1
|
Li S, Zhou L, Ren J, Zhang Q, Xiao X. Maternal exercise programs placental miR-495-5p-mediated Snx7 expression and kynurenic acid metabolic pathway induced by prenatal high-fat diet: Based on miRNA-seq, transcriptomics, and metabolomics. J Nutr Biochem 2025; 137:109830. [PMID: 39647668 DOI: 10.1016/j.jnutbio.2024.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Poor intrauterine environments increase the prevalence of chronic metabolic diseases in offspring, whereas maternal exercise is an effective measure to break this vicious intergenerational cycle. Placenta is increasingly being studied to explore its role in maternal-fetal metabolic cross-talk. The association between placental miRNA and offspring development trajectories has been established, yet the specific role and mechanism thereof in maternal exercise-induced metabolic protection remain elusive. Here, C57BL/6 female mice were subjected to either a normal control or a high-fat diet (HFD), half of the HFD-fed dams were housed with voluntary wheel running for 3 weeks before and during gestation. At embryonic day 18.5, we sacrificed parturient mice and then conducted miRNA-seq, transcriptomic, and metabolomic profiling of the placenta. Our data revealed that maternal HFD resulted in significant alterations in both miRNA and gene expressions, as well as metabolic pathways of the placenta, whereas prenatal exercise negated these perturbations. The common differentially expressed transcripts among three groups were enriched in multiple critical pathways involving energy expenditure, signal transduction, and fetal development. Through integrated analysis of multiomics data, we speculated that maternal exercise reversed the suppression of miR-495-5p induced by HFD, thereby inhibiting miR-495-5p-targeted Snx7 and modulating kynurenic acid production. These datasets provided novel mechanistic insight into how maternal exercise positively affects the metabolic homeostasis of offspring. The discovered important miRNAs, mRNAs, and metabolites could be promising predictive and therapeutic targets for protecting offspring metabolic health.
Collapse
Affiliation(s)
- Shunhua Li
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
2
|
Dang T, Yu J, Cao Z, Zhang B, Li S, Xin Y, Yang L, Lou R, Zhuang M, Shui W. Endogenous cell membrane interactome mapping for the GLP-1 receptor in different cell types. Nat Chem Biol 2025; 21:256-267. [PMID: 39227725 DOI: 10.1038/s41589-024-01714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
The GLP-1 receptor, one of the most successful drug targets for the treatment of type 2 diabetes and obesity, is known to engage multiple intracellular signaling proteins. However, it remains less explored how the receptor interacts with proteins on the cell membrane. Here, we present a ligand-based proximity labeling approach to interrogate the native cell membrane interactome for the GLP-1 receptor after agonist simulation. Our study identified several unreported putative cell membrane interactors for the endogenous receptor in either a pancreatic β cell line or a neuronal cell line. We further uncovered new regulators of GLP-1 receptor-mediated signaling and insulinotropic responses in β cells. Additionally, we obtained a time-resolved cell membrane interactome map for the receptor in β cells. Therefore, our study provides a new approach that is generalizable to map endogenous cell membrane interactomes for G-protein-coupled receptors to decipher the molecular basis of their cell-type-specific functional regulation.
