1
|
The nephroprotective effect of ellagic acid against diclofenac-induced renal injury in male rats: role of Nrf2/HO-1 and NF-κB/TNF-α pathways. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
2
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
3
|
Remuzzi G, Schiaffino S, Santoro MG, FitzGerald GA, Melino G, Patrono C. Drugs for the prevention and treatment of COVID-19 and its complications: An update on what we learned in the past 2 years. Front Pharmacol 2022; 13:987816. [PMID: 36304162 PMCID: PMC9595217 DOI: 10.3389/fphar.2022.987816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 Committee of the Lincei Academy has reviewed the scientific evidence supporting the efficacy and safety of existing and new drugs/biologics for the preventing and treating of COVID-19 and its complications. This position paper reports what we have learned in the field in the past 2 years. The focus was on, but not limited to, drugs and neutralizing monoclonal antibodies, anti-SARS-CoV-2 agents, anti-inflammatory and immunomodulatory drugs, complement inhibitors and anticoagulant agents. We also discuss the risks/benefit of using cell therapies on COVID-19 patients. The report summarizes the available evidence, which supports recommendations from health authorities and panels of experts regarding some drugs and biologics, and highlights drugs that are not recommended, or drugs for which there is insufficient evidence to recommend for or against their use. We also address the issue of the safety of drugs used to treat underlying concomitant conditions in COVID-19 patients. The investigators did an enormous amount of work very quickly to understand better the nature and pathophysiology of COVID-19. This expedited the development and repurposing of safe and effective therapeutic interventions, saving an impressive number of lives in the community as well as in hospitals.
Collapse
Affiliation(s)
- Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Maria Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Philadelphia, Philadelphia, PA, United States
| | - Gennaro Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Patrono
- Department of Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
4
|
Modulation of Enzyme-Catalyzed Synthesis of Prostaglandins by Components Contained in Kidney Microsomal Preparations. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010219. [PMID: 35011450 PMCID: PMC8746486 DOI: 10.3390/molecules27010219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
In the kidney, prostaglandins formed by cyclooxygenase 1 and 2 (COX-1 and COX-2) play an important role in regulating renal blood flow. In the present study, we report our observations regarding a unique modulatory effect of renal microsomal preparation on COX-1/2-mediated formation of major prostaglandin (PG) products in vitro. We found that microsomes prepared from pig and rat kidneys had a dual stimulatory–inhibitory effect on the formation of certain PG products catalyzed by COX-1 and COX-2. At lower concentrations, kidney microsomes stimulated the formation of certain PG products, whereas at higher concentrations, their presence inhibited the formation. Presence of kidney microsomes consistently increased the Km values of the COX-1/2-mediated reactions, while the Vmax might be increased or decreased depending on stimulation or inhibition observed. Experimental evidence was presented to show that a protein component present in the pig kidney microsomes was primarily responsible for the activation of the enzyme-catalyzed arachidonic acid metabolism leading to the formation of certain PG products.
Collapse
|
5
|
Drożdżal S, Lechowicz K, Szostak B, Rosik J, Kotfis K, Machoy‐Mokrzyńska A, Białecka M, Ciechanowski K, Gawrońska‐Szklarz B. Kidney damage from nonsteroidal anti-inflammatory drugs-Myth or truth? Review of selected literature. Pharmacol Res Perspect 2021; 9:e00817. [PMID: 34310861 PMCID: PMC8313037 DOI: 10.1002/prp2.817] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely available drugs with anti-inflammatory and analgesic properties. Their mechanism of action is associated with the enzymes of the arachidonic acid cycle (cyclooxygenases: COX-1 and COX-2). The cyclooxygenase pathway results in the formation of prostanoids (prostaglandins [PGs], prostacyclins, and thromboxanes). It affects various structures of the human body, including the kidneys. Medical literature associates the usage of NSAIDs with acute kidney injury (AKI), tubulointerstitial nephritis (TIN), as well as nephrotic syndrome and chronic kidney disease (CKD). AKI associated with the chronic consumption of NSAIDs is mainly attributed to pharmacological polytherapy and the presence of cardiovascular or hepatic comorbidities. The pathomechanism of AKI and CKD is associated with inhibition of the biosynthesis of prostanoids involved in the maintenance of renal blood flow, especially PGE2 and PGI2. It is suggested that both COX isoforms play opposing roles in renal function, with natriuresis increased by COX-1 inhibition followed by a drop in a blood pressure, whereas COX-2 inhibition increases blood pressure and promotes sodium retention. TIN after NSAID use is potentially associated with glomerular basement membrane damage, reduction in pore size, and podocyte density. Therefore, nephrotic proteinuria and impairment of renal function may occur. The following article analyzes the association of NSAIDs with kidney disease based on available medical literature.
Collapse
Affiliation(s)
- Sylwester Drożdżal
- Department of Pharmacokinetics and Monitored TherapyPomeranian Medical UniversitySzczecinPoland
| | - Kacper Lechowicz
- Department of Anaesthesiology, Intensive Therapy and Acute IntoxicationsPomeranian Medical UniversitySzczecinPoland
| | - Bartosz Szostak
- Department of PhysiologyPomeranian Medical UniversitySzczecinPoland
| | - Jakub Rosik
- Department of PhysiologyPomeranian Medical UniversitySzczecinPoland
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute IntoxicationsPomeranian Medical UniversitySzczecinPoland
| | - Anna Machoy‐Mokrzyńska
- Department of Experimental and Clinical PharmacologyPomeranian Medical UniversitySzczecinPoland
| | - Monika Białecka
- Department of Pharmacokinetics and Monitored TherapyPomeranian Medical UniversitySzczecinPoland
| | - Kazimierz Ciechanowski
- Department of Nephrology, Transplantology and Internal MedicinePomeranian Medical UniversitySzczecinPoland
| | | |
Collapse
|
6
|
Wan EYF, Yu EYT, Chan L, Mok AHY, Wang Y, Chan EWY, Wong ICK, Lam CLK. Comparative Risks of Nonsteroidal Anti-Inflammatory Drugs on CKD. Clin J Am Soc Nephrol 2021; 16:898-907. [PMID: 33910887 PMCID: PMC8216605 DOI: 10.2215/cjn.18501120] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/04/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES There have been doubts about the association between nonsteroidal anti-inflammatory drug use and worsening kidney function, and whether there is a difference between risks of individual nonsteroidal anti-inflammatory drugs is presently unclear. Therefore, this study aimed to evaluate the association between nonsteroidal anti-inflammatory drug exposure and the risk of incident eGFR <60 ml/min per 1.73 m2 and compare the risks between nonsteroidal anti-inflammatory drug subtypes in the Chinese population. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS From 2008 to 2017, a total of 1,982,488 subjects aged 18 years or older with baseline eGFR ≥60 ml/min per 1.73 m2 were enrolled in this retrospective cohort study. Multivariable Cox proportional hazards regression adjusted for each patient's baseline characteristics was adopted to examine the association between nonsteroidal anti-inflammatory drug and incident eGFR <60 ml/min per 1.73 m2 or eGFR decline ≥30% with reference to baseline. RESULTS After a median follow-up duration of 6.3 (interquartile range, 3.3-9.4) years, 271,848 cases (14%) of incident eGFR <60 ml/min per 1.73 m2 and 388,386 (21%) events of eGFR decline ≥30% were recorded. After adjusting for each patient's baseline characteristics, nonsteroidal anti-inflammatory drug treatment was shown to be associated with a significantly higher risk of incident eGFR <60 ml/min per 1.73 m2 (hazard ratio, 1.71; 95% confidence interval, 1.67 to 1.75) and eGFR decline ≥30% (hazard ratio, 1.93; 95% confidence interval, 1.89 to 1.96) when compared with no nonsteroidal anti-inflammatory drug, with etoricoxib exhibiting the highest risk of eGFR<60 ml/min per 1.73 m2 (hazard ratio, 3.12; 95% confidence interval, 2.69 to 3.62) and eGFR decline ≥30% (hazard ratio, 3.11; 95% confidence interval, 2.78 to 3.48) and ibuprofen displaying the lowest risk of eGFR<60 ml/min per 1.73 m2 (hazard ratio, 1.12; 95% confidence interval, 1.02 to 1.23) and eGFR decline ≥30% (hazard ratio, 1.32; 95% confidence interval, 1.23 to 1.41). CONCLUSIONS Nonsteroidal anti-inflammatory drug exposure was associated with higher risks of incident eGFR <60 ml/min per 1.73 m2 and eGFR decline ≥30%. Highest risk was observed in etoricoxib users, and lowest risk was with ibuprofen. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2021_04_28_CJN18501120.mp3.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong,Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong
| | - Esther Yee Tak Yu
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong
| | - Linda Chan
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong
| | - Anna Hoi Ying Mok
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong
| | - Yuan Wang
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong
| | - Esther Wai Yin Chan
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and Research, Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong,Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, Hong Kong,Research Department of Practice and Policy, School of Pharmacy, University College London, London, United Kingdom
| | - Cindy Lo Kuen Lam
- Department of Family Medicine and Primary Care, The University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Marmon P, Owen SF, Margiotta-Casaluci L. Pharmacology-informed prediction of the risk posed to fish by mixtures of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment. ENVIRONMENT INTERNATIONAL 2021; 146:106222. [PMID: 33157376 PMCID: PMC7786791 DOI: 10.1016/j.envint.2020.106222] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/23/2023]
Abstract
The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the aquatic environment has raised concern that chronic exposure to these compounds may cause adverse effects in wild fish populations. This potential scenario has led some stakeholders to advocate a stricter regulation of NSAIDs, especially diclofenac. Considering their global clinical importance for the management of pain and inflammation, any regulation that may affect patient access to NSAIDs will have considerable implications for public health. The current environmental risk assessment of NSAIDs is driven by the results of a limited number of standard toxicity tests and does not take into account mechanistic and pharmacological considerations. Here we present a pharmacology-informed framework that enables the prediction of the risk posed to fish by 25 different NSAIDs and their dynamic mixtures. Using network pharmacology approaches, we demonstrated that these 25 NSAIDs display a significant mechanistic promiscuity that could enhance the risk of target-mediated mixture effects near environmentally relevant concentrations. Integrating NSAIDs pharmacokinetic and pharmacodynamic features, we provide highly specific predictions of the adverse phenotypes associated with exposure to NSAIDs, and we developed a visual multi-scale model to guide the interpretation of the toxicological relevance of any given set of NSAIDs exposure data. Our analysis demonstrated a non-negligible risk posed to fish by NSAID mixtures in situations of high drug use and low dilution of waste-water treatment plant effluents. We anticipate that this predictive framework will support the future regulatory environmental risk assessment of NSAIDs and increase the effectiveness of ecopharmacovigilance strategies. Moreover, it can facilitate the prediction of the toxicological risk posed by mixtures via the implementation of mechanistic considerations and could be readily extended to other classes of chemicals.
