1
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
2
|
Lu TT, Browning JL. Role of the Lymphotoxin/LIGHT System in the Development and Maintenance of Reticular Networks and Vasculature in Lymphoid Tissues. Front Immunol 2014; 5:47. [PMID: 24575096 PMCID: PMC3920476 DOI: 10.3389/fimmu.2014.00047] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 01/27/2014] [Indexed: 01/08/2023] Open
Abstract
Lymphoid organs are meeting zones where lymphocytes come together and encounter antigens present in the blood and lymph or as delivered by cells migrating from the draining tissue bed. The exquisite efficiency of this process relies heavily on highly specialized anatomy to direct and position the various players. Gated entry and exit control access to these theaters and reticular networks and associated chemokines guide cells into the proper sections. Lymphoid tissues are remarkably plastic, being able to expand dramatically and then involute upon resolution of the danger. All of the reticular scaffolds and vascular and lymphatic components adapt accordingly. As such, the lymph node (LN) is a wonderful example of a physiologic remodeling process and is potentially a guide to study such elements in pathological settings such as fibrosis, chronic infection, and tumor metastasis. The lymphotoxin/LIGHT axis delivers critical differentiation signals that direct and hone differentiation of both reticular networks and the vasculature. Considerable progress has been made recently in understanding the mesenchymal differentiation pathways leading to these specialized networks and in the remodeling that occurs in reactive LNs. In this article, we will review some new advances in the area in terms of developmental, differentiation, and maintenance events mediated by this axis.
Collapse
Affiliation(s)
- Theresa T Lu
- Autoimmunity and Inflammation Program and Pediatric Rheumatology, Hospital for Special Surgery , New York, NY , USA ; Department of Microbiology and Immunology, Weill Cornell Medical College , New York, NY , USA
| | - Jeffrey L Browning
- Department of Microbiology and Section of Rheumatology, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
3
|
Brandtzaeg P. Secretory IgA: Designed for Anti-Microbial Defense. Front Immunol 2013; 4:222. [PMID: 23964273 PMCID: PMC3734371 DOI: 10.3389/fimmu.2013.00222] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/16/2013] [Indexed: 01/30/2023] Open
Abstract
Prevention of infections by vaccination remains a compelling goal to improve public health. Mucosal vaccines would make immunization procedures easier, be better suited for mass administration, and most efficiently induce immune exclusion - a term coined for non-inflammatory antibody shielding of internal body surfaces, mediated principally by secretory immunoglobulin A (SIgA). The exported antibodies are polymeric, mainly IgA dimers (pIgA), produced by local plasma cells (PCs) stimulated by antigens that target the mucose. SIgA was early shown to be complexed with an epithelial glycoprotein - the secretory component (SC). A common SC-dependent transport mechanism for pIgA and pentameric IgM was then proposed, implying that membrane SC acts as a receptor, now usually called the polymeric Ig receptor (pIgR). From the basolateral surface, pIg-pIgR complexes are taken up by endocytosis and then extruded into the lumen after apical cleavage of the receptor - bound SC having stabilizing and innate functions in the secretory antibodies. Mice deficient for pIgR show that this is the only receptor responsible for epithelial export of IgA and IgM. These knockout mice show a variety of defects in their mucosal defense and changes in their intestinal microbiota. In the gut, induction of B-cells occurs in gut-associated lymphoid tissue, particularly the Peyer's patches and isolated lymphoid follicles, but also in mesenteric lymph nodes. PC differentiation is accomplished in the lamina propria to which the activated memory/effector B-cells home. The airways also receive such cells from nasopharynx-associated lymphoid tissue but by different homing receptors. This compartmentalization is a challenge for mucosal vaccination, as are the mechanisms used by the mucosal immune system to discriminate between commensal symbionts (mutualism), pathobionts, and overt pathogens (elimination).
