, we have identified YAP as a critical signaling molecule involved in lens fibrosis. The observed increase in nuclear YAP in capsules of human ASC patients points toward the involvement of YAP in lens fibrosis. In addition, the immunohistochemical (IHC) analyses on ocular sections from mice that overexpress TGFβ in the lens (TGFβtg) showed a co-expression of YAP and α-SMA in the fibrotic plaques when compared to wild-type littermate lenses, which do not. The incubation of rat lens explants with verteporfin, a YAP inhibitor, prevented a TGFβ-induced fiber-like phenotype, α-SMA, and fibronectin expression, as well as delocalization of E-cadherin and β-catenin. Finally, LECs co-incubated with TGFβ and YAP inhibitor did not exhibit an induction in matrix metalloproteinase 2 compared to those LECs treated with TGFβ alone. In conclusion, these data demonstrate that YAP is required for TGFβ-mediated lens EMT and fibrosis.
Collapse
Affiliation(s)
- Aftab Taiyab
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| | - Yasmine Belahlou
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| | - Vanessa Wong
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| | - Saranya Pandi
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, Tamil Nadu, India; (S.P.); (G.P.C.)
| | - Madhu Shekhar
- Cataract and IOL Services, Aravind Eye Hospital and Post Graduate Institute of Ophthalmology, Madurai 625020, Tamil Nadu, India;
| | - Gowri Priya Chidambaranathan
- Department of Immunology and Stem Cell Biology, Aravind Medical Research Foundation, Madurai 625020, Tamil Nadu, India; (S.P.); (G.P.C.)
| | - Judith West-Mays
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada; (Y.B.); (V.W.)
| |
Collapse
|
8
|
Taler K, Zatari N, Lone MI, Rotem-Bamberger S, Inbal A. Identification of Small Molecules for Prevention of Lens Epithelium-Derived Cataract Using Zebrafish. Cells 2023; 12:2540. [PMID: 37947618 PMCID: PMC10650733 DOI: 10.3390/cells12212540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
Cataract is the leading cause of blindness worldwide. It can be treated by surgery, whereby the damaged crystalline lens is replaced by a synthetic lens. Although cataract surgery is highly effective, a relatively common complication named posterior capsular opacification (PCO) leads to secondary loss of vision. PCO is caused by abnormal proliferation and migration of residual lens epithelial cells (LECs) that were not removed during the surgery, which results in interruption to the passage of light. Despite technical improvements to the surgery, this complication has not been eradicated. Efforts are being made to identify drugs that can be applied post-surgery, to inhibit PCO development. Towards the goal of identifying such drugs, we used zebrafish embryos homozygous for a mutation in plod3 that develop a lens phenotype with characteristics of PCO. Using both biased and unbiased approaches, we identified small molecules that can block the lens phenotype of the mutants. Our findings confirm the relevance of zebrafish plod3 mutants' lens phenotype as a model for lens epithelium-derived cataract and add to our understanding of the molecular mechanisms that contribute to the development of this pathology. This understanding should help in the development of strategies for PCO prevention.
Collapse
Affiliation(s)
| | | | | | | | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research—Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 9112002, Israel; (K.T.); (N.Z.); (M.I.L.); (S.R.-B.)
| |
Collapse
|
9
|
FGF-2 Differentially Regulates Lens Epithelial Cell Behaviour during TGF-β-Induced EMT. Cells 2023; 12:cells12060827. [PMID: 36980168 PMCID: PMC10046997 DOI: 10.3390/cells12060827] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Fibroblast growth factor (FGF) and transforming growth factor-beta (TGF-β) can regulate and/or dysregulate lens epithelial cell (LEC) behaviour, including proliferation, fibre differentiation, and epithelial–mesenchymal transition (EMT). Earlier studies have investigated the crosstalk between FGF and TGF-β in dictating lens cell fate, that appears to be dose dependent. Here, we tested the hypothesis that a fibre-differentiating dose of FGF differentially regulates the behaviour of lens epithelial cells undergoing TGF-β-induced EMT. Postnatal 21-day-old rat lens epithelial explants were treated with a fibre-differentiating dose of FGF-2 (200 ng/mL) and/or TGF-β2 (50 pg/mL) over a 7-day culture period. We compared central LECs (CLECs) and peripheral LECs (PLECs) using immunolabelling for changes in markers for EMT (α-SMA), lens fibre differentiation (β-crystallin), epithelial cell adhesion (β-catenin), and the cytoskeleton (alpha-tropomyosin), as well as Smad2/3- and MAPK/ERK1/2-signalling. Lens epithelial explants cotreated with FGF-2 and TGF-β2 exhibited a differential response, with CLECs undergoing EMT while PLECs favoured more of a lens fibre differentiation response, compared to the TGF-β-only-treated explants where all cells in the explants underwent EMT. The CLECs cotreated with FGF and TGF-β immunolabelled for α-SMA, with minimal β-crystallin, whereas the PLECs demonstrated strong β-crystallin reactivity and little α-SMA. Interestingly, compared to the TGF-β-only-treated explants, α-SMA was significantly decreased in the CLECs cotreated with FGF/TGF-β. Smad-dependent and independent signalling was increased in the FGF-2/TGF-β2 co-treated CLECs, that had a heightened number of cells with nuclear localisation of Smad2/3 compared to the PLECs, that in contrast had more pronounced ERK1/2-signalling over Smad2/3 activation. The current study has confirmed that FGF-2 is influential in differentially regulating the behaviour of LECs during TGF-β-induced EMT, leading to a heterogenous cell population, typical of that observed in the development of post-surgical, posterior capsular opacification (PCO). This highlights the cooperative relationship between FGF and TGF-β leading to lens pathology, providing a different perspective when considering preventative measures for controlling PCO.
Collapse
|
10
|
Lin X, Yang T, Liu X, Fan F, Zhou X, Li H, Luo Y. TGF-β/Smad Signalling Activation by HTRA1 Regulates the Function of Human Lens Epithelial Cells and Its Mechanism in Posterior Subcapsular Congenital Cataract. Int J Mol Sci 2022; 23:14431. [PMID: 36430917 PMCID: PMC9692351 DOI: 10.3390/ijms232214431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital cataract is the leading cause of blindness among children worldwide. Patients with posterior subcapsular congenital cataract (PSC) in the central visual axis can result in worsening vision and stimulus deprivation amblyopia. However, the pathogenesis of PSC remains unclear. This study aims to explore the functional regulation and mechanism of HTRA1 in human lens epithelial cells (HLECs). HTRA1 was significantly downregulated in the lens capsules of children with PSC compared to normal controls. HTRA1 is a suppression factor of transforming growth factor-β (TGF-β) signalling pathway, which plays a key role in cataract formation. The results showed that the TGF-β/Smad signalling pathway was activated in the lens tissue of PSC. The effect of HTRA1 on cell proliferation, migration and apoptosis was measured in HLECs. In primary HLECs, the downregulation of HTRA1 can promote the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway and can significantly upregulate the TGF-β/Smad downstream target genes FN1 and α-SMA. HTRA1 was also knocked out in the eyes of C57BL/6J mice via adeno-associated virus-mediated RNA interference. The results showed that HTRA1 knockout can significantly upregulate p-Smad2/3 and activate the TGF-β/Smad signalling pathway, resulting in abnormal proliferation and irregular arrangement of lens epithelial cells and leading to the occurrence of subcapsular cataract. To conclude, HTRA1 was significantly downregulated in children with PSC, and the downregulation of HTRA1 enhanced the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway, which led to the occurrence of PSC.
Collapse
Affiliation(s)
- Xiaolei Lin
- Department of Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China;
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Tianke Yang
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xin Liu
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Fan Fan
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xiyue Zhou
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Hongzhe Li
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Yi Luo
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| |
Collapse
|
11
|
Lu A, Duan P, Xie J, Gao H, Chen M, Gong Y, Li J, Xu H. Recent progress and research trend of anti-cataract pharmacology therapy: A bibliometric analysis and literature review. Eur J Pharmacol 2022; 934:175299. [PMID: 36181780 DOI: 10.1016/j.ejphar.2022.175299] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022]
Abstract
Cataract is the leading cause of blindness worldwide. Cataract phacoemulsification combined with intraocular lens implantation causes great burden to global healthcare, especially for low- and middle-income countries. Such burden would be significantly relieved if cataracts can effectively be treated or delayed by non-surgical means. Excitingly, novel drugs have been developed to treat cataracts in recent decades. For example, oxysterols are found to be able to innovatively reverse lens clouding, novel nanotechnology-loaded drugs improve anti-cataract pharmacological effect, and traditional Chinese medicine demonstrates promising therapeutic effects against cataracts. In the present review, we performed bibliometric analysis to provide an overview perspective regarding the research status, hot topics, and academic trends in the field of anti-cataract pharmacology therapy. We further reviewed the curative effects and molecular mechanisms of anti-cataract drugs such as lanosterol, metformin, resveratrol and curcumin, and prospected the possibility of their clinical application in future.
Collapse
Affiliation(s)
- Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Ping Duan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Mengmeng Chen
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yu Gong
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiawen Li
- Department of Ophthalmology, University-Town Hospital of Chongqing Medical University, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.
| |
Collapse
|
12
|
Hachana S, Larrivée B. TGF-β Superfamily Signaling in the Eye: Implications for Ocular Pathologies. Cells 2022; 11:2336. [PMID: 35954181 PMCID: PMC9367584 DOI: 10.3390/cells11152336] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
The TGF-β signaling pathway plays a crucial role in several key aspects of development and tissue homeostasis. TGF-β ligands and their mediators have been shown to be important regulators of ocular physiology and their dysregulation has been described in several eye pathologies. TGF-β signaling participates in regulating several key developmental processes in the eye, including angiogenesis and neurogenesis. Inadequate TGF-β signaling has been associated with defective angiogenesis, vascular barrier function, unfavorable inflammatory responses, and tissue fibrosis. In addition, experimental models of corneal neovascularization, diabetic retinopathy, proliferative vitreoretinopathy, glaucoma, or corneal injury suggest that aberrant TGF-β signaling may contribute to the pathological features of these conditions, showing the potential of modulating TGF-β signaling to treat eye diseases. This review highlights the key roles of TGF-β family members in ocular physiology and in eye diseases, and reviews approaches targeting the TGF-β signaling as potential treatment options.