Collapse
Affiliation(s)
- Philip Marmon
- Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, London, UB8 3PH, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK
| | - Luigi Margiotta-Casaluci
- Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University London, London, UB8 3PH, UK.
| |
Collapse
|
8
|
Khan S, Andrews KL, Chin-Dusting JPF. Cyclo-Oxygenase (COX) Inhibitors and Cardiovascular Risk: Are Non-Steroidal Anti-Inflammatory Drugs Really Anti-Inflammatory? Int J Mol Sci 2019; 20:ijms20174262. [PMID: 31480335 PMCID: PMC6747368 DOI: 10.3390/ijms20174262] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Cyclo-oxygenase (COX) inhibitors are among the most commonly used drugs in the western world for their anti-inflammatory and analgesic effects. However, they are also well-known to increase the risk of coronary events. This area is of renewed significance given alarming new evidence suggesting this effect can occur even with acute usage. This contrasts with the well-established usage of aspirin as a mainstay for cardiovascular prophylaxis, as well as overwhelming evidence that COX inhibition induces vasodilation and is protective for vascular function. Here, we present an updated review of the preclinical and clinical literature regarding the cardiotoxicity of COX inhibitors. While studies to date have focussed on the role of COX in influencing renal and vascular function, we suggest an interaction between prostanoids and T cells may be a novel factor, mediating elevated cardiovascular disease risk with NSAID use.
Collapse
Affiliation(s)
- Shanzana Khan
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia.
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.
| | - Karen L Andrews
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Jaye P F Chin-Dusting
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| |
Collapse
|
9
|
Wilcox CS, Wang C, Wang D. Endothelin-1-Induced Microvascular ROS and Contractility in Angiotensin-II-Infused Mice Depend on COX and TP Receptors. Antioxidants (Basel) 2019; 8:antiox8060193. [PMID: 31234522 PMCID: PMC6616505 DOI: 10.3390/antiox8060193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/16/2023] Open
Abstract
(1) Background: Angiotensin II (Ang II) and endothelin 1 (ET-1) generate reactive oxygen species (ROS) that can activate cyclooxygenase (COX). However, thromboxane prostanoid receptors (TPRs) are required to increase systemic markers of ROS during Ang II infusion in mice. We hypothesized that COX and TPRs are upstream requirements for the generation of vascular ROS by ET-1. (2) Methods: ET-1-induced vascular contractions and ROS were assessed in mesenteric arterioles from wild type (+/+) and knockout (−/−) of COX1 or TPR mice infused with Ang II (400 ng/kg/min × 14 days) or a vehicle. (3) Results: Ang II infusion appeared to increase microvascular protein expression of endothelin type A receptors (ETARs), TPRs, and COX1 and 2 in COX1 and TPR +/+ mice but not in −/− mice. Ang II infusion increased ET-1-induced vascular contractions and ROS, which were prevented by a blockade of COX1 and 2 in TPR −/− mice. ET-1 increased the activity of aortic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and decreased superoxide dismutase (SOD) 1, 2, and 3 in Ang-II-infused mice, which were prevented by a blockade of TPRs. (4) Conclusion: Activation of vascular TPRs by COX products are required for ET-1 to increase vascular contractions and ROS generation from NADPH oxidase and reduce ROS metabolism by SOD. These effects require an increase in these systems by prior infusion of Ang II.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | - Cheng Wang
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | - Dan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| |
Collapse
|
10
|
Zhang MZ, Wang S, Wang Y, Zhang Y, Ming Hao C, Harris RC. Renal Medullary Interstitial COX-2 (Cyclooxygenase-2) Is Essential in Preventing Salt-Sensitive Hypertension and Maintaining Renal Inner Medulla/Papilla Structural Integrity. Hypertension 2019; 72:1172-1179. [PMID: 30354807 DOI: 10.1161/hypertensionaha.118.11694] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
COX (cyclooxygenase)-derived prostaglandins regulate renal hemodynamics and salt and water homeostasis. Inhibition of COX activity causes blood pressure elevation. In addition, chronic analgesic abuse can induce renal injury, including papillary necrosis. COX-2 is highly expressed in the kidney papilla in renal medullary interstitial cells (RMICs). However, its role in blood pressure and papillary integrity in vivo has not been definitively studied. In mice with selective, inducible RMIC COX-2 deletion, a high-salt diet led to an increase in blood pressure that peaked at 4 to 5 weeks and was associated with increased papillary expression of AQP2 (aquaporin 2) and ENac (epithelial sodium channel) and decreased expression of cystic fibrosis transmembrane conductance regulator. With continued high-salt feeding, the mice with RMIC COX-2 deletion had progressive decreases in blood pressure from its peak. After return to a normal-salt diet for 3 weeks, blood pressure remained low and was associated with a persistent urinary concentrating defect. Within 2 weeks of institution of a high-salt diet, increased apoptotic RMICs and collecting duct cells could be detected in papillae with RMIC deletion of COX-2, and by 9 weeks of high salt, there was a striking loss of the papillae. Therefore, RMIC COX-2 expression plays a crucial role in renal handling water and sodium homeostasis, preventing salt-sensitive hypertension and maintaining structural integrity of papilla.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.).,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., R.C.H.)
| | - Suwan Wang
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.).,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., R.C.H.)
| | - Yinqiu Wang
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.).,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., R.C.H.)
| | - Yahua Zhang
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.)
| | - Chuan Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China (C.M.H.)
| | - Raymond C Harris
- From the Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., Y.Z., R.C.H.).,Vanderbilt Center for Kidney Disease, Vanderbilt University School of Medicine, Nashville, TN (M.-Z.Z., S.W., Y.W., R.C.H.).,Department of Veterans Affairs, Nashville, TN (R.C.H.)
| |
Collapse
|
11
|
Zhang M, Srichai MB, Zhao M, Chen J, Davis LS, Wu G, Breyer MD, Hao CM. Nonselective Cyclooxygenase Inhibition Retards Cyst Progression in a Murine Model of Autosomal Dominant Polycystic Kidney Disease. Int J Med Sci 2019; 16:180-188. [PMID: 30662341 PMCID: PMC6332488 DOI: 10.7150/ijms.27719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 12/31/2022] Open
Abstract
Aim: Autosomal dominant polycystic kidney disease is one of the most common genetic renal diseases. Cyclooxygenase plays an important role in epithelial cell proliferation and may contribute to the mechanisms underlying cyst formation. The aim of the present study was to evaluate the role of cyclooxygenase inhibition in the cyst progression in polycystic kidney disease. Method: Pkd2WS25/- mice, a murine model which harbors a compound cis-heterozygous mutation of the Pkd2 gene were used. Cyclooxygenase expression was assessed in both human and murine kidney specimens. Pkd2WS25/- mice were treated with Sulindac (a nonselective cyclooxygenase inhibitor) or vehicle for 8 months starting at three weeks age, and then renal cyst burden was assessed by kidney weight and volume. Results: Cyclooxygenase-2 expression was up-regulated compared to control kidneys as shown by RNase protection in human polycystic kidneys and immunoblot in mouse Pkd2WS25/- kidneys. Cyclooxygenase-2 expression was up-regulated in the renal interstitium as well as focal areas of the cystic epithelium (p<0.05). Basal Cyclooxygenase-1 levels were unchanged in both immunohistochemistry and real-time PCR. Administration of Sulindac to Pkd2WS25/- mice and to control mice for 8 months resulted in reduced kidney weights and volume in cystic mice. Renal function and electrolytes were not significantly different between groups. Conclusion: Thus treatment of a murine model of polycystic kidney disease with Sulindac results in decreased kidney cyst burden. These findings provide additional implications for the use of Cyclooxygenase inhibition as treatment to slow the progression of cyst burden in patients with polycystic kidney disease.
Collapse
Affiliation(s)
- Min Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Manakan B Srichai
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN.,VA Medical Center, Nashville, TN
| | - Min Zhao
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN
| | - Jian Chen
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN
| | - Linda S Davis
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN
| | - Guanqing Wu
- Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Matthew D Breyer
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China.,Department of Medicine, Division of Nephrology, Vanderbilt University, Nashville, TN.,VA Medical Center, Nashville, TN
| |
Collapse
|
12
|
Samartsev IN, Zhivolupov SA, Nazhmudinov RZ. Identification of non-steroidal anti-inflammatory drugs as a necessity basis of effectiveness and risk correlation conception. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:124-131. [DOI: 10.17116/jnevro2019119121124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Rojas A, Chen D, Ganesh T, Varvel NH, Dingledine R. The COX-2/prostanoid signaling cascades in seizure disorders. Expert Opin Ther Targets 2018; 23:1-13. [PMID: 30484341 DOI: 10.1080/14728222.2019.1554056] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction:A robust neuroinflammatory response is a prevalent feature of multiple neurological disorders, including epilepsy and acute status epilepticus. One component of this neuroinflammatory reaction is the induction of cyclooxygenase-2 (COX-2), synthesis of several prostaglandins and endocannabinoid metabolites, and subsequent activation of prostaglandin and related receptors. Neuroinflammation mediated by COX-2 and its downstream effectors has received considerable attention as a potential target class to ameliorate the deleterious consequences of neurological injury. Areas covered: Here we describe the roles of COX-2 as a major inflammatory mediator. In addition, we discuss the receptors for prostanoids PGE2, prostaglandin D2, and PGF2α as potential therapeutic targets for inflammation-driven diseases. The consequences of prostanoid receptor activation after seizure activity are discussed with an emphasis on the utilization of small molecules to modulate prostanoid receptor activity. Expert opinion: Limited clinical trial experience is supportive but not definitive for a role of the COX signaling cascade in epileptogenesis. The cardiotoxicity associated with chronic coxib use, and the expectation that COX-2 inhibition will influence the levels of endocannabinoids, leukotrienes, and lipoxins as well as the prostaglandins and their endocannabinoid metabolite analogs, is shifting attention toward downstream synthases and receptors that mediate inflammation in the brain.
Collapse
Affiliation(s)
- Asheebo Rojas
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Di Chen
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Thota Ganesh
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Nicholas H Varvel
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| | - Raymond Dingledine
- a Department of Pharmacology , Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
14
|
Li X, Mazaleuskaya LL, Ballantyne LL, Meng H, FitzGerald GA, Funk CD. Differential compensation of two cyclooxygenases in renal homeostasis is independent of prostaglandin-synthetic capacity under basal conditions. FASEB J 2018; 32:5326-5337. [PMID: 29676940 DOI: 10.1096/fj.201800252r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The distinct functions of each cyclooxygenase (COX) isoform in renal homeostasis have been the subject of intense investigation for many years. We took the novel approach of using 3 characterized mouse lines, where the prostaglandin (PG)-endoperoxide synthase genes 1 and 2 ( Ptgs1 and Ptgs2) substitute for one another to delineate distinct roles and the potential for COX isoform substitution. Flipped Ptgs genes generate a reversed COX-expression pattern in the kidney, where the knockin COX-2 is highly expressed. Normal nephrogenesis was sustained in all 3 strains at the postnatal stage d 8 (P8). Knockin COX-1 can temporally restore renal function and delay but not prevent renal pathology consequent to COX-2 deletion. Loss of COX-2 in adult COX-1 > COX-2 mice results in severe nephropathy, which leads to impaired renal function. These defects are partially rescued by the knockin COX-2 in Reversa mice, whereas COX-2 can compensate for the loss of COX-1 in COX-2 > COX-1 mice. Intriguingly, the highly expressed knockin COX-2 enzyme barely makes any PGs or thromboxane in neonatal P8 or adult mice, demonstrating that prostanoid biosynthesis requires native COX-1 and cannot be rescued by the knockin COX-2. In summary, the 2 COX isoforms can preferentially compensate for some renal functions, which appears to be independent of the PG-synthetic capacity.-Li, X., Mazaleuskaya, L. L., Ballantyne, L. L., Meng, H., FitzGerald, G. A., Funk, C. D. Differential compensation of two cyclooxygenases in renal homeostasis is independent of prostaglandin-synthetic capacity under basal conditions.
