1
|
Kim DH, Lee J, Suh Y, Chen PR, Lee K. Up-regulation of Melanophilin (MLPH) gene during avian adipogenesis and decreased fat pad weights with adipocyte hypotrophy in MLPH knockout quail. Poult Sci 2024; 104:104720. [PMID: 39729733 DOI: 10.1016/j.psj.2024.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024] Open
Abstract
Advanced genetic and nutritional strategies aimed at modulating fat deposition can significantly reduce production costs and enhance profitability in the poultry industry. Melanophilin (MLPH) is recognized as a key gene regulating pigmentation as shown by diluted hair and feather coloration in MLPH mutant animals, including avian models. However, the effects of MLPH during fat accretion have not been studied yet. Therefore, the objectives of the current study are to measure the temporal expression of the MLPH gene during the adipocyte differentiation in vitro and in vivo and to investigate the effect of MLPH loss on fat accretion and adipocyte sizes in vivo using MLPH knockout quail model. The current in vitro studies reveal that MLPH gene expression levels were considerably elevated during adipogenesis in avian cells [101-fold in DF-1, 28.5-fold in chicken embryonic fibroblasts (CEF) and 4-fold in quail embryonic fibroblasts (QEF), compared to the undifferentiated cells of each cell type, p < 0.05]. In addition, fractionated fat cells (FC) showed increased expression levels of MLPH (5.7-fold, p < 0.05) compared to stromal-vascular cells (SVC). Using the MLPH knockout quail, disruption of the MLPH gene resulted in significantly reduced body weight (BW) and subcutaneous fat (S. Fat) pad weights compared to the wild type (WT) (p < 0.05). Further analysis through sectioning and staining of the fat tissues revealed that the mutation in Rab binding domain (RBD) of quail MLPH resulted in decreased fat cell sizes (p < 0.01). Overall, our data clearly demonstrated that MLPH can be a potential adipogenic marker gene, and MLPH may be associated with fat accretion in the gene edited quail model, highlighting the important role of MLPH in adipogenesis.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, South Korea
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Yeunsu Suh
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Paula R Chen
- USDA-ARS, Plant Genetics Research Unit, Columbia, MO 65211, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Halder R, Chu ZT, Ti R, Zhu L, Warshel A. On the Control of Directionality of Myosin. J Am Chem Soc 2024. [PMID: 39367841 DOI: 10.1021/jacs.4c09528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
The origin of the unique directionality of myosin has been a problem of fundamental and practical importance. This work establishes in a conclusive way that the directionality is controlled by tuning the barrier for the rate-determining step, namely, the ADP release step. This conclusion is based on exploring the molecular origin behind the reverse directionality of myosins V and VI and the determination of the origin of the change in the barriers of the ADP release for the forward and backward motions. Our investigation is performed by combining different simulation methods such as steer molecular dynamics (SMD), umbrella sampling, renormalization method, and automated path searching method. It is found that in the case of myosin V, the ADP release from the postrigor (trailing head) state overcomes a lower barrier than the prepowerstroke (leading head) state, which is also evident from experimental observation. In the case of myosin VI, we noticed a different trend when compared to myosin V. Since the directionality of myosins V and VI follows a reverse trend, we conclude that such differences in the directionality are controlled by the free energy barrier for the ADP release. Overall, the proof that the directionality of myosin is determined by the activation barrier of the rate-determining step in the cycle, rather than by some unspecified dynamical effects, has general importance.
Collapse
Affiliation(s)
- Ritaban Halder
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Zhen Tao Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| | - Rujuan Ti
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, United States
| |
Collapse
|
3
|
Kumar LS, Raghavendra PR, Nair S, Vijaya Nathan D M, Bargir UA, Haribalakrishna A, Mahajan SA. Silver hair in a neonate: a tale of 2 fatal cases. Oxf Med Case Reports 2024; 2024:omae106. [PMID: 39281335 PMCID: PMC11393566 DOI: 10.1093/omcr/omae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/21/2024] [Indexed: 09/18/2024] Open
Abstract
Silver hair in a neonate is an uncommon occurrence. The aetiology of this condition is varied and is associated with immunodeficiency disorders such as Griscelli syndrome and Chédiak-Higashi syndrome. A preterm neonate with Griscelli syndrome type 2 might present with just silver colour staining of hair including the lanugo hair with no other complications. In those with associated systemic abnormalities such as congenital pulmonary airway malformation, further evaluation for conditions such as Menke-Kinke hair syndrome is required. In this case series, we describe two unique cases of silver hair syndrome in preterm neonates with their clinical description, course in the hospital, role of hair mount and genetic testing for further identification and diagnosis of this disorder.
Collapse
Affiliation(s)
- Lakshmi Satish Kumar
- Department of Neonatology, Seth G.S. Medical College and King Edward Memorial Hospital, Acharya Donde Marg, Parel, Mumbai 400012, India
| | - Prashanth Ranya Raghavendra
- Department of Neonatology, Seth G.S. Medical College and King Edward Memorial Hospital, Acharya Donde Marg, Parel, Mumbai 400012, India
| | - Sruthi Nair
- Department of Neonatology, Seth G.S. Medical College and King Edward Memorial Hospital, Acharya Donde Marg, Parel, Mumbai 400012, India
| | - Muthu Vijaya Nathan D
- Department of Neonatology, Seth G.S. Medical College and King Edward Memorial Hospital, Acharya Donde Marg, Parel, Mumbai 400012, India
| | - Umair Ahmed Bargir
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, Seth G.S. Medical College and King Edward Memorial Hospital, Acharya Donde Marg, Mumbai, Maharashtra 400012, India
| | - Anitha Haribalakrishna
- Department of Neonatology, Seth G.S. Medical College and King Edward Memorial Hospital, Acharya Donde Marg, Parel, Mumbai 400012, India
| | - Sunanda Arun Mahajan
- Department of Dermatology, Seth G.S. Medical College and King Edward Memorial Hospital, Acharya Donde Marg, Parel, Mumbai 400012, India
| |
Collapse
|
4
|
Mazzetto R, Miceli P, Sernicola A, Tartaglia J, Alaibac M. Skin Hypopigmentation in Hematology Disorders. Hematol Rep 2024; 16:354-366. [PMID: 38921184 PMCID: PMC11204138 DOI: 10.3390/hematolrep16020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024] Open
Abstract
Hypopigmentation disorders pose significant diagnostic challenges in dermatology, sometimes reflecting underlying hematological conditions. This review explores the clinical presentations related to hypopigmentation in hematological disorders, focusing on vitiligo, morphea, and syndromic albinism. Vitiligo, an autoimmune disorder targeting melanocytes, involves interactions between genetic polymorphisms and immune responses, particularly regarding CD8+ T cells and IFN-γ. Drug-induced vitiligo, notably by immune checkpoint inhibitors and small-molecule targeted anticancer therapies, underscores the importance of immune dysregulation. Morphea, an inflammatory skin disorder, may signal hematological involvement, as seen in deep morphea and post-radiotherapy lesions. Syndromic albinism, linked to various genetic mutations affecting melanin production, often presents with hematologic abnormalities. Treatment approaches focus on targeting the immune pathways specific to the condition, and when that is not possible, managing symptoms. Understanding these dermatological manifestations is crucial for the timely diagnosis and management of hematological disorders.
Collapse
Affiliation(s)
| | | | - Alvise Sernicola
- Dermatology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padova, Italy; (R.M.); (J.T.); (M.A.)
| | | | | |
Collapse
|
5
|
Ungvari A, Kiss T, Gulej R, Tarantini S, Csik B, Yabluchanskiy A, Mukli P, Csiszar A, Harris ML, Ungvari Z. Irradiation-induced hair graying in mice: an experimental model to evaluate the effectiveness of interventions targeting oxidative stress, DNA damage prevention, and cellular senescence. GeroScience 2024; 46:3105-3122. [PMID: 38182857 PMCID: PMC11009199 DOI: 10.1007/s11357-023-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
Hair graying, also known as canities or achromotrichia, is a natural phenomenon associated with aging and is influenced by external factors such as stress, environmental toxicants, and radiation exposure. Understanding the mechanisms underlying hair graying is an ideal approach for developing interventions to prevent or reverse age-related changes in regenerative tissues. Hair graying induced by ionizing radiation (γ-rays or X-rays) has emerged as a valuable experimental model to investigate the molecular pathways involved in this process. In this review, we examine the existing evidence on radiation-induced hair graying, with a particular focus on the potential role of radiation-induced cellular senescence. We explore the current understanding of hair graying in aging, delve into the underlying mechanisms, and highlight the unique advantages of using ionizing-irradiation-induced hair graying as a research model. By elucidating the molecular pathways involved, we aim to deepen our understanding of hair graying and potentially identify novel therapeutic targets to address this age-related phenotypic change.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Tamas Kiss
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltan Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
6
|
Kim DH, Lee J, Ko JK, Lee K. Melanophilin regulates dendritogenesis in melanocytes for feather pigmentation. Commun Biol 2024; 7:592. [PMID: 38760591 PMCID: PMC11101434 DOI: 10.1038/s42003-024-06284-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Limited studies using animal models with a few natural mutations in melanophilin (Mlph) provided partial functions of Mlph in melanosome trafficking. To investigate cellular functions of Mlph, especially ZnF motif of Mlph, we analyzed all three Mlph knockout (KO) quail lines, one and two base pair (bp) deletions as models for total KO, and three bp deletion causing deletion of one Cysteine (C84del) in the ZnF motif. All quail lines had diluted feather pigmentation with impaired dendritogenesis and melanosome transport in melanocytes. In vitro studies revealed capability of binding of the ZnF motif to PIP3, and impairment of PI3P binding and mislocalization of MLPH proteins with ZnF motif mutations. The shortened melanocyte dendrites by the C84del mutation were rescued by introducing WT Mlph in vitro. These results revealed the diluted feather pigmentation by Mlph mutations resulted from congregation of melanosomes in the cell bodies with impairment of the dendritogenesis and the transport of melanosomes to the cell periphery.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Joonbum Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA
| | - Jae-Kyun Ko
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
- Pathology Advanced Translational Research Unit (PATRU), Department of Pathology & Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Kichoon Lee
- Department of Animal Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Karageorgos S, Platt AS, Bassiri H. Genetics of Primary Hemophagocytic Lymphohistiocytosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:75-101. [PMID: 39117809 DOI: 10.1007/978-3-031-59815-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Hemophagocytic lymphohistiocytosis (HLH) constitutes a rare, potentially life-threatening hyperinflammatory immune dysregulation syndrome that can present with a variety of clinical signs and symptoms, including fever, hepatosplenomegaly, and abnormal laboratory and immunological findings such as cytopenias, hyperferritinemia, hypofibrinogenemia, hypertriglyceridemia, elevated blood levels of soluble CD25 (interleukin (IL)-2 receptor α-chain), or diminished natural killer (NK)-cell cytotoxicity (reviewed in detail in Chapter 11 of this book). While HLH can be triggered by an inciting event (e.g., infections), certain monogenic causes have been associated with a significantly elevated risk of development of HLH, or recurrence of HLH in patients who have recovered from their disease episode. These monogenic predisposition syndromes are variably referred to as "familial" (FHL) or "primary" HLH (henceforth referred to as "pHLH") and are the focus of this chapter. Conversely, secondary HLH (sHLH) often occurs in the absence of monogenic etiologies that are commonly associated with pHLH and can be triggered by infections, malignancies, or rheumatological diseases; these triggers and the genetics associated with sHLH are discussed in more detail in other chapters in this book.