Collapse
Affiliation(s)
- Soumaya Hachana
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Montreal, QC H1T 2M4, Canada
- Department of Ophthalmology, Université de Montréal, Montreal, QC H3C 3J7, Canada
| |
Collapse
|
13
|
Mao M, Labelle-Dumais C, Tufa SF, Keene DR, Gould DB. Elevated TGFβ signaling contributes to ocular anterior segment dysgenesis in Col4a1 mutant mice. Matrix Biol 2022; 110:151-173. [PMID: 35525525 PMCID: PMC10410753 DOI: 10.1016/j.matbio.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Ocular anterior segment dysgenesis (ASD) refers to a collection of developmental disorders affecting the anterior structures of the eye. Although a number of genes have been implicated in the etiology of ASD, the underlying pathogenetic mechanisms remain unclear. Mutations in genes encoding collagen type IV alpha 1 (COL4A1) and alpha 2 (COL4A2) cause Gould syndrome, a multi-system disorder that often includes ocular manifestations such as ASD and glaucoma. COL4A1 and COL4A2 are abundant basement membrane proteins that provide structural support to tissues and modulate signaling through interactions with other extracellular matrix proteins, growth factors, and cell surface receptors. In this study, we used a combination of histological, molecular, genetic and pharmacological approaches to demonstrate that altered TGFβ signaling contributes to ASD in mouse models of Gould syndrome. We show that TGFβ signaling was elevated in anterior segments from Col4a1 mutant mice and that genetically reducing TGFβ signaling partially prevented ASD. Notably, we identified distinct roles for TGFβ1 and TGFβ2 in ocular defects observed in Col4a1 mutant mice. Importantly, we show that pharmacologically promoting type IV collagen secretion or reducing TGFβ signaling ameliorated ocular pathology in Col4a1 mutant mice. Overall, our findings demonstrate that altered TGFβ signaling contributes to COL4A1-related ocular dysgenesis and implicate this pathway as a potential therapeutic target for the treatment of Gould syndrome.
Collapse
Affiliation(s)
- Mao Mao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Cassandre Labelle-Dumais
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States
| | - Sara F Tufa
- Shriners Children's, Micro-Imaging Center, Portland, Oregon 97239, United States
| | - Douglas R Keene
- Shriners Children's, Micro-Imaging Center, Portland, Oregon 97239, United States
| | - Douglas B Gould
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143, United States; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, United States; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, United States; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, United States; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA 94143, United States.
| |
Collapse
|
14
|
Basta MD, Paulson H, Walker JL. The local wound environment is a key determinant of the outcome of TGFβ signaling on the fibrotic response of CD44 + leader cells in an ex vivo post-cataract-surgery model. Exp Eye Res 2021; 213:108829. [PMID: 34774488 DOI: 10.1016/j.exer.2021.108829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 01/17/2023]
Abstract
The cytokine transforming growth factor beta (TGFβ) has a role in regulating the normal and pathological response to wound healing, yet how it shifts from a pro-repair to a pro-fibrotic function within the wound environment is still unclear. Using a clinically relevant ex vivo post-cataract surgery model that mimics the lens fibrotic disease posterior capsule opacification (PCO), we investigated the influence of two distinct wound environments on shaping the TGFβ-mediated injury response of CD44+ vimentin-rich leader cells. The substantial fibrotic response of this cell population occurred within a rigid wound environment under the control of endogenous TGFβ. However, TGFβ was dispensable for the role of leader cells in wound healing on the endogenous basement membrane wound environment, where repair occurs in the absence of a major fibrotic outcome. A difference between leader cell function in these distinct environments was their cell surface expression of the latent TGFβ activator, αvβ3 integrin. This receptor is exclusively found on this CD44+ cell population when they localize to the leading edge of the rigid wound environment. Providing exogenous TGFβ to bypass any differences in the ability of the leader cells to sustain activation of TGFβ in different environments revealed their inherent ability to induce pro-fibrotic reactions on the basement membrane wound environment. Furthermore, exposure of the leader cells in the rigid wound environment to TGFβ led to an accelerated fibrotic response including the earlier appearance of pro-collagen + cells, alpha smooth muscle actin (αSMA)+ myofibroblasts, and increased fibrotic matrix production. Collectively, these findings show the influence of the local wound environment on the extent and severity of TGFβ-induced fibrotic responses. These findings have important implications for understanding the development of the lens fibrotic disease PCO in response to cataract surgery wounding.
Collapse
Affiliation(s)
- Morgan D Basta
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Heather Paulson
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Janice L Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
15
|
Lim S, Kim YJ, Park S, Choi JH, Sung YH, Nishimori K, Kozmik Z, Lee HW, Kim JW. mTORC1-induced retinal progenitor cell overproliferation leads to accelerated mitotic aging and degeneration of descendent Müller glia. eLife 2021; 10:70079. [PMID: 34677125 PMCID: PMC8577849 DOI: 10.7554/elife.70079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/17/2021] [Indexed: 01/22/2023] Open
Abstract
Retinal progenitor cells (RPCs) divide in limited numbers to generate the cells comprising vertebrate retina. The molecular mechanism that leads RPC to the division limit, however, remains elusive. Here, we find that the hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) in an RPC subset by deletion of tuberous sclerosis complex 1 (Tsc1) makes the RPCs arrive at the division limit precociously and produce Müller glia (MG) that degenerate from senescence-associated cell death. We further show the hyperproliferation of Tsc1-deficient RPCs and the degeneration of MG in the mouse retina disappear by concomitant deletion of hypoxia-induced factor 1-alpha (Hif1a), which induces glycolytic gene expression to support mTORC1-induced RPC proliferation. Collectively, our results suggest that, by having mTORC1 constitutively active, an RPC divides and exhausts mitotic capacity faster than neighboring RPCs, and thus produces retinal cells that degenerate with aging-related changes.
Collapse
Affiliation(s)
- Soyeon Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - You-Joung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Sooyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Heon Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Young Hoon Sung
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Yonsei, Republic of Korea.,Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Katsuhiko Nishimori
- Department of Obesity and Internal Inflammation; Bioregulation and Pharmacological Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zbynek Kozmik
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Yonsei, Republic of Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
16
|
Patel SD, Aryal S, Mennetti LP, Parreno J. Whole mount staining of lenses for visualization of lens epithelial cell proteins. MethodsX 2021; 8:101376. [PMID: 34430272 PMCID: PMC8374519 DOI: 10.1016/j.mex.2021.101376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Whole mount imaging of the lens allows for high spatial resolution visualization of lens epithelial structures by using small molecule fluorescent probes. However, the visualization of specific proteins in lens epithelial cells within whole lenses remains a challenge as the capsule that surrounds the lens does not allow penetration of antibodies. Here we describe a whole mount imaging method that allows us to overcome this challenge by digesting the lens capsules of paraformaldehyde fixed lenses using collagenase. This method enables the penetration of antibodies for effective visualization of proteins in the epithelium of whole lenses.A limitation to lens whole mount imaging is the ability to visualize specific proteins as the collagen capsule surrounding the lens impedes the penetration of antibodies This protocol helps overcome this limitation by a light collagenase digestion of the capsule of fixed lenses prior to immunostaining This method allows for the imaging of specific proteins in the epithelium of the whole lens tissue
Collapse
Affiliation(s)
- Shaili D Patel
- Department of Biological Sciences, University of Delaware USA
| | - Sandeep Aryal
- Department of Biological Sciences, University of Delaware USA
| | | | - Justin Parreno
- Department of Biological Sciences, University of Delaware USA
| |
Collapse
|
17
|
Ranaei Pirmardan E, Barakat A, Zhang Y, Naseri M, Hafezi-Moghadam A. Diabetic cataract in the Nile grass rat: A longitudinal phenotypic study of pathology formation. FASEB J 2021; 35:e21593. [PMID: 33991133 DOI: 10.1096/fj.202100353r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Diabetes is a major risk factor for cataract, the leading cause of blindness worldwide. There is an unmet need for a realistic model of diabetic cataract for mechanistic and longitudinal studies, as existing models do not reflect key aspects of the complex human disease. Here, we introduce and characterize diabetic cataract in the Nile grass rat (NGR, Arvicanthis niloticus), an established model of metabolic syndrome and type 2 diabetes (T2D). We conducted a longitudinal study of cataract in over 88 NGRs in their non-diabetic, pre-diabetic, and diabetic stages of metabolism. Oral glucose tolerance test (OGTT) results distinguished the metabolic stages. Diverse cataract types were observed in the course of diabetes, including cortical, posterior subcapsular (PSC), and anterior subcapsular (ASC), all of which succeeded a characteristic dotted ring stage in all animals. The onset ages of diabetes and cataract were 44 ± 3 vs 29 ± 1 (P < .001) and 66 ± 5 vs 58 ± 6 (not significant) weeks in females and males, respectively. Histological analysis revealed fiber disorganization, vacuolar structures, and cellular proliferation and migration in cataractous lenses. The lens epithelial cells (LECs) in non-diabetic young NGRs expressed the stress marker GRP78, as did LECs and migrated cells in the lenses of diabetic animals. Elucidating mechanisms underlying LEC proliferation and migration will be clinically valuable in prevention and treatment of posterior capsule opacification, a dreaded complication of cataract surgery. Marked changes in N-cadherin expression emphasized a role for LEC integrity in cataractogenesis. Apoptotic cells were dispersed in the equatorial areas in early cataractogenesis. Our study reveals diverse cataract types that spontaneously develop in the diabetic NGR, and which uniquely mirror the cataract and its chronic course of development in individuals with diabetes. We provide mechanistic insights into early stages of diabetic cataract. These unique characteristics make NGR highly suited for mechanistic studies, especially in the context of metabolism, diabetes, and aging.