Collapse
Affiliation(s)
- Ting Dang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Lingang Laboratory, Shanghai, China
| | - Zhihe Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bingjie Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Shanshan Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ye Xin
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingyun Yang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ronghui Lou
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Wenqing Shui
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
3
|
Matsuoka R, Kitajima K, Nii T, Zou Z, Tanaka K, Joo K, Ohkawa Y, Ohga S, Meno C. Hyperglycaemia induces diet-dependent defects of the left-right axis by lowering intracellular pH. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167550. [PMID: 39442590 DOI: 10.1016/j.bbadis.2024.167550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Pregestational diabetes is a risk factor for congenital anomalies, including heterotaxy syndrome, a rare birth defect characterized by the abnormal arrangement of organs relative to the left-right (L-R) body axis. To provide insight into the underlying mechanism by which diabetes induces heterotaxy, we here analyzed the L-R axis of mouse embryos of diabetic dams. Various Pitx2 expression patterns indicative of disruption of L-R axis formation were apparent in such embryos. Expression of Nodal at the node, which triggers a Nodal-Pitx2 expression cascade in lateral plate mesoderm, showed marked regression associated with L-R axis malformation. This regression was similar to that apparent in Wnt3a-/- embryos, and canonical Wnt signalling was indeed found to be downregulated in embryos of diabetic dams. RNA sequencing revealed dysregulation of glycolysis in embryos of diabetic dams, and high glucose lowered intracellular pH in the primitive streak, leading to the suppression of Wnt signalling and the regression of Nodal expression. Of note, maternal vitamin A intake increased the incidence of L-R axis defects in embryos of diabetic dams, with dysregulation of retinoic acid metabolism being apparent in these embryos and in Wnt3a-/- embryos. Our results shed light on the mechanisms underlying embryopathies associated with maternal diabetes and suggest the importance of diet for prevention of heterotaxy.
Collapse
Affiliation(s)
- Ryohei Matsuoka
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keiko Kitajima
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takenobu Nii
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Zhaonan Zou
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kunihiko Joo
- Department of Cardiovascular Surgery, Kyushu University Hospital, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Chikara Meno
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
4
|
Migliorini A, Ge S, Atkins MH, Oakie A, Sambathkumar R, Kent G, Huang H, Sing A, Chua C, Gehring AJ, Keller GM, Notta F, Nostro MC. Embryonic macrophages support endocrine commitment during human pancreatic differentiation. Cell Stem Cell 2024; 31:1591-1611.e8. [PMID: 39406230 DOI: 10.1016/j.stem.2024.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/02/2024] [Accepted: 09/12/2024] [Indexed: 11/10/2024]
Abstract
Organogenesis is a complex process that relies on a dynamic interplay between extrinsic factors originating from the microenvironment and tissue-specific intrinsic factors. For pancreatic endocrine cells, the local niche consists of acinar and ductal cells as well as neuronal, immune, endothelial, and stromal cells. Hematopoietic cells have been detected in human pancreas as early as 6 post-conception weeks, but whether they play a role during human endocrinogenesis remains unknown. To investigate this, we performed single-nucleus RNA sequencing (snRNA-seq) of the second-trimester human pancreas and identified a wide range of hematopoietic cells, including two distinct subsets of tissue-resident macrophages. Leveraging this discovery, we developed a co-culture system of human embryonic stem cell-derived endocrine-macrophage organoids to model their interaction in vitro. Here, we show that macrophages support the differentiation and viability of endocrine cells in vitro and enhance tissue engraftment, highlighting their potential role in tissue engineering strategies for diabetes.
Collapse
Affiliation(s)
- Adriana Migliorini
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Sabrina Ge
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Michael H Atkins
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Amanda Oakie
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Gregory Kent
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Haiyang Huang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Angel Sing
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Conan Chua
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gordon M Keller
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Faiyaz Notta
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Maria Cristina Nostro
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; Ajmera Transplant Centre, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
5
|
Yu B, Jing X, Jia L, Wang M, Liu L, Ping S, Wang Y, Yang M. The versatile multi-functional substance NMN: its unique characteristics, metabolic properties, pharmacodynamic effects, clinical trials, and diverse applications. Front Pharmacol 2024; 15:1436597. [PMID: 39411062 PMCID: PMC11473484 DOI: 10.3389/fphar.2024.1436597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
β-nicotinamide mononucleotide (NMN) is a naturally occurring biologically active nucleotide widely present in organisms and an inherent substance in the human body. As a critical intermediate in synthesizing coenzyme I (NAD+), it widely participates in multiple biochemical reactions in the human body and is closely related to immunity, metabolism, and other factors. In recent years, NMN has rapidly developed and made significant progress in medicine, food, and healthcare. However, there is currently a lack of comprehensive reports on the research progress of NMN, as well as exploration and analysis of the current research achievements and progress of NMN. Therefore, this review is based on retrieving relevant research on NMN from multiple databases at home and abroad, with the retrieval time from database establishment to 20 May 2024. Subsequently, literature search, reading, key information extraction, organization, and summarization were conducted with the aim of providing a comprehensive and in-depth analysis of the characteristics, metabolic pathways, pharmacological effects, progress in human clinical trials, and wide applications of NMN in drug development and food applications. Furthermore, it offers personal insights into NMN's potential future developments and advancements to present the current development state and existing challenges comprehensively. Ultimately, this review aims to provide guidance and serve as a reference for the future application, innovation, and progression of NMN research.