Collapse
Affiliation(s)
- Per Brandtzaeg
- Laboratory for Immunohistochemistry and Immunopathology (LIIPAT), Centre for Immune Regulation (CIR), University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
4
|
Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP, Kirchhausen T, Carroll MC. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 2013; 38:1164-75. [PMID: 23770227 DOI: 10.1016/j.immuni.2013.02.023] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 02/07/2013] [Indexed: 01/02/2023]
Abstract
Stromal-derived follicular dendritic cells (FDCs) are a major reservoir for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate. A long-standing question is how FDCs retain antigen in its native form for extended periods and how they display it to specific B cells. Here we found that FDCs acquired complement-coated immune complexes (ICs) from noncognate B cells via complement receptors 1 and 2 (CD35 and CD21, respectively) and rapidly internalized them by an actin-dependent pathway. ICs were retained intact within a nondegradative cycling compartment and were displayed periodically on the cell surface where they were accessible to antigen-specific B cells. This would explain how antigens are protected from damage and retained over long periods of time, while remaining accessible for B cells.
Collapse
Affiliation(s)
- Balthasar A Heesters
- The Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Myers RC, King RG, Carter RH, Justement LB. Lymphotoxin α1β2 expression on B cells is required for follicular dendritic cell activation during the germinal center response. Eur J Immunol 2013; 43:348-59. [PMID: 23112125 PMCID: PMC3753018 DOI: 10.1002/eji.201242471] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 09/26/2012] [Accepted: 10/23/2012] [Indexed: 11/10/2022]
Abstract
CD19-deficient mice were used as a model to study follicular dendritic cell (FDC) activation because these mice have normal numbers of FDC-containing primary follicles, but lack the ability to activate FDCs or form GCs. It was hypothesized that CD19 expression is necessary for B-cell activation and upregulation of membrane lymphotoxin (mLT) expression, which promotes FDC activation. Using VCAM-1 and FcγRII/III as FDC activation markers, it was determined that the adoptive transfer of CD19(+) wild-type B cells into CD19-deficient hosts rescued GC formation and FDC activation, demonstrating that CD19 expression on B cells is required for FDC activation. In contrast, CD19(+) donor B cells lacking mLT were unable to induce VCAM-1 expression on FDCs, furthermore FcγRII/III upregulation was impaired in FDCs stimulated with mLT-deficient B cells. VCAM-1 expression on FDCs, but not FcγRII/III, was rescued when CD19-deficient B cells expressing transgenic mLT were cotransferred into recipient mice with CD19(+) , mLT-deficient B cells, suggesting that FDC activation requires the CD19-dependent upregulation of mLT on activated B cells. Collectively, these data demonstrate that activated B cells are responsible for the initiation of FDC activation resulting in a microenvironment supportive of GC development and maintenance.
Collapse
MESH Headings
- Animals
- Antigens, CD19/biosynthesis
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Dendritic Cells, Follicular/immunology
- Dendritic Cells, Follicular/metabolism
- Germinal Center/immunology
- Germinal Center/metabolism
- Lymphocyte Activation
- Lymphotoxin alpha1, beta2 Heterotrimer/biosynthesis
- Lymphotoxin alpha1, beta2 Heterotrimer/genetics
- Lymphotoxin alpha1, beta2 Heterotrimer/immunology
- Mice
- Mice, Inbred C57BL
- Receptors, IgG/biosynthesis
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Up-Regulation
- Vascular Cell Adhesion Molecule-1/biosynthesis
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/immunology
Collapse
Affiliation(s)
- Riley C. Myers
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Robert H. Carter
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892
| | - Louis B. Justement
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
6
|
Regulation of humoral immunity by complement. Immunity 2012; 37:199-207. [PMID: 22921118 DOI: 10.1016/j.immuni.2012.08.002] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/13/2012] [Accepted: 08/03/2012] [Indexed: 12/19/2022]
Abstract
The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity.