Collapse
Affiliation(s)
- Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aliaa Barakat
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuanlin Zhang
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Retinitis pigmentosa-associated anterior subcapsular cataract: morphological features and visual performance. Int Ophthalmol 2021; 41:3631-3639. [PMID: 34180018 DOI: 10.1007/s10792-021-01935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/19/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To investigate the morphological features and surgical outcomes of retinitis pigmentosa (RP)-associated anterior subcapsular cataract (ASC). METHODS Consecutive RP-associated ASC cases were reviewed, and one hundred patients (171 eyes) were included. Anterior segment photographed images by slit-lamp microscope were reviewed. Best-corrected visual acuity (BCVA) was recorded. The cases were classified according to preoperative best BCVA, the area (central, midperipheral and peripheral) and the density (Grade 1, vacuolar/bubble-like; Grade 2, plaque-like/translucent; and Grade 3, fibrotic/opaque) of ASC; subgroup analysis of surgical outcomes was then performed. RESULTS The mean age was 52.1 ± 13.7 years, and the 41-50-year group had the best BCVA. 13.5% of eyes had BCVA better than 20/63, 30.4% were between 20/400 and 20/63, and 56.1% were worse than 20/400. The percentage of ASCs in the central, midperipheral and peripheral areas was 55.0%, 37.4% and 7.6%, respectively. Postoperative BCVA was improved in the central and midperipheral groups (P < 0.001) but was not in the peripheral group (P = 0.07). The percentage of ASCs in density of Grade 1, 2 and 3 was 11.1%, 38.6% and 50.3%, respectively. Grade 2 and 3 achieved improved postoperative BCVA (P < 0.001), but Grade 1 did not (P = 0.693). CONCLUSIONS Mostly, ASC is located at the center of the pupillary area and affected the residual vision of RP patients. The patients benefited from cataract removal except for those with ASC extended to peripheral area. Surgery was also recommended for RP with ASC developed to be plaque-like and even fibrotic.
Collapse
|
19
|
Pawliczek D, Fuchs H, Gailus-Durner V, de Angelis MH, Quinlan R, Graw J, Dalke C. On the Nature of Murine Radiation-Induced Subcapsular Cataracts: Optical Coherence Tomography-Based Fine Classification, In Vivo Dynamics and Impact on Visual Acuity. Radiat Res 2021; 197:7-21. [PMID: 33631790 DOI: 10.1667/rade-20-00163.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/05/2021] [Indexed: 11/03/2022]
Abstract
Ionizing radiation is widely known to induce various kinds of lens cataracts, of which posterior subcapsular cataracts (PSCs) have the highest prevalence. Despite some studies regarding the epidemiology and biology of radiation-induced PSCs, the mechanism underscoring the formation of this type of lesions and their dose dependency remain uncertain. Within the current study, our team investigated the in vivo characteristics of PSCs in B6C3F1 mice (F1-hybrids of BL6 × C3H) that received 0.5-2 Gy γ-ray irradiation after postnatal day 70. For purposes of assessing lenticular damages, spectral domain optical coherence tomography was utilized, and the visual acuity of the mice was measured to analyze their levels of visual impairment, and histological sections were then prepared in to characterize in vivo phenotypes. Three varying in vivo phenotype anterior and posterior lesions were thus revealed and correlated with the applied doses to understand their marginal influence on the visual acuity of the studied mice. Histological data indicated no significantly increased odds ratios for PSCs below a dose of 1 Gy at the end of the observation time. Furthermore, our team demonstrated that when the frequencies of the posterior and anterior lesions were calculated at early time points, their responses were in accordance with a deterministic model, whereas at later time points, their responses were better described via a stochastic model. The current study will aid in honing the current understanding of radiation-induced cataract formation and contributes greatly to addressing the fundamental questions of lens dose response within the field of radiation biology.
Collapse
Affiliation(s)
- Daniel Pawliczek
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabê de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZB), Neuherberg, Germany
| | - Roy Quinlan
- Department of Biosciences, School of Biological and Medical Sciences, University of Durham, Durham, United Kingdom
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| | - Claudia Dalke
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
20
|
Wang SK, Xue Y, Cepko CL. Microglia modulation by TGF-β1 protects cones in mouse models of retinal degeneration. J Clin Invest 2021; 130:4360-4369. [PMID: 32352930 DOI: 10.1172/jci136160] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a genetically heterogenous group of eye diseases in which initial degeneration of rods triggers secondary degeneration of cones, leading to significant loss of daylight, color, and high-acuity vision. Gene complementation with adeno-associated viral (AAV) vectors is one strategy to treat RP. Its implementation faces substantial challenges, however; for example, the tremendous number of loci with causal mutations. Gene therapy targeting secondary cone degeneration is an alternative approach that could provide a much-needed generic treatment for many patients with RP. Here, we show that microglia are required for the upregulation of potentially neurotoxic inflammatory factors during cone degeneration in RP, creating conditions that might contribute to cone dysfunction and death. To ameliorate the effects of such factors, we used AAV vectors to express isoforms of the antiinflammatory cytokine transforming growth factor beta (TGF-β). AAV-mediated delivery of TGF-β1 rescued degenerating cones in 3 mouse models of RP carrying different pathogenic mutations. Treatment with TGF-β1 protected vision, as measured by 2 behavioral assays, and could be pharmacologically disrupted by either depleting microglia or blocking the TGF-β receptors. Our results suggest that TGF-β1 may be broadly beneficial for patients with cone degeneration, and potentially other forms of neurodegeneration, through a pathway dependent upon microglia.
Collapse
Affiliation(s)
- Sean K Wang
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yunlu Xue
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
21
|
Long Noncoding RNA NEAT1 Regulates TGF- β2-Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells through the miR-34a/Snail1 and miR-204/Zeb1 Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8352579. [PMID: 32596382 PMCID: PMC7284955 DOI: 10.1155/2020/8352579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
Abstract
The aim of this study was to explore whether the long noncoding RNA nuclear paraspeckle assembly transcript 1 (NEAT1)/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs (HLECs) were separated and cultured. Our results identified that TGF-β2 induces NEAT1 overexpression in a dose-dependent manner and a time-dependent manner. Additionally, TGF-β2 induced downregulation of E-cadherin and upregulation of fibronectin in primary HLECs through a NEAT1-dependent mechanism. Microarray analysis showed that NEAT1 overexpression inhibited the miR-34a and miR-204 levels in the LECs. The expression of miR-34a and miR-204 was decreased, and the levels of Snail1 and Zeb1 were elevated in human posterior capsule opacification- (PCO-) attached LECs and the LECs obtained from anterior subcapsular cataract (ASC) by quantitative RT-PCR (qRT-PCR). Mechanistic studies revealed that NEAT1 negatively regulates miR-34a or miR-204, and miR-34a or miR-204 directly targets Snail1 or Zeb1 by luciferase assay and RNA-binding protein immunoprecipitation assay, respectively. Overall, the NEAT1/miR-34a/Snail1 and NEAT1/miR-204/Zeb1 pathways are involved in TGF-β2-induced EMT of HLECs. In summary, TGF-β2 induces NEAT1 overexpression, which in turn suggests that NEAT1 acts as a ceRNA targeting Snail1 or Zeb1 by binding miR-34a or miR-204, and promotes the progression of EMT of LECs.
Collapse
|
22
|
Das SJ, Wishart TFL, Jandeleit-Dahm K, Lovicu FJ. Nox4-mediated ROS production is involved, but not essential for TGFβ-induced lens EMT leading to cataract. Exp Eye Res 2020; 192:107918. [PMID: 31926131 DOI: 10.1016/j.exer.2020.107918] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/02/2019] [Accepted: 01/03/2020] [Indexed: 01/19/2023]
Abstract
The reactive oxygen species (ROS) producing enzyme, NADPH oxidase 4 (Nox4), is upregulated in response to TGFβ in lens epithelial cells in vitro, and its selective inhibition was shown to block aspects of TGFβ-induced epithelial-mesenchymal transition (EMT). In the present in situ study we validate the role(s) of Nox4 in TGFβ-induced lens EMT leading to anterior subcapsular cataract (ASC) formation. Mice overexpressing TGFβ in the lens, that develop ASC, were crossed to Nox4-deficient mice. When comparing mice overexpressing TGFβ in lens, to mice that were also deficient for Nox4, we see the delayed onset of cataract, along with a delay in EMT protein markers normally associated with TGFβ-induced fibrotic cataracts. In the absence of Nox4, we also see elevated levels of ERK1/2 activity that was shown to be required for TGFβ/Smad2/3-signaling. qRT-PCR revealed upregulation of Nox2 and its regulatory subunit in TGFβ-overexpressing lens epithelial cells devoid of Nox4. Taken together, these findings provide an improved platform to delineate putative Nox4 (and ROS) interactions with Smad2/3 and/or ERK1/2, in particular in the development of fibrotic diseases, such as specific forms of cataract.
Collapse
Affiliation(s)
- S J Das
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - T F L Wishart
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, Sydney, NSW, Australia
| | - K Jandeleit-Dahm
- Department of Diabetes, Monash University, Melbourne, VIC, Australia; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - F J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, Sydney, NSW, Australia; Discipline of Clinical Ophthalmology & Eye Health, Save Sight Institute, Sydney, NSW, Australia.
| |
Collapse
|
23
|
Cheng C, Parreno J, Nowak RB, Biswas SK, Wang K, Hoshino M, Uesugi K, Yagi N, Moncaster JA, Lo WK, Pierscionek B, Fowler VM. Age-related changes in eye lens biomechanics, morphology, refractive index and transparency. Aging (Albany NY) 2019; 11:12497-12531. [PMID: 31844034 PMCID: PMC6949082 DOI: 10.18632/aging.102584] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/26/2019] [Indexed: 04/09/2023]
Abstract
Life-long eye lens function requires an appropriate gradient refractive index, biomechanical integrity and transparency. We conducted an extensive study of wild-type mouse lenses 1-30 months of age to define common age-related changes. Biomechanical testing and morphometrics revealed an increase in lens volume and stiffness with age. Lens capsule thickness and peripheral fiber cell widths increased between 2 to 4 months of age but not further, and thus, cannot account for significant age-dependent increases in lens stiffness after 4 months. In lenses from mice older than 12 months, we routinely observed cataracts due to changes in cell structure, with anterior cataracts due to incomplete suture closure and a cortical ring cataract corresponding to a zone of compaction in cortical lens fiber cells. Refractive index measurements showed a rapid growth in peak refractive index between 1 to 6 months of age, and the area of highest refractive index is correlated with increases in lens nucleus size with age. These data provide a comprehensive overview of age-related changes in murine lenses, including lens size, stiffness, nuclear fraction, refractive index, transparency, capsule thickness and cell structure. Our results suggest similarities between murine and primate lenses and provide a baseline for future lens aging studies.