Collapse
Affiliation(s)
- Bin Yu
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Xiaotong Jing
- Wuhan University School of Nursing, Wuhan University, Wuhan, China
| | - Lina Jia
- Department of Central Sterile Supply Department, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Maoru Wang
- Drug Dispensing Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Liying Liu
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Songyuge Ping
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Yantai University, Yantai, China
| | - Yu Wang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Min Yang
- Department of Pharmacy, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| |
Collapse
|
6
|
Morisseau L, Tokito F, Lucas M, Poulain S, Kim SH, Plaisance V, Pawlowski V, Legallais C, Jellali R, Sakai Y, Abderrahmani A, Leclerc E. Transcriptomic profiling analysis of the effect of palmitic acid on 3D spheroids of β-like cells derived from induced pluripotent stem cells. Gene 2024; 917:148441. [PMID: 38608795 DOI: 10.1016/j.gene.2024.148441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Type 2 diabetes (T2D) is posing a serious public health concern with a considerable impact on human life and health expenditures worldwide. The disease develops when insulin plasma level is insufficient for coping insulin resistance, caused by the decline of pancreatic β-cell function and mass. In β-cells, the lipotoxicity exerted by saturated free fatty acids in particular palmitate (PA), which is chronically elevated in T2D, plays a major role in β-cell dysfunction and mass. However, there is a lack of human relevant in vitro model to identify the underlying mechanism through which palmitate induces β-cell failure. In this frame, we have previously developed a cutting-edge 3D spheroid model of β-like cells derived from human induced pluripotent stem cells. In the present work, we investigated the signaling pathways modified by palmitate in β-like cells derived spheroids. When compared to the 2D monolayer cultures, the transcriptome analysis (FDR set at 0.1) revealed that the 3D spheroids upregulated the pancreatic markers (such as GCG, IAPP genes), lipids metabolism and transporters (CD36, HMGSC2 genes), glucose transporter (SLC2A6). Then, the 3D spheroids are exposed to PA 0.5 mM for 72 h. The differential analysis demonstrated that 32 transcription factors and 135 target genes were mainly modulated (FDR set at 0.1) including the upregulation of lipid and carbohydrates metabolism (HMGSC2, LDHA, GLUT3), fibrin metabolism (FGG, FGB), apoptosis (CASP7). The pathway analysis using the 135 selected targets extracted the fibrin related biological process and wound healing in 3D PA treated conditions. An overall pathway gene set enrichment analysis, performed on the overall gene set (with pathway significance cutoff at 0.2), highlighted that PA perturbs the citrate cycle, FOXO signaling and Hippo signaling as observed in human islets studies. Additional RT-PCR confirmed induction of inflammatory (IGFBP1, IGFBP3) and cell growth (CCND1, Ki67) pathways by PA. All these changes were associated with unaffected glucose-stimulated insulin secretion (GSIS), suggesting that they precede the defect of insulin secretion and death induced by PA. Overall, we believe that our data demonstrate the potential of our spheroid 3D islet-like cells to investigate the pancreatic-like response to diabetogenic environment.