Collapse
Affiliation(s)
- Spyridon Karageorgos
- First Department of Pediatrics, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna S Platt
- Roberts Individualized Medical Genetics Center and Immune Dysregulation Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hamid Bassiri
- Immune Dysregulation Program and Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Song D, Ye Z, Chen F, Zhan L, Sun X. circFNDC3B promotes esophageal squamous cell carcinoma progression by targeting MYO5A via miR-370-3p/miR-136-5p. BMC Cancer 2023; 23:821. [PMID: 37667251 PMCID: PMC10476377 DOI: 10.1186/s12885-023-11314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a prevalent malignant tumor worldwide. Circular RNA (circRNA) is of great value in tumorigenesis progression. However, the mechanism of circFNDC3B in ESCC remains to be clarified. METHODS Firstly, the circular characteristics of circFNDC3B were evaluated by Actinomycin D and RNase R measurements. The functions of circFNDC3B in ESCC cells were examined by CCK-8, EdU and flow cytometry. Subsequently, the molecular mechanism of circFNDC3B was explained using luciferase reporter gene detection. Finally, we constructed xenograft model to prove the role of circFNDC3B in vivo. RESULTS Our study revealed that circFNDC3B was more stable than its linear RNA and prominently upregulated in ESCC. Functional findings suggested that silencing of circFNDC3B reduced the proliferation and enhanced apoptosis of ESCC cells in vitro. Meanwhile, knockdown of circFNDC3B attenuated tumor progression in vivo. Next, miR-370-3p/miR-136-5p was discovered to bind circFNDC3B. miR-370-3p/miR-136-5p reversed the promotive effect on cell proliferation and the inhibitory effect on cell apoptosis of circFNDC3B. MYO5A was a downstream target of miR-370-3p/miR-136-5p. CircFNDC3B served as a sponge for miR-370-3p/miR-136-5p and alleviated the prohibitory effect of miR-370-3p/miR-136-5p on MYO5A, which accelerated ESCC progression. CONCLUSION circFNDC3B positively adjusted the MYO5A expression via spongy miR-370-3p/miR-136-5p, hence achieving the cancer-promoting effect on ESCC. circFNDC3B was a prospective diagnosis marker for ESCC.
Collapse
Affiliation(s)
- Dan Song
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, No.42, Baiziting, Nanjing, 210009, Jinagsu Province, China.
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| | - Ziqi Ye
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Fangyu Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Liangliang Zhan
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, No.42, Baiziting, Nanjing, 210009, Jinagsu Province, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, No.300, Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Tobler R, Souilmi Y, Huber CD, Bean N, Turney CSM, Grey ST, Cooper A. The role of genetic selection and climatic factors in the dispersal of anatomically modern humans out of Africa. Proc Natl Acad Sci U S A 2023; 120:e2213061120. [PMID: 37220274 PMCID: PMC10235988 DOI: 10.1073/pnas.2213061120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/14/2023] [Indexed: 05/25/2023] Open
Abstract
The evolutionarily recent dispersal of anatomically modern humans (AMH) out of Africa (OoA) and across Eurasia provides a unique opportunity to examine the impacts of genetic selection as humans adapted to multiple new environments. Analysis of ancient Eurasian genomic datasets (~1,000 to 45,000 y old) reveals signatures of strong selection, including at least 57 hard sweeps after the initial AMH movement OoA, which have been obscured in modern populations by extensive admixture during the Holocene. The spatiotemporal patterns of these hard sweeps provide a means to reconstruct early AMH population dispersals OoA. We identify a previously unsuspected extended period of genetic adaptation lasting ~30,000 y, potentially in the Arabian Peninsula area, prior to a major Neandertal genetic introgression and subsequent rapid dispersal across Eurasia as far as Australia. Consistent functional targets of selection initiated during this period, which we term the Arabian Standstill, include loci involved in the regulation of fat storage, neural development, skin physiology, and cilia function. Similar adaptive signatures are also evident in introgressed archaic hominin loci and modern Arctic human groups, and we suggest that this signal represents selection for cold adaptation. Surprisingly, many of the candidate selected loci across these groups appear to directly interact and coordinately regulate biological processes, with a number associated with major modern diseases including the ciliopathies, metabolic syndrome, and neurodegenerative disorders. This expands the potential for ancestral human adaptation to directly impact modern diseases, providing a platform for evolutionary medicine.
Collapse
Affiliation(s)
- Raymond Tobler
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Yassine Souilmi
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Environment Institute, The University of Adelaide, Adelaide, SA5005, Australia
| | - Christian D. Huber
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
| | - Nigel Bean
- Australian Research Council Centre of Excellence for Mathematical and Statistical Frontiers, The University of Adelaide, Adelaide, SA5005, Australia
- School of Mathematical Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Chris S. M. Turney
- Division of Research, University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Shane T. Grey
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW2052, Australia
- Transplantation Immunology Group, Translation Science Pillar, Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
| | - Alan Cooper
- Australian Centre for Ancient DNA, The University of Adelaide, Adelaide, SA5005, Australia
- Blue Sky Genetics, Ashton, SA5137, Australia
| |
Collapse
|
10
|
Khorram E, Tabatabaiefar MA, Yaghini O, Khorrami M, Yazdani V, Fakhr F, Amini M, Kheirollahi M. Griscelli syndrome type 1: a novel pathogenic variant, and review of literature. Mol Genet Genomics 2023; 298:485-493. [PMID: 36651988 DOI: 10.1007/s00438-022-01971-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/28/2022] [Indexed: 01/19/2023]
Abstract
Griscelli syndrome type 1 (GS1) is a rare inherited autosomal recessive disease caused by a deleterious variant in the MYO5A gene and characterized by general hypopigmentation, neurological symptoms, motor disability, hypotonia, and vision abnormality. Only nine pathogenic variants in the MYO5A gene have been confirmed in association with the GS1. All of the reported pathogenic variants are truncating. Herein, two siblings from a consanguineous Iranian family with abnormal pigmentation and neurological symptoms were referred for genetic counseling. Whole-exome sequencing (WES) revealed a novel homozygous truncating variant c.1633_1634delAA (p.Asn545Glnfs*10) in the MYO5A gene, which was completely co-segregated with the phenotype in all affected and unaffected family members. Computational analysis and protein modeling demonstrated the deleterious effects of this variant on the structure and function of the protein. The variant, according to ACMG guidelines, was classified as pathogenic. Besides the novelty of the identified variant, our patients manifested more severe clinical symptoms and presented distal hyperlaxity in all four limbs, which was a new finding. In conclusion, we expanded the mutational and phenotypic spectrum of the GS1. Moreover, by studying clinical manifestations in all molecularly confirmed reported cases, provided a comprehensive overview of clinical presentation, and attempted to find a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Erfan Khorram
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Yaghini
- Department of Pediatrics, School of Medicine, Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Khorrami
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vida Yazdani
- Department of Biology, Islamic Azad University, East Tehran Branch, Tehran, Iran
| | - Fatemeh Fakhr
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoomeh Amini
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Kheirollahi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Overlapping Machinery in Lysosome-Related Organelle Trafficking: A Lesson from Rare Multisystem Disorders. Cells 2022; 11:cells11223702. [PMID: 36429129 PMCID: PMC9688865 DOI: 10.3390/cells11223702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
Lysosome-related organelles (LROs) are a group of functionally diverse, cell type-specific compartments. LROs include melanosomes, alpha and dense granules, lytic granules, lamellar bodies and other compartments with distinct morphologies and functions allowing specialised and unique functions of their host cells. The formation, maturation and secretion of specific LROs are compromised in a number of hereditary rare multisystem disorders, including Hermansky-Pudlak syndromes, Griscelli syndrome and the Arthrogryposis, Renal dysfunction and Cholestasis syndrome. Each of these disorders impacts the function of several LROs, resulting in a variety of clinical features affecting systems such as immunity, neurophysiology and pigmentation. This has demonstrated the close relationship between LROs and led to the identification of conserved components required for LRO biogenesis and function. Here, we discuss aspects of this conserved machinery among LROs in relation to the heritable multisystem disorders they associate with, and present our current understanding of how dysfunctions in the proteins affected in the disease impact the formation, motility and ultimate secretion of LROs. Moreover, we have analysed the expression of the members of the CHEVI complex affected in Arthrogryposis, Renal dysfunction and Cholestasis syndrome, in different cell types, by collecting single cell RNA expression data from the human protein atlas. We propose a hypothesis describing how transcriptional regulation could constitute a mechanism that regulates the pleiotropic functions of proteins and their interacting partners in different LROs.