Collapse
Affiliation(s)
- Catherine Cheng
- School of Optometry, Indiana University, Bloomington, IN 47405, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Justin Parreno
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roberta B. Nowak
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sondip K. Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30303, USA
| | - Kehao Wang
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), Sayo-cho, Sayo-gun, Hyogo, Japan
| | - Juliet A. Moncaster
- Department of Radiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30303, USA
| | - Barbara Pierscionek
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Velia M. Fowler
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
24
|
Jiang J, Shihan MH, Wang Y, Duncan MK. Lens Epithelial Cells Initiate an Inflammatory Response Following Cataract Surgery. Invest Ophthalmol Vis Sci 2019; 59:4986-4997. [PMID: 30326070 PMCID: PMC6188467 DOI: 10.1167/iovs.18-25067] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Lens epithelial cell (LEC) conversion to myofibroblast is responsible for fibrotic cataract surgery complications including posterior capsular opacification. While transforming growth factor beta (TGFβ) signaling is important, the mechanisms by which the TGFβ pathway is activated post cataract surgery (PCS) are not well understood. Methods RNA-seq was performed on LECs obtained from a mouse cataract surgery model at the time of surgery and 24 hours later. Bioinformatic analysis was performed with iPathwayGuide. Expression dynamics were determined by immunofluorescence. Results The LEC transcriptome is massively altered by 24 hours PCS. The differentially expressed genes included those important for lens biology, and fibrotic markers. However, the most dramatic changes were in the expression of genes regulating the innate immune response, with the top three altered genes exhibiting greater than 1000-fold upregulation. Immunolocalization revealed that CXCL1, S100a9, CSF3, COX-2, CCL2, LCN2, and HMOX1 protein levels upregulate in LECs between 1 hour and 6 hours PCS and peak at 24 hours PCS, while their levels sharply attenuate by 3 days PCS. This massive upregulation of known inflammatory mediators precedes the infiltration of neutrophils into the eye at 18 hours PCS, the upregulation of canonical TGFβ signaling at 48 hours PCS, and the infiltration of macrophages at 3 days PCS. Conclusions These data demonstrate that LECs produce proinflammatory cytokines immediately following lens injury that could drive postsurgical flare, and suggest that inflammation may be a major player in the onset of lens-associated fibrotic disease PCS.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
25
|
Long Noncoding RNA MALAT1 Acts as a Competing Endogenous RNA to Regulate TGF- β2 Induced Epithelial-Mesenchymal Transition of Lens Epithelial Cells by a MicroRNA-26a-Dependent Mechanism. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1569638. [PMID: 31143769 PMCID: PMC6501259 DOI: 10.1155/2019/1569638] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/31/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to characterize whether the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-26a/Smad4 axis is involved in epithelial–mesenchymal transition (EMT) of lens epithelial cells (LECs). Primary human LECs were separated and cultured. Microarray analysis showed that a total of 568 lncRNAs are differentially expressed in primary HLECs in the presence of TGF-β2 and MALAT1 is mostly significantly dysregulated lncRNAs, which is increased by nearly 17-fold. In addition, upregulation of MALAT1 and downregulation of miR-26a were detected in human posterior capsule opacification (PCO) attached LECs and the LECs obtained from patients with anterior polar cataracts by quantitative RT-PCR (qRT-PCR). Next, our results showed that TGF-β2 induces overexpression of EMT markers in primary HLECs via a MALAT1-dependent mechanism. The mechanism is that MALAT1 negatively regulates miR-26a and miR-26a directly targets Smad4 by luciferase reporter assays and RNA-binding protein immunoprecipitation assay. In summary, TGF-β2 induces MALAT1 overexpression, which in turn MALAT1 acts as a ceRNA targeting Smad4 by binding miR-26a and promotes the progression of EMT of LECs.
Collapse
|
26
|
Roles of TGF β and FGF Signals in the Lens: Tropomyosin Regulation for Posterior Capsule Opacity. Int J Mol Sci 2018; 19:ijms19103093. [PMID: 30304871 PMCID: PMC6212802 DOI: 10.3390/ijms19103093] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 01/16/2023] Open
Abstract
Transforming growth factor (TGF) β and fibroblast growth factor (FGF) 2 are related to the development of posterior capsule opacification (PCO) after lens extraction surgery and other processes of epithelial–mesenchymal transition (EMT). Oxidative stress seems to activate TGF β1 largely through reactive oxygen species (ROS) production, which in turn alters the transcription of several survival genes, including lens epithelium-cell derived growth factor (LEDGF). Higher ROS levels attenuate LEDGF function, leading to down-regulation of peroxiredoxin 6 (Prdx6). TGF β is regulated by ROS in Prdx6 knock-out lens epithelial cells (LECs) and induces the up-regulation of tropomyosins (Tpms) 1/2, and EMT of LECs. Mouse and rat PCO are accompanied by elevated expression of Tpm2. Further, the expression of Tpm1/2 is induced by TGF β2 in LECs. Importantly, we previously showed that TGF β2 and FGF2 play regulatory roles in LECs in a contrasting manner. An injury-induced EMT of a mouse lens as a PCO model was attenuated in the absence of Tpm2. In this review, we present findings regarding the roles of TGF β and FGF2 in the differential regulation of EMT in the lens. Tpms may be associated with TGF β2- and FGF2-related EMT and PCO development.
Collapse
|
27
|
Tam OH, Pennisi D, Wilkinson L, Little MH, Wazin F, Wan VL, Lovicu FJ. Crim1 is required for maintenance of the ocular lens epithelium. Exp Eye Res 2018; 170:58-66. [PMID: 29458060 DOI: 10.1016/j.exer.2018.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/28/2022]
Abstract
The development and growth of the vertebrate ocular lens is dependent on the regulated proliferation of an anterior monolayer of epithelial cells, and their subsequent differentiation into elongate fiber cells. The growth factor rich ocular media that bathes the lens mediates these cellular processes, and their respective intracellular signaling pathways are in turn regulated to ensure that the proper lens architecture is maintained. Recent studies have proposed that Cysteine Rich Motor Neuron 1 (Crim1), a transmembrane protein involved in organogenesis of many tissues, might influence cell adhesion, polarity and proliferation in the lens by regulating integrin-signaling. Here, we characterise the lens and eyes of the Crim1KST264 mutant mice, and show that the loss of Crim1 function in the ocular tissues results in inappropriate differentiation of the lens epithelium into fiber cells. Furthermore, restoration of Crim1 levels in just the lens tissue of Crim1KST264 mice is sufficient to ameliorate most of the dysgenesis observed in the mutant animals. Based on our findings, we propose that tight regulation of Crim1 activity is required for maintenance of the lens epithelium, and its depletion leads to ectopic differentiation into fiber cells, dramatically altering lens structure and ultimately leading to microphthalmia and aphakia.
Collapse
Affiliation(s)
- Oliver H Tam
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - David Pennisi
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Lorine Wilkinson
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Fatima Wazin
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Victor L Wan
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia
| | - Frank J Lovicu
- Save Sight Institute and Anatomy & Histology, Bosch Institute, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
28
|
Ganatra DA, Vasavada AR, Vidya NG, Gajjar DU, Rajkumar S. Trichostatin A Restores Expression of Adherens and Tight Junction Proteins during Transforming Growth Factor β-Mediated Epithelial-to-Mesenchymal Transition. J Ophthalmic Vis Res 2018; 13:274-283. [PMID: 30090184 PMCID: PMC6058541 DOI: 10.4103/jovr.jovr_110_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose: Adherens junctions and polarity markers play an important role in maintaining epithelial phenotype but get altered during the epithelial-mesenchymal transition (EMT). Alterations of these markers during EMT of lens epithelial cell (LEC) can lead to vision compromising conditions. The aim of this study was to examine if Trichostatin-A (TSA), a histone deacetylase inhibitor, can prevent EMT by restoring the adherens junction complex in LEC. Methods: Fetal human lens epithelial cell line (FHL124) was used. Cells were treated with 10 ng/ml TGF-β2 in the presence or absence of TSA. Real time-PCR and western blotting were carried out for HDAC1, HDAC2, CDH1 (E-cad), TJP1 (ZO-1) and CTNNB1 (β-cat). Level of histone acetylation was analyzed by western blotting. Chromatin Immunoprecipitation was carried out to study the level of acetylated histone H4 and HDAC2 at the promoter regions of CDH1, TJP1, and CTNNB1. E-cad, ZO-1, and β-cat were localized using immunofluorescence. Kruskal-Wallis test was used for statistical analysis. Results: TSA down-regulated HDAC1 and HDAC2 and led to an increase in global acetylation. The mRNA and protein levels of E-cad, ZO-1, and β-cat decreased during EMT but were up-regulated by TSA treatment. TSA also helped in stabilizing these proteins at cell-cell junctions during EMT. TSA decreases association of HDAC2 at the promoter regions of adherens junction genes while increasing histone H4 acetylation status. Conclusion: TSA increases histone acetylation and restores the adherens junction complex in LECs. TSA helps in preventing EMT and thus shows potential against lens fibrosis and vision compromising conditions.