Collapse
Affiliation(s)
- Lisa Morisseau
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Fumiya Tokito
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mathilde Lucas
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Poulain
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Soo Hyeon Kim
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Valérie Plaisance
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Cécile Legallais
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu CS 60319, 60203 Compiègne Cedex, France
| | - Yasuyuki Sakai
- Department of Chemical Engineering, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; CNRS/IIS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Eric Leclerc
- CNRS/IIS IRL 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
7
|
Holmberg SR, Sakamoto Y, Kato A, Romero MF. The role of Na +-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch 2024; 476:479-503. [PMID: 38536494 PMCID: PMC11338471 DOI: 10.1007/s00424-024-02937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.
Collapse
Affiliation(s)
- Shannon R Holmberg
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA
| | - Yohei Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.
- Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
8
|
Shen Q, Gong W, Pan X, Cai J, Jiang Y, He M, Zhao S, Li Y, Yuan X, Li J. Comprehensive Analysis of CircRNA Expression Profiles in Multiple Tissues of Pigs. Int J Mol Sci 2023; 24:16205. [PMID: 38003395 PMCID: PMC10671760 DOI: 10.3390/ijms242216205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with diverse functions, and previous studies have reported that circRNAs are involved in the growth and development of pigs. However, studies about porcine circRNAs over the past few years have focused on a limited number of tissues. Based on 215 publicly available RNA sequencing (RNA-seq) samples, we conducted a comprehensive analysis of circRNAs in nine pig tissues, namely, the gallbladder, heart, liver, longissimus dorsi, lung, ovary, pituitary, skeletal muscle, and spleen. Here, we identified a total of 82,528 circRNAs and discovered 3818 novel circRNAs that were not reported in the CircAtlas database. Moreover, we obtained 492 housekeeping circRNAs and 3489 tissue-specific circRNAs. The housekeeping circRNAs were enriched in signaling pathways regulating basic biological tissue activities, such as chromatin remodeling, nuclear-transcribed mRNA catabolic process, and protein methylation. The tissue-specific circRNAs were enriched in signaling pathways related to tissue-specific functions, such as muscle system process in skeletal muscle, cilium organization in pituitary, and cortical cytoskeleton in ovary. Through weighted gene co-expression network analysis, we identified 14 modules comprising 1377 hub circRNAs. Additionally, we explored circRNA-miRNA-mRNA networks to elucidate the interaction relationships between tissue-specific circRNAs and tissue-specific genes. Furthermore, our conservation analysis revealed that 19.29% of circRNAs in pigs shared homologous positions with their counterparts in humans. In summary, this extensive profiling of housekeeping, tissue-specific, and co-expressed circRNAs provides valuable insights into understanding the molecular mechanisms of pig transcriptional expression, ultimately deepening our understanding of genetic and biological processes.
Collapse
Affiliation(s)
- Qingpeng Shen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Wentao Gong
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Jiali Cai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Yao Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Mingran He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Shanghui Zhao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Yipeng Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| |
Collapse
|
9
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
10
|
Giha HA. Hidden chronic metabolic acidosis of diabetes type 2 (CMAD): Clues, causes and consequences. Rev Endocr Metab Disord 2023; 24:735-750. [PMID: 37380824 DOI: 10.1007/s11154-023-09816-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 06/30/2023]
Abstract
Interpretation of existing data revealed that chronic metabolic acidosis is a pathognomic feature for type 2 diabetes (T2D), which is described here as "chronic metabolic acidosis of T2D (CMAD)" for the first time. The biochemical clues for the CMAD are summarised in the following; low blood bicarbonate (high anionic gap), low pH of interstitial fluid and urine, and response to acid neutralization, while the causes of extra protons are worked out to be; mitochondrial dysfunction, systemic inflammation, gut microbiota (GM), and diabetic lung. Although, the intracellular pH is largely preserved by the buffer system and ion transporters, a persistent systemic mild acidosis leaves molecular signature in cellular metabolism in diabetics. Reciprocally, there are evidences that CMAD contributes to the initiation and progression of T2D by; reducing insulin production, triggering insulin resistance directly or via altered GM, and inclined oxidative stress. The details about the above clues, causes and consequences of CMAD are obtained by searching literature spanning between 1955 and 2022. Finally, the molecular bases of CMAD are discussed in details by interpretation of an up-to-date data and aid of well constructed diagrams, with a conclusion unravelling that CMAD is a major player in T2D pathophysiology. To this end, the CMAD disclosure offers several therapeutic potentials for prevention, delay or attenuation of T2D and its complications.