Collapse
|
12
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
13
|
Davoudi P, Do DN, Rathgeber B, Colombo SM, Sargolzaei M, Plastow G, Wang Z, Karimi K, Hu G, Valipour S, Miar Y. Genome-wide detection of copy number variation in American mink using whole-genome sequencing. BMC Genomics 2022; 23:649. [PMID: 36096727 PMCID: PMC9468235 DOI: 10.1186/s12864-022-08874-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta. RESULTS A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV regions (CNVR) after merging overlapping CNVs, covering 47.3 Mb (1.9%) of the mink autosomal genome. Gene Ontology and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3). CONCLUSIONS This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural variations are present.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie M Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Select Sires Inc., Plain City, OH, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Shafagh Valipour
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
14
|
Huang Q, Yuan Y, Gong J, Zhang T, Qi Z, Yang X, Li W, Wei A. Identification of a Novel MLPH Missense Mutation in a Chinese Griscelli Syndrome 3 Patient. Front Med (Lausanne) 2022; 9:896943. [PMID: 35602484 PMCID: PMC9120966 DOI: 10.3389/fmed.2022.896943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Melanophilin (MLPH) functions as a linker between RAB27A and myosin Va (MYO5A) in regulating skin pigmentation during the melanosome transport process. The MYO5A-MLPH-RAB27A ternary protein complex is required for anchoring mature melanosomes in the peripheral actin filaments of melanocytes for subsequent transfer to adjacent keratinocytes. Griscelli syndrome type 3 (GS3) is caused by mutations in the MLPH gene. So far, only five variants of MLPH associated with GS3 have been reported. Here, we reported the first patient with GS3 in a Chinese population. The proband carried a novel homozygous missense mutation (c.73G>C; p.D25H), residing in the conserved Slp homology domain of MLPH, and presented with hypopigmentation of the hair, eyebrows, and eyelashes. Light microscopy revealed the presence of abnormal pigment clumping in his hair shaft. In silico tools predicted this MLPH variant to be likely pathogenic. Using immunoblotting and immunofluorescence analysis, we demonstrated that the MLPH (D25H) variant had an inhibitory effect on melanosome transport by exhibiting perinuclear melanosome aggregation in melanocytes, and greatly reduced its binding to RAB27A, although the protein level of MLPH in the patient was not changed. Our findings suggest that MLPH (D25H) is a pathogenic variant that expands the genetic spectrum of the MLPH gene.
Collapse
Affiliation(s)
- Qiaorong Huang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yefeng Yuan
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
| | - Juanjuan Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Tianjiao Zhang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhan Qi
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xiumin Yang
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing, China
- Rare Disease Center, National Center for Children's Health, Beijing, China
- MOE Key Laboratory of Major Diseases in Children, Beijing, China
- Beijing Children's Hospital, Capital Medical University, Beijing, China
- Wei Li
| | - Aihua Wei
- Department of Dermatology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- *Correspondence: Aihua Wei
| |
Collapse
|
15
|
Dhankar N, Gupta I, Dayal S, Chhabra S. Griscelli syndrome type 3 in siblings. Int J Trichology 2022; 14:38-40. [PMID: 35300101 PMCID: PMC8923144 DOI: 10.4103/ijt.ijt_42_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/10/2020] [Accepted: 07/18/2021] [Indexed: 12/04/2022] Open
|
16
|
Ermini L, Francis JC, Rosa GS, Rose AJ, Ning J, Greaves M, Swain A. Evolutionary selection of alleles in the melanophilin gene that impacts on prostate organ function and cancer risk. EVOLUTION MEDICINE AND PUBLIC HEALTH 2021; 9:311-321. [PMID: 34754452 PMCID: PMC8573191 DOI: 10.1093/emph/eoab026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022]
Abstract
Background and objectives Several hundred inherited genetic variants or SNPs that alter the risk of cancer have been identified through genome-wide association studies. In populations of European ancestry, these variants are mostly present at relatively high frequencies. To gain insight into evolutionary origins, we screened a series of genes and SNPs linked to breast or prostate cancer for signatures of historical positive selection. Methodology We took advantage of the availability of the 1000 genome data and we performed genomic scans for positive selection in five different Caucasian populations as well as one African reference population. We then used prostate organoid cultures to provide a possible functional explanation for the interplay between the action of evolutionary forces and the disease risk association. Results Variants in only one gene showed genomic signatures of positive, evolutionary selection within Caucasian populations melanophilin (MLPH). Functional depletion of MLPH in prostate organoids, by CRISPR/Cas9 mutation, impacted lineage commitment of progenitor cells promoting luminal versus basal cell differentiation and on resistance to androgen deprivation. Conclusions and implications The MLPH variants influencing prostate cancer risk may have been historically selected for their adaptive benefit on skin pigmentation but MLPH is highly expressed in the prostate and the derivative, positively selected, alleles decrease the risk of prostate cancer. Our study suggests a potential functional mechanism via which MLPH and its genetic variants could influence risk of prostate cancer, as a serendipitous consequence of prior evolutionary benefits to another tissue. Lay Summary We screened a limited series of genomic variants associated with breast and prostate cancer risk for signatures of historical positive selection. Variants within the melanophilin (MLPH) gene fell into this category. Depletion of MLPH in prostate organoid cultures, suggested a potential functional mechanism for impacting on cancer risk, as a serendipitous consequence of prior evolutionary benefits to another tissue.
Collapse
Affiliation(s)
- Luca Ermini
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Jeffrey C Francis
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Gabriel S Rosa
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Alexandra J Rose
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Jian Ning
- Division of Cancer Biology, The Institute of Cancer Research, London, UK.,Tumour Profiling Unit, The Institute of Cancer Research, London, UK
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Amanda Swain
- Division of Cancer Biology, The Institute of Cancer Research, London, UK.,Tumour Profiling Unit, The Institute of Cancer Research, London, UK
| |
Collapse
|
17
|
Brancalion L, Haase B, Wade CM. Canine coat pigmentation genetics: a review. Anim Genet 2021; 53:3-34. [PMID: 34751460 DOI: 10.1111/age.13154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/21/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022]
Abstract
Our understanding of canine coat colour genetics and the associated health implications is developing rapidly. To date, there are 15 genes with known roles in canine coat colour phenotypes. Many coat phenotypes result from complex and/or epistatic genetic interactions among variants within and between loci, some of which remain unidentified. Some genes involved in canine pigmentation have been linked to aural, visual and neurological impairments. Consequently, coat pigmentation in the domestic dog retains considerable ethical and economic interest. In this paper we discuss coat colour phenotypes in the domestic dog, the genes and variants responsible for these phenotypes and any proven coat colour-associated health effects.
Collapse
Affiliation(s)
- L Brancalion
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - B Haase
- Faculty of Science, School of Veterinary Science, University of Sydney, Camperdown, NSW, 2006, Australia
| | - C M Wade
- Faculty of Science, School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| |
Collapse
|
18
|
Izumi T. In vivo Roles of Rab27 and Its Effectors in Exocytosis. Cell Struct Funct 2021; 46:79-94. [PMID: 34483204 PMCID: PMC10511049 DOI: 10.1247/csf.21043] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
The monomeric GTPase Rab27 regulates exocytosis of a broad range of vesicles in multicellular organisms. Several effectors bind GTP-bound Rab27a and/or Rab27b on secretory vesicles to execute a series of exocytic steps, such as vesicle maturation, movement along microtubules, anchoring within the peripheral F-actin network, and tethering to the plasma membrane, via interactions with specific proteins and membrane lipids in a local milieu. Although Rab27 effectors generally promote exocytosis, they can also temporarily restrict it when they are involved in the rate-limiting step. Genetic alterations in Rab27-related molecules cause discrete diseases manifesting pigment dilution and immunodeficiency, and can also affect common diseases such as diabetes and cancer in complex ways. Although the function and mechanism of action of these effectors have been explored, it is unclear how multiple effectors act in coordination within a cell to regulate the secretory process as a whole. It seems that Rab27 and various effectors constitutively reside on individual vesicles to perform consecutive exocytic steps. The present review describes the unique properties and in vivo roles of the Rab27 system, and the functional relationship among different effectors coexpressed in single cells, with pancreatic beta cells used as an example.Key words: membrane trafficking, regulated exocytosis, insulin granules, pancreatic beta cells.
Collapse
Affiliation(s)
- Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| |
Collapse
|
19
|
Christen M, de le Roi M, Jagannathan V, Becker K, Leeb T. MYO5A Frameshift Variant in a Miniature Dachshund with Coat Color Dilution and Neurological Defects Resembling Human Griscelli Syndrome Type 1. Genes (Basel) 2021; 12:genes12101479. [PMID: 34680875 PMCID: PMC8535926 DOI: 10.3390/genes12101479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
A 1-month-old, female, smooth-haired miniature Dachshund with dilute color and neurological defects was investigated. The aim of this study was to characterize the clinical signs, histopathological changes and underlying genetic defect. The puppy had visible coat color dilution and was unable to hold its head on its own or to remain in a stable prone position for an extended period. Histopathological examination revealed an accumulation of clumped melanin and deposition of accumulated keratin within the hair follicles, accompanied by dermal pigmentary incontinence. These dermatological changes were compatible with the histopathology described in dogs with an MLPH-related dilute coat color. We sequenced the genome of the affected dog and compared the data to 795 control genomes. MYO5A, coding for myosin VA, was investigated as the top functional candidate gene. This search revealed a private homozygous frameshift variant in MYO5A, XM_022412522.1:c.4973_4974insA, predicted to truncate 269 amino acids (13.8%) of the wild type myosin VA protein, XP_022268230.1:p.(Asn1658Lysfs*28). The genotypes of the index family showed the expected co-segregation with the phenotype and the mutant allele was absent from 142 additionally genotyped, unrelated Dachshund dogs. MYO5A loss of function variants cause Griscelli type 1 syndrome in humans, lavender foal in horses and the phenotype of the dilute mouse mutant. Based on the available data, together with current knowledge on other species, we propose the identified MYO5A frameshift insertion as a candidate causative variant for the observed dermatological and neurological signs in the investigated dog.