Collapse
Affiliation(s)
- Darshini A Ganatra
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Gurukul, Ahmedabad, India.,Research Scholar, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abhay R Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Gurukul, Ahmedabad, India.,Department of Molecular Genetics, Iladevi Cataract and IOL Research Centre, Gurukul, Ahmedabad, India
| | - Nair G Vidya
- Research Scholar, Manipal Academy of Higher Education, Manipal, Karnataka, India.,Department of Molecular Genetics, Iladevi Cataract and IOL Research Centre, Gurukul, Ahmedabad, India
| | - Devarshi U Gajjar
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Gurukul, Ahmedabad, India
| | - Sankaranarayanan Rajkumar
- Department of Molecular Genetics, Iladevi Cataract and IOL Research Centre, Gurukul, Ahmedabad, India
| |
Collapse
|
29
|
Shu DY, Lovicu FJ. Myofibroblast transdifferentiation: The dark force in ocular wound healing and fibrosis. Prog Retin Eye Res 2017; 60:44-65. [PMID: 28807717 PMCID: PMC5600870 DOI: 10.1016/j.preteyeres.2017.08.001] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Wound healing is one of the most complex biological processes to occur in life. Repair of tissue following injury involves dynamic interactions between multiple cell types, growth factors, inflammatory mediators and components of the extracellular matrix (ECM). Aberrant and uncontrolled wound healing leads to a non-functional mass of fibrotic tissue. In the eye, fibrotic disease disrupts the normally transparent ocular tissues resulting in irreversible loss of vision. A common feature in fibrotic eye disease is the transdifferentiation of cells into myofibroblasts that can occur through a process known as epithelial-mesenchymal transition (EMT). Myofibroblasts rapidly produce excessive amounts of ECM and exert tractional forces across the ECM, resulting in the distortion of tissue architecture. Transforming growth factor-beta (TGFβ) plays a major role in myofibroblast transdifferentiation and has been implicated in numerous fibrotic eye diseases including corneal opacification, pterygium, anterior subcapsular cataract, posterior capsular opacification, proliferative vitreoretinopathy, fibrovascular membrane formation associated with proliferative diabetic retinopathy, submacular fibrosis, glaucoma and orbital fibrosis. This review serves to introduce the pathological functions of the myofibroblast in fibrotic eye disease. We also highlight recent developments in elucidating the multiple signaling pathways involved in fibrogenesis that may be exploited in the development of novel anti-fibrotic therapies to reduce ocular morbidity due to scarring.
Collapse
Affiliation(s)
- Daisy Y Shu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia
| | - Frank J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, University of Sydney, NSW, Australia; Save Sight Institute, University of Sydney, NSW, Australia.
| |
Collapse
|
30
|
Shirai K, Tanaka SI, Lovicu FJ, Saika S. The murine lens: A model to investigate in vivo epithelial-mesenchymal transition. Dev Dyn 2017; 247:340-345. [PMID: 28480986 PMCID: PMC5836960 DOI: 10.1002/dvdy.24518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/09/2017] [Accepted: 04/24/2017] [Indexed: 12/21/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) produces myofibroblasts that contribute to the formation of fibrotic tissue with an impairment of tissue homeostasis and functionality. The crystalline lens of the eye is a unique transparent and isolated tissue. The lens vesicle becomes isolated from the surface ectoderm, its cells are all contained as they line the inner surface of the lens capsule. Clinically the formation of fibrotic tissue by the lens epithelial cells causes a type of cataract or opacification and contraction of the lens capsule postcataract surgery. Production of EMT in the intact animal lens by using specific gene transfer to the lens or experimental lens injury has been shown to be a powerful tool to investigate EMT processes. It is not easy to uncover whether the origin of the myofibroblast is epithelial cell‐derived or from other cell lineages in fibrotic tissues. However, myofibroblasts that appear in the crystalline lens pathology are totally derived from the lens epithelial cells for the reasons mentioned above. Here, we report on different animal models of lens EMT, using either transgenic approaches or injury to study the biological aspects of EMT. Developmental Dynamics 247:340–345, 2018. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists Lens, Epithelial‐mesenchymal transition, mice.
Collapse
Affiliation(s)
- Kumi Shirai
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Sai-Ichi Tanaka
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| | - Frank J Lovicu
- Save Sight Institute and Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, The University of Sydney, NSW, Australia
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
31
|
Taiyab A, Korol A, Deschamps PA, West-Mays JA. β-Catenin/CBP-Dependent Signaling Regulates TGF-β-Induced Epithelial to Mesenchymal Transition of Lens Epithelial Cells. Invest Ophthalmol Vis Sci 2017; 57:5736-5747. [PMID: 27787561 PMCID: PMC5089212 DOI: 10.1167/iovs.16-20162] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Purpose Transforming growth factor-β–induced epithelial–mesenchymal transition (EMT) is one of the main causes of posterior capsular opacification (PCO) or secondary cataract; however, the signaling events involved in TGF-β–induced PCO have not been fully characterized. Here, we focus on examining the role of β-catenin/cyclic AMP response element–binding protein (CREB)-binding protein (CBP) and β-catenin/T-cell factor (TCF)-dependent signaling in regulating cytoskeletal dynamics during TGF-β–induced EMT in lens epithelial explants. Methods Rat lens epithelial explants were cultured in medium M199 in the absence of serum. Explants were treated with TGF-β2 in the presence or absence of the β-catenin/CBP interaction inhibitor, ICG-001, or the β-catenin/TCF interaction inhibitor, PNU-74654. Western blot and immunofluorescence experiments were carried out and analyzed. Results An increase in the expression of fascin, an actin-bundling protein, was observed in the lens explants upon stimulation with TGF-β, and colocalized with F-actin filaments. Inhibition of β-catenin/CBP interactions, but not β-catenin/TCF interactions, led to a decrease in TGF-β–induced fascin and stress fiber formation, as well as a decrease in the expression of known markers of EMT, α-smooth muscle actin (α-SMA) and matrix metalloproteinase 9 (MMP9). In addition, inhibition of β-catenin/CBP–dependent signaling also prevented TGF-β–induced downregulation of epithelial cadherin (E-cadherin) in lens explants. Conclusions We show that β-catenin/CBP–dependent signaling regulates fascin, MMP9, and α-SMA expression during TGF-β–induced EMT. We demonstrate that β-catenin/CBP–dependent signaling is crucial for TGF-β–induced EMT in the lens.
Collapse
Affiliation(s)
- Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster Health Sciences Centre, Hamilton, Ontario, Canada
| | - Anna Korol
- Department of Pathology and Molecular Medicine, McMaster Health Sciences Centre, Hamilton, Ontario, Canada
| | - Paula A Deschamps
- Department of Pathology and Molecular Medicine, McMaster Health Sciences Centre, Hamilton, Ontario, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster Health Sciences Centre, Hamilton, Ontario, Canada
| |
Collapse
|
32
|
Boswell BA, Korol A, West-Mays JA, Musil LS. Dual function of TGFβ in lens epithelial cell fate: implications for secondary cataract. Mol Biol Cell 2017; 28:907-921. [PMID: 28209733 PMCID: PMC5385940 DOI: 10.1091/mbc.e16-12-0865] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/29/2022] Open
Abstract
The most common vision-disrupting complication of cataract surgery is posterior capsule opacification (PCO; secondary cataract). PCO is caused by residual lens cells undergoing one of two very different cell fates: either transdifferentiating into myofibroblasts or maturing into lens fiber cells. Although TGFβ has been strongly implicated in lens cell fibrosis, the factors responsible for the latter process have not been identified. We show here for the first time that TGFβ can induce purified primary lens epithelial cells within the same culture to undergo differentiation into either lens fiber cells or myofibroblasts. Marker analysis confirmed that the two cell phenotypes were mutually exclusive. Blocking the p38 kinase pathway, either with direct inhibitors of the p38 MAP kinase or a small-molecule therapeutic that also inhibits the activation of p38, prevented TGFβ from inducing epithelial-myofibroblast transition and cell migration but did not prevent fiber cell differentiation. Rapamycin had the converse effect, linking MTOR signaling to induction of fiber cell differentiation by TGFβ. In addition to providing novel potential therapeutic strategies for PCO, our findings extend the so-called TGFβ paradox, in which TGFβ can induce two disparate cell fates, to a new epithelial disease state.