Collapse
Affiliation(s)
- Xinzhi Li
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and
| | - Liudmila L Mazaleuskaya
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; and
| |
Collapse
|
15
|
Kirkby NS, Sampaio W, Etelvino G, Alves DT, Anders KL, Temponi R, Shala F, Nair AS, Ahmetaj-Shala B, Jiao J, Herschman HR, Wang X, Wahli W, Santos RA, Mitchell JA. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway. Hypertension 2018; 71:297-305. [PMID: 29295852 PMCID: PMC5770101 DOI: 10.1161/hypertensionaha.117.09906] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/12/2017] [Accepted: 12/05/2017] [Indexed: 01/11/2023]
Abstract
Supplemental Digital Content is available in the text. Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2–dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease.
Collapse
Affiliation(s)
- Nicholas S Kirkby
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.).
| | - Walkyria Sampaio
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Gisele Etelvino
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Daniele T Alves
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Katie L Anders
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Rafael Temponi
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Fisnik Shala
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Anitha S Nair
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Blerina Ahmetaj-Shala
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Jing Jiao
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Harvey R Herschman
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Xiaomeng Wang
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Walter Wahli
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Robson A Santos
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Jane A Mitchell
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.).
| |
Collapse
|
16
|
Zhang J, Qu HY, Song J, Wei J, Jiang S, Wang L, Wang L, Buggs J, Liu R. Enhanced hemodynamic responses to angiotensin II in diabetes are associated with increased expression and activity of AT1 receptors in the afferent arteriole. Physiol Genomics 2017; 49:531-540. [PMID: 28842434 DOI: 10.1152/physiolgenomics.00025.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/28/2022] Open
Abstract
The prevalence of hypertension is about twofold higher in diabetic than in nondiabetic subjects. Hypertension aggravates the progression of diabetic complications, especially diabetic nephropathy. However, the mechanisms for the development of hypertension in diabetes have not been elucidated. We hypothesized that enhanced constrictive responsiveness of renal afferent arterioles (Af-Art) to angiotensin II (ANG II) mediated by ANG II type 1 (AT1) receptors contributes to the development of hypertension in diabetes. In response to an acute bolus intravenous injection of ANG II, alloxan-induced diabetic mice exhibited a higher mean arterial pressure (MAP) (119.1 ± 3.8 vs. 106.2 ± 3.5 mmHg) and a lower renal blood flow (0.25 ± 0.07 vs. 0.52 ± 0.14 ml/min) compared with nondiabetic mice. In response to chronic ANG II infusion, the MAP measured with telemetry increased by 55.8 ± 6.5 mmHg in diabetic mice, but only by 32.3 ± 3.8 mmHg in nondiabetic mice. The mRNA level of AT1 receptor increased by ~10-fold in isolated Af-Art of diabetic mice compared with nondiabetic mice, whereas ANG II type 2 (AT2) receptor expression did not change. The ANG II dose-response curve of the Af-Art was significantly enhanced in diabetic mice. Moreover, the AT1 receptor antagonist, losartan, blocked the ANG II-induced vasoconstriction in both diabetic mice and nondiabetic mice. In conclusion, we found enhanced expression of the AT1 receptor and exaggerated response to ANG II of the Af-Art in diabetes, which may contribute to the increased prevalence of hypertension in diabetes.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; and
| | - Helena Y Qu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; and
| | - Jiangping Song
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; and
| | - Jin Wei
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; and
| | - Shan Jiang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; and
| | - Lei Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; and
| | - Liqing Wang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; and
| | | | - Ruisheng Liu
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, Florida; and
| |
Collapse
|
17
|
Ozen G, Gomez I, Daci A, Deschildre C, Boubaya L, Teskin O, Uydeş-Doğan BS, Jakobsson PJ, Longrois D, Topal G, Norel X. Inhibition of microsomal PGE synthase-1 reduces human vascular tone by increasing PGI 2 : a safer alternative to COX-2 inhibition. Br J Pharmacol 2017; 174:4087-4098. [PMID: 28675448 DOI: 10.1111/bph.13939] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/29/2017] [Accepted: 06/27/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE The side effects of cyclooxygenase-2 (COX-2) inhibitors on the cardiovascular system could be associated with reduced prostaglandin (PG)I2 synthesis. Microsomal PGE synthase-1 (mPGES-1) catalyses the formation of PGE2 from COX-derived PGH2 . This enzyme is induced under inflammatory conditions and constitutes an attractive target for novel anti-inflammatory drugs. However, it is not known whether mPGES-1 inhibitors could be devoid of cardiovascular side effects. The aim of this study was to compare, in vitro, the effects of mPGES-1 and COX-2 inhibitors on vascular tone in human blood vessels. EXPERIMENTAL APPROACH The vascular tone and prostanoid release from internal mammary artery (IMA) and saphenous vein (SV) incubated for 30 min with inhibitors of mPGES-1 or COX-2 were investigated under normal and inflammatory conditions. KEY RESULTS In inflammatory conditions, mPGES-1 and COX-2 proteins were more expressed, and increased levels of PGE2 and PGI2 were released. COX-2 and NOS inhibitors increased noradrenaline induced vascular contractions in IMA under inflammatory conditions while no effect was observed in SV. Interestingly, the mPGES-1 inhibitor significantly reduced (30-40%) noradrenaline-induced contractions in both vessels. This effect was reversed by an IP (PGI2 receptor) antagonist but not modified by NOS inhibition. Moreover, PGI2 release was increased with the mPGES-1 inhibitor and decreased with the COX-2 inhibitor, while both inhibitors reduced PGE2 release. CONCLUSIONS AND IMPLICATIONS In contrast to COX-2 inhibition, inhibition of mPGES-1 reduced vasoconstriction by increasing PGI2 synthesis. Targeting mPGES-1 could provide a lower risk of cardiovascular side effects, compared with those of the COX-2 inhibitors. LINKED ARTICLES This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.
Collapse
Affiliation(s)
- Gulsev Ozen
- INSERM U1148, Paris, France.,Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Istanbul, Turkey
| | - Ingrid Gomez
- INSERM U1148, Paris, France.,Department of Infection, Immunity and Cardiovascular Disease, School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield, UK
| | - Armond Daci
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Istanbul, Turkey
| | | | | | - Onder Teskin
- Department of Cardiovascular Surgery, Aile Hospital, Istanbul, Turkey
| | - B Sonmez Uydeş-Doğan
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Istanbul, Turkey
| | - Per-Johan Jakobsson
- Unit of Rheumatology, Department of Medicine Solna, Karolinska Institute and Unit of Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Longrois
- INSERM U1148, Paris, France.,AP-HP CHU X. Bichat, Department of Anesthesia and Intensive Care, University Paris Diderot, Sorbonne Paris-Cité, UMR-S1148, Paris, France
| | - Gokce Topal
- Faculty of Pharmacy, Department of Pharmacology, Istanbul University, Istanbul, Turkey
| | - Xavier Norel
- INSERM U1148, Paris, France.,University Paris Diderot, Sorbonne Paris-Cité, UMR-S1148, Paris, France
| |
Collapse
|
18
|
Grosser T, Ricciotti E, FitzGerald GA. The Cardiovascular Pharmacology of Nonsteroidal Anti-Inflammatory Drugs. Trends Pharmacol Sci 2017; 38:733-748. [PMID: 28651847 DOI: 10.1016/j.tips.2017.05.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 12/27/2022]
Abstract
The principal molecular mechanisms underlying the cardiovascular (CV) and renal adverse effects of nonsteroidal anti-inflammatory drugs (NSAIDs), such as myocardial infarction and hypertension, are understood in more detail than most side effects of drugs. Less is known, however, about differences in the CV safety profile between chemically distinct NSAIDs and their relative predisposition to complications. In review article, we discuss how heterogeneity in the pharmacokinetics and pharmacodynamics of distinct NSAIDs may be expected to affect their CV risk profile. We consider evidence afforded by studies in model systems, mechanistic clinical trials, a meta-analysis of randomized controlled trials, and two recent large clinical trials, Standard Care vs. Celecoxib Outcome Trial (SCOT) and Prospective Randomized Evaluation of Celecoxib Integrated Safety versus Ibuprofen or Naproxen (PRECISION), designed specifically to compare the CV safety of the cyclooxygenase-2-selective NSAID, celecoxib, with traditional NSAIDs. We conclude that SCOT and PRECISION have apparently not compared equipotent doses and have other limitations that bias them toward underestimation of the relative risk of celecoxib.
Collapse
Affiliation(s)
- Tilo Grosser
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Prostaglandin E 2 Induces Prorenin-Dependent Activation of (Pro)renin Receptor and Upregulation of Cyclooxygenase-2 in Collecting Duct Cells. Am J Med Sci 2017; 354:310-318. [PMID: 28918839 DOI: 10.1016/j.amjms.2017.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/26/2017] [Accepted: 05/28/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) regulates renin expression in renal juxtaglomerular cells. PGE2 acts through E-prostanoid (EP) receptors in the renal collecting duct (CD) to regulate sodium and water balance. CD cells express EP1 and EP4, which are linked to protein kinase C (PKC) and PKA downstream pathways, respectively. Previous studies showed that the presence of renin in the CD, and that of PKC and PKA pathways, activate its expression. The (pro)renin receptor (PRR) is also expressed in CD cells, and its activation enhances cyclooxygenase-2 (COX-2) through extracellular signal-regulated kinase (ERK). We hypothesized that PGE2 stimulates prorenin and renin synthesis leading to subsequent activation of PRR and upregulation of COX-2. METHODS We used a mouse M-1 CD cell line that expresses EP1, EP3 and EP4 but not EP2. RESULTS PGE2 (10-6M) treatment increased prorenin and renin protein levels at 4 and 8 hours. No differences were found at 12-hour after PGE2 treatment. Phospho-ERK was significantly augmented after 12 hours. COX-2 expression was decreased after 4 hours of PGE2 treatment, but increased after 12 hours. Interestingly, the full-length form of the PRR was upregulated only at 12 hours. PGE2-mediated phospho-ERK and COX-2 upregulation was suppressed by PRR silencing. CONCLUSIONS Our results suggest that PGE2 induces biphasic regulation of COX-2 through renin-dependent PRR activation via EP1 and EP4 receptors. PRR-mediated increases in COX-2 expression may enhance PGE2 synthesis in CD cells serving as a buffer mechanism in conditions of activated renin-angiotensin system.
Collapse
|
20
|
Stegbauer J, Chen D, Herrera M, Sparks MA, Yang T, Königshausen E, Gurley SB, Coffman TM. Resistance to hypertension mediated by intercalated cells of the collecting duct. JCI Insight 2017; 2:e92720. [PMID: 28405625 PMCID: PMC5374064 DOI: 10.1172/jci.insight.92720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/14/2017] [Indexed: 01/09/2023] Open
Abstract
The renal collecting duct (CD), as the terminal segment of the nephron, is responsible for the final adjustments to the amount of sodium excreted in urine. While angiotensin II modulates reabsorptive functions of the CD, the contribution of these actions to physiological homeostasis is not clear. To examine this question, we generated mice with cell-specific deletion of AT1A receptors from the CD. Elimination of AT1A receptors from both principal and intercalated cells (CDKO mice) had no effect on blood pressures at baseline or during successive feeding of low- or high-salt diets. In contrast, the severity of hypertension caused by chronic infusion of angiotensin II was paradoxically exaggerated in CDKO mice compared with controls. In wild-type mice, angiotensin II induced robust expression of cyclooxygenase-2 (COX-2) in renal medulla, primarily localized to intercalated cells. Upregulation of COX-2 was diminished in CDKO mice, resulting in reduced generation of vasodilator prostanoids. This impaired expression of COX-2 has physiological consequences, since administration of a specific COX-2 inhibitor to CDKO and control mice during angiotensin II infusion equalized their blood pressures. Stimulation of COX-2 was also triggered by exposure of isolated preparations of medullary CDs to angiotensin II. Deletion of AT1A receptors from principal cells alone did not affect angiotensin II-dependent COX2 stimulation, implicating intercalated cells as the main source of COX2 in this setting. These findings suggest a novel paracrine role for the intercalated cell to attenuate the severity of hypertension. Strategies for preserving or augmenting this pathway may have value for improving the management of hypertension.