Collapse
Affiliation(s)
- Hayder A Giha
- Medical Biochemistry and Molecular Biology, Khartoum, Sudan.
| |
Collapse
|
11
|
Wieder N, Fried JC, Kim C, Sidhom EH, Brown MR, Marshall JL, Arevalo C, Dvela-Levitt M, Kost-Alimova M, Sieber J, Gabriel KR, Pacheco J, Clish C, Abbasi HS, Singh S, Rutter JC, Therrien M, Yoon H, Lai ZW, Baublis A, Subramanian R, Devkota R, Small J, Sreekanth V, Han M, Lim D, Carpenter AE, Flannick J, Finucane H, Haigis MC, Claussnitzer M, Sheu E, Stevens B, Wagner BK, Choudhary A, Shaw JL, Pablo JL, Greka A. FALCON systematically interrogates free fatty acid biology and identifies a novel mediator of lipotoxicity. Cell Metab 2023; 35:887-905.e11. [PMID: 37075753 PMCID: PMC10257950 DOI: 10.1016/j.cmet.2023.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/21/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023]
Abstract
Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases. However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains elusive. Here, we report the design and implementation of fatty acid library for comprehensive ontologies (FALCON), an unbiased, scalable, and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids associated with decreased membrane fluidity. Furthermore, we prioritized genes that reflect the combined effects of harmful FFA exposure and genetic risk for type 2 diabetes (T2D). We found that c-MAF-inducing protein (CMIP) protects cells from FFA exposure by modulating Akt signaling. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism.
Collapse
Affiliation(s)
- Nicolas Wieder
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Neurology with Experimental Neurology and Berlin Institute of Health, Charité, 10117 Berlin, Germany
| | - Juliana Coraor Fried
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Choah Kim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Eriene-Heidi Sidhom
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Matthew R Brown
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Carlos Arevalo
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Moran Dvela-Levitt
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Jonas Sieber
- Department of Endocrinology, Metabolism and Cardiovascular Systems, University of Fribourg, Fribourg, Switzerland
| | | | - Julian Pacheco
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Clary Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Shantanu Singh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Justine C Rutter
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Zon Weng Lai
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Aaron Baublis
- Harvard Chan Advanced Multiomics Platform, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Renuka Subramanian
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ranjan Devkota
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jonnell Small
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Vedagopuram Sreekanth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Myeonghoon Han
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Donghyun Lim
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Jason Flannick
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Hilary Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Analytic and Translational Genetics Unit, Mass General Hospital, Boston, MA 02114, USA
| | - Marcia C Haigis
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Metabolism Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Eric Sheu
- Laboratory for Surgical and Metabolic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Beth Stevens
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Bridget K Wagner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amit Choudhary