Collapse
|
7
|
Zeng M, Paiardini M, Engram JC, Beilman GJ, Chipman JG, Schacker TW, Silvestri G, Haase AT. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution. Blood 2012; 120:1856-67. [PMID: 22613799 PMCID: PMC3433090 DOI: 10.1182/blood-2012-03-418624] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022] Open
Abstract
Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1-infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution.
Collapse
Affiliation(s)
- Ming Zeng
- Department of Microbiology, Medical School, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Boulianne B, Porfilio EA, Pikor N, Gommerman JL. Lymphotoxin-sensitive microenvironments in homeostasis and inflammation. Front Immunol 2012; 3:243. [PMID: 22866054 PMCID: PMC3408564 DOI: 10.3389/fimmu.2012.00243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/18/2012] [Indexed: 01/04/2023] Open
Abstract
Stromal cell microenvironments within lymphoid tissues are designed to support immune cell homeostasis and to regulate ongoing immune responses to pathogens. Such stromal cell networks have been best characterized within lymphoid tissues including the spleen and peripheral lymph nodes, and systems for classifying stromal cell phenotypes and functions are emerging. In response to inflammation, stromal cell networks within lymphoid tissues change in order to accommodate and regulate lymphocyte activation. Local inflammation in non-lymphoid tissues can also induce de novo formation of lymphoid aggregates, which we term here “follicle-like structures.” Of note, the stromal cell networks that underpin such follicles are not as well characterized and may be different depending on the anatomical site. However, one common element that is integral to the maintenance of stromal cell environments, either in lymphoid tissue or in extra-lymphoid sites, is the constitutive regulation of stromal cell phenotype and/or function by the lymphotoxin (LT) pathway. Here we discuss how the LT pathway influences stromal cell environments both in homeostasis and in the context of inflammation in lymphoid and non-lymphoid tissues.
Collapse
Affiliation(s)
- Bryant Boulianne
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
9
|
Vuyyuru R, Patton J, Manser T. Human immune system mice: current potential and limitations for translational research on human antibody responses. Immunol Res 2012; 51:257-66. [PMID: 22038527 DOI: 10.1007/s12026-011-8243-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has recently become possible to generate chimeric mice durably engrafted with many components of the human immune system (HIS mice). We have characterized the maturation and function of the B cell compartment of HIS mice. The antibody response of HIS mice to T cell-dependent B cell antigens is limited, and contributing factors may be the general immaturity of the B cell compartment, infrequent helper T cells selected on human MHC class II antigens, and incomplete reconstitution of secondary lymphoid organs and their microenvironments. In contrast, HIS mice generate protective antibody responses to the bacterium Borrelia hermsii, which acts as a T cell-independent antigen in mice, but do not respond to purified polysaccharide antigens (PPS). We speculate that the anti-B. hermsii response of HIS mice is derived from an abundant B cell subset that may be analogous to B1 B cells in mice. We suggest that failure of HIS mice to respond to PPS is due to the lack of a B cell subset that may originate from adult bone marrow and is highly dependent on human interleukin-7 for development.