Collapse
Affiliation(s)
- Johannes Stegbauer
- Division of Nephrology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Daian Chen
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Marcela Herrera
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Matthew A. Sparks
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Ting Yang
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Eva Königshausen
- Division of Nephrology, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Susan B. Gurley
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
| | - Thomas M. Coffman
- Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, North Carolina, USA
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
21
|
Yang T, Liu M. Regulation and function of renal medullary cyclooxygenase-2 during high salt loading. Front Biosci (Landmark Ed) 2017; 22:128-136. [PMID: 27814606 DOI: 10.2741/4476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prostaglandins (PGs) are important autocrine/paracrine regulators that contribute to sodium balance and blood pressure control. Along the nephron, the highest amount of PGE2 is found in the distal nephron, an important site for fine-tuning of urinary sodium and water excretion. Cylooxygenase-2 (COX-2) is abundantly expressed in the renal medulla and its expression along with urinary PGE2 excretion is highly induced by chronic salt loading. Factors involved in high salt-induced COX-2 expression in the renal medulla include the hypertonicity, fluid shear stress (FSS), and hypoxia-inducible factor-1 alpha (HIF-1 alpha). Site-specific inhibition of COX-2 in the renal medulla of Sprague-Dawley rats causes sodium retention and salt-sensitive hypertension. Together, these results support the concept that renal medullary COX-2 functions an important natriuretic mediator that is activated by salt loading and its products promote sodium excretion and contribute to maintenance of sodium balance and blood pressure.
Collapse
Affiliation(s)
- Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah,
| | - Mi Liu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah and Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, 510080, China
| |
Collapse
|
22
|
Relative roles of principal and intercalated cells in the regulation of sodium balance and blood pressure. Curr Hypertens Rep 2016; 17:538. [PMID: 25794953 DOI: 10.1007/s11906-015-0538-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The kidney continuously adapts daily renal excretion of NaCl to match dietary intakes in order to maintain the NaCl content of the body, and keep vascular volume constant. Any situation that leads to NaCl retention favors a rise in blood pressure. The aldosterone-sensitive distal nephron, which contains two main types of cells, principal (PC) and intercalated (IC) cells, is an important site for the final regulation of urinary Na(+) excretion. Research over the past 20 years established a paradigm in which PCs are the exclusive site of Na(+) absorption while ICs are solely dedicated to acid-base transport. Recent studies have revealed the unexpected importance of ICs for NaCl reabsorption. Here, we review the mechanisms of Na(+) and Cl(-) transport in the aldosterone-sensitive distal nephron, with emphasis on the role of ICs in maintaining NaCl balance and normal blood pressure.
Collapse
|
23
|
Zhang MZ, Yao B, Wang Y, Yang S, Wang S, Fan X, Harris RC. Inhibition of cyclooxygenase-2 in hematopoietic cells results in salt-sensitive hypertension. J Clin Invest 2015; 125:4281-94. [PMID: 26485285 DOI: 10.1172/jci81550] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023] Open
Abstract
Inhibition of prostaglandin (PG) production with either nonselective or selective inhibitors of cyclooxygenase-2 (COX-2) activity can induce or exacerbate salt-sensitive hypertension. This effect has been previously attributed to inhibition of intrinsic renal COX-2 activity and subsequent increase in sodium retention by the kidney. Here, we found that macrophages isolated from kidneys of high-salt-treated WT mice have increased levels of COX-2 and microsomal PGE synthase-1 (mPGES-1). Furthermore, BM transplantation (BMT) from either COX-2-deficient or mPGES-1-deficient mice into WT mice or macrophage-specific deletion of the PGE2 type 4 (EP4) receptor induced salt-sensitive hypertension and increased phosphorylation of the renal sodium chloride cotransporter (NCC). Kidneys from high-salt-treated WT mice transplanted with Cox2-/- BM had increased macrophage and T cell infiltration and increased M1- and Th1-associated markers and cytokines. Skin macrophages from high-salt-treated mice with either genetic or pharmacologic inhibition of the COX-2 pathway expressed decreased M2 markers and VEGF-C production and exhibited aberrant lymphangiogenesis. Together, these studies demonstrate that COX-2-derived PGE2 in hematopoietic cells plays an important role in both kidney and skin in maintaining homeostasis in response to chronically increased dietary salt. Moreover, these results indicate that inhibiting COX-2 expression or activity in hematopoietic cells can result in a predisposition to salt-sensitive hypertension.
Collapse
|
24
|
Kennedy-Lydon T, Crawford C, Wildman SS, Peppiatt-Wildman CM. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes. Am J Physiol Renal Physiol 2015. [PMID: 26202223 DOI: 10.1152/ajprenal.00199.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We have previously shown that vasa recta pericytes are known to dilate vasa recta capillaries in the presence of PGE2 and contract vasa recta capillaries when endogenous production of PGE2 is inhibited by the nonselective nonsteroidal anti-inflammatory drug (NSAID) indomethacin. In the present study, we used a live rat kidney slice model to build on these initial observations and provide novel data that demonstrate that nonselective, cyclooxygenase-1-selective, and cyclooxygenase -2-selective NSAIDs act via medullary pericytes to elicit a reduction of vasa recta diameter. Real-time images of in situ vasa recta were recorded, and vasa recta diameters at pericyte and nonpericyte sites were measured offline. PGE2 and epoprostenol (a prostacyclin analog) evoked dilation of vasa recta specifically at pericyte sites, and PGE2 significantly attenuated pericyte-mediated constriction of vasa recta evoked by both endothelin-1 and ANG II. NSAIDs (indomethacin > SC-560 > celecoxib > meloxicam) evoked significantly greater constriction of vasa recta capillaries at pericyte sites than at nonpericyte sites, and indomethacin significantly attenuated the pericyte-mediated vasodilation of vasa recta evoked by PGE2, epoprostenol, bradykinin, and S-nitroso-N-acetyl-l-penicillamine. Moreover, a reduction in PGE2 was measured using an enzyme immune assay after superfusion of kidney slices with indomethacin. In addition, immunohistochemical techniques were used to demonstrate the population of EP receptors in the medulla. Collectively, these data demonstrate that pericytes are sensitive to changes in PGE2 concentration and may serve as the primary mechanism underlying NSAID-associated renal injury and/or further compound-associated tubular damage.
Collapse
Affiliation(s)
- Teresa Kennedy-Lydon
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| | - Carol Crawford
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| | - Scott S Wildman
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| | - Claire M Peppiatt-Wildman
- Urinary System Physiology Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Kent, United Kingdom
| |
Collapse
|
25
|
Chi Y, Jasmin JF, Seki Y, Lisanti MP, Charron MJ, Lefer DJ, Schuster VL. Inhibition of the Prostaglandin Transporter PGT Lowers Blood Pressure in Hypertensive Rats and Mice. PLoS One 2015; 10:e0131735. [PMID: 26121580 PMCID: PMC4488299 DOI: 10.1371/journal.pone.0131735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023] Open
Abstract
Inhibiting the synthesis of endogenous prostaglandins with nonsteroidal anti-inflammatory drugs exacerbates arterial hypertension. We hypothesized that the converse, i.e., raising the level of endogenous prostaglandins, might have anti-hypertensive effects. To accomplish this, we focused on inhibiting the prostaglandin transporter PGT (SLCO2A1), which is the obligatory first step in the inactivation of several common PGs. We first examined the role of PGT in controlling arterial blood pressure blood pressure using anesthetized rats. The high-affinity PGT inhibitor T26A sensitized the ability of exogenous PGE2 to lower blood pressure, confirming both inhibition of PGT by T26A and the vasodepressor action of PGE2 T26A administered alone to anesthetized rats dose-dependently lowered blood pressure, and did so to a greater degree in spontaneously hypertensive rats than in Wistar-Kyoto control rats. In mice, T26A added chronically to the drinking water increased the urinary excretion and plasma concentration of PGE2 over several days, confirming that T26A is orally active in antagonizing PGT. T26A given orally to hypertensive mice normalized blood pressure. T26A increased urinary sodium excretion in mice and, when added to the medium bathing isolated mouse aortas, T26A increased the net release of PGE2 induced by arachidonic acid, inhibited serotonin-induced vasoconstriction, and potentiated vasodilation induced by exogenous PGE2. We conclude that pharmacologically inhibiting PGT-mediated prostaglandin metabolism lowers blood pressure, probably by prostaglandin-induced natriuresis and vasodilation. PGT is a novel therapeutic target for treating hypertension.
Collapse
Affiliation(s)
- Yuling Chi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Jean-Francois Jasmin
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States of America
| | - Yoshinori Seki
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - Michael P. Lisanti
- Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| | - Maureen J. Charron
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, United States of America
| | - David J. Lefer
- Department of Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States of America
| | - Victor L. Schuster
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States of America
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, Bronx, NY, United States of America
- * E-mail:
| |
Collapse
|
26
|
Yang T. Crosstalk between (Pro)renin receptor and COX-2 in the renal medulla during angiotensin II-induced hypertension. Curr Opin Pharmacol 2015; 21:89-94. [PMID: 25681793 DOI: 10.1016/j.coph.2014.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/16/2014] [Accepted: 12/21/2014] [Indexed: 01/13/2023]
Abstract
Angiotensin II (AngII) is an octapeptide hormone that plays a central role in regulation of sodium balance, plasma volume, and blood pressure. Its role in the pathogenesis of hypertension is highlighted by the wide use of inhibitors of the renin-angiotensin system (RAS) as the first-line antihypertensive therapy. However, despite intensive investigation, the mechanism of AngII-induced hypertension is still incompletely understood. Although diverse pathways are likely involved, increasing evidence suggests that the activation of intrarenal RAS may represent a dominant mechanism of AngII-induced hypertension. (Pro)renin receptor (PRR), a potential regulator of intrarenal RAS, is expressed in the intercalated cells of the collecting duct (CD) and induced by AngII, in parallel with increased renin in the principal cells of the CD. Activation of PRR elevated PGE2 release and COX-2 expression in renal inner medullary cells whereas COX-2-derived PGE2via the EP4 receptor mediates the upregulation of PRR during AngII infusion, thus forming a vicious cycle. The mutually stimulatory relationship between PRR and COX-2 in the distal nephron may play an important role in mediating AngII-induced hypertension.