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA; Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Yang MN, Huang R, Zheng T, Dong Y, Wang WJ, Xu YJ, Mehra V, Zhou GD, Liu X, He H, Fang F, Li F, Fan JG, Zhang J, Ouyang F, Briollais L, Li J, Luo ZC. Genome-wide placental DNA methylations in fetal overgrowth and associations with leptin, adiponectin and fetal growth factors. Clin Epigenetics 2022; 14:192. [PMID: 36585686 PMCID: PMC9801645 DOI: 10.1186/s13148-022-01412-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Fetal overgrowth "programs" an elevated risk of type 2 diabetes in adulthood. Epigenetic alterations may be a mechanism in programming the vulnerability. We sought to characterize genome-wide alterations in placental gene methylations in fetal overgrowth and the associations with metabolic health biomarkers including leptin, adiponectin and fetal growth factors. RESULTS Comparing genome-wide placental gene DNA methylations in large-for-gestational-age (LGA, an indicator of fetal overgrowth, n = 30) versus optimal-for-gestational-age (OGA, control, n = 30) infants using the Illumina Infinium Human Methylation-EPIC BeadChip, we identified 543 differential methylation positions (DMPs; 397 hypermethylated, 146 hypomethylated) at false discovery rate < 5% and absolute methylation difference > 0.05 after adjusting for placental cell-type heterogeneity, maternal age, pre-pregnancy BMI and HbA1c levels during pregnancy. Twenty-five DMPs annotated to 20 genes (QSOX1, FCHSD2, LOC101928162, ADGRB3, GCNT1, TAP1, MYO16, NAV1, ATP8A2, LBXCOR1, EN2, INCA1, CAMTA2, SORCS2, SLC4A4, RPA3, UMAD1,USP53, OR2L13 and NR3C2) could explain 80% of the birth weight variations. Pathway analyses did not detect any statistically significant pathways after correcting for multiple tests. We validated a newly discovered differentially (hyper-)methylated gene-visual system homeobox 1 (VSX1) in an independent pyrosequencing study sample (LGA 47, OGA 47). Our data confirmed a hypermethylated gene-cadherin 13 (CDH13) reported in a previous epigenome-wide association study. Adiponectin in cord blood was correlated with its gene methylation in the placenta, while leptin and fetal growth factors (insulin, IGF-1, IGF-2) were not. CONCLUSIONS Fetal overgrowth may be associated with a large number of altered placental gene methylations. Placental VSX1 and CDH13 genes are hypermethylated in fetal overgrowth. Placental ADIPOQ gene methylations and fetal circulating adiponectin levels were correlated, suggesting the contribution of placenta-originated adiponectin to cord blood adiponectin.
Collapse
Affiliation(s)
- Meng-Nan Yang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China ,grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | - Rong Huang
- grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | - Tao Zheng
- grid.16821.3c0000 0004 0368 8293Department of Obstetrics and Gynecology, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Yu Dong
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Wen-Juan Wang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Ya-Jie Xu
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Vrati Mehra
- grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | - Guang-Di Zhou
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Xin Liu
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Hua He
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Fang Fang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Fei Li
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Jian-Gao Fan
- grid.16821.3c0000 0004 0368 8293Center for Fatty Liver, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092 China
| | - Jun Zhang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Fengxiu Ouyang
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China
| | - Laurent Briollais
- grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | - Jiong Li
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University, Olof Palmes Allé 43-45, 8200 Aathus, Denmark
| | - Zhong-Cheng Luo
- grid.16821.3c0000 0004 0368 8293Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Early Life Health Institute, Department of Pediatrics, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, 200092 China ,grid.17063.330000 0001 2157 2938Lunenfeld-Tanenbaum Research Institute, Prosserman Centre for Population Health Research, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Faculty of Medicine, University of Toronto, L5-240, Murray Street 60, Toronto, ON M5G 1X5 Canada
| | | |
Collapse
|
13
|
Inoue R, Tsuno T, Togashi Y, Okuyama T, Sato A, Nishiyama K, Kyohara M, Li J, Fukushima S, Kin T, Miyashita D, Shiba Y, Atobe Y, Kiyonari H, Bando K, Shapiro AJ, Funakoshi K, Kulkarni RN, Terauchi Y, Shirakawa J. Uncoupling protein 2 and aldolase B impact insulin release by modulating mitochondrial function and Ca 2+ release from the ER. iScience 2022; 25:104603. [PMID: 35800776 PMCID: PMC9253497 DOI: 10.1016/j.isci.2022.104603] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 03/25/2022] [Accepted: 06/08/2022] [Indexed: 02/02/2023] Open