Collapse
Affiliation(s)
- Bruce A Boswell
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| | - Anna Korol
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, ON L8N 3Z5, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, ON L8N 3Z5, Canada
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
33
|
Kubo E, Shibata S, Shibata T, Kiyokawa E, Sasaki H, Singh DP. FGF2 antagonizes aberrant TGFβ regulation of tropomyosin: role for posterior capsule opacity. J Cell Mol Med 2016; 21:916-928. [PMID: 27976512 PMCID: PMC5387175 DOI: 10.1111/jcmm.13030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
Transforming growth factor (TGF) β2 and fibroblast growth factor (FGF) 2 are involved in regulation of posterior capsule opacification (PCO) and other processes of epithelial–mesenchymal transition (EMT) such as cancer progression, wound healing and tissue fibrosis as well as normal embryonic development. We previously used an in vivo rodent PCO model to show the expression of tropomyosin (Tpm) 1/2 was aberrantly up‐regulated in remodelling the actin cytoskeleton during EMT. In this in vitro study, we show the Tpms family of cytoskeleton proteins are involved in regulating and stabilizing actin microfilaments (F‐actin) and are induced by TGFβ2 during EMT in lens epithelial cells (LECs). Importantly, we found TGFβ2 and FGF2 played contrasting roles. Stress fibre formation and up‐regulation of α‐smooth muscle actin (αSMA) induced by TGFβ2 could be reversed by Tpm1/2 knock‐down by siRNA. Expression of Tpm1/2 and stress fibre formation induced by TGFβ2 could be reversed by FGF2. Furthermore, FGF2 delivery to TGFβ‐treated LECs perturbed EMT by reactivating the mitogen‐activated protein kinase (MAPK)/ extracellular signal‐regulated kinase (ERK) pathway and subsequently enhanced EMT. Conversely, MEK inhibitor (PD98059) abated the FGF2‐mediated Tpm1/2 and αSMA suppression. However, we found that normal LECs which underwent EMT showed enhanced migration in response to combined TGFβ and FGF2 stimulation. These findings may help clarify the mechanism reprogramming the actin cytoskeleton during morphogenetic EMT cell proliferation and fibre regeneration in PCO. We propose that understanding the physiological link between levels of FGF2, Tpm1/2 expression and TGFβs‐driven EMT orchestration may provide clue(s) to develop therapeutic strategies to treat PCO based on Tpm1/2.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Shinsuke Shibata
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Teppei Shibata
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Etsuko Kiyokawa
- Department of Oncogenic Pathology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Uchinada, Kahoku-gun, Ishikawa, Japan
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
34
|
Greenlees R, Mihelec M, Yousoof S, Speidel D, Wu SK, Rinkwitz S, Prokudin I, Perveen R, Cheng A, Ma A, Nash B, Gillespie R, Loebel DA, Clayton-Smith J, Lloyd IC, Grigg JR, Tam PP, Yap AS, Becker TS, Black GC, Semina E, Jamieson RV. Mutations inSIPA1L3cause eye defects through disruption of cell polarity and cytoskeleton organization. Hum Mol Genet 2015; 24:5789-804. [DOI: 10.1093/hmg/ddv298] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/21/2015] [Indexed: 01/27/2023] Open
|
35
|
Lovicu FJ, Shin EH, McAvoy JW. Fibrosis in the lens. Sprouty regulation of TGFβ-signaling prevents lens EMT leading to cataract. Exp Eye Res 2015; 142:92-101. [PMID: 26003864 DOI: 10.1016/j.exer.2015.02.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/22/2015] [Accepted: 02/03/2015] [Indexed: 12/22/2022]
Abstract
Cataract is a common age-related condition that is caused by progressive clouding of the normally clear lens. Cataract can be effectively treated by surgery; however, like any surgery, there can be complications and the development of a secondary cataract, known as posterior capsule opacification (PCO), is the most common. PCO is caused by aberrant growth of lens epithelial cells that are left behind in the capsular bag after surgical removal of the fiber mass. An epithelial-to-mesenchymal transition (EMT) is central to fibrotic PCO and forms of fibrotic cataract, including anterior/posterior polar cataracts. Transforming growth factor β (TGFβ) has been shown to induce lens EMT and consequently research has focused on identifying ways of blocking its action. Intriguingly, recent studies in animal models have shown that EMT and cataract developed when a class of negative-feedback regulators, Sprouty (Spry)1 and Spry2, were conditionally deleted from the lens. Members of the Spry family act as general antagonists of the receptor tyrosine kinase (RTK)-mediated MAPK signaling pathway that is involved in many physiological and developmental processes. As the ERK/MAPK signaling pathway is a well established target of Spry proteins, and overexpression of Spry can block aberrant TGFβ-Smad signaling responsible for EMT and anterior subcapsular cataract, this indicates a role for the ERK/MAPK pathway in TGFβ-induced EMT. Given this and other supporting evidence, a case is made for focusing on RTK antagonists, such as Spry, for cataract prevention. In addition, and looking to the future, this review also looks at possibilities for supplanting EMT with normal fiber differentiation and thereby promoting lens regenerative processes after cataract surgery. Whilst it is now known that the epithelial to fiber differentiation process is driven by FGF, little is known about factors that coordinate the precise assembly of fibers into a functional lens. However, recent research provides key insights into an FGF-activated mechanism intrinsic to the lens that involves interactions between the Wnt-Frizzled and Jagged/Notch signaling pathways. This reciprocal epithelial-fiber cell interaction appears to be critical for the assembly and maintenance of the highly ordered three-dimensional architecture that is central to lens function. This information is fundamental to defining the specific conditions and stimuli needed to recapitulate developmental programs and promote regeneration of lens structure and function after cataract surgery.
Collapse
Affiliation(s)
- F J Lovicu
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia; Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia.
| | - E H Shin
- Discipline of Anatomy and Histology, Bosch Institute, School of Medical Sciences, University of Sydney, 2006, NSW, Australia
| | - J W McAvoy
- Save Sight Institute, University of Sydney, Sydney 2001, NSW, Australia
| |
Collapse
|
36
|
Association of histone acetylation at the ACTA2 promoter region with epithelial mesenchymal transition of lens epithelial cells. Eye (Lond) 2015; 29:828-38. [PMID: 25853442 DOI: 10.1038/eye.2015.29] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Epithelial mesenchymal transition (EMT) plays a central role in the development of fibrotic complications of the lens. The current study is designed to check whether EMT of lens epithelial cells (LECs) is regulated by epigenetic modifications and to evaluate the effect of Trichostatin-A (TSA) on the transforming growth factor-β (TGF-β)-induced EMT. METHODS Fetal human LECs (FHL124) were treated with TGF-β2 in the presence or absence of TSA. Levels of mRNA, protein, as well as localization of α-smooth muscle actin (αSMA) were studied along with migration of LECs. Acetylation of histone H4 was analyzed and chromatin immunoprecipitation (ChIP) was carried out to study the level of acetylated histone H4 at the promoter of αSMA gene (ACTA2). Student's t-test was used for statistical analysis. RESULTS TGF-β2 treatment resulted in myofibroblast-like changes and increased migratory capacity of FHL124. Protein and mRNA expression of αSMA increased, and immunofluorescence revealed presence of extensive stress fibers. TSA treatment preserved epithelial morphology, retarded cell migration, and abrogated an increase in αSMA levels. TSA led to the accumulation of acetylated histone H4 that was reduced on TGF-β2 treatment. However, increased level of histone H4 acetylation was found at the ACTA2 promoter region during TGF-β treatment. CONCLUSIONS The increased level of αSMA, a hallmark of EMT in LECs, is associated with increased level of histone H4 acetylation at its promoter region, and TSA helps in suppressing EMT by epigenetically reducing this level. TSA thus shows promising potential in management of fibrotic conditions of the lens.
Collapse
|
37
|
Zhao G, Wojciechowski MC, Jee S, Boros J, McAvoy JW, Lovicu FJ. Negative regulation of TGFβ-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists. Exp Eye Res 2015; 132:9-16. [DOI: 10.1016/j.exer.2015.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 12/19/2014] [Accepted: 01/06/2015] [Indexed: 12/22/2022]
|
38
|
Quantitative analysis of injury-induced anterior subcapsular cataract in the mouse: a model of lens epithelial cells proliferation and epithelial-mesenchymal transition. Sci Rep 2015; 5:8362. [PMID: 25666271 PMCID: PMC4322358 DOI: 10.1038/srep08362] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/19/2014] [Indexed: 11/20/2022] Open
Abstract
The mouse lens capsular injury model has been widely used in investigating the mechanisms of anterior subcapsular cataract (ASC) and posterior capsule opacification (PCO), and evaluating the efficacy of antifibrotic compounds. Nevertheless, there is no available protocol to quantitatively assess the treatment outcomes. Our aim is to describe a new method that can successfully quantify the wound and epithelial-mesenchymal transition (EMT) markers expression in vivo. In this model, lens anterior capsule was punctured with a hypodermic needle, which triggered lens epithelial cells (LECs) proliferation and EMT rapidly. Immunofluorescent staining of injured lens anterior capsule whole-mounts revealed the formation of ASC and high expression of EMT markers in the subcapsular plaques. A series of sectional images of lens capsule were acquired from laser scanning confocal microscopy (LSCM) three-dimensional (3D) scanning. Using LSCM Image Browser software, we can not only obtain high resolution stereo images to present the spatial structures of ASC, but also quantify the subcapsular plaques and EMT markers distribution sucessfully. Moreover, we also demonstrated that histone deacetylases (HDACs) inhibitor TSA significantly prevented injury-induced ASC using this method. Therefore, the present research provides a useful tool to study ASC and PCO biology as well as the efficacy of new therapies.
Collapse
|
39
|
Kerr CL, Zaveri MA, Robinson ML, Williams T, West-Mays JA. AP-2α is required after lens vesicle formation to maintain lens integrity. Dev Dyn 2014; 243:1298-309. [PMID: 24753151 PMCID: PMC7962590 DOI: 10.1002/dvdy.24141] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/14/2014] [Accepted: 04/15/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factors are critical in regulating lens development. The AP-2 family of transcription factors functions in differentiation, cell growth and apoptosis, and in lens and eye development. AP-2α, in particular, is important in early lens development, and when conditionally deleted at the placode stage defective separation of the lens vesicle from the surface ectoderm results. AP-2α's role during later stages of lens development is unknown. To address this, the MLR10-Cre transgene was used to delete AP-2α from the lens epithelium beginning at embryonic day (E) 10.5. RESULTS The loss of AP-2α after lens vesicle separation resulted in morphological defects beginning at E18.5. By P4, a small highly vacuolated lens with a multilayered epithelium was evident in the MLR10-AP-2α mutants. Epithelial cells appeared elongated and expressed fiber cell specific βB1 and γ-crystallins. Epithelial cell polarity and lens cell adhesion was disrupted and accompanied by the misexpression of ZO-1, N-Cadherin, and β-catenin. Cell death was observed in the mutant lens epithelium between postnatal day (P) 14 and P30, and correlated with altered arrangements of cells within the epithelium. CONCLUSIONS Our findings demonstrate that AP-2α continues to be required after lens vesicle separation to maintain a normal lens epithelial cell phenotype and overall lens integrity and to ensure correct fiber cell differentiation.
Collapse
Affiliation(s)
- Christine L. Kerr
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Mizna A. Zaveri
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | | | - Trevor Williams
- Department of Craniofacial Biology and Department of Cell and Developmental Biology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado
| | - Judith A. West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| |
Collapse
|
40
|
Gangalum RK, Jing Z, Bhat AM, Lee J, Nagaoka Y, Deng SX, Jiang M, Bhat SP. Expression of the HSF4 DNA binding domain-EGFP hybrid gene recreates early childhood lamellar cataract in transgenic mice. Invest Ophthalmol Vis Sci 2014; 55:7227-40. [PMID: 25168898 DOI: 10.1167/iovs.14-14594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The clinical management of cataracts in infancy involves surgical removal of the lens to ensure transmission of light to the retina, which is essential for normal neural development of the infant. This surgery, however, entails a lifelong follow-up and impaired vision. To our knowledge, no animal models recapitulate human lamellar opacities, the most prevalent form of early childhood cataracts. We present data on the recreation of the human lamellar cataract phenotype in transgenic mice. METHODS Mutations in the DNA binding domain (DBD) of the heat shock transcription factor 4 (HSF4) are known to be associated with early childhood autosomal dominant lamellar cataract. We used bacterial artificial chromosome (BAC) transgenesis to express a hybrid gene: Hsf4 (DBD)-enhanced green fluorescent protein (EGFP), by recombineering EGFP sequences into the DBD of the Hsf4 gene, to interfere with the DNA binding properties of Hsf4. RESULTS We recapitulated the human lamellar cataract, in its temporal as well as spatial presentation, within the transgenic mouse lens. This phenotype was reproduced faithfully using four different BACs, indicating that EGFP can be used to target transcription factor function in transgenic mice. Molecular and cell biological examination of early postnatal transgenic lens reveals impairment of secondary fiber cell differentiation. CONCLUSIONS Recreation of the human lamellar cataract phenotype in mice allows investigation of this human pathology at a level not possible previously and points to the relevance of fiber cell heterogeneity dictated by fiber cell-specific gene activity in the biogenesis of the lamellar cataract.