Collapse
Affiliation(s)
- Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| | - Madeleine de le Roi
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.d.l.R.); (K.B.)
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
| | - Kathrin Becker
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.d.l.R.); (K.B.)
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; (M.C.); (V.J.)
- Correspondence: ; Tel.: +41-31-684-23-26
| |
Collapse
|
20
|
Loftus SK, Lundh L, Watkins-Chow DE, Baxter LL, Pairo-Castineira E, Nisc Comparative Sequencing Program, Jackson IJ, Oetting WS, Pavan WJ, Adams DR. A custom capture sequence approach for oculocutaneous albinism identifies structural variant alleles at the OCA2 locus. Hum Mutat 2021; 42:1239-1253. [PMID: 34246199 DOI: 10.1002/humu.24257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/02/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Oculocutaneous albinism (OCA) is a heritable disorder of pigment production that manifests as hypopigmentation and altered eye development. Exon sequencing of known OCA genes is unsuccessful in producing a complete molecular diagnosis for a significant number of affected individuals. We sequenced the DNA of individuals with OCA using short-read custom capture sequencing that targeted coding, intronic, and noncoding regulatory regions of known OCA genes, and genome-wide association study-associated pigmentation loci. We identified an OCA2 complex structural variant (CxSV), defined by a 143 kb inverted segment reintroduced in intron 1, upstream of the native location. The corresponding CxSV junctions were observed in 11/390 probands screened. The 143 kb CxSV presents in one family as a copy number variant duplication for the 143 kb region. In the remaining 10/11 families, the 143 kb CxSV acquired an additional 184 kb deletion across the same region, restoring exons 3-19 of OCA2 to a copy-number neutral state. Allele-associated haplotype analysis found rare SNVs rs374519281 and rs139696407 are linked with the 143 kb CxSV in both OCA2 alleles. For individuals in which customary molecular evaluation does not reveal a biallelic OCA diagnosis, we recommend preliminary screening for these haplotype-associated rare variants, followed by junction-specific validation for the OCA2 143 kb CxSV.
Collapse
Affiliation(s)
- Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Linnea Lundh
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | | | - Ian J Jackson
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK.,MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Adams
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Zhang Q, Zhao YZ, Ma HH, Wang D, Zhang N, Li ZG, Zhang R. Successful rescue of a lethal Griscelli syndrome type 2 presenting with neurological involvement and hemophagocytic lymphohistiocytosis: a case report. BMC Pediatr 2021; 21:253. [PMID: 34058999 PMCID: PMC8167959 DOI: 10.1186/s12887-021-02720-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Griscelli syndrome type 2 (GS2) is a rare autosomal recessive disease caused by mutations in RAB27A gene. It is primarily characterized by a combination of partial albinism, hemophagocytic lymphohistiocytosis (HLH) or other immunodeficiency. However, neurological involvement at onset in GS2 and treatment has rarely been described. CASE PRESENTATION We describe a 3-year-old boy with GS2 in an Asian Chinese family. He presented with progressive neurological abnormalities following unremitting fever at onset. He developed HLH during the clinical course. A novel homozygous mutation (c.1 A > G) in RAB27A gene was subsequently identified. He was then treated by HLH-1994 protocol combined with ruxolitinib and experienced a dramatic remission. He subsequently underwent a successful haploidentical hematopoietic stem cell transplantation and stayed at a good condition. CONCLUSIONS We reported an atypical form of GS2 manifesting as severe central nervous system involvement at onset and subsequent HLH, which was successfully rescued in time. This case also highlights the need for early consideration of immunologic and genetic evaluation for HLH in unexplained neuroinflammation in the diagnostic work up.
Collapse
Affiliation(s)
- Qing Zhang
- Hematologic Disease Laboratory; Hematology Center; Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute;, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Yun-Ze Zhao
- Hematology Center; Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Hong-Hao Ma
- Hematology Center; Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Dong Wang
- Hematology Center; Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Nan Zhang
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Zhi-Gang Li
- Hematologic Disease Laboratory; Hematology Center; Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Pediatric Research Institute;, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China
| | - Rui Zhang
- Hematology Center; Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, Beijing, China.
| |
Collapse
|
22
|
Zimmer TS, Broekaart DWM, Luinenburg M, Mijnsbergen C, Anink JJ, Sim NS, Michailidou I, Jansen FE, van Rijen PC, Lee JH, François L, van Eyll J, Dedeurwaerdere S, van Vliet EA, Mühlebner A, Mills JD, Aronica E. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol 2021; 47:826-839. [PMID: 34003514 PMCID: PMC8518746 DOI: 10.1111/nan.12736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Aims Focal cortical dysplasia (FCD) type 2 is an epileptogenic malformation of the neocortex associated with somatic mutations in the mammalian target of rapamycin (mTOR) pathway. Histopathologically, FCD 2 is subdivided into FCD 2a and FCD 2b, the only discriminator being the presence of balloon cells (BCs) in FCD 2b. While pro‐epileptogenic immune system activation and inflammatory responses are commonly detected in both subtypes, it is unknown what contextual role BCs play. Methods The present study employed RNA sequencing of surgically resected brain tissue from FCD 2a (n = 11) and FCD 2b (n = 20) patients compared to autopsy control (n = 9) focusing on three immune system processes: adaptive immunity, innate immunity and cytokine production. This analysis was followed by immunohistochemistry on a clinically well‐characterised FCD 2 cohort. Results Differential expression analysis revealed stronger expression of components of innate immunity, adaptive immunity and cytokine production in FCD 2b than in FCD 2a, particularly complement activation and antigen presentation. Immunohistochemical analysis confirmed these findings, with strong expression of leukocyte antigen I and II in FCD 2b as compared to FCD 2a. Moreover, T‐lymphocyte tissue infiltration was elevated in FCD 2b. Expression of markers of immune system activation in FCD 2b was concentrated in subcortical white matter. Lastly, antigen presentation was strongly correlated with BC load in FCD 2b lesions. Conclusion We conclude that, next to mutation‐driven mTOR activation and seizure activity, BCs are crucial drivers of inflammation in FCD 2b. Our findings indicate that therapies targeting inflammation may be beneficial in FCD 2b.
Collapse
Affiliation(s)
- Till S Zimmer
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Diede W M Broekaart
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark Luinenburg
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Caroline Mijnsbergen
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nam Suk Sim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Floor E Jansen
- Department of Paediatric Neurology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter C van Rijen
- Department of Neurosurgery, Brain Center, Rudolf Magnus Institute for Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,SoVarGen, Inc, Daejeon, Republic of Korea
| | - Liesbeth François
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l'Alleud, Belgium
| | - Jonathan van Eyll
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l'Alleud, Belgium
| | - Stefanie Dedeurwaerdere
- Neurosciences Therapeutic Area, UCB Pharma, Braine-l'Alleud, Belgium.,Department of Translational Neuroscience, University of Antwerp, Wilrijk, Belgium
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - Angelika Mühlebner
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - James D Mills
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Department of Clinical and Experimental Epilepsy, UCL, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| |
Collapse
|
23
|
A role for Dynlt3 in melanosome movement, distribution, acidity and transfer. Commun Biol 2021; 4:423. [PMID: 33772156 PMCID: PMC7997999 DOI: 10.1038/s42003-021-01917-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Skin pigmentation is dependent on cellular processes including melanosome biogenesis, transport, maturation and transfer to keratinocytes. However, how the cells finely control these processes in space and time to ensure proper pigmentation remains unclear. Here, we show that a component of the cytoplasmic dynein complex, Dynlt3, is required for efficient melanosome transport, acidity and transfer. In Mus musculus melanocytes with decreased levels of Dynlt3, pigmented melanosomes undergo a more directional motion, leading to their peripheral location in the cell. Stage IV melanosomes are more acidic, but still heavily pigmented, resulting in a less efficient melanosome transfer. Finally, the level of Dynlt3 is dependent on β-catenin activity, revealing a function of the Wnt/β-catenin signalling pathway during melanocyte and skin pigmentation, by coupling the transport, positioning and acidity of melanosomes required for their transfer.
Collapse
|
24
|
Gotesman R, Ramien M, Armour CM, Pham-Huy A, Kirshen C. Cutaneous granulomas as the presenting manifestation of Griscelli syndrome type 2. Pediatr Dermatol 2021; 38:194-197. [PMID: 32965739 DOI: 10.1111/pde.14370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/16/2023]
Abstract
Griscelli syndrome type 2 is a rare autosomal recessive disorder characterized by hypopigmentation, silvery hair, and immunological dysfunction with no primary neurological impairment. We report an 18-month-old girl with Griscelli syndrome type 2 who presented to the dermatology department for cutaneous granulomas that developed following live-attenuated vaccination. Two compound heterozygous variants in the RAB27A gene were subsequently identified. She developed hemophagocytic lymphohistiocytosis, the key immunological concern, at age 5 years.