Abstract
Uncoupling protein 2 (UCP2), a mitochondrial protein, is known to be upregulated in pancreatic islets of patients with type 2 diabetes (T2DM); however, the pathological significance of this increase in UCP2 expression is unclear. In this study, we highlight the molecular link between the increase in UCP2 expression in β-cells and β-cell failure by using genetically engineered mice and human islets. β-cell-specific UCP2-overexpressing transgenic mice (βUCP2Tg) exhibited glucose intolerance and a reduction in insulin secretion. Decreased mitochondrial function and increased aldolase B (AldB) expression through oxidative-stress-mediated pathway were observed in βUCP2Tg islets. AldB, a glycolytic enzyme, was associated with reduced insulin secretion via mitochondrial dysfunction and impaired calcium release from the endoplasmic reticulum (ER). Taken together, our findings provide a new mechanism of β-cell dysfunction by UCP2 and AldB. Targeting the UCP2/AldB axis is a promising approach for the recovery of β-cell function.
Collapse
Affiliation(s)
- Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Takahiro Tsuno
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Yu Togashi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Tomoko Okuyama
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Aoi Sato
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Kuniyuki Nishiyama
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Mayu Kyohara
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Jinghe Li
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Setsuko Fukushima
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
| | - Tatsuya Kin
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB T6G2C8, Canada
| | - Daisuke Miyashita
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Yusuke Shiba
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Yoshitoshi Atobe
- Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kana Bando
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - A.M. James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, AB T6G2C8, Canada
| | - Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, 3-39-15 Showa-machi, Maebashi 371-8512, Japan
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
14
|
Brown MR, Matveyenko AV. It's What and When You Eat: An Overview of Transcriptional and Epigenetic Responses to Dietary Perturbations in Pancreatic Islets. Front Endocrinol (Lausanne) 2022; 13:842603. [PMID: 35355560 PMCID: PMC8960041 DOI: 10.3389/fendo.2022.842603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Our ever-changing modern environment is a significant contributor to the increased prevalence of many chronic diseases, and particularly, type 2 diabetes mellitus (T2DM). Although the modern era has ushered in numerous changes to our daily living conditions, changes in "what" and "when" we eat appear to disproportionately fuel the rise of T2DM. The pancreatic islet is a key biological controller of an organism's glucose homeostasis and thus plays an outsized role to coordinate the response to environmental factors to preserve euglycemia through a delicate balance of endocrine outputs. Both successful and failed adaptation to dynamic environmental stimuli has been postulated to occur due to changes in the transcriptional and epigenetic regulation of pathways associated with islet secretory function and survival. Therefore, in this review we examined and evaluated the current evidence elucidating the key epigenetic mechanisms and transcriptional programs underlying the islet's coordinated response to the interaction between the timing and the composition of dietary nutrients common to modern lifestyles. With the explosion of next generation sequencing, along with the development of novel informatic and -omic approaches, future work will continue to unravel the environmental-epigenetic relationship in islet biology with the goal of identifying transcriptional and epigenetic targets associated with islet perturbations in T2DM.