Collapse
Affiliation(s)
- Rajendra K Gangalum
- Jules Stein Eye Institute, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States
| | - Zhe Jing
- Jules Stein Eye Institute, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States
| | - Ankur M Bhat
- Jules Stein Eye Institute, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States
| | - Josh Lee
- Jules Stein Eye Institute, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States Department of Molecular and Medical Pharmacology, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States Molecular Biology Institute and Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Yoshiko Nagaoka
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States
| | - Sophie X Deng
- Molecular Biology Institute and Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States
| | - Suraj P Bhat
- Jules Stein Eye Institute, Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States Molecular Biology Institute and Brain Research Institute, University of California Los Angeles, Los Angeles, California, United States
| |
Collapse
|
41
|
Korol A, Pino G, Dwivedi D, Robertson JV, Deschamps PA, West-Mays JA. Matrix metalloproteinase-9-null mice are resistant to TGF-β-induced anterior subcapsular cataract formation. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2001-12. [PMID: 24814605 DOI: 10.1016/j.ajpath.2014.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 03/05/2014] [Accepted: 03/25/2014] [Indexed: 01/21/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is associated with fibrotic diseases in the lens, such as anterior subcapsular cataract (ASC) formation. Often mediated by transforming growth factor (TGF)-β, EMT in the lens involves the transformation of lens epithelial cells into a multilayering of myofibroblasts, which manifest as plaques beneath the lens capsule. TGF-β-induced EMT and ASC have been associated with the up-regulation of two matrix metalloproteinases (MMPs): MMP-2 and MMP-9. The current study used MMP-2 and MMP-9 knockout (KO) mice to further determine their unique roles in TGF-β-induced ASC formation. Adenoviral injection of active TGF-β1 into the anterior chamber of all wild-type and MMP-2 KO mice led to the formation of distinct ASC plaques that were positive for α-smooth muscle actin, a marker of EMT. In contrast, only a small proportion of the MMP-9 KO eyes injected with adenovirus-expressing TGF-β1 exhibited ASC plaques. Isolated lens epithelial explants from wild-type and MMP-2 KO mice that were treated with TGF-β exhibited features indicative of EMT, whereas those from MMP-9 KO mice did not acquire a mesenchymal phenotype. MMP-9 KO mice were further bred onto a TGF-β1 transgenic mouse line that exhibits severe ASC formation, but shows a resistance to ASC formation in the absence of MMP-9. These findings suggest that MMP-9 expression is more critical than MMP-2 in mediating TGF-β-induced ASC formation.
Collapse
Affiliation(s)
- Anna Korol
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Giuseppe Pino
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Dhruva Dwivedi
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Jennifer V Robertson
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Paula A Deschamps
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Hamilton, Ontario, Canada.
| |
Collapse
|
42
|
Chen X, Ye S, Xiao W, Wang W, Luo L, Liu Y. ERK1/2 pathway mediates epithelial-mesenchymal transition by cross-interacting with TGFβ/Smad and Jagged/Notch signaling pathways in lens epithelial cells. Int J Mol Med 2014; 33:1664-70. [PMID: 24714800 DOI: 10.3892/ijmm.2014.1723] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/02/2014] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is the major pathological mechanism in anterior subcapsular cataract (ASC) and posterior capsule opacification (PCO), which are important causes of visual impairment. Extracellular signal-regulated kinase (ERK)1/2 pathway has been reported to play a major role in carcinogenesis, cancer metastasis and various fibrotic diseases. We hypothesized that ERK1/2 signaling can cross-interact with canonical transforming growth factor β (TGFβ)/Smad signaling and the Notch pathway, which subsequently contributes to LECs EMT. In this study, we demonstrated that ERK1/2 signaling was activated in TGFβ2-induced EMT in human LECs, whereas the blockade of TGFβ2/Smad2/3 signaling with SB431542 did not inhibit the activation of ERK1/2 induced by TGFβ2. In addition, inactivation of ERK1/2 signaling with a specific MEK/ERK1/2 inhibitor, U0126, completely prevented the TGFβ2-induced upregulation of α-SMA, collagen type I, collagen type IV and fibronectin. We also demonstrated that inactivation of ERK1/2 signaling inhibited canonical TGFβ/Smad signaling, as well as the Jagged/Notch pathway. By contrast, blockade of the Notch pathway by DAPT inhibited the TGFβ2‑induced activation of ERK1/2 pathway in LECs. Thus, results of this study provide evidence for the complex interplay between ERK1/2, TGFβ/Smad, and Jagged/Notch signaling pathways in the regulation of EMT in LECs. Inhibition of the ERK1/2 pathway may therefore have therapeutic value in the prevention and treatment of ASC and PCO.
Collapse
Affiliation(s)
- Xiaoyun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Shaobi Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Wei Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Wencong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
43
|
Chen X, Xiao W, Chen W, Luo L, Ye S, Liu Y. The epigenetic modifier trichostatin A, a histone deacetylase inhibitor, suppresses proliferation and epithelial-mesenchymal transition of lens epithelial cells. Cell Death Dis 2013; 4:e884. [PMID: 24157878 PMCID: PMC3920942 DOI: 10.1038/cddis.2013.416] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/10/2013] [Accepted: 09/17/2013] [Indexed: 01/02/2023]
Abstract
Proliferation and epithelial-mesenchymal transition (EMT) of lens epithelium cells (LECs) may contribute to anterior subcapsular cataract (ASC) and posterior capsule opacification (PCO), which are important causes of visual impairment. Histone deacetylases (HDACs)-mediated epigenetic mechanism has a central role in controlling cell cycle regulation, cell proliferation and differentiation in a variety of cells and the pathogenesis of some diseases. However, whether HDACs are involved in the regulation of proliferation and EMT in LECs remain unknown. In this study, we evaluated the expression profile of HDAC family (18 genes) and found that class I and II HDACs were upregulated in transforming growth factor β2 (TGFβ2)-induced EMT in human LEC lines SRA01/04 and HLEB3. Tricostatin A (TSA), a class I and II HDAC inhibitor, suppressed the proliferation of LECs by G1 phase cell cycle arrest not only through inhibition of cyclin/CDK complexes and induction of p21 and p27, but also inactivation of the phosphatidylinositol-3-kinase/Akt, p38MAPK and ERK1/2 pathways. Meanwhile, TSA strongly prevented TGFβ2-induced upregulation of fibronectin, collagen type I, collagen type IV, N-cadherin, Snail and Slug. We also demonstrated that the underlying mechanism of TSA affects EMT in LECs through inhibiting the canonical TGFβ/Smad2 and the Jagged/Notch signaling pathways. Finally, we found that TSA completely prevented TGFβ2-induced ASC in the whole lens culture semi-in vivo model. Therefore, this study may provide a new insight into the pathogenesis of ASC and PCO, and suggests that epigenetic treatment with HDAC inhibitors may be a novel therapeutic approach for the prevention and treatment of ASC, PCO and other fibrotic diseases.
Collapse
Affiliation(s)
- X Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Yamben IF, Rachel RA, Shatadal S, Copeland NG, Jenkins NA, Warming S, Griep AE. Scrib is required for epithelial cell identity and prevents epithelial to mesenchymal transition in the mouse. Dev Biol 2013; 384:41-52. [PMID: 24095903 DOI: 10.1016/j.ydbio.2013.09.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/03/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
The integrity and function of epithelial tissues depend on the establishment and maintenance of defining characteristics of epithelial cells, cell-cell adhesion and cell polarity. Disruption of these characteristics can lead to the loss of epithelial identity through a process called epithelial to mesenchymal transition (EMT), which can contribute to pathological conditions such as tissue fibrosis and invasive cancer. In invertebrates, the epithelial polarity gene scrib plays a critical role in establishing and maintaining cell adhesion and polarity. In this study we asked if the mouse homolog, Scrib, is required for establishment and/or maintenance of epithelial identity in vivo. To do so, we conditionally deleted Scrib in the head ectoderm tissue that gives rise to both the ocular lens and the corneal epithelium. Deletion of Scrib in the lens resulted in a change in epithelial cell shape from cuboidal to flattened and elongated. Early in the process, the cell adhesion protein, E-cadherin, and apical polarity protein, ZO-1, were downregulated and the myofibroblast protein, αSMA, was upregulated, suggesting EMT was occurring in the Scrib deficient lenses. Correlating temporally with the upregulation of αSMA, Smad3 and Smad4, TGFβ signaling intermediates, accumulated in the nucleus and Snail, a TGFβ target and transcriptional repressor of the gene encoding E-cadherin, was upregulated. Pax6, a lens epithelial transcription factor required to maintain lens epithelial cell identity also was downregulated. Loss of Scrib in the corneal epithelium also led to molecular changes consistent with EMT, suggesting that the effect of Scrib deficiency was not unique to the lens. Together, these data indicate that mammalian Scrib is required to maintain epithelial identity and that loss of Scrib can culminate in EMT, mediated, at least in part, through TGFβ signaling.