Collapse
Affiliation(s)
- Ryan Gotesman
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michele Ramien
- Division of Community Pediatrics, Department of Pediatrics, Alberta Children's Hospital, Calgary, AB, Canada
| | - Christine M Armour
- Regional Genetics Program, Children's Hospital of Eastern Ontario, and Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Anne Pham-Huy
- Division of Infectious Diseases, Immunology and Allergy, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Carly Kirshen
- Division of Dermatology, Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
25
|
Wang H, Mizuno K, Takahashi N, Kobayashi E, Shirakawa J, Terauchi Y, Kasai H, Okunishi K, Izumi T. Melanophilin Accelerates Insulin Granule Fusion without Predocking to the Plasma Membrane. Diabetes 2020; 69:2655-2666. [PMID: 32994278 DOI: 10.2337/db20-0069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Direct observation of fluorescence-labeled secretory granule exocytosis in living pancreatic β-cells has revealed heterogeneous prefusion behaviors: some granules dwell beneath the plasma membrane before fusion, while others fuse immediately once they are recruited to the plasma membrane. Although the former mode seems to follow sequential docking-priming-fusion steps as found in synaptic vesicle exocytosis, the latter mode, which is unique to secretory granule exocytosis, has not been explored well. Here, we show that melanophilin, one of the effectors of the monomeric guanosine-5'-triphosphatase Rab27 on the granule membrane, is involved in such an accelerated mode of exocytosis. Melanophilin-mutated leaden mouse and melanophilin-downregulated human pancreatic β-cells both exhibit impaired glucose-stimulated insulin secretion, with a specific reduction in fusion events that bypass stable docking to the plasma membrane. Upon stimulus-induced [Ca2+]i rise, melanophilin mediates this type of fusion by dissociating granules from myosin-Va and actin in the actin cortex and by associating them with a fusion-competent, open form of syntaxin-4 on the plasma membrane. These findings provide the hitherto unknown mechanism to support sustainable exocytosis by which granules are recruited from the cell interior and fuse promptly without stable predocking to the plasma membrane.
Collapse
Affiliation(s)
- Hao Wang
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Kouichi Mizuno
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Noriko Takahashi
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Eri Kobayashi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Jun Shirakawa
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhide Okunishi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
26
|
Fukuda M. Rab GTPases: Key players in melanosome biogenesis, transport, and transfer. Pigment Cell Melanoma Res 2020; 34:222-235. [PMID: 32997883 DOI: 10.1111/pcmr.12931] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Melanosomes are specialized intracellular organelles that produce and store melanin pigments in melanocytes, which are present in several mammalian tissues and organs, including the skin, hair, and eyes. Melanosomes form and mature stepwise (stages I-IV) in melanocytes and then are transported toward the plasma membrane along the cytoskeleton. They are subsequently transferred to neighboring keratinocytes by a largely unknown mechanism, and incorporated melanosomes are transported to the perinuclear region of the keratinocytes where they form melanin caps. Melanocytes also extend several dendrites that facilitate the efficient transfer of the melanosomes to the keratinocytes. Since the melanosome biogenesis, transport, and transfer steps require multiple membrane trafficking processes, Rab GTPases that are conserved key regulators of membrane traffic in all eukaryotes are crucial for skin and hair pigmentation. Dysfunctions of two Rab isoforms, Rab27A and Rab38, are known to cause a hypopigmentation phenotype in human type 2 Griscelli syndrome patients and in chocolate mice (related to Hermansky-Pudlak syndrome), respectively. In this review article, I review the literature on the functions of each Rab isoform and its upstream and downstream regulators in mammalian melanocytes and keratinocytes.
Collapse
Affiliation(s)
- Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
27
|
Wasif N, Parveen A, Bashir H, Ashraf F, Ali E, Khan KR, Arif A. Novel homozygous nonsense variant in MLPH causing Griscelli syndrome type 3 in a consanguineous Pakistani family. J Dermatol 2020; 47:e382-e383. [PMID: 32864751 DOI: 10.1111/1346-8138.15565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Naveed Wasif
- Institute of Human Genetics, University of Ulm and University of Ulm Medical Center, Ulm, Germany.,Institute of Molecular Biology and Biotechnology (IMBB), Center for Research in Molecular Medicine (CRiMM), University of Lahore, Lahore, Pakistan.,Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Asia Parveen
- Institute of Molecular Biology and Biotechnology (IMBB), Center for Research in Molecular Medicine (CRiMM), University of Lahore, Lahore, Pakistan.,Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Hina Bashir
- Department of Biochemistry, Sharif Medical and Dental College, Lahore, Pakistan
| | - Fareeha Ashraf
- Institute of Molecular Biology and Biotechnology (IMBB), Center for Research in Molecular Medicine (CRiMM), University of Lahore, Lahore, Pakistan
| | - Ehtasham Ali
- Center for Professional Studies (CPS), University of Central Punjab, Sialkot, Pakistan
| | - Kashif Raza Khan
- Department of Ophthalmology, Government Kot Khawaja Saeed Teaching Hospital, King Edward Medical University, Lahore, Pakistan
| | - Amina Arif
- Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| |
Collapse
|
28
|
Al-Sulaiman R, Othman A, El-Akouri K, Fareed S, AlMulla H, Sukik A, Al-Mureikhi M, Shahbeck N, Ali R, Al-Mesaifri F, Musa S, Al-Mulla M, Ibrahim K, Mohamed K, Al-Nesef MA, Ehlayel M, Ben-Omran T. A founder RAB27A variant causes Griscelli syndrome type 2 with phenotypic heterogeneity in Qatari families. Am J Med Genet A 2020; 182:2570-2580. [PMID: 32856792 DOI: 10.1002/ajmg.a.61829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Griscelli syndrome type 2 (GS2) is a rare autosomal recessive disorder caused by pathogenic variants in the RAB27A gene and characterized by partial albinism, immunodeficiency, and occasional hematological and neurological involvement. We reviewed and analyzed the medical records of 12 individuals with GS2 from six families belonging to a highly consanguineous Qatari tribe and with a recurrent pathogenic variant in the RAB27A gene (NM_004580.4: c.244C > T, p.Arg82Cys). Detailed demographic, clinical, and molecular data were collected. Cutaneous manifestations were the most common presentation (42%), followed by neurological abnormalities (33%) and immunodeficiency (25%). The most severe manifestation was HLH (33%). Among the 12 patients, three patients (25%) underwent HSCT, and four (33%) died. The cause of death in all four patients was deemed HLH, providing evidence for this complication's fatal nature. Interestingly, two affected patients (16%) were asymptomatic. This report highlights the broad spectrum of clinical presentations of GS2 associated with a founder variant in the RAB27A gene (c.244C > T, p.Arg82Cys). Early suspicion of GS2 among Qatari patients with cutaneous manifestations, neurological findings, immunodeficiency, and HLH would shorten the diagnostic odyssey, guide early and appropriate treatment, and prevent fatal outcomes.
Collapse
Affiliation(s)
- Reem Al-Sulaiman
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Department of Adult Hematology/Oncology, Hamad Medical Corporation, Doha, Qatar
| | - Amna Othman
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Karen El-Akouri
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Shehab Fareed
- Department of Adult Hematology/Oncology, Hamad Medical Corporation, Doha, Qatar
| | - Hajer AlMulla
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Department of Adult Hematology/Oncology, Hamad Medical Corporation, Doha, Qatar
| | - Aseel Sukik
- Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Mureikhi
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Noora Shahbeck
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Rehab Ali
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Fatma Al-Mesaifri
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Sara Musa
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar
| | - Mariam Al-Mulla
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar
| | - Khalid Ibrahim
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
| | - Khalid Mohamed
- Division of Pediatric Neurology, Sidra Medicine, Doha, Qatar
| | | | - Mohammad Ehlayel
- Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell Medical College, Doha, Qatar
| | - Tawfeg Ben-Omran
- Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar.,Division of Genetic and Genomic Medicine, Sidra Medicine, Doha, Qatar.,Weill Cornell Medical College, Doha, Qatar
| |
Collapse
|
29
|
Ku KE, Choi N, Sung JH. Inhibition of Rab27a and Rab27b Has Opposite Effects on the Regulation of Hair Cycle and Hair Growth. Int J Mol Sci 2020; 21:ijms21165672. [PMID: 32784729 PMCID: PMC7460818 DOI: 10.3390/ijms21165672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Rab27a/b are known to play an important role in the transport of melanosomes, with their knockout causing silvery gray hair. However, the relationship between Rab27a/b and hair growth is not well known. To evaluate the role of Rab27a/b in hair cycle, we investigated the expression of Rab27a/b during hair cycling and human outer root sheath (hORS) cells. The expression of Rab27a in ORS cells was mainly detected at the anagen, whereas expression of Rab27b in ORS, and epidermal cells was strongly expressed at the telogen. Additionally, Rab27a/b were expressed in the Golgi of hORS cells. To evaluate the role of Rab27a/b in hair growth, telogen-to-anagen transition animal and vibrissae hair follicles (HFs) organ culture models were assayed using Rab27a/b siRNAs. The knockdown of Rab27a or Rab27b suppressed or promoted hair growth, respectively. These results were also confirmed in human dermal papilla cells (hDPCs) and hORS cells, showing the opposite mitogenic effects. Moreover, Rab27b knockdown increased the expression levels of various growth factors in the hDPCs and hORS cells. Overall, the opposite temporal expression patterns during hair cycling and roles for hair growth of Rab27a/b suggested that Rab27a/b might regulate the hair cycle. Therefore, our study may provide a novel solution for the development of hair loss treatment by regulating Rab27a/b levels.
Collapse
Affiliation(s)
- Kyung-Eun Ku
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
| | | | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Korea;
- STEMORE Co. Ltd., Incheon 21983, Korea;
- Correspondence: ; Tel.: +82-32-749-4506
| |
Collapse
|
30
|
Bowman SL, Bi-Karchin J, Le L, Marks MS. The road to lysosome-related organelles: Insights from Hermansky-Pudlak syndrome and other rare diseases. Traffic 2020; 20:404-435. [PMID: 30945407 DOI: 10.1111/tra.12646] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/11/2022]
Abstract
Lysosome-related organelles (LROs) comprise a diverse group of cell type-specific, membrane-bound subcellular organelles that derive at least in part from the endolysosomal system but that have unique contents, morphologies and functions to support specific physiological roles. They include: melanosomes that provide pigment to our eyes and skin; alpha and dense granules in platelets, and lytic granules in cytotoxic T cells and natural killer cells, which release effectors to regulate hemostasis and immunity; and distinct classes of lamellar bodies in lung epithelial cells and keratinocytes that support lung plasticity and skin lubrication. The formation, maturation and/or secretion of subsets of LROs are dysfunctional or entirely absent in a number of hereditary syndromic disorders, including in particular the Hermansky-Pudlak syndromes. This review provides a comprehensive overview of LROs in humans and model organisms and presents our current understanding of how the products of genes that are defective in heritable diseases impact their formation, motility and ultimate secretion.