Collapse
Affiliation(s)
- Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, UT, United States.
| |
Collapse
|
27
|
Guzmán-Hernández EA, Villalobos-Molina R, Sánchez-Mendoza MA, Del Valle-Mondragón L, Pastelín-Hernández G, Ibarra-Barajas M. Early co-expression of cyclooxygenase-2 and renin in the rat kidney cortex contributes to the development of N(G)-nitro-L-arginine methyl ester induced hypertension. Can J Physiol Pharmacol 2015; 93:299-308. [PMID: 25761067 DOI: 10.1139/cjpp-2014-0347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the involvement of cyclooxygenase-2 (COX-2) and the renin-angiotensin system in N(G)-nitro-L-arginine methyl ester (L-NAME)-induced hypertension. Male Wistar rats were treated with L-NAME (75.0 mg·(kg body mass)(-1)·day(-1), in their drinking water) for different durations (1-33 days). COX-2 and renin mRNA were measured using real-time PCR in the renal cortex, and prostanoids were assessed in the renal perfusate, whereas angiotensin II (Ang II) and Ang (1-7) were quantified in plasma. In some rats, nitric oxide synthase inhibition was carried out in conjunction with oral administration of captopril (30.0 mg·kg(-1)·day(-1)) or celecoxib (1.0 mg·kg(-1)·day(-1)) for 2 or 19 days. We found a parallel increase in renocortical COX-2 and renin mRNA starting at day 2 of treatment with L-NAME, and both peaked at 19-25 days. In addition, L-NAME increased renal 6-Keto-PGF(1α) (prostacyclin (PGI2) metabolite) and plasma Ang II from day 2, but reduced plasma Ang (1-7) at day 19. Captopril prevented the increase in blood pressure, which was associated with lower plasma Ang II and increased COX-2-derived 6-Keto-PGF(1α) at day 2 and plasma Ang (1-7) at day 19. Celecoxib partially prevented the increase in blood pressure; this effect was associated with a reduction in plasma Ang II. These findings indicate that renal COX-2 expression increased in parallel with renin expression, renal PGI2 synthesis, and plasma Ang II in L-NAME-induced hypertension.
Collapse
Affiliation(s)
- Elizabeth Alejandrina Guzmán-Hernández
- Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma México., Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla 54090, México
| | | | | | | | | | | |
Collapse
|
28
|
Angiotensin II increases the expression of (pro)renin receptor during low-salt conditions. Am J Med Sci 2015; 348:416-22. [PMID: 25250989 DOI: 10.1097/maj.0000000000000335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Evidence indicates that chronic angiotensin II (AngII) infusion increases (pro)renin receptor ((P)RR) expression in renal inner medullary collecting duct (IMCD) cells. Recently, it has been shown that renal (P)RR expression is augmented during a low-salt (LS) diet. However, the role of AngII in mediating the stimulation of (P)RR during LS conditions is unknown. We hypothesized that AngII mediates the increased expression of (P)RR during low-salt conditions in IMCDs. METHODS (P)RR expression and AngII levels were evaluated in Sprague-Dawley rats fed a LS diet (0.03% NaCl) and normal salt (NS; 0.4% NaCl) for 7 days. We examined the effects of sodium reduction (130 mM NaCl) and AngII on (P)RR expression in IMCDs isolated in hypertonic conditions (640 mOsmol/L with 280 mM NaCl). RESULTS Plasma renin activity in LS rats was significantly higher than rats fed with NS (28.1 ± 2.2 versus 6.7 ± 1.1 ng AngI·mL⁻¹·hr⁻¹; P < 0.05), as well as renin content in renal cortex and medulla. The (P)RR mRNA and protein levels were higher in medullary tissues from LS rats but did not change in the cortex. Intrarenal AngII was augmented in LS compared with NS rats (cortex: 710 ± 113 versus 277 ± 86 fmol/g, P < 0.05; medulla: 2093 ± 125 versus 1426 ± 126 fmol/g, P < 0.05). In cultured IMCDs, (P)RR expression was increased in response to LS or AngII treatment and potentiated by both treatments (both at 640 mOsmol/L). CONCLUSIONS These data indicate that (P)RR is augmented in medullary collecting ducts in response to LS and that this effect is further enhanced by the increased intrarenal AngII content.
Collapse
|
29
|
Liu B, Li Z, Zhang Y, Luo W, Zhang J, Li H, Zhou Y. Vasomotor Reaction to Cyclooxygenase-1-Mediated Prostacyclin Synthesis in Carotid Arteries from Two-Kidney-One-Clip Hypertensive Mice. PLoS One 2015; 10:e0136738. [PMID: 26308616 PMCID: PMC4550394 DOI: 10.1371/journal.pone.0136738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/05/2015] [Indexed: 02/05/2023] Open
Abstract
This study tested the hypothesis that in hypertensive arteries cyclooxygenase-1 (COX-1) remains as a major form, mediating prostacyclin (prostaglandin I2; PGI2) synthesis that may evoke a vasoconstrictor response in the presence of functional vasodilator PGI2 (IP) receptors. Two-kidney-one-clip (2K1C) hypertension was induced in wild-type (WT) mice and/or those with COX-1 deficiency (COX-1-/-). Carotid arteries were isolated for analyses 4 weeks after. Results showed that as in normotensive mice, the muscarinic receptor agonist ACh evoked a production of the PGI2 metabolite 6-keto-PGF1α and an endothelium-dependent vasoconstrictor response; both of them were abolished by COX-1 inhibition. At the same time, PGI2, which evokes contraction of hypertensive vessels, caused relaxation after thromboxane-prostanoid (TP) receptor antagonism that abolished the contraction evoked by ACh. Antagonizing IP receptors enhanced the contraction to the COX substrate arachidonic acid (AA). Also, COX-1-/- mice was noted to develop hypertension; however, their increase of blood pressure and/or heart mass was not to a level achieved with WT mice. In addition, we found that either the contraction in response to ACh or that evoked by AA was abolished in COX-1-/- hypertensive mice. These results demonstrate that as in normotensive conditions, COX-1 is a major contributor of PGI2 synthesis in 2K1C hypertensive carotid arteries, which leads to a vasoconstrictor response resulting from opposing dilator and vasoconstrictor activities of IP and TP receptors, respectively. Also, our data suggest that COX-1-/- attenuates the development of 2K1C hypertension in mice, reflecting a net adverse role yielded from all COX-1-mediated activities under the pathological condition.
Collapse
Affiliation(s)
- Bin Liu
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Zhenhua Li
- Department of Pathology, the Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yingzhan Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Wenhong Luo
- The Central Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiling Zhang
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Hui Li
- The Central Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Yingbi Zhou
- Cardiovascular Research Center, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| |
Collapse
|
30
|
Ahmetaj-Shala B, Kirkby NS, Knowles R, Al'Yamani M, Mazi S, Wang Z, Tucker AT, Mackenzie L, Armstrong PCJ, Nüsing RM, Tomlinson JAP, Warner TD, Leiper J, Mitchell JA. Evidence that links loss of cyclooxygenase-2 with increased asymmetric dimethylarginine: novel explanation of cardiovascular side effects associated with anti-inflammatory drugs. Circulation 2014; 131:633-42. [PMID: 25492024 PMCID: PMC4768634 DOI: 10.1161/circulationaha.114.011591] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Supplemental Digital Content is available in the text. Background— Cardiovascular side effects associated with cyclooxygenase-2 inhibitor drugs dominate clinical concern. Cyclooxygenase-2 is expressed in the renal medulla where inhibition causes fluid retention and increased blood pressure. However, the mechanisms linking cyclooxygenase-2 inhibition and cardiovascular events are unknown and no biomarkers have been identified. Methods and Results— Transcriptome analysis of wild-type and cyclooxygenase-2−/− mouse tissues revealed 1 gene altered in the heart and aorta, but >1000 genes altered in the renal medulla, including those regulating the endogenous nitric oxide synthase inhibitors asymmetrical dimethylarginine (ADMA) and monomethyl-l-arginine. Cyclo-oxygenase-2−/− mice had increased plasma levels of ADMA and monomethyl-l-arginine and reduced endothelial nitric oxide responses. These genes and methylarginines were not similarly altered in mice lacking prostacyclin receptors. Wild-type mice or human volunteers taking cyclooxygenase-2 inhibitors also showed increased plasma ADMA. Endothelial nitric oxide is cardio-protective, reducing thrombosis and atherosclerosis. Consequently, increased ADMA is associated with cardiovascular disease. Thus, our study identifies ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction with nonsteroidal anti-inflammatory drug usage. Conclusions— We identify the endogenous endothelial nitric oxide synthase inhibitor ADMA as a biomarker and mechanistic bridge between renal cyclooxygenase-2 inhibition and systemic vascular dysfunction.
Collapse
Affiliation(s)
- Blerina Ahmetaj-Shala
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Nicholas S Kirkby
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Rebecca Knowles
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Malak Al'Yamani
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Sarah Mazi
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Zhen Wang
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Arthur T Tucker
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Louise Mackenzie
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Paul C J Armstrong
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Rolf M Nüsing
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - James A P Tomlinson
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Timothy D Warner
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - James Leiper
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.)
| | - Jane A Mitchell
- From the Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College, London, United Kingdom (B.A.-S., N.S.K., M.Al'Y., S.M., J.A.M.); The William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London, United Kingdom (R.K., A.T.T., P.C.J.A., T.D.W.); King Fahad Cardiac Center of King Saud University, Riyadh, Saudi Arabia (M.Al'Y., S.M.,); MRC Clinical Sciences, Imperial College London, Nitric Oxide Signalling Group, Hammersmith Hospital, DuCane Road, London, United Kingdom (Z.W., J.A.P.T., J.L.); School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, United Kingdom (L.M.); and Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Theodor Stern Kai 7, Frankfurt, Germany (R.M.N.).
| |
Collapse
|
31
|
Sriramula S, Xia H, Xu P, Lazartigues E. Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertension 2014; 65:577-86. [PMID: 25489058 DOI: 10.1161/hypertensionaha.114.04691] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overactivity of the renin-angiotensin system, oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that angiotensin-converting enzyme 2 (ACE2) overexpression in the brain attenuates the development of deoxycorticosterone acetate-salt hypertension, a neurogenic hypertension model with enhanced brain renin-angiotensin system and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen-activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. Deoxycorticosterone acetate-salt hypertension significantly increased expression of Nox-2 (+61±5%), Nox-4 (+50±13%), and nitrotyrosine (+89±32%) and reduced activity of the antioxidant enzymes, catalase (-29±4%) and superoxide dismutase (-31±7%), indicating increased oxidative stress in the brain of nontransgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. Deoxycorticosterone acetate-salt-induced reduction of neuronal nitric oxide synthase expression (-26±7%) and phosphorylated endothelial nitric oxide synthase/total endothelial nitric oxide synthase (-30±3%), and enhanced phosphorylation of protein kinase B and extracellular signal-regulated kinase 1/2 in the paraventricular nucleus, were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the paraventricular nucleus. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuroinflammation, ultimately attenuating Deoxycorticosterone acetate-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuroinflammation, improves antioxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension.
Collapse
Affiliation(s)
- Srinivas Sriramula
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Ping Xu
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, Neurosciences and Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans.
| |
Collapse
|
32
|
Bhosale UA, Quraishi N, Yegnanarayan R, Devasthale D. A cohort study to evaluate cardiovascular risk of selective and nonselective cyclooxygenase inhibitors (COX-Is) in arthritic patients attending orthopedic department of a tertiary care hospital. Niger Med J 2014; 55:417-22. [PMID: 25298608 PMCID: PMC4178340 DOI: 10.4103/0300-1652.140386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Cyclooxygenase-2 inhibitors (COX-2-Is) have recently been concerned in the occurrence of adverse cardiovascular (CV) events. Rofecoxib and valdecoxib has been withdrawn from the market, but celecoxib, etoricoxib and parecoxib continues to be used. Other nonsteroidal anti-inflammatory drugs (NSAIDs) may also increase the risk of CV events. However, clinical trial databases for COX-2-Is had created lots of controversies regarding cardiovascular safety of selective and nonselective cyclooxygenase inhibitors (COX-Is). This study was, conducted to assess and compare the CV risk of COX-Is in arthritic patients over a period of time. Materials and Methods: In this prospective cohort study adult arthritics of either sex those were freshly diagnosed or taking COX-Is for < 3 months; were included. Patients were grouped into nonselective and selective COX-2-I groups with reference to treatment they received. The CV risk factors like blood pressure (BP), blood sugar level (BSL), lipid profile, body mass index (BMI) were assessed and compared; demography of CV risk factors was also studied. Data obtained was analysed using Student's ‘t’-test of OpenEpi statistical software. Results: Study clearly revealed that all NSAIDs exhibit variable CV risk; however, selective COX-2-Is found to exhibit more CV risk. BMI, BP and lipid profile; the potential CV risk factors, showed significant impairment in selective COX-2-Is group; P < 0.01, P < 0.001 and P < 0.05, respectively, compared to baseline and P < 0.05 vs. nonselective COX-Is for BMI. Conclusions: This study portrays the potential CV risk of selective COX-2-Is; confirms and re-evaluate the results of earlier studies in this regard.
