1
|
Chan DC, Watts GF. Inhibition of the ANGPTL3/8 Complex for the Prevention and Treatment of Atherosclerotic Cardiovascular Disease. Curr Atheroscler Rep 2024; 27:6. [PMID: 39565562 DOI: 10.1007/s11883-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW Dyslipidemia is a casual risk factor for atherosclerotic cardiovascular disease (ASCVD). There is an unmet need for more effective treatments for patients with dyslipidemias. Angiopoietin-like protein 3 (ANGPTL3) and ANGPTL8 play key roles in triglyceride trafficking and energy balance in humans. We review the functional role of these ANGPTL proteins in the regulation of lipoprotein metabolism, and recent clinical trials targeting ANGPTL3 and ANGPTL3/8 with monoclonal antibody and/or nucleic acid therapies, including antisense oligonucleotides and small interfering RNA. RECENT FINDINGS Cumulative evidence supports the roles of ANGPTL3 and ANGPTL8 in lipid metabolism through inhibition of lipoprotein lipase and endothelial lipase activity. ANGPTL3 and ANGPTL3/8 inhibitors are effective in lowering plasma triglycerides and low-density lipoprotein (LDL)-cholesterol, with the possible advantage of raising high-density lipoprotein (HDL)-cholesterol with the inhibition of ANGPTL3/8. Therapeutic inhibition of ANGPTL3 and ANGPTL3/8 can lower plasma triglyceride and LDL-cholesterol levels possibly by lowering production and upregulating catabolism of triglyceride-rich lipoprotein and LDL particles. However, the effect of these novel agents on HDL metabolism remains unclear. The cardiovascular benefits of ANGPTL3 and ABGPTL3/8 inhibitors may also include improvement in vascular inflammation, but this requires further investigation.
Collapse
Affiliation(s)
- Dick C Chan
- Medical School, University of Western Australia, Perth, Australia
| | - Gerald F Watts
- Medical School, University of Western Australia, Perth, Australia.
- Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Australia.
| |
Collapse
|
2
|
Nguyen LP, Song W, Yang Y, Tran AP, Weston TA, Jung H, Tu Y, Kim PH, Kim JR, Xie K, Yu RG, Scheithauer J, Presnell AM, Ploug M, Birrane G, Arnold H, Koltowska K, Mäe MA, Betsholtz C, He L, Goodwin JL, Beigneux AP, Fong LG, Young SG. Distinct strategies for intravascular triglyceride metabolism in hearts of mammals and lower vertebrate species. JCI Insight 2024; 9:e184940. [PMID: 39435661 PMCID: PMC11529983 DOI: 10.1172/jci.insight.184940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Lipoprotein lipase (LPL) and multiple regulators of LPL activity (e.g., APOC2 and ANGPTL4) are present in all vertebrates, but GPIHBP1-the endothelial cell (EC) protein that captures LPL within the subendothelial spaces and transports it to its site of action in the capillary lumen-is present in mammals but in not chickens or other lower vertebrates. In mammals, GPIHBP1 deficiency causes severe hypertriglyceridemia, but chickens maintain low triglyceride levels despite the absence of GPIHBP1. To understand intravascular lipolysis in lower vertebrates, we examined LPL expression in mouse and chicken hearts. In both species, LPL was abundant on capillaries, but the distribution of Lpl transcripts was strikingly different. In mouse hearts, Lpl transcripts were extremely abundant in cardiomyocytes but were barely detectable in capillary ECs. In chicken hearts, Lpl transcripts were absent in cardiomyocytes but abundant in capillary ECs. In zebrafish hearts, lpl transcripts were also in capillary ECs but not cardiomyocytes. In both mouse and chicken hearts, LPL was present, as judged by immunogold electron microscopy, in the glycocalyx of capillary ECs. Thus, mammals produce LPL in cardiomyocytes and rely on GPIHBP1 to transport the LPL into capillaries, whereas lower vertebrates produce LPL directly in capillary ECs, rendering an LPL transporter unnecessary.