Collapse
Affiliation(s)
- Shanna L Bowman
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Bi-Karchin
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Linh Le
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Al-Saad RZ, Kerr I, Hume AN. In Vitro Fluorescence Resonance Energy Transfer-Based Assay Used to Determine the Rab27-Effector-Binding Affinity. Assay Drug Dev Technol 2020; 18:180-194. [PMID: 32384245 DOI: 10.1089/adt.2019.960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Rab27 subfamily consists of Rab27a/b isoforms that have similar but not identical functions. Those functions include the regulation of trafficking, docking, and fusion of various lysosome-related organelles and secretory granules; such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Rab27a/b exert their specific and versatile functions by interacting with 11 effector proteins, preferentially in their GTP-bound state. In recent years, a number of studies have identified roles for Rab27 proteins and their effectors in cancer cell invasion and metastasis, immune response, inflammation, and allergic responses. These findings suggest that Rab27-effector protein interaction inhibitors could contribute to the development of effective strategies to treat these diseases. To facilitate inhibitor identification, in this study we developed a fluorescence resonance energy transfer-based protein-protein interaction assay that reports Rab27-effector interactions. Green fluorescent protein (GFP)-mouse (m) synaptotagmin-like protein (Slp)1 and GFP-mSlp2 (N-terminus Rab27-binding domains) recombinant proteins were used as donor fluorophores, whereas mCherry-human (h) Rab27a/b recombinant proteins were used as acceptor fluorophores. The in vitro binding affinity of mSlp2 to Rab27 was found to be higher compared with mSlp1 and was evidenced by the effective concentration 50 value differences (mSlp2-hRab27b = 0.15 μM < mSlp2-hRab27a = 0.2 μM < mSlp1-hRab27a = 0.32 μM < mSlp1-hRab27b = 0.33 μM). The specificity of the assay was assessed using unlabeled rat (r) Rab27a and hRab27b recombinant proteins as typical competitive inhibitors for Rab27-effector interactions and was evidenced by the inhibitory concentration 50 value differences. Accordingly, this in vitro assay can be employed in identification of candidate inhibitors of Rab27-effector interactions.
Collapse
Affiliation(s)
- Raghdan Z Al-Saad
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ian Kerr
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alistair N Hume
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
32
|
Yarwood R, Hellicar J, Woodman PG, Lowe M. Membrane trafficking in health and disease. Dis Model Mech 2020; 13:13/4/dmm043448. [PMID: 32433026 PMCID: PMC7197876 DOI: 10.1242/dmm.043448] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Membrane trafficking pathways are essential for the viability and growth of cells, and play a major role in the interaction of cells with their environment. In this At a Glance article and accompanying poster, we outline the major cellular trafficking pathways and discuss how defects in the function of the molecular machinery that mediates this transport lead to various diseases in humans. We also briefly discuss possible therapeutic approaches that may be used in the future treatment of trafficking-based disorders. Summary: This At a Glance article and poster summarise the major intracellular membrane trafficking pathways and associated molecular machineries, and describe how defects in these give rise to disease in humans.
Collapse
Affiliation(s)
- Rebecca Yarwood
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - John Hellicar
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Philip G Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Martin Lowe
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
33
|
Li J, Chen Y, Liu M, Chen Q, Zhou J, Bao G, Wu X. Association of Melanophilin (MLPH) gene polymorphism with coat colour in Rex rabbits. WORLD RABBIT SCIENCE 2020. [DOI: 10.4995/wrs.2020.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rex rabbit, with multiple phenotypes and colourful fur, is an interesting model for assessing the effect of coat colour gene mutations on characteristic pigmentation phenotype. Based on previous study, the <em>melanophilin</em> (<em>MLPH</em>) gene is a positional candidate gene related coat colour dilution. The fur colours are a lighter shade, e.g. grey instead of black. We sequenced 1689 base pairs of the <em>MLPH</em> gene in Chinchilla and black Rex rabbit. A total of 13 polymorphisms were identified, including seven missense mutations. The rabbit <em>MLPH</em> gene has a very high GC content and the protein shows 64.87% identity to the orthologous human protein (lack of homologous amino acids encoded by human MLPH exon 9). Hardy-Weinberg test showed that, except for the g.606C>A single nucleotid polymorphism (SNP), all other SNPs were in Hardy-Weinberg equilibrium. Haplotype analysis revealed that the seven missense mutation SNPs of two strains of Rex rabbits formed 10 haplotypes, but there were only seven major types of haplotypes (haplotype frequency <em>P</em>>0.05). The major haplotypes of the Chinchilla and black Rex rabbits were H1/H2/H3/H4/H5 and H1/H2/H3/H6/H8, respectively. The special haplotypes of Chinchilla Rex rabbit (H4, H5, H7) were consistently associated with the Chinchilla phenotype. This study provides evidence that different coat colour formation may be caused by one or more mutations within <em>MLPH</em> gene in several Rex rabbit strains. The data on polymorphisms that are associated with the Chinchilla phenotype facilitate the breeding of rabbits with defined coat colours.
Collapse
|
34
|
Myung CH, Kim K, Park JI, Lee JE, Lee JA, Hong SC, Lim KM, Hwang JS. 16-Kauren-2-beta-18,19-triol inhibits melanosome transport in melanocytes by down-regulation of melanophilin expression. J Dermatol Sci 2019; 97:101-108. [PMID: 31892452 DOI: 10.1016/j.jdermsci.2019.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/14/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Rab27a, Mlph, and MyoVa form a tripartite complex and relate to melanosome distribution. Melanophilin (Mlph) acts as a linker protein between Rab27a and MyoVa. The biological activity and function of 16-kauren on the expression of Mlph has not yet been studied. OBJECTIVE We examined the effect of 16-kauren on melanosome transport and skin pigmentation. METHODS Murine Melan-a melanocytes and SP-1 keratinocytes were used for in vitro analysis. Western blot analysis, quantitative real-time polymerase chain reaction, luciferase assay and immunohistochemical staining in 3D pigmented human skin model were performed. RESULTS We found that 16-kauren inhibits melanosome transport in Melan-a melanocytes without affecting melanin synthesis. Treatment with 16-kauren reduced melanophilin (Mlph), a key protein in melanosome transport, in Melan-a melanocytes, at both the protein and mRNA levels while it did not affect the expression of Rab27a and MyoVa, the other two key proteins for melanosome transport. Notably, the expression of melanogenic proteins, including tyrosinase, trp1, trp2, and MITF, was not affected by 16-kauren. However, 16-kauren attenuated melanosome distribution in co-culture of Melan-a melanocytes and SP-1 keratinocytes as well as in Melan-a monolayer culture. In further confirmation of the depigmenting effects of 16-kauren on Melanoderm™, a 3D pigmented human skin model, treatment with 16-kauren for 12 days increased the brightness of the tissue as determined by lightness value and reduced the distribution of melanosomes as shown in histological examination. CONCLUSION These results demonstrated that 16-kauren is a selective modulator of a melangenic target, Mlph expression, and can be employed as a new depigmenting strategy.
Collapse
Affiliation(s)
- Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Kyuri Kim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Jeong Ah Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Sung Chan Hong
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea.
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
35
|
Lambert MW, Maddukuri S, Karanfilian KM, Elias ML, Lambert WC. The physiology of melanin deposition in health and disease. Clin Dermatol 2019; 37:402-417. [PMID: 31896398 DOI: 10.1016/j.clindermatol.2019.07.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Eumelanin is the major pigment responsible for human skin color. This black/brown pigment is localized in membrane-bound organelles (melanosomes) found in specialized cells (melanocytes) in the basal layer of the epidermis. This review highlights the steps involved in melanogenesis in the epidermis and the disorders in skin pigmentation that occur when specific steps critical for this process are defective. Melanosomes, which contain tyrosinase, a major enzyme involved in melanin synthesis, develop through a series of steps in the melanocyte. They are donated from the melanocyte dendrites to the surrounding keratinocytes in the epidermis. In the keratinocytes, the melanosomes are found singly or packaged into groups, and as the keratinocytes move upward in the epidermis, the melanosomes start to degrade. This sequence of events is critical for melanin pigmentation in the skin and can be influenced by genetic, hormonal, and environmental factors, which all play a role in levels of melanization of the epidermis. The effects these factors have on skin pigmentation can be due to different underlying mechanisms involved in the melanization process leading to either hypo- or hyperpigmentary disorders. These disorders highlight the importance of mechanistic studies on the specific steps involved in the melanization process.
Collapse
Affiliation(s)
- Muriel W Lambert
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA.
| | - Spandana Maddukuri
- Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Katrice M Karanfilian
- Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Marcus L Elias
- Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - W Clark Lambert
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA; Division of Dermatology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
36
|
Lee JA, Hwang SJ, Hong SC, Myung CH, Lee JE, Park JI, Hwang JS. Identification of MicroRNA Targeting Mlph and Affecting Melanosome Transport. Biomolecules 2019; 9:biom9070265. [PMID: 31288473 PMCID: PMC6681522 DOI: 10.3390/biom9070265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/13/2023] Open
Abstract
Melanosomes undergo a complex maturation process and migrate into keratinocytes. Melanophilin (Mlph), a protein complex involving myosin Va (MyoVa) and Rab27a, enables the movement of melanosomes in melanocytes. In this study, we found six miRNAs targeting Mlph in mouse using two programs (http://targetscan.org and DianaTools). When melan-a melanocytes were treated with six synthesized microRNAs, miR-342-5p, miR-1839-5p, and miR-3082-5p inhibited melanosome transport and induced melanosome aggregation around the nucleus. The other microRNAs, miR-5110, miR-3090-3p, and miR-186-5p, did not inhibit melanosome transport. Further, miR-342-5p, miR-1839-5p, and miR-3082-5p decreased Mlph expression. The effect of miR-342-5p was the strongest among the six synthesized miRNAs. It inhibited melanosome transport in melan-a melanocytes and reduced Mlph expression in mRNA and protein levels in a dose-dependent manner; however, it did not affect Rab27a and MyoVa expressions, which are associated with melanosome transport. To examine miR-342-5p specificity, we performed luciferase assays in a mouse melanocyte-transfected reporter vector including Mlph at the 3′-UTR (untranslated region). When treated with miR-342-5p, luciferase activity that had been reduced by approximately 50% was restored after inhibitor treatment. Therefore, we identified a novel miRNA affecting Mlph and melanosome transport, and these results can be used for understanding Mlph expression and skin pigmentation regulation.