Collapse
Affiliation(s)
- Uma A Bhosale
- Department of Pharmacology, Smt. Kashibai Navale Medical College and General Hospital, Narhe, Pune, Maharashtra, India
| | - Nilofar Quraishi
- Department of Pharmacology, Smt. Kashibai Navale Medical College and General Hospital, Narhe, Pune, Maharashtra, India
| | - Radha Yegnanarayan
- Department of Pharmacology, Smt. Kashibai Navale Medical College and General Hospital, Narhe, Pune, Maharashtra, India
| | - Dileep Devasthale
- Department of Orthopedics, Smt. Kashibai Navale Medical College and General Hospital, Narhe, Pune, Maharashtra, India
| |
Collapse
|
33
|
Gonzalez AA, Green T, Luffman C, Bourgeois CRT, Gabriel Navar L, Prieto MC. Renal medullary cyclooxygenase-2 and (pro)renin receptor expression during angiotensin II-dependent hypertension. Am J Physiol Renal Physiol 2014; 307:F962-70. [PMID: 25143455 DOI: 10.1152/ajprenal.00267.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The (pro)renin receptor [(P)RR] upregulates cyclooxygenase-2 (COX-2) in inner medullary collecting duct (IMCD) cells through ERK1/2. Intrarenal COX-2 and (P)RR are upregulated during chronic ANG II infusion. However, the duration of COX-2 and (P)RR upregulation has not been determined. We hypothesized that during the early phase of ANG II-dependent hypertension, membrane-bound (P)RR and COX-2 are augmented in the renal medulla, serving to buffer the hypertensinogenic and vasoconstricting effects of ANG II. In Sprague-Dawley rats infused with ANG II (0.4 μg·min(-1)·kg(-1)), systolic blood pressure (BP) increased by day 7 (162 ± 5 vs. 114 ± 10 mmHg) and continued to increase by day 14 (198 ± 15 vs. 115 ± 13 mmHg). Membrane-bound (P)RR was augmented at day 3 coincident with phospho-ERK1/2 levels, COX-2 expression, and PGE2 in the renal medulla. In contrast, membrane-bound (P)RR was reduced and COX-2 protein levels were not different from controls by day 14. In cultured IMCD cells, ANG II increased secretion of the soluble (P)RR. In anesthetized rats, COX-2 inhibition decreased the glomerular filtration rate (GFR) and renal blood flow (RBF) during the early phase of ANG II infusion without altering BP. However, at 14 days of ANG II infusions, COX-2 inhibition decreased mean arterial BP (MABP), RBF, and GFR. Thus, during the early phase of ANG II-dependent hypertension, the increased (P)RR and COX-2 expression in the renal medulla may contribute to attenuate the vasoconstrictor effects of ANG II on renal hemodynamics. In contrast, at 14 days the reductions in RBF and GFR caused by COX-2 inhibition paralleled the reduced MABP, suggesting that vasoconstrictor COX-2 metabolites contribute to ANG II hypertension.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; and
| | - Torrance Green
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Christina Luffman
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Camille R T Bourgeois
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| | - L Gabriel Navar
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology and Hypertension and Renal Center of Excellence, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
34
|
Wang F, Lu X, Peng K, Zhou L, Li C, Wang W, Yu X, Kohan DE, Zhu SF, Yang T. COX-2 mediates angiotensin II-induced (pro)renin receptor expression in the rat renal medulla. Am J Physiol Renal Physiol 2014; 307:F25-32. [PMID: 24740788 DOI: 10.1152/ajprenal.00548.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
(Pro)renin receptor (PRR) is predominantly expressed in the distal nephron where it is activated by angiotensin II (ANG II), resulting in increased renin activity in the renal medulla thereby amplifying the de novo generation and action of local ANG II. The goal of the present study was to test the role of cycloxygenase-2 (COX-2) in meditating ANG II-induced PRR expression in the renal medulla in vitro and in vivo. Exposure of primary rat inner medullary collecting duct cells to ANG II induced sequential increases in COX-2 and PRR protein expression. When the cells were pretreated with a COX-2 inhibitor NS-398, ANG II-induced upregulation of PRR protein expression was almost completely abolished, in parallel with the changes in medium active renin content. The inhibitory effect of NS-398 on the PRR expression was reversed by adding exogenous PGE2. A 14-day ANG II infusion elevated renal medullary PRR expression and active and total renin content in parallel with increased urinary renin, all of which were remarkably suppressed by the COX-2 inhibitor celecoxib. In contrast, plasma and renal cortical active and total renin content were suppressed by ANG II treatment, an effect that was unaffected by COX-2 inhibition. Systolic blood pressure was elevated with ANG II infusion, which was attenuated by the COX-2 inhibition. Overall, the results obtained from in vitro and in vivo studies established a crucial role of COX-2 in mediating upregulation of renal medullary PRR expression and renin content during ANG II hypertension.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Xiaohan Lu
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Kexin Peng
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Li Zhou
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Chunling Li
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Weidong Wang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Donald E Kohan
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| | - Shu-Feng Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, Florida
| | - Tianxin Yang
- Institute of Hypertension, Sun Yat-sen University School of Medicine, Guangzhou, China; Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah; and
| |
Collapse
|
35
|
Tang SY, Monslow J, Todd L, Lawson J, Puré E, FitzGerald GA. Cyclooxygenase-2 in endothelial and vascular smooth muscle cells restrains atherogenesis in hyperlipidemic mice. Circulation 2014; 129:1761-9. [PMID: 24519928 DOI: 10.1161/circulationaha.113.007913] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Placebo-controlled trials of nonsteroidal anti-inflammatory drugs selective for inhibition of cyclooxygenase-2 (COX-2) reveal an emergent cardiovascular hazard in patients selected for low risk of heart disease. Postnatal global deletion of COX-2 accelerates atherogenesis in hyperlipidemic mice, a process delayed by selective enzyme deletion in macrophages. METHODS AND RESULTS In the present study, selective depletion of COX-2 in vascular smooth muscle cells and endothelial cells depressed biosynthesis of prostaglandin I2 and prostaglandin E2, elevated blood pressure, and accelerated atherogenesis in Ldlr knockout mice. Deletion of COX-2 in vascular smooth muscle cells and endothelial cells coincided with an increase in COX-2 expression in lesional macrophages and increased biosynthesis of thromboxane. Increased accumulation of less organized intimal collagen, laminin, α-smooth muscle actin, and matrix-rich fibrosis was also apparent in lesions of the mutants. CONCLUSIONS Although atherogenesis is accelerated in global COX-2 knockouts, consistent with evidence of risk transformation during chronic nonsteroidal anti-inflammatory drug administration, this masks the contrasting effects of enzyme depletion in macrophages versus vascular smooth muscle cells and endothelial cells. Targeting delivery of COX-2 inhibitors to macrophages may conserve their efficacy while limiting cardiovascular risk.
Collapse
Affiliation(s)
- Soon Yew Tang
- Institute for Translational Medicine and Therapeutics (S.Y.T., J.M., J.L., G.A.F.) and Perelman School of Medicine, Department of Animal Biology, School of Veterinary Medicine (L.T., E.P.), University of Pennsylvania, Philadelphia
| | | | | | | | | | | |
Collapse
|
36
|
Bischoff A, Bucher M, Gekle M, Sauvant C. Differential effect of COX1 and COX2 inhibitors on renal outcomes following ischemic acute kidney injury. Am J Nephrol 2014; 40:1-11. [PMID: 24943263 DOI: 10.1159/000363251] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/23/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIMS We have previously shown that 1 mg/kg indomethacin improves expression and functionality of renal organic anion transporters Oat1 and Oat3 after renal ischemia and furthermore improves renal outcome after ischemia. As we detected differential effects of COX1 or COX2 inhibitors on organic anion transport after ischemia and reperfusion in culture, we investigated the effect of the SC560 (COX1 inhibitor) and SC58125 (COX2 inhibitor) on expression of Oat1/3 and renal outcome after ischemic acute kidney injury (iAKI). METHODS iAKI was induced in rats by bilateral clamping of renal arteries for 45 min. SC560 or SC58125 (1 mg/kg each) were given intraperitoneally as soon as reperfusion started. Sham-treated animals served as controls. Oat1/3 were determined by qPCR and Western blot. Glomerular filtration rate (GFR), p-aminohippurate (PAH) clearance and PAH extraction ratio was determined. All parameters were detected 24 h after ischemia. Renal plasma flow was calculated. RESULTS In clamped animals SC560 (COX1 inhibitor) restored expression of Oat1/3, as well as renal perfusion. Additionally, SC560 substantially improved kidney function as measured by GFR. Application of the COX2 inhibitor SC58125 did not exert these beneficial effects. CONCLUSION Our study indicates that COX1 inhibitor SC560 applied after ischemia prevents ischemia-induced downregulation of Oat1/3 during reperfusion and has a substantial protective effect on kidney function. Whether and to what particular extent this apparent improvement of function is mechanistically due to beneficial effects on tubular function, renal perfusion or glomerular filtration will be the scope of future studies.
Collapse
Affiliation(s)
- Ariane Bischoff
- Klinik für Anästhesie und Operative Intensivmedizin, Universität Halle-Wittenberg, Halle, Germany
| | | | | | | |
Collapse
|
37
|
Asirvatham-Jeyaraj N, King AJ, Northcott CA, Madan S, Fink GD. Cyclooxygenase-1 inhibition attenuates angiotensin II-salt hypertension and neurogenic pressor activity in the rat. Am J Physiol Heart Circ Physiol 2013; 305:H1462-70. [PMID: 24014677 DOI: 10.1152/ajpheart.00245.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cyclooxygenase (COX)-derived prostanoids contribute to angiotensin II (ANG II) hypertension (HTN). However, the specific mechanisms by which prostanoids act are unclear. ANG II-induced HTN is caused partly by increased sympathetic nervous system activity, especially in a setting of high dietary salt intake. This study tested the hypothesis that COX-derived prostanoids cause ANG II-salt sympathoexcitation and HTN. Experiments were conducted in conscious rats. Infusion of ANG II (150 ng·kg(-1)·min(-1) sc) caused a marked HTN in rats on 2% salt diet, but a much smaller increase in blood pressure in rats on 0.4% salt diet. The nonselective COX inhibitor ketoprofen (2 mg/kg sc) given throughout the ANG-II infusion period attenuated HTN development in rats on 2% NaCl diet, but not in rats on 0.4% NaCl diet. The acute depressor response to ganglion blockade was used to assess neurogenic pressor activity in rats on 2% NaCl diet. Ketoprofen-treated rats showed a smaller fall in arterial pressure in response to ganglion blockade during ANG-II infusion than did nontreated controls. In additional experiments, ketoprofen-treated rats exhibited smaller increases in plasma norepinephrine levels and whole body norepinephrine spillover than we previously reported in ANG II-salt HTN. Finally, the effects of the selective COX-1 inhibitor SC560 (10 mg·kg(-1)·day(-1) ip) and the selective COX-2 inhibitor nimesulide (10 mg·kg(-1)·day(-1) ip) were investigated. Treatment with SC560 but not nimesulide significantly reduced blood pressure and the depressor response to ganglion blockade in ANG II-salt HTN rats. The results suggest that COX-1 products are critical for sympathoexcitation and the full development of ANG II-salt HTN in rats.