Collapse
Affiliation(s)
- Idella F Yamben
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, United States
| | | | | | | | | | | | | |
Collapse
|
45
|
Robertson JV, Siwakoti A, West-Mays JA. Altered expression of transforming growth factor beta 1 and matrix metalloproteinase-9 results in elevated intraocular pressure in mice. Mol Vis 2013; 19:684-95. [PMID: 23559862 PMCID: PMC3611945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/19/2013] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Extracellular matrix remodeling is thought to have profound effects on tissue architecture and associated function. We have shown previously that overexpression of transforming growth factor beta (TGFβ), which stimulates matrix accumulation, results in altered morphology, cataract, and ocular hypertension in rodents. We have further shown that TGFβ-induced cataracts can be mitigated through inhibition of the matrix metalloproteinases (MMP) MMP-2 and MMP-9. We therefore sought to determine whether loss of MMP expression also altered TGFβ-induced changes in intraocular pressure (IOP). METHODS To carry out this study, TGFβ1 transgenic mice were bred onto a MMP-9 null background. IOP measurements were made at 1- to 2-, 2- to 3-, and 3- to 4-month time points using a TonoLab rebound tonometer. Histological and immunofluorescence findings were obtained at the same time points. RESULTS Our results demonstrate that lens-specific expression of TGFβ1 in mice results in altered morphology of the anterior segment and an accompanying significant increase in IOP. TGFβ1 transgenic mice bred onto the MMP-9 null background exhibited a further increase in IOP. Interestingly, the MMP-9-deficient animals (without the TGFβ transgene), which exhibited normal angle morphology, had increased IOP levels compared to their wild-type littermates. CONCLUSION These results indicate that TGFβ and MMP-9 likely act independently in regulating IOP. Additionally, MMP-9 plays an important role in maintaining IOP, and further investigation into the mechanisms of MMP-9 activity in the anterior angle may give clues to how extracellular matrix remodeling participates in ocular hypertension and glaucoma.
Collapse
|
46
|
Kubo E, Hasanova N, Fatma N, Sasaki H, Singh DP. Elevated tropomyosin expression is associated with epithelial-mesenchymal transition of lens epithelial cells. J Cell Mol Med 2012. [PMID: 23205574 PMCID: PMC3560320 DOI: 10.1111/j.1582-4934.2012.01654.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Injury to lens epithelial cells (LECs) leads to epithelial–mesenchymal transition (EMT) with resultant fibrosis. The tropomyosin (Tpm) family of cytoskeleton proteins is involved in regulating and stabilizing actin microfilaments. Aberrant expression of Tpms leads to abnormal morphological changes with disintegration of epithelial integrity. The EMT of LECs has been proposed as a major cause of posterior capsule opacification (PCO) after cataract surgery. Using in vivo rodent PCO and human cataractous LECs, we demonstrated that the aberrant expression of rat Tpm and human Tpm1α/2β suggested their association in remodelling of the actin cytoskeleton during EMT of LECs. Expression analysis from abnormally growing LECs after lens extraction revealed elevated expression of α-smooth muscle actin (α-SMA), a marker for EMT. Importantly, these cells displayed increased expression of Tpm1α/2β following EMT/PCO formation. Expression of Tpm1α/2β was up-regulated in LECs isolated from cataractous lenses of Shumiya Cataract Rats (SCRs), compared with non-cataractous lenses. Also, LECs from human patients with nuclear cataract and anterior subcapsular fibrosis (ASF) displayed significantly increased expression of Tpm2β mRNA, suggesting that similar signalling invokes the expression of these molecules in LECs of cataractous SCR and human lenses. EMT was observed in LECs overexpressed with Tpm1α/2β, as evidenced by increased expression of α-SMA. These conditions were correlated with remodelling of actin filaments, possibly leading to EMT/PCO and ASF. The present findings may help clarify the condition of the actin cytoskeleton during morphogenetic EMT, and may contribute to development of Tpm-based inhibitors for postponing PCO and cataractogenesis.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kahoku, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
47
|
Shin EHH, Basson MA, Robinson ML, McAvoy JW, Lovicu FJ. Sprouty is a negative regulator of transforming growth factor β-induced epithelial-to-mesenchymal transition and cataract. Mol Med 2012; 18:861-73. [PMID: 22517312 DOI: 10.2119/molmed.2012.00111] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023] Open
Abstract
Fibrosis affects an extensive range of organs and is increasingly acknowledged as a major component of many chronic disorders. It is now well accepted that the elevated expression of certain inflammatory cell-derived cytokines, especially transforming growth factor β (TGFβ), is involved in the epithelial-to-mesenchymal transition (EMT) leading to the pathogenesis of a diverse range of fibrotic diseases. In lens, aberrant TGFβ signaling has been shown to induce EMT leading to cataract formation. Sproutys (Sprys) are negative feedback regulators of receptor tyrosine kinase (RTK)-signaling pathways in many vertebrate systems, and in this study we showed that they are important in the murine lens for promoting the lens epithelial cell phenotype. Conditional deletion of Spry1 and Spry2 specifically from the lens leads to an aberrant increase in RTK-mediated extracellular signal-regulated kinase 1/2 phosphorylation and, surprisingly, elevated TGFβ-related signaling in lens epithelial cells, leading to an EMT and subsequent cataract formation. Conversely, increased Spry overexpression in lens cells can suppress not only TGFβ-induced signaling, but also the accompanying EMT and cataract formation. On the basis of these findings, we propose that a better understanding of the relationship between Spry and TGFβ signaling will not only elucidate the etiology of lens pathology, but will also lead to the development of treatments for other fibrotic-related diseases associated with TGFβ-induced EMT.
Collapse
Affiliation(s)
- Eun Hye H Shin
- Anatomy and Histology, Bosch Institute & Save Sight Institute, University of Sydney, Sydney, Australia
| | | | | | | | | |
Collapse
|
48
|
Banasiak P, Strzalka-Mrozik B, Forminska-Kapuscik M, Filipek E, Mazurek U, Nawrocka L, Pieczara E, Berezowski P, Kimsa M. Quantitative relationships between transforming growth factor beta mRNA isoforms in congenital and traumatic cataracts. Mol Vis 2011; 17:3025-33. [PMID: 22128246 PMCID: PMC3224844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 11/14/2011] [Indexed: 10/31/2022] Open
Abstract
PURPOSE The aim of this study was to determine differences in the expression profiles of transforming growth factor (TGF) β isoforms in the fragments of anterior lens capsules (ALCs) and peripheral blood mononuclear cells (PBMCs) of pediatric patients with congenital and traumatic cataracts. METHODS Forty children with congenital cataracts (19 girls and 21 boys) and 22 children with traumatic cataracts (six girls and 16 boys) participated in the study. Fragments of ALCs obtained during cataract surgery and whole blood samples were analyzed. Quantification of TGFβ1, TGFβ2, and TGFβ3 mRNA was performed by real-time quantitative reverse transcription (QRT)-PCR using SYBR Green I chemistry. RESULTS TGFβ1, TGFβ2, and TGFβ3 mRNA was detected in all the studied samples. Significant differences were found for TGFβ1 and TGFβ2 expression profiles in PBMCs between the patients with congenital and traumatic cataracts. The expression profiles of TGFβ isoforms in ALCs did not differ significantly between the groups. CONCLUSIONS Overexpression of TGFβ1 and TGFβ2 in the PBMCs of patients with congenital cataracts might indicate that these cytokines are involved in the development of lens opacity.
Collapse
Affiliation(s)
- Pawel Banasiak
- Division of Pediatric Ophthalmology, Department of Ophthalmology, Medical University of Silesia, Katowice, Poland
| | | | - Maria Forminska-Kapuscik
- Division of Pediatric Ophthalmology, Department of Ophthalmology, Medical University of Silesia, Katowice, Poland
| | - Erita Filipek
- Division of Pediatric Ophthalmology, Department of Ophthalmology, Medical University of Silesia, Katowice, Poland
| | - Urszula Mazurek
- Department of Molecular Biology, Medical University of Silesia, Sosnowiec, Poland
| | - Lidia Nawrocka
- Division of Pediatric Ophthalmology, Department of Ophthalmology, Medical University of Silesia, Katowice, Poland
| | - Ewa Pieczara
- Division of Pediatric Ophthalmology, Department of Ophthalmology, Medical University of Silesia, Katowice, Poland
| | - Piotr Berezowski
- Division of Pediatric Ophthalmology, Department of Ophthalmology, Medical University of Silesia, Katowice, Poland
| | - Malgorzata Kimsa
- Department of Molecular Biology, Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
49
|
Reneker LW, Chen H, Overbeek PA. Activation of unfolded protein response in transgenic mouse lenses. Invest Ophthalmol Vis Sci 2011; 52:2100-8. [PMID: 21310900 DOI: 10.1167/iovs.10-5650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Overloading of unfolded or misfolded proteins in the endoplasmic reticulum (ER) can cause ER stress and activate the unfolded protein response (UPR) in the cell. The authors tested whether transgene overexpression in the mouse lens would activate the UPR. METHODS Transgenic mice expressing proteins that either enter the ER secretory pathway or are synthesized in cytosol were selected. Activation of the UPR was assessed by determining the expression levels of the ER chaperone protein BiP, the spliced form of X-box binding protein-1 (Xbp-1) mRNA, and the transcription factor CHOP. Changes in the ubiquitin-proteasome system in the mouse lens were detected by ubiquitin immunofluorescence. RESULTS BiP expression was upregulated in the fiber cells of transgenic mouse lenses expressing platelet-derived growth factor-A (PDGF-A), dominant-negative fibroblast growth factor receptor (DN-FGFR), or DN-Sprouty2 (DN-Spy2). BiP upregulation occurred around embryonic day 16.5, primarily in the fiber cells adjacent to the organelle free zone. Fiber cell differentiation was disrupted in the PDGF-A and DN-Spry2 lenses, whereas the fiber cells were degenerating in the DN-FGFR lens. High levels of UPR activation and ubiquitin-labeled protein aggregates were found in the DN-FGFR lens, indicating inefficient disposal of unfolded/misfolded proteins in the fiber cells. CONCLUSIONS This study implies that overexpression of some transgenes in the lens can induce ER or overall cell stress in fiber cells, resulting in the activation of UPR signaling pathways. Therefore, investigators should assess the levels of UPR activation when they analyze the downstream effects of transgene expression in the lens.
Collapse
Affiliation(s)
- Lixing W Reneker
- Department of Ophthalmology, School of Medicine, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
50
|
Martinez G, de Iongh R. The lens epithelium in ocular health and disease. Int J Biochem Cell Biol 2010; 42:1945-63. [PMID: 20883819 DOI: 10.1016/j.biocel.2010.09.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/19/2010] [Accepted: 09/20/2010] [Indexed: 01/11/2023]
|