Collapse
Affiliation(s)
- Jeong Ah Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Seok Joon Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Sung Chan Hong
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Gyeonggi-do 446-701, Korea.
| |
Collapse
|
37
|
Park JI, Lee JE, Myung CH, Jo CS, Jang HS, Hwang JS. The absence of Rab27a accelerates the degradation of Melanophilin. Exp Dermatol 2019; 28:90-93. [DOI: 10.1111/exd.13840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/07/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jong il Park
- Department of Genetic Engineering and Graduate School of Biotechnology; College of Life Sciences; Kyung Hee University; Gyeonggi-do Korea
| | - Ji Eun Lee
- Department of Genetic Engineering and Graduate School of Biotechnology; College of Life Sciences; Kyung Hee University; Gyeonggi-do Korea
| | - Cheol hwan Myung
- Department of Genetic Engineering and Graduate School of Biotechnology; College of Life Sciences; Kyung Hee University; Gyeonggi-do Korea
| | - Chan song Jo
- Department of Genetic Engineering and Graduate School of Biotechnology; College of Life Sciences; Kyung Hee University; Gyeonggi-do Korea
| | - Hye Sung Jang
- Department of Genetic Engineering and Graduate School of Biotechnology; College of Life Sciences; Kyung Hee University; Gyeonggi-do Korea
| | - Jae Sung Hwang
- Department of Genetic Engineering and Graduate School of Biotechnology; College of Life Sciences; Kyung Hee University; Gyeonggi-do Korea
| |
Collapse
|
38
|
Almalki H, Baothman A, Mehdawi F, Goronfolah L. RAB27A mutation in a patient with griscelli syndrome type 2, successfully cured by hematopoietic stem cell transplantation: Sustained remission. JOURNAL OF APPLIED HEMATOLOGY 2019. [DOI: 10.4103/joah.joah_34_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Ridaura-Sanz C, Durán-McKinster C, Ruiz-Maldonado R. Usefulness of the skin biopsy as a tool in the diagnosis of silvery hair syndrome. Pediatr Dermatol 2018; 35:780-783. [PMID: 30338556 DOI: 10.1111/pde.13624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/OBJECTIVES Silvery hair syndrome is a rare, autosomal-recessive entity characterized by silvery gray hair, eyebrows, and eyelashes and may be associated or not with immunologic or neurologic alterations. Two main types have been recognized: Chediak-Higashi syndrome and Griscelli syndrome. Hair shaft examination under light microscopy has been a useful tool to differentiate Chediak-Higashi syndrome from Griscelli syndrome, although distribution of melanin varies according to hair color related to ethnicity. The objective was to compare the pattern of melanin in the skin and with the pattern of melanin distribution in the hair shaft. METHODS Sixteen patients with silvery hair syndrome were selected (Chediak-Higashi syndrome 5, Griscelli syndrome 11). The distribution of melanin granules in skin and hair shafts was compared and correlated with clinical diagnoses. RESULTS Chediak-Higashi syndrome was characterized by small granules of melanin uniformly distributed throughout the thickness of the epidermis. Griscelli syndrome was characterized by an irregular pigment distribution in the epidermal basal layer with large and dense granules alternating with areas lacking melanin pigment. In two cases, study of the hair was not conclusive, but the skin showed the characteristic pattern of Griscelli syndrome. CONCLUSION Skin biopsy is a useful tool in differentiating Chediak-Higashi syndrome from Griscelli syndrome and as a complementary study in cases in which hair shaft pigment distribution does not support the diagnosis, especially in patients with fair hair. The distribution of melanin granules in the skin correlates with that observed in the hair shaft, allowing Chediak-Higashi syndrome to be differentiated from Griscelli syndrome, at any age.
Collapse
Affiliation(s)
| | | | - Ramón Ruiz-Maldonado
- Department of Dermatology, National Institute of Pediatrics, Mexico City, Mexico
| |
Collapse
|
40
|
Kassem Youssef H, Ramstein C, Ginglinger E, Chouta Ngaha F, Nojavan H, Michel C. [Griscelli syndrome type 3: A new case]. Ann Dermatol Venereol 2018; 145:785-789. [PMID: 30389201 DOI: 10.1016/j.annder.2018.07.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/24/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Griscelli syndrome (GS) is a rare autosomal-recessive genetic disease characterized by hypopigmentation of skin and hair. We report a case of GS type 3 with late diagnosis. OBSERVATION A 31-year-old female patient had presented depigmentation of the hair and eyebrows as well as diffuse skin hypopigmentation during childhood. Microscopic analysis of a hair shaft revealed irregularly distributed clumps of melanin. DNA sequencing showed a homozygous C103T (R35W) transition in exon 1 of MLPH, confirming Griscelli syndrome type 3. DISCUSSION Three clinical phenotypes of GS have been described based on the underlying genetic defect. GS type 1 and 2 are associated respectively with a central nervous system dysfunction and an immune defect. GS type 3 is an isolated cutaneous form. Diagnosis is confirmed on microscopic examination of hair shafts. 15 cases of GS type 3 have been reported: 9 in males and 6 in females. Mean age at diagnosis is around 12 years. Nine of the reported patients were of Arab origin, four of Turkish origin, and one of Indian origin. R35W mutation was described in 9 cases and E98X and R35Q mutations were each found in one case. CONCLUSION GS should be suspected in patients presenting gray silvery hair, particularly when these patients are of Arab or Turkish origin.
Collapse
Affiliation(s)
- H Kassem Youssef
- Service de dermatologie, GHR Mulhouse Sud-Alsace, 87, avenue Altkirch, 68100 Mulhouse, France.
| | - C Ramstein
- Service de dermatologie, GHR Mulhouse Sud-Alsace, 87, avenue Altkirch, 68100 Mulhouse, France
| | - E Ginglinger
- Service de génétique, GHR Mulhouse Sud-Alsace, 87, avenue Altkirch, 68100 Mulhouse, France
| | - F Chouta Ngaha
- Service de dermatologie, GHR Mulhouse Sud-Alsace, 87, avenue Altkirch, 68100 Mulhouse, France
| | - H Nojavan
- Service de dermatologie, GHR Mulhouse Sud-Alsace, 87, avenue Altkirch, 68100 Mulhouse, France
| | - C Michel
- Service de dermatologie, GHR Mulhouse Sud-Alsace, 87, avenue Altkirch, 68100 Mulhouse, France
| |
Collapse
|
41
|
Demars J, Iannuccelli N, Utzeri VJ, Auvinet G, Riquet J, Fontanesi L, Allain D. New Insights into the Melanophilin ( MLPH) Gene Affecting Coat Color Dilution in Rabbits. Genes (Basel) 2018; 9:genes9090430. [PMID: 30142960 PMCID: PMC6162760 DOI: 10.3390/genes9090430] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 11/16/2022] Open
Abstract
Coat color dilution corresponds to a specific pigmentation phenotype that leads to a dilution of wild type pigments. It affects both eumelanin and pheomelanin containing melanosomes. The mode of inheritance of the dilution phenotype is autosomal recessive. Candidate gene approaches focused on the melanophilin (MLPH) gene highlighted two variants associated with the dilution phenotype in rabbits: The c.111-5C>A variant that is located in an acceptor splice site or the c.585delG variant, a frameshift mutation. On the transcript level, the skipping of two exons has been reported as the molecular mechanism responsible for the coat color dilution. To clarify, which of the two variants represents the causal variant, (i) we analyzed their allelic segregation by genotyping Castor and Chinchilla populations, and (ii) we evaluated their functional effects on the stability of MLPH transcripts in skin samples of animals with diluted or wild type coat color. Firstly, we showed that the c.585delG variant showed perfect association with the dilution phenotype in contrast to the intronic c.111-5C>A variant. Secondly, we identified three different MLPH isoforms including the wild type isoform, the exon-skipping isoform and a retained intron isoform. Thirdly, we observed a drastic and significant decrease of MLPH transcript levels in rabbits with a coat color dilution (p-values ranging from 10−03 to 10−06). Together, our results bring new insights into the coat color dilution trait.
Collapse
Affiliation(s)
- Julie Demars
- GenPhySE, INRA Animal Genetics, Toulouse Veterinary School (ENVT), Université de Toulouse, 31326 Castanet Tolosan, France.
| | - Nathalie Iannuccelli
- GenPhySE, INRA Animal Genetics, Toulouse Veterinary School (ENVT), Université de Toulouse, 31326 Castanet Tolosan, France.
| | - Valerio Joe Utzeri
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy.
| | | | - Juliette Riquet
- GenPhySE, INRA Animal Genetics, Toulouse Veterinary School (ENVT), Université de Toulouse, 31326 Castanet Tolosan, France.