Collapse
|
38
|
Wang G, Sarkar P, Peterson JR, Anrather J, Pierce JP, Moore JM, Feng J, Zhou P, Milner TA, Pickel VM, Iadecola C, Davisson RL. COX-1-derived PGE2 and PGE2 type 1 receptors are vital for angiotensin II-induced formation of reactive oxygen species and Ca(2+) influx in the subfornical organ. Am J Physiol Heart Circ Physiol 2013; 305:H1451-61. [PMID: 24014678 DOI: 10.1152/ajpheart.00238.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regulation of blood pressure by angiotensin II (ANG II) is a process that involves the reactive oxygen species (ROS) and calcium. We have shown that ANG-II type 1 receptor (AT1R) and prostaglandin E2 (PGE2) type 1 receptors (EP1R) are required in the subfornical organ (SFO) for ROS-mediated hypertension induced by slow-pressor ANG-II infusion. However, the signaling pathway associated with this process remains unclear. We sought to determine mechanisms underlying the ANG II-induced ROS and calcium influx in mouse SFO cells. Ultrastructural studies showed that cyclooxygenase 1 (COX-1) codistributes with AT1R in the SFO, indicating spatial proximity. Functional studies using SFO cells revealed that ANG II potentiated PGE2 release, an effect dependent on AT1R, phospholipase A2 (PLA2) and COX-1. Furthermore, both ANG II and PGE2 increased ROS formation. While the increase in ROS initiated by ANG II, but not PGE2, required the activation of the AT1R/PLA2/COX-1 pathway, both ANG II and PGE2 were dependent on EP1R and Nox2 as downstream effectors. Finally, ANG II potentiated voltage-gated L-type Ca(2+) currents in SFO neurons via the same signaling pathway required for PGE2 production. Blockade of EP1R and Nox2-derived ROS inhibited ANG II and PGE2-mediated Ca(2+) currents. We propose a mechanism whereby ANG II increases COX-1-derived PGE2 through the AT1R/PLA2 pathway, which promotes ROS production by EP1R/Nox2 signaling in the SFO. ANG II-induced ROS are coupled with Ca(2+) influx in SFO neurons, which may influence SFO-mediated sympathoexcitation. Our findings provide the first evidence of a spatial and functional framework that underlies ANG-II signaling in the SFO and reveal novel targets for antihypertensive therapies.
Collapse
Affiliation(s)
- Gang Wang
- The Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
He W, Zhang M, Zhao M, Davis LS, Blackwell TS, Yull F, Breyer MD, Hao CM. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells. Pflugers Arch 2013; 466:357-367. [PMID: 23900806 DOI: 10.1007/s00424-013-1328-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 10/26/2022]
Abstract
High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.
Collapse
Affiliation(s)
- Wenjuan He
- Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| | - Min Zhang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Zhao
- Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| | - Linda S Davis
- Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| | - Timothy S Blackwell
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Fiona Yull
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Matthew D Breyer
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | - Chuan-Ming Hao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China.,Division of Nephrology, Department of Medicine and Cancer Biology, Vanderbilt University, Veteran Affair Medical Center, Nashville, TN
| |
Collapse
|
40
|
Harris RC. Physiologic and pathophysiologic roles of cyclooxygenase-2 in the kidney. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2013; 124:139-151. [PMID: 23874018 PMCID: PMC3715909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the mammalian kidney, prostaglandins are important mediators of physiologic processes, including modulation of vascular tone and salt and water. Prostaglandins arise from enzymatic metabolism of free arachidonic acid (AA), which is cleaved from membrane phospholipids by phospholipase A2 activity. The cyclooxygenase (COX) enzyme system is a major pathway for metabolism of arachidonic acid in the kidney. Cyclooxygenases are the enzymes responsible for the initial conversion of AA to PGG2 and subsequently to PGH2, which serves as the precursor for subsequent metabolism by specific prostaglandin and thromboxane synthases. In addition to high levels of expression of the "constitutive" rate-limiting enzyme responsible for prostanoid production, COX-1, the "inducible" isoform of cyclooxygenase, COX-2, is also constitutively expressed in the kidney and is highly regulated in response to alterations in intravascular volume. Prostaglandins and thromboxane A2 exert their biological functions predominantly through activation of specific 7-transmembrane G-protein-coupled receptors. We and others have shown that COX-2-derived prostaglandins exert important physiologic functions in maintenance of renal blood flow, mediation of renin release, and regulation of sodium excretion. In addition to physiologic regulation of prostanoid production in the kidney, increases in prostanoid production are also observed in a variety of inflammatory renal injuries, and we have found a role for COX metabolites to serve as mediators of inflammatory injury in renal disease.
Collapse
Affiliation(s)
- Raymond C Harris
- Division of Nephrology, C3121 MCN, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital Nashville, TN 37232, USA.
| |
Collapse
|
41
|
Gonzalez AA, Luffman C, Bourgeois CRT, Vio CP, Prieto MC. Angiotensin II-independent upregulation of cyclooxygenase-2 by activation of the (Pro)renin receptor in rat renal inner medullary cells. Hypertension 2012. [PMID: 23184385 DOI: 10.1161/hypertensionaha.112.196303] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During renin-angiotensin system activation, cyclooxygenase-2 (COX-2)-derived prostaglandins attenuate the pressor and antinatriuretic effects of angiotensin II (AngII) in the renal medulla. The (pro)renin receptor (PRR) is abundantly expressed in the collecting ducts (CD) and its expression is augmented by AngII. PRR overexpression upregulates COX-2 via mitogen-activated kinases/extracellular regulated kinases 1/2 in renal tissues; however, it is not clear whether this effect occurs independently or in concert with AngII type 1 receptor (AT1R) activation. We hypothesized that PRR activation stimulates COX-2 expression independently of AT(1)R in primary cultures of rat renal inner medullary cells. The use of different cell-specific immunomarkers (aquaporin-2 for principal cells, anion exchanger type 1 for intercalated type-A cells, and tenascin C for interstitial cells) and costaining for AT(1)R, COX-2, and PRR revealed that PRR and COX-2 were colocalized in intercalated and interstitial cells whereas principal cells did not express PRR or COX-2. In normal rat kidney sections, PRR and COX-2 were colocalized in intercalated and interstitial cells. In rat renal inner medullary cultured cells, treatment with AngII (100 nmol/L) increased COX-2 expression via AT(1)R. In addition, AngII and rat recombinant prorenin (100 nmol/L) treatments increased extracellular regulated kinases 1/2 phosphorylation, independently. Importantly, rat recombinant prorenin upregulated COX-2 expression in the presence of AT(1)R blockade. Inhibition of mitogen-activated kinases/extracellular regulated kinases 1/2 suppressed COX-2 upregulation mediated by either AngII or rat recombinant prorenin. Furthermore, PRR knockdown using PRR-short hairpin RNA blunted the rat recombinant prorenin-mediated upregulation of COX-2. These results indicate that COX-2 expression is upregulated by activation of either PRR or AT(1)R via mitogen-activated kinases/extracellular regulated kinases 1/2 in rat renal inner medullary cells.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Chile
| | | | | | | | | |
Collapse
|
42
|
Furuya H, Wada M, Shimizu Y, Yamada PM, Hannun YA, Obeid LM, Kawamori T. Effect of sphingosine kinase 1 inhibition on blood pressure. FASEB J 2012; 27:656-64. [PMID: 23109673 DOI: 10.1096/fj.12-219014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Accumulating evidence suggests that sphingosine kinase 1 (SphK1) plays a key role in carcinogenesis by regulating cyclooxygenase-2 (COX-2) expression. Recent clinical studies have revealed that COX-2 inhibitors cause adverse cardiovascular side effects, likely due to inhibition of prostacyclin (PGI(2)). In this work, we investigated the roles of SphK1 inhibition on blood pressure (BP). The results show that lack of SphK1 expression did not exacerbate angiotensin II (Ang II)-induced acute hypertension, whereas celecoxib, a COX-2 inhibitor, augmented and sustained higher BP in mice. Interestingly, SphK1-knockout mice inhibited prostaglandin E(2) (PGE(2)) but not PGI(2) production in response to Ang II, whereas celecoxib blocked both PGE(2) and PGI(2) production. Mechanistically, SphK1 down-regulation by siRNA in human umbilical vein endothelial cells decreased cytokine-induced PGE(2) production primarily through inhibition of microsomal PGE synthase-1 (mPGES-1), not COX-2. SphK1 down-regulation also decreased MKK6 expression, which phosphorylates and activates P38 MAPK, which, in turn, regulates early growth response-1 (Egr-1), a transcription factor of mPGES-1. Together, these data indicate that SphK1 regulates PGE(2) production by mPGES-1 expression via the p38 MAPK pathway, independent of COX-2 signaling, in endothelial cells, suggesting that SphK1 inhibition may be a promising strategy for cancer chemoprevention with lack of the adverse cardiovascular side effects associated with coxibs.
Collapse
Affiliation(s)
- Hideki Furuya
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Yu Y, Ricciotti E, Scalia R, Tang SY, Grant G, Yu Z, Landesberg G, Crichton I, Wu W, Puré E, Funk CD, FitzGerald GA. Vascular COX-2 modulates blood pressure and thrombosis in mice. Sci Transl Med 2012; 4:132ra54. [PMID: 22553252 DOI: 10.1126/scitranslmed.3003787] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Prostacyclin (PGI(2)) is a vasodilator and platelet inhibitor, properties consistent with cardioprotection. More than a decade ago, inhibition of cyclooxygenase-2 (COX-2) by the nonsteroidal anti-inflammatory drugs (NSAIDs) rofecoxib and celecoxib was found to reduce the amount of the major metabolite of PGI(2) (PGI-M) in the urine of healthy volunteers. This suggested that NSAIDs might cause adverse cardiovascular events by reducing production of cardioprotective PGI(2). This prediction was based on the assumption that the concentration of PGI-M in urine likely reflected vascular production of PGI(2) and that other cardioprotective mediators, especially nitric oxide (NO), were not able to compensate for the loss of PGI(2). Subsequently, eight placebo-controlled clinical trials showed that NSAIDs that block COX-2 increase adverse cardiovascular events. We connect tissue-specific effects of NSAID action and functional correlates in mice with clinical outcomes in humans by showing that deletion of COX-2 in the mouse vasculature reduces excretion of PGI-M in urine and predisposes the animals to both hypertension and thrombosis. Furthermore, vascular disruption of COX-2 depressed expression of endothelial NO synthase and the consequent release and function of NO. Thus, suppression of PGI(2) formation resulting from deletion of vascular COX-2 is sufficient to explain the cardiovascular hazard from NSAIDs, which is likely to be augmented by secondary mechanisms such as suppression of NO production.