Collapse
Affiliation(s)
| | | | - Ye Yang
- Department of Medicine and
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | | | | | | | | | | | | | | | | | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Hannah Arnold
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Katarzyna Koltowska
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Beijer Gene and Neuro Laboratory, Uppsala University, Uppsala, Sweden
| | - Maarja A. Mäe
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Christer Betsholtz
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- Department of Medicine-Huddinge, Karolinska Institute Campus Flemingsberg, Huddinge, Sweden
| | - Liqun He
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeffrey L. Goodwin
- Division of Laboratory Animal Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | | | | | - Stephen G. Young
- Department of Medicine and
- Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
3
|
Yang Y, Konrad RJ, Ploug M, Young SG. APOA5 deficiency causes hypertriglyceridemia by reducing amounts of lipoprotein lipase in capillaries. J Lipid Res 2024; 65:100578. [PMID: 38880127 PMCID: PMC11299584 DOI: 10.1016/j.jlr.2024.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024] Open
Abstract
Apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia in mice and humans. For years, the cause remained a mystery, but the mechanisms have now come into focus. Here, we review progress in defining APOA5's function in plasma triglyceride metabolism. Biochemical studies revealed that APOA5 binds to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppresses its ability to inhibit the activity of lipoprotein lipase (LPL). Thus, APOA5 deficiency is accompanied by increased ANGPTL3/8 activity and lower levels of LPL activity. APOA5 deficiency also reduces amounts of LPL in capillaries of oxidative tissues (e.g., heart, brown adipose tissue). Cell culture experiments revealed the likely explanation: ANGPTL3/8 detaches LPL from its binding sites on the surface of cells, and that effect is blocked by APOA5. Both the low intracapillary LPL levels and the high plasma triglyceride levels in Apoa5-/- mice are normalized by recombinant APOA5. Carboxyl-terminal sequences in APOA5 are crucial for its function; a mutant APOA5 lacking 40-carboxyl-terminal residues cannot bind to ANGPTL3/8 and lacks the ability to change intracapillary LPL levels or plasma triglyceride levels in Apoa5-/- mice. Also, an antibody against the last 26 amino acids of APOA5 reduces intracapillary LPL levels and increases plasma triglyceride levels in wild-type mice. An inhibitory ANGPTL3/8-specific antibody functions as an APOA5-mimetic reagent, increasing intracapillary LPL levels and lowering plasma triglyceride levels in both Apoa5-/- and wild-type mice. That antibody is a potentially attractive strategy for treating elevated plasma lipid levels in human patients.
Collapse
Affiliation(s)
- Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Michael Ploug
- Finsen Laboratory, Copenhagen University Hospital-Rigshospitalet, Copenhagen N, Denmark; Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen N, Denmark
| | - Stephen G Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Zhang R, Zhang K. A unified model for regulating lipoprotein lipase activity. Trends Endocrinol Metab 2024; 35:490-504. [PMID: 38521668 PMCID: PMC11663433 DOI: 10.1016/j.tem.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/25/2024]
Abstract
The regulation of triglyceride (TG) tissue distribution, storage, and utilization, a fundamental process of energy homeostasis, critically depends on lipoprotein lipase (LPL). We review the intricate mechanisms by which LPL activity is regulated by angiopoietin-like proteins (ANGPTL3, 4, 8), apolipoproteins (APOA5, APOC3, APOC2), and the cAMP-responsive element-binding protein H (CREBH). ANGPTL8 functions as a molecular switch, through complex formation, activating ANGPTL3 while deactivating ANGPTL4 in their LPL inhibition. The ANGPTL3-4-8 model integrates the roles of the aforementioned proteins in TG partitioning between white adipose tissue (WAT) and oxidative tissues (heart and skeletal muscles) during the feed/fast cycle. This model offers a unified perspective on LPL regulation, providing insights into TG metabolism, metabolic diseases, and therapeutics.
Collapse
Affiliation(s)
- Ren Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Chen YQ, Yang Y, Zhen EY, Beyer TP, Li H, Wen Y, Ehsani M, Jackson N, Xie K, Jung H, Scheithauer JL, Kumari A, Birrane G, Russell AM, Balasubramaniam D, Liao Z, Siegel RW, Qian Y, Ploug M, Young SG, Konrad RJ. Carboxyl-terminal sequences in APOA5 are important for suppressing ANGPTL3/8 activity. Proc Natl Acad Sci U S A 2024; 121:e2322332121. [PMID: 38625948 PMCID: PMC11046700 DOI: 10.1073/pnas.2322332121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/16/2024] [Indexed: 04/18/2024] Open
Abstract
Apolipoprotein AV (APOA5) lowers plasma triglyceride (TG) levels by binding to the angiopoietin-like protein 3/8 complex (ANGPTL3/8) and suppressing its capacity to inhibit lipoprotein lipase (LPL) catalytic activity and its ability to detach LPL from binding sites within capillaries. However, the sequences in APOA5 that are required for suppressing ANGPTL3/8 activity have never been defined. A clue to the identity of those sequences was the presence of severe hypertriglyceridemia in two patients harboring an APOA5 mutation that truncates APOA5 by 35 residues ("APOA5Δ35"). We found that wild-type (WT) human APOA5, but not APOA5Δ35, suppressed ANGPTL3/8's ability to inhibit LPL catalytic activity. To pursue that finding, we prepared a mutant mouse APOA5 protein lacking 40 C-terminal amino acids ("APOA5Δ40"). Mouse WT-APOA5, but not APOA5Δ40, suppressed ANGPTL3/8's capacity to inhibit LPL catalytic activity and sharply reduced plasma TG levels in mice. WT-APOA5, but not APOA5Δ40, increased intracapillary LPL levels and reduced plasma TG levels in Apoa5-/- mice (where TG levels are high and intravascular LPL levels are low). Also, WT-APOA5, but not APOA5Δ40, blocked the ability of ANGPTL3/8 to detach LPL from cultured cells. Finally, an antibody against a synthetic peptide corresponding to the last 26 amino acids of mouse APOA5 reduced intracapillary LPL levels and increased plasma TG levels in WT mice. We conclude that C-terminal sequences in APOA5 are crucial for suppressing ANGPTL3/8 activity in vitro and for regulating intracapillary LPL levels and plasma TG levels in vivo.