Collapse
Affiliation(s)
- Raja Vuyyuru
- Department of Microbiology and Immunology, Thomas Jefferson University, 302 BLSB, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
10
|
Haybaeck J, Zeller N, Wolf MJ, Weber A, Wagner U, do Kurrer MO, Bremer J, Iezzi G, Graf R, Clavien PA, Thimme R, Blum H, Nedospasov SA, Zatloukal K, Ramzan M, Ciesek S, Pietschmann T, Marche PN, Karin M, Kopf M, Browning JL, Aguzzi A, Heikenwalder M. A lymphotoxin-driven pathway to hepatocellular carcinoma. Cancer Cell 2009; 16:295-308. [PMID: 19800575 PMCID: PMC4422166 DOI: 10.1016/j.ccr.2009.08.021] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 06/20/2009] [Accepted: 08/24/2009] [Indexed: 12/13/2022]
Abstract
Hepatitis B and C viruses (HBV and HCV) cause chronic hepatitis and hepatocellular carcinoma (HCC) by poorly understood mechanisms. We show that cytokines lymphotoxin (LT) alpha and beta and their receptor (LTbetaR) are upregulated in HBV- or HCV-induced hepatitis and HCC. Liver-specific LTalphabeta expression in mice induces liver inflammation and HCC, causally linking hepatic LT overexpression to hepatitis and HCC. Development of HCC, composed in part of A6(+) oval cells, depends on lymphocytes and IKappa B kinase beta expressed by hepatocytes but is independent of TNFR1. In vivo LTbetaR stimulation implicates hepatocytes as the major LT-responsive liver cells, and LTbetaR inhibition in LTalphabeta-transgenic mice with hepatitis suppresses HCC formation. Thus, sustained LT signaling represents a pathway involved in hepatitis-induced HCC.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/virology
- Case-Control Studies
- Cell Transformation, Viral
- Chemokines/metabolism
- Chromosome Aberrations
- Gene Expression Regulation, Neoplastic
- Hepatitis B, Chronic/immunology
- Hepatitis C, Chronic/immunology
- Hepatocytes/immunology
- Hepatocytes/virology
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- Ligands
- Liver/immunology
- Liver/virology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/virology
- Lymphocytes/immunology
- Lymphocytes/virology
- Lymphotoxin beta Receptor/genetics
- Lymphotoxin beta Receptor/metabolism
- Lymphotoxin-alpha/genetics
- Lymphotoxin-alpha/metabolism
- Lymphotoxin-beta/genetics
- Lymphotoxin-beta/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- RNA, Messenger/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Recombinant Proteins/metabolism
- Signal Transduction
- Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Johannes Haybaeck
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, CH 8091 Zurich, Switzerland
| | - Nicolas Zeller
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, CH 8091 Zurich, Switzerland
| | - Monika Julia Wolf
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, CH 8091 Zurich, Switzerland
| | - Achim Weber
- Department of Pathology, Institute of Clinical Pathology, University Hospital Zurich, CH 8091 Zurich, Switzerland
| | - Ulrich Wagner
- Functional Genomics Center Zurich, University Zurich, CH 8057 Zurich, Switzerland
| | - Michael O do Kurrer
- Department of Pathology, Cantonal Hospital Aarau, CH 5001 Aarau, Switzerland
| | - Juliane Bremer
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, CH 8091 Zurich, Switzerland
| | - Giandomenica Iezzi
- Institute of Integrative Biology, Molecular Biomedicine, Swiss Federal Institute of Technology (ETH), Zurich, Schlieren, CH 8952 Schlieren, Switzerland
| | - Rolf Graf
- Swiss HPB (Hepato-Pancreatico-Biliary) Center, Department of Surgery, University Hospital Zurich, CH 8091 Zurich, Switzerland
| | - Pierre-Alain Clavien
- Swiss HPB (Hepato-Pancreatico-Biliary) Center, Department of Surgery, University Hospital Zurich, CH 8091 Zurich, Switzerland
| | - Robert Thimme
- Department of Internal Medicine, University of Freiburg, D-79095 Freiburg, Germany
| | - Hubert Blum
- Department of Internal Medicine, University of Freiburg, D-79095 Freiburg, Germany
| | - Sergei A. Nedospasov
- Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia, and German Rheumatism Research Center, Berlin, 10117, Germany
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, A 8036 Graz, Austria
| | - Muhammad Ramzan