Collapse
Affiliation(s)
- Ying Yu
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen L, Miao Y, Zhang Y, Dou D, Liu L, Tian X, Yang G, Pu D, Zhang X, Kang J, Gao Y, Wang S, Breyer MD, Wang N, Zhu Y, Huang Y, Breyer RM, Guan Y. Inactivation of the E-prostanoid 3 receptor attenuates the angiotensin II pressor response via decreasing arterial contractility. Arterioscler Thromb Vasc Biol 2012; 32:3024-32. [PMID: 23065824 DOI: 10.1161/atvbaha.112.254052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The present studies aimed at elucidating the role of prostaglandin E(2) receptor subtype 3 (E-prostanoid [EP] 3) in regulating blood pressure. METHODS AND RESULTS Mice bearing a genetic disruption of the EP3 gene (EP(3)(-/-)) exhibited reduced baseline mean arterial pressure monitored by both tail-cuff and carotid arterial catheterization. The pressor responses induced by EP3 agonists M&B28767 and sulprostone were markedly attenuated in EP3(-/-) mice, whereas the reduction of blood pressure induced by prostaglandin E(2) was comparable in both genotypes. Vasopressor effect of acute or chronic infusion of angiotensin II (Ang II) was attenuated in EP3(-/-) mice. Ang II-induced vasoconstriction in mesenteric arteries decreased in EP3(-/-) group. In mesenteric arteries from wild-type mice, Ang II-induced vasoconstriction was inhibited by EP3 selective antagonist DG-041 or L798106. The expression of Arhgef-1 is attenuated in EP3 deficient mesenteric arteries. EP3 antagonist DG-041 diminished Ang II-induced phosphorylation of myosin light chain 20 and myosin phosphatase target subunit 1 in isolated mesenteric arteries. Furthermore, in vascular smooth muscle cells, Ang II-induced intracellular Ca(2+) increase was potentiated by EP3 agonist sulprostone but inhibited by DG-041. CONCLUSIONS Activation of the EP3 receptor raises baseline blood pressure and contributes to Ang II-dependent hypertension at least partially via enhancing Ca(2+) sensitivity and intracellular calcium concentration in vascular smooth muscle cells. Selective targeting of the EP3 receptor may represent a potential therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Lihong Chen
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Haidian District, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang M, FitzGerald GA. Cardiovascular biology of microsomal prostaglandin E synthase-1. Trends Cardiovasc Med 2012; 20:189-95. [PMID: 22137640 DOI: 10.1016/j.tcm.2011.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/13/2011] [Indexed: 10/14/2022]
Abstract
Both traditional and purpose-designed nonsteroidal anti-inflammatory drugs, selective for inhibition of cyclooxygenase (COX)-2, alleviate pain and inflammation but confer a cardiovascular hazard attributable to inhibition of COX-2-derived prostacyclin (PGI(2)). Deletion of microsomal PGE synthase-1 (mPGES-1), the dominant enzyme that converts the COX-derived intermediate product PGH(2) to PGE(2), modulates inflammatory pain in rodents. In contrast with COX-2 deletion or inhibition, PGI(2) formation is augmented in mPGES-1(-/-) mice-an effect that may confer cardiovascular benefit but may undermine the analgesic potential of inhibitors of this enzyme. This review considers the cardiovascular biology of mPGES1 and the complex challenge of developing inhibitors of this enzyme.
Collapse
Affiliation(s)
- Miao Wang
- Institute for Translational Medicine and Therapeutics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-5158, USA
| | | |
Collapse
|
46
|
The complex interplay between cyclooxygenase-2 and angiotensin II in regulating kidney function. Curr Opin Nephrol Hypertens 2012; 21:7-14. [PMID: 22080858 DOI: 10.1097/mnh.0b013e32834d9d75] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Cyclooxygenase-2 (COX-2) plays a critical role in modulating deleterious actions of angiotensin II (Ang II) where there is an inappropriate activation of the renin-angiotensin system (RAS). This review discusses the recent developments regarding the complex interactions by which COX-2 modulates the impact of an activated RAS on kidney function and blood pressure. RECENT FINDINGS Normal rats with increased COX-2 activity but with different intrarenal Ang II activity because of sodium restriction or chronic treatment with angiotensin-converting enzyme (ACE) inhibitors showed similar renal hemodynamic responses to COX-2-selective inhibition (nimesulide) indicating independence from the intrarenal Ang II activity. COX-2-dependent maintenance of medullary blood flow was consistent and not dependent on dietary salt or ACE inhibition. In contrast, COX-2 influences on sodium excretion were contingent on the prevailing RAS activity. In chronic hypertensive models, COX-2 inhibition elicited similar reductions in kidney function, but COX-2 metabolites contribute to rather than ameliorate the hypertension. SUMMARY The maintenance of renal hemodynamics reflects direct and opposing effects of Ang II and COX-2 metabolites. The antagonism in water and electrolyte reabsorption is dependent on the prevailing intrarenal Ang II activity. The recent functional experiments demonstrate a beneficial modulation of Ang II by COX-2 except in the presence of inflammation promoted by hypertension, hyperglycemia, and oxidative stress.
Collapse
|
47
|
Cao X, Peterson JR, Wang G, Anrather J, Young CN, Guruju MR, Burmeister MA, Iadecola C, Davisson RL. Angiotensin II-dependent hypertension requires cyclooxygenase 1-derived prostaglandin E2 and EP1 receptor signaling in the subfornical organ of the brain. Hypertension 2012; 59:869-76. [PMID: 22371360 DOI: 10.1161/hypertensionaha.111.182071] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cyclooxygenase (COX)-derived prostanoids have long been implicated in blood pressure (BP) regulation. Recently prostaglandin E(2) (PGE(2)) and its receptor EP(1) (EP(1)R) have emerged as key players in angiotensin II (Ang II)-dependent hypertension (HTN) and related end-organ damage. However, the enzymatic source of PGE(2,) that is, COX-1 or COX-2, and its site(s) of action are not known. The subfornical organ (SFO) is a key forebrain region that mediates systemic Ang II-dependent HTN via reactive oxygen species (ROS). We tested the hypothesis that cross-talk between PGE(2)/EP(1)R and ROS signaling in the SFO is required for Ang II HTN. Radiotelemetric assessment of blood pressure revealed that HTN induced by infusion of systemic "slow-pressor" doses of Ang II was abolished in mice with null mutations in EP(1)R or COX-1 but not COX-2. Slow-pressor Ang II-evoked HTN and ROS formation in the SFO were prevented when the EP(1)R antagonist SC-51089 was infused directly into brains of wild-type mice, and Ang-II-induced ROS production was blunted in cells dissociated from SFO of EP(1)R(-/-) and COX-1(-/-) but not COX-2(-/-) mice. In addition, slow-pressor Ang II infusion caused a ≈3-fold increase in PGE(2) levels in the SFO but not in other brain regions. Finally, genetic reconstitution of EP(1)R selectively in the SFO of EP(1)R-null mice was sufficient to rescue slow-pressor Ang II-elicited HTN and ROS formation in the SFO of this model. Thus, COX 1-derived PGE(2) signaling through EP(1)R in the SFO is required for the ROS-mediated HTN induced by systemic infusion of Ang II and suggests that EP(1)R in the SFO may provide a novel target for antihypertensive therapy.
Collapse
Affiliation(s)
- Xian Cao
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Exogenous estrogen does not attenuate the association between rofecoxib and myocardial infarction in perimenopausal women. J Cardiovasc Pharmacol 2012; 57:194-200. [PMID: 21052013 DOI: 10.1097/fjc.0b013e31820350d3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rofecoxib has been proposed to increase the risk of myocardial infarction (MI) through suppression of cyclooxygenase 2–mediated prostacyclin. Estrogen may have protective effects through augmenting cyclooxygenase 2 expression and subsequently increasing prostacyclin. Estrogen may attenuate the association between rofecoxib and MI. We used 1999–2002 Medicaid claims data to measure the MI hazard ratio (HR) attributed to rofecoxib exposure in estrogen-exposed and unexposed 45- to 65-year-old women.We identified 184,169 female rofecoxib users who contributed 309,504 person-years and experienced 1217 first MIs. Estrogen exposure seemed protective [MI-HR 0.72; 95% confidence interval (CI), 0.62–0.84] in this cohort. Rofecoxib was associated with an elevated MI-HR in both estrogen-exposed (2.01; 95% CI, 1.60–2.54) and estrogen-unexposed women (1.69; 95% CI, 1.43–1.99). The rofecoxib–estrogen interaction ratio was not significantly different from 1 (1.19; 95% CI, 0.91–1.57). Although estrogen use was associated with a lower risk of MI, it did not seem to attenuate the association between rofecoxib and MI.
Collapse
|
49
|
Calderon LE, Liu S, Su W, Xie Z, Guo Z, Eberhard W, Gong MC. iPLA2β overexpression in smooth muscle exacerbates angiotensin II-induced hypertension and vascular remodeling. PLoS One 2012; 7:e31850. [PMID: 22363752 PMCID: PMC3282780 DOI: 10.1371/journal.pone.0031850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/13/2012] [Indexed: 12/12/2022] Open
Abstract
Objectives Calcium independent group VIA phospholipase A2 (iPLA2β) is up-regulated in vascular smooth muscle cells in some diseases, but whether the up-regulated iPLA2β affects vascular morphology and blood pressure is unknown. The current study addresses this question by evaluating the basal- and angiotensin II infusion-induced vascular remodeling and hypertension in smooth muscle specific iPLA2β transgenic (iPLA2β -Tg) mice. Method and Results Blood pressure was monitored by radiotelemetry and vascular remodeling was assessed by morphologic analysis. We found that the angiotensin II-induced increase in diastolic pressure was significantly higher in iPLA2β-Tg than iPLA2β-Wt mice, whereas, the basal blood pressure was not significantly different. The media thickness and media∶lumen ratio of the mesenteric arteries were significantly increased in angiotensin II-infused iPLA2β-Tg mice. Analysis revealed no difference in vascular smooth muscle cell proliferation. In contrast, adenovirus-mediated iPLA2β overexpression in cultured vascular smooth muscle cells promoted angiotensin II-induced [3H]-leucine incorporation, indicating enhanced hypertrophy. Moreover, angiotensin II infusion-induced c-Jun phosphorylation in vascular smooth muscle cells overexpressing iPLA2β to higher levels, which was abolished by inhibition of 12/15 lipoxygenase. In addition, we found that angiotensin II up-regulated the endogenous iPLA2β protein in-vitro and in-vivo. Conclusion The present study reports that iPLA2β up-regulation exacerbates angiotensin II-induced vascular smooth muscle cell hypertrophy, vascular remodeling and hypertension via the 12/15 lipoxygenase and c-Jun pathways.
Collapse
MESH Headings
- Angiotensin II/administration & dosage
- Angiotensin II/pharmacology
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/physiopathology
- Arachidonate 15-Lipoxygenase
- Arachidonic Acid/metabolism
- Blood Pressure/drug effects
- Cell Proliferation/drug effects
- Diastole/drug effects
- Group VI Phospholipases A2/metabolism
- Hypertension/enzymology
- Hypertension/pathology
- Hypertension/physiopathology
- Hypertrophy
- Leucine/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Organ Specificity/drug effects
- Proto-Oncogene Proteins c-jun/metabolism
- Rats
- Signal Transduction/drug effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Lindsay E. Calderon
- Department of Molecular and Biomedical Pharmacology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Shu Liu
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wen Su
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhongwen Xie
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Zhenheng Guo
- Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Wanda Eberhard
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ming C. Gong
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
50
|
|