Collapse
Affiliation(s)
- Yan Q. Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Ye Yang
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Eugene Y. Zhen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Thomas P. Beyer
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Hongxia Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Yi Wen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Mariam Ehsani
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Nicholas Jackson
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Katherine Xie
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Hyesoo Jung
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Julia L. Scheithauer
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Anni Kumari
- Finsen Laboratory, Centre for Cancer and Organ Diseases, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Gabriel Birrane
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Boston, MA02215
| | - Anna M. Russell
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | | | - Zhongping Liao
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Robert W. Siegel
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| | - Michael Ploug
- Finsen Laboratory, Centre for Cancer and Organ Diseases, Copenhagen University Hospital-Rigshospitalet, DK-2200Copenhagen N, Denmark
- Finsen Laboratory, Biotech Research and Innovation Centre, University of Copenhagen, DK-2200Copenhagen N, Denmark
| | - Stephen G. Young
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Robert J. Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN462585
| |
Collapse
|
6
|
Hoffmann WG, Chen YQ, Schwartz CS, Barber JL, Dev PK, Reasons RJ, Miranda Maravi JS, Armstrong B, Gerszten RE, Silbernagel G, Konrad RJ, Bouchard C, Sarzynski MA. Effects of exercise training on ANGPTL3/8 and ANGPTL4/8 and their associations with cardiometabolic traits. J Lipid Res 2024; 65:100495. [PMID: 38160757 PMCID: PMC10832466 DOI: 10.1016/j.jlr.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
Angiopoietin-like protein (ANGPTL) complexes 3/8 and 4/8 are established inhibitors of LPL and novel therapeutic targets for dyslipidemia. However, the effects of regular exercise on ANGPTL3/8 and ANGPTL4/8 are unknown. We characterized ANGPTL3/8 and ANGPTL4/8 and their relationship with in vivo measurements of lipase activities and cardiometabolic traits before and after a 5-month endurance exercise training intervention in 642 adults from the HERITAGE (HEalth, RIsk factors, exercise Training And GEnetics) Family Study. At baseline, higher levels of both ANGPTL3/8 and ANGPTL4/8 were associated with a worse lipid, lipoprotein, and cardiometabolic profile, with only ANGPTL3/8 associated with postheparin LPL and HL activities. ANGPTL3/8 significantly decreased with exercise training, which corresponded with increases in LPL activity and decreases in HL activity, plasma triglycerides, apoB, visceral fat, and fasting insulin (all P < 5.1 × 10-4). Exercise-induced changes in ANGPTL4/8 were directly correlated to concomitant changes in total cholesterol, LDL-C, apoB, and HDL-triglycerides and inversely related to change in insulin sensitivity index (all P < 7.0 × 10-4). In conclusion, exercise-induced decreases in ANGPTL3/8 and ANGPTL4/8 were related to concomitant improvements in lipase activity, lipid profile, and cardiometabolic risk factors. These findings reveal the ANGPTL3-4-8 model as a potential molecular mechanism contributing to adaptations in lipid metabolism in response to exercise training.
Collapse
Affiliation(s)
| | - Yan Q Chen
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Charles S Schwartz
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Jacob L Barber
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA; Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Prasun K Dev
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Riley J Reasons
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | | | - Bridget Armstrong
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Günther Silbernagel
- Division of Vascular Medicine, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Robert J Konrad
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Mark A Sarzynski
- Department of Exercise Science, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|