- INSERM & Université Joseph Fourier-Grenoble, Unité 823, Institut Albert Bonniot UJF Site Santé BP 170 La Tronche, F 38042 Grenoble, France
| | - Sandra Ciesek
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), D-30625 Hannover, Germany
| | - Thomas Pietschmann
- Division of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), D-30625 Hannover, Germany
| | - Patrice N. Marche
- INSERM & Université Joseph Fourier-Grenoble, Unité 823, Institut Albert Bonniot UJF Site Santé BP 170 La Tronche, F 38042 Grenoble, France
| | - Michael Karin
- University of California, San Diego and University of California, Los Angeles, CA 92093-0723, USA
| | - Manfred Kopf
- Institute of Integrative Biology, Molecular Biomedicine, Swiss Federal Institute of Technology (ETH), Zurich, Schlieren, CH 8952 Schlieren, Switzerland
| | | | - Adriano Aguzzi
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, CH 8091 Zurich, Switzerland
| | - Mathias Heikenwalder
- Department of Pathology, Institute of Neuropathology, University Hospital Zurich, CH 8091 Zurich, Switzerland
| |
Collapse
|
11
|
B cell acquisition of antigen in vivo. Curr Opin Immunol 2009; 21:251-7. [PMID: 19515546 DOI: 10.1016/j.coi.2009.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 05/06/2009] [Accepted: 05/08/2009] [Indexed: 01/13/2023]
Abstract
The fate of B lymphocytes is dictated in large part by cognate antigen and the environment in which it is encountered. Yet we are only now beginning to understand where and how B cells acquire antigen. Recent studies identify multiple pathways by which lymph-borne antigens enter the B cell follicles of LNs. Size is a major factor as particulate antigens and large IC are bound by subcapsular sinus macrophages. By contrast, small antigens (under 70kDa) are rapidly channeled into follicles via conduits secreted by fibroblastic reticular cells (FRC). Interestingly, the conduits not only deliver antigen to follicular dendritic cells (FDC) but also provide a rich source of B cell chemokine, that is, CXCL-13. Thus, the follicular conduits provide an 'antigen highway' for B cells trafficking within the LN. These new findings provide an important discovery in understanding how B cells acquire cognate antigen.
Collapse
|
12
|
Vu F, Dianzani U, Ware CF, Mak T, Gommerman JL. ICOS, CD40, and lymphotoxin beta receptors signal sequentially and interdependently to initiate a germinal center reaction. THE JOURNAL OF IMMUNOLOGY 2008; 180:2284-93. [PMID: 18250437 DOI: 10.4049/jimmunol.180.4.2284] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Germinal center (GC) responses to T-dependent Ags require effective collaboration between Th cells, activated B cells, and follicular dendritic cells within a highly organized microenvironment. Studies using gene-targeted mice have highlighted nonredundant molecules that are key for initiating and maintaining the GC niche, including the molecules of the ICOS, CD40, and lymphotoxin (LT) pathways. Signaling through ICOS has multiple consequences, including cytokine production, expression of CD40L on Th cells, and differentiation into CXCR5(+) follicular Th cells, all of which are important in the GC reaction. We have therefore taken advantage of ICOS(-/-) mice to dissect which downstream elements are required to initiate the formation of GC. In the context of a T-dependent immune response, we found that GC B cells from ICOS(-/-) mice express lower levels of LTalphabeta compared with wild-type GC B cells in vivo, and stimulation of ICOS on T cells induces LTalphabeta on B cells in vitro. Administration of agonistic anti-LTbeta receptor Ab was unable to restore the GC response in ICOS(-/-) mice, suggesting that additional input from another pathway is required for optimal GC generation. In contrast, treatment with agonistic anti-CD40 Ab in vivo recovered GC networks and restored LTalphabeta expression on GC B cells in ICOS(-/-) mice, and this effect was dependent on LTbeta receptor signaling. Collectively, these data demonstrate that ICOS activation is a prerequisite for the up-regulation of LTalphabeta on GC B cells in vivo and provide a model for cooperation between ICOS, CD40, and LT pathways in the context of the GC response.