Collapse
Affiliation(s)
- Matthew R. Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
15
|
Liu JP, Yang AP, Lei G, Yu M, Peng Y, Le AP. Prevalence and clinical characteristics of T2DM patients with OTUD3 gene rs78466831 SNP at a single academic center in China. Front Endocrinol (Lausanne) 2022; 13:1059641. [PMID: 36531510 PMCID: PMC9755877 DOI: 10.3389/fendo.2022.1059641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND A novel, rare OTUD3 c.863G>A (rs78466831) in humans has been reported associated with diabetes, but the prevalence and clinical characteristics of T2DM patients with rs78466831 have not been reported before. OBJECTIVE To investigate the prevalence and clinical characteristics of T2DM patients with rs78466831 and provide a basis for clinical diagnosis and treatment. METHODS OTUD3 gene rs78466831 SNP was detected by Sanger sequencing in all the collected specimens of laboratory-confirmed T2DM patients and healthy people. Clinical characteristics indexes inconsisting of fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG) and a body mass index (BMI), T2DM-associated chronic complications (myocardial infarction, cerebrovascular disease, retinopathy, arterial plaque, peripheral neuropathy and nephropathy) were obtained from the clinical laboratory information systems and electronic medical record system. Clinical characteristic indicators were compared between the wild-type and variant (rs78466831) patients with T2DM. RESULTS The prevalence of rs78466831 in the T2DM patients group was significantly higher than the healthy control in our academic center. The general characteristic indicators were not significantly different between the wild-type and rs78466831 patients with T2DM, except the family history of diabetes. Clinical laboratory indicators including HbA1c, FBG, OGTT, TC, HDL-C, LDL-C and CP had no significant difference between the two groups. The therapeutic drug and target achievement rates were not significantly different between the two groups. The incidence of diabetic retinopathy in the variant group was significantly higher than the wild-type group. CONCLUSIONS The OTUD3 gene rs78466831 was associated with T2DM and may be a biological risk factor of diabetes retinopathy.
Collapse
Affiliation(s)
- Jian-Ping Liu
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ai-Ping Yang
- Department of Clinical Laboratory, Shanghai Songjiang Jiuting Hospital, Shanghai, China
| | - Gang Lei
- Department of Critical Care Medicine, People’s Hospital of Zhangshu, Zhangshu, Jiangxi, China
| | - Man Yu
- Department of Clinical laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Clinical Laboratory, Hubei Cancer Hospital, Wuhan, Hubei, China
| | - Yu Peng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ai-ping Le
- Department of Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Key Laboratory of Blood Transfusion Medicine of Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Ai-ping Le,
| |
Collapse
|
16
|
Brown MR, Sen SK, Mazzone A, Her TK, Xiong Y, Lee JH, Javeed N, Colwell CS, Rakshit K, LeBrasseur NK, Gaspar-Maia A, Ordog T, Matveyenko AV. Time-restricted feeding prevents deleterious metabolic effects of circadian disruption through epigenetic control of β cell function. SCIENCE ADVANCES 2021; 7:eabg6856. [PMID: 34910509 PMCID: PMC8673777 DOI: 10.1126/sciadv.abg6856] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/28/2021] [Indexed: 05/30/2023]
Abstract
Circadian rhythm disruption (CD) is associated with impaired glucose homeostasis and type 2 diabetes mellitus (T2DM). While the link between CD and T2DM remains unclear, there is accumulating evidence that disruption of fasting/feeding cycles mediates metabolic dysfunction. Here, we used an approach encompassing analysis of behavioral, physiological, transcriptomic, and epigenomic effects of CD and consequences of restoring fasting/feeding cycles through time-restricted feeding (tRF) in mice. Results show that CD perturbs glucose homeostasis through disruption of pancreatic β cell function and loss of circadian transcriptional and epigenetic identity. In contrast, restoration of fasting/feeding cycle prevented CD-mediated dysfunction by reestablishing circadian regulation of glucose tolerance, β cell function, transcriptional profile, and reestablishment of proline and acidic amino acid–rich basic leucine zipper (PAR bZIP) transcription factor DBP expression/activity. This study provides mechanistic insights into circadian regulation of β cell function and corresponding beneficial effects of tRF in prevention of T2DM.
Collapse
Affiliation(s)
- Matthew R. Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Satish K. Sen
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Amelia Mazzone
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tracy K. Her
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Yuning Xiong
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jeong-Heon Lee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Naureen Javeed
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Nathan K. LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Alexandre Gaspar-Maia
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|