Collapse
Affiliation(s)
- Frances Vu
- Department of Immunology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
13
|
Murakami T, Chen X, Hase K, Sakamoto A, Nishigaki C, Ohno H. Splenic CD19-CD35+B220+ cells function as an inducer of follicular dendritic cell network formation. Blood 2007; 110:1215-24. [PMID: 17519390 PMCID: PMC1939903 DOI: 10.1182/blood-2007-01-068387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Follicular dendritic cells (FDCs) form a reticular FDC network in the lymphoid follicle that is essential for the retention and presentation of native antigens in the form of antigen-antibody immune complexes (ICs) to B cells during secondary immune response. Although the presence of migrating precursors of FDCs has been hypothesized, their entity has not been elucidated. Here we report the identification of murine splenic CD19(-)CD11c(-)CD35(+)B220(+) cells as an inducer of FDC network formation. We demonstrated that CD19(-)-CD11c(-)CD35(+)B220(+) cells, together with stromal cells, had the remarkable ability to form lymphoid-follicle-like structures that contained B220(+)FDC-M1(+) reticular cells originally derived from CD19(-)-CD11c(-)CD35(+)B220(+) cells in the CD35(+) reticulum. Our results indicate that CD19(-)CD11c(-)CD35(+)B220(+) cells function as an inducer of FDC network formation and that the interaction between CD19(-)CD11c(-)CD35(+)B220(+) cells and stromal cells is required to initiate lymphoid follicle formation.
Collapse
MESH Headings
- Animals
- Antigens, CD19/metabolism
- Cell Differentiation
- Cell Lineage
- Dendritic Cells, Follicular/cytology
- Dendritic Cells, Follicular/metabolism
- Flow Cytometry
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Immunophenotyping
- Killer Cells, Natural/classification
- Killer Cells, Natural/immunology
- Leukocyte Common Antigens/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Receptors, Complement 3b/metabolism
- Spleen/cytology
- Stromal Cells/cytology
- Stromal Cells/immunology
- Stromal Cells/metabolism
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Takaya Murakami
- Laboratory for Epithelial Immunobiology, Rikagaku Kenkyusho (RIKEN) Research Center for Allergy and Immunology, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Vugmeyster Y, Seshasayee D, Chang W, Storn A, Howell K, Sa S, Nelson T, Martin F, Grewal I, Gilkerson E, Wu B, Thompson J, Ehrenfels BN, Ren S, Song A, Gelzleichter TR, Danilenko DM. A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:476-89. [PMID: 16436662 PMCID: PMC1606502 DOI: 10.2353/ajpath.2006.050600] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BAFF (also known as BLyS), a member of the tumor necrosis factor superfamily, plays a critical role in the maturation and development of B cells. BAFF has three receptors on B cells, the most crucial of which is BR3. In this study, we demonstrate the biological outcome of BAFF blockade in cynomolgus monkeys using a soluble fusion protein consisting of human BR3 and human IgG1 Fc. In vitro, BR3-Fc blocked BAFF-mediated survival and proliferation of cynomolgus monkey B cells. Weekly treatment of cynomolgus monkeys with BR3-Fc for 13 to 18 weeks resulted in significant B-cell reduction in the peripheral blood and in lymphoid organs. CD21(high) B cells in lymphoid tissues, a subset analogous to human marginal zone B cells, expressed nearly twofold higher BR3 levels than did CD21(med) B cells. Lymphoid tissue flow cytometric analysis showed that BR3-Fc reduced this CD21(high) B-cell subset to a greater extent than it reduced CD21(med) B cells. Dual-label immunohistochemistry and morphometric image analysis supported these results by demonstrating that BR3-Fc reduced a significant proportion of the B cells within the splenic inner and outer marginal zones. These findings should prove very useful in guiding the desired therapeutic use of BR3-Fc for autoimmune diseases in the clinic.
Collapse
|
15
|
Spahn TW, Eugster HP, Fontana A, Domschke W, Kucharzik T. Role of lymphotoxin in experimental models of infectious diseases: potential benefits and risks of a therapeutic inhibition of the lymphotoxin-beta receptor pathway. Infect Immun 2005; 73:7077-88. [PMID: 16239501 PMCID: PMC1273913 DOI: 10.1128/iai.73.11.7077-7088.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Thomas W Spahn
- Department of General Internal Medicine and Gastroenterology, Marienhospital Osnabrück, Johannisfreiheit 2-4, 49074 Osnabrück, Germany.
| | | | | | | | | |
Collapse
|
16
|
Gommerman JL, Giza K, Perper S, Sizing I, Ngam-Ek A, Nickerson-Nutter C, Browning JL. A role for surface lymphotoxin in experimental autoimmune encephalomyelitis independent of LIGHT. J Clin Invest 2003; 112:755-67. [PMID: 12952924 PMCID: PMC182210 DOI: 10.1172/jci18648] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In studies using genetically deficient mice, a role for the lymphotoxin (LT) system in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) has remained controversial. Here, we have reassessed this conclusion by using a fusion protein decoy that blocks the LT pathway in vivo without evoking the developmental defects inherent in LT-deficient mice. We have found that inhibition of the LT pathway prevented disease in two models of EAE that do not rely on the administration of pertussis toxin. Surprisingly, disease attenuation was due to specific blockade of LTalphabeta binding rather than the binding of LIGHT to its receptors. In a third system that requires pertussis toxin, LT inhibition did not affect disease, as was observed when the same model was used with LT-deficient mice. Disease prevention in pertussis toxin-free models was associated with defects in T cell responses and migration. When the DO11.10 T cell transgenic system was used, inhibition of the LT pathway was shown to uncouple T cell priming from T cell recall responses. Therefore, it is hypothesized that the LT pathway and its ability to maintain lymphoid microenvironments is critical for sustaining late-phase T cell responses in multiple sclerosis.
Collapse
|
17
|
Mabbott NA, Young J, McConnell I, Bruce ME. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. J Virol 2003; 77:6845-54. [PMID: 12768004 PMCID: PMC156207 DOI: 10.1128/jvi.77.12.6845-6854.2003] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) may be acquired peripherally, in which case infectivity usually accumulates in lymphoid tissues before dissemination to the nervous system. Studies of mouse scrapie models have shown that mature follicular dendritic cells (FDCs), expressing the host prion protein (PrP(c)), are critical for replication of infection in lymphoid tissues and subsequent neuroinvasion. Since FDCs require lymphotoxin signals from B lymphocytes to maintain their differentiated state, blockade of this stimulation with a lymphotoxin beta receptor-immunoglobulin fusion protein (LT beta R-Ig) leads to their temporary dedifferentiation. Here, a single treatment with LT beta R-Ig before intraperitoneal scrapie inoculation blocked the early accumulation of infectivity and disease-specific PrP (PrP(Sc)) within the spleen and substantially reduced disease susceptibility. These effects coincided with an absence of FDCs in the spleen for ca. 28 days after treatment. Although the period of FDC dedifferentiation was extended to at least 49 days by consecutive LT beta R-Ig treatments, this had little added protective benefit after injection with a moderate dose of scrapie. We also demonstrate that mature FDCs are critical for the transmission of scrapie from the gastrointestinal tract. Treatment with LT beta R-Ig before oral scrapie inoculation blocked PrP(Sc) accumulation in Peyer's patches and mesenteric lymph nodes and prevented neuroinvasion. However, treatment 14 days after oral inoculation did not affect survival time or susceptibility, suggesting that infectivity may have already spread to the peripheral nervous system. Although manipulation of FDCs may offer a potential approach for early intervention in peripherally acquired TSEs, these data suggest that the duration of the treatment window may vary widely depending on the route of exposure.
Collapse
Affiliation(s)
- Neil A Mabbott
- Neuropathogenesis Unit, Institute for Animal Health, Edinburgh EH9 3JF, Scotland, United Kingdom.
| | | | | | | |
Collapse
|