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences (DISTAL), Division of Animal Sciences, University of Bologna, 40127 Bologna, Italy.
| | - Daniel Allain
- GenPhySE, INRA Animal Genetics, Toulouse Veterinary School (ENVT), Université de Toulouse, 31326 Castanet Tolosan, France.
| |
Collapse
|
42
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
43
|
Lachance J, Berens AJ, Hansen MEB, Teng AK, Tishkoff SA, Rebbeck TR. Genetic Hitchhiking and Population Bottlenecks Contribute to Prostate Cancer Disparities in Men of African Descent. Cancer Res 2018; 78:2432-2443. [PMID: 29438991 PMCID: PMC5932264 DOI: 10.1158/0008-5472.can-17-1550] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/02/2017] [Accepted: 02/05/2018] [Indexed: 12/24/2022]
Abstract
Prostate cancer incidence and mortality rates in African and African American men are greatly elevated compared with other ethnicities. This disparity is likely explained by a combination of social, environmental, and genetic factors. A large number of susceptibility loci have been reported by genome-wide association studies (GWAS), but the contribution of these loci to prostate cancer disparities is unclear. Here, we investigated the population structure of 68 previously reported GWAS loci and calculated genetic disparity contribution statistics to identify SNPs that contribute the most to differences in prostate cancer risk across populations. By integrating GWAS results with allele frequency data, we generated genetic risk scores for 45 African and 19 non-African populations. Tests of natural selection were used to assess why some SNPs have large allele frequency differences across populations. We report that genetic predictions of prostate cancer risks are highest for West African men and lowest for East Asian men. These differences may be explained by the out-of-Africa bottleneck and natural selection. A small number of loci appear to drive elevated prostate cancer risks in men of African descent, including rs9623117, rs6983267, rs10896449, rs10993994, and rs817826. Although most prostate cancer-associated loci are evolving neutrally, there are multiple instances where alleles have hitchhiked to high frequencies with linked adaptive alleles. For example, a protective allele at 2q37 appears to have risen to high frequency in Europe due to selection acting on pigmentation. Our results suggest that evolutionary history contributes to the high rates of prostate cancer in African and African American men.Significance: A small number of genetic variants cause an elevated risk of prostate cancer in men of West African descent. Cancer Res; 78(9); 2432-43. ©2018 AACR.
Collapse
Affiliation(s)
- Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.
| | - Ali J Berens
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Matthew E B Hansen
- Department of Biology and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew K Teng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Sarah A Tishkoff
- Department of Biology and Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Timothy R Rebbeck
- Dana-Farber Cancer Institute and Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
44
|
No novel, high penetrant gene might remain to be found in Japanese patients with unknown MODY. J Hum Genet 2018; 63:821-829. [PMID: 29670293 DOI: 10.1038/s10038-018-0449-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 11/08/2022]
Abstract
MODY 5 and 6 have been shown to be low-penetrant MODYs. As the genetic background of unknown MODY is assumed to be similar, a new analytical strategy is applied here to elucidate genetic predispositions to unknown MODY. We examined to find whether there are major MODY gene loci remaining to be identified using SNP linkage analysis in Japanese. Whole-exome sequencing was performed with seven families with typical MODY. Candidates for novel MODY genes were examined combined with in silico network analysis. Some peaks were found only in either parametric or non-parametric analysis; however, none of these peaks showed a LOD score greater than 3.7, which is approved to be the significance threshold of evidence for linkage. Exome sequencing revealed that three mutated genes were common among 3 families and 42 mutated genes were common in two families. Only one of these genes, MYO5A, having rare amino acid mutations p.R849Q and p.V1601G, was involved in the biological network of known MODY genes through the intermediary of the INS. Although only one promising candidate gene, MYO5A, was identified, no novel, high penetrant MODY genes might remain to be found in Japanese MODY.
Collapse
|
45
|
Bauer A, Kehl A, Jagannathan V, Leeb T. A novel MLPH variant in dogs with coat colour dilution. Anim Genet 2018; 49:94-97. [PMID: 29349785 DOI: 10.1111/age.12632] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2017] [Indexed: 11/28/2022]
Abstract
Coat colour dilution may be the result of altered melanosome transport in melanocytes. Loss-of-function variants in the melanophilin gene (MLPH) cause a recessively inherited form of coat colour dilution in many mammalian and avian species including the dog. MLPH corresponds to the D locus in many domestic animals, and recessive alleles at this locus are frequently denoted with d. In this study, we investigated dilute coloured Chow Chows whose coat colour could not be explained by their genotype at the previously known MLPH:c.-22G>A variant. Whole genome sequencing of such a dilute Chow Chow revealed another variant in the MLPH gene: MLPH:c.705G>C. We propose to designate the corresponding mutant alleles at these two variants d1 and d2 . We performed an association study in a cohort of 15 dilute and 28 non-dilute Chow Chows. The dilute dogs were all either compound heterozygous d1 /d2 or homozygous d2 /d2 , whereas the non-dilute dogs carried at least one wildtype allele D. The d2 allele did not occur in 417 dogs from diverse other breeds. However, when we genotyped a Sloughi family, in which a dilute coloured puppy had been born out of non-dilute parents, we again observed perfect co-segregation of the newly discovered d2 allele with coat colour dilution. Finally, we identified a blue Thai Ridgeback with the d1 /d2 genotype. Thus, our data identify the MLPH:c.705G>C as a variant explaining a second canine dilution allele. Although relatively rare overall, this d2 allele is segregating in at least three dog breeds, Chow Chows, Sloughis and Thai Ridgebacks.
Collapse
Affiliation(s)
- A Bauer
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - A Kehl
- Laboklin, 97688, Bad Kissingen, Germany
| | - V Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| | - T Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Bern, Switzerland.,DermFocus, University of Bern, 3001, Bern, Switzerland
| |
Collapse
|
46
|
Gothwal M, Sandrock-Lang K, Zieger B. Genetics of inherited platelet disorders. Hamostaseologie 2017; 34:133-41. [DOI: 10.5482/hamo-13-09-0049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/11/2013] [Indexed: 11/05/2022] Open
Abstract
SummaryThe current review describes inherited platelet disorders, illustrates their clinical phenotype and molecular genetic defects. Platelets are the key molecules mediating haemostasis via adhesion, activation and clot formation at the site of injury. The inherited platelet disorders can be classified according to their platelet defects: receptor/cytoskeleton defects, secretion disorder, and signal transduction defect.Patients with inherited thrombocytopathia present with mucous membrane bleedings (epistaxis, gingival bleeding) and may present with serious life threatening bleedings following surgery or trauma. Therefore, biochemical and molecular genetic characterization of inherited platelet disorders is important to understand these disorders and to support an efficient therapy.
Collapse
|
47
|
Two Variants in SLC24A5 Are Associated with "Tiger-Eye" Iris Pigmentation in Puerto Rican Paso Fino Horses. G3-GENES GENOMES GENETICS 2017; 7:2799-2806. [PMID: 28655738 PMCID: PMC5555483 DOI: 10.1534/g3.117.043786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A unique eye color, called tiger-eye, segregates in the Puerto Rican Paso Fino (PRPF) horse breed and is characterized by a bright yellow, amber, or orange iris. Pedigree analysis identified a simple autosomal recessive mode of inheritance for this trait. A genome-wide association study (GWAS) with 24 individuals identified a locus on ECA 1 reaching genome-wide significance (Pcorrected = 1.32 × 10−5). This ECA1 locus harbors the candidate gene, Solute Carrier Family 24 (Sodium/Potassium/Calcium Exchanger), Member 5 (SLC24A5), with known roles in pigmentation in humans, mice, and zebrafish. Humans with compound heterozygous mutations in SLC24A5 have oculocutaneous albinism (OCA) type 6 (OCA6), which is characterized by dilute skin, hair, and eye pigmentation, as well as ocular anomalies. Twenty tiger-eye horses were homozygous for a nonsynonymous mutation in exon 2 (p.Phe91Tyr) of SLC24A5 (called here Tiger-eye 1), which is predicted to be deleterious to protein function. Additionally, eight of the remaining 12 tiger-eye horses heterozygous for the p.Phe91Tyr variant were also heterozygous for a 628 bp deletion encompassing all of exon 7 of SLC24A5 (c.875-340_1081+82del), which we will call here the Tiger-eye 2 allele. None of the 122 brown-eyed horses were homozygous for either tiger-eye-associated allele or were compound heterozygotes. Further, neither variant was detected in 196 horses from four related breeds not known to have the tiger-eye phenotype. Here, we propose that two mutations in SLC24A5 affect iris pigmentation in tiger-eye PRPF horses. Further, unlike OCA6 in humans, the Tiger-eye 1 mutation in its homozygous state or as a compound heterozygote (Tiger-eye 1/Tiger-eye 2) does not appear to cause ocular anomalies or a change in coat color in the PRPF horse.
Collapse
|
48
|
Stahl BA, Gross JB. A Comparative Transcriptomic Analysis of Development in Two Astyanax Cavefish Populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:515-532. [PMID: 28612405 DOI: 10.1002/jez.b.22749] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 12/11/2022]
Abstract
Organisms that are isolated into extreme environments often evolve extreme phenotypes. However, global patterns of dynamic gene expression changes that accompany dramatic environmental changes remain largely unknown. The blind Mexican cavefish, Astyanax mexicanus, has evolved a number of severe cave-associated phenotypes including loss of vision and pigmentation, craniofacial bone fusions, increased fat storage, reduced sleep, and amplified nonvisual sensory systems. Interestingly, surface-dwelling forms have repeatedly entered different caves throughout Mexico, providing a natural set of "replicate" instances of cave isolation. These surrogate "ancestral" surface-dwelling forms persist in nearby rivers, enabling direct comparisons to the "derived" cave-dwelling form. We evaluated changes associated with subterranean isolation by measuring differential gene expression in two geographically distinct cave-dwelling populations (Pachón and Tinaja). To understand the impact of these expression changes on development, we performed RNA-sequencing across four critical stages during which troglomorphic traits first appear in cavefish embryos. Gene ontology (GO) studies revealed similar functional profiles evolved in both independent cave lineages. However, enrichment studies indicated that similar GO profiles were occasionally mediated by different genes. Certain "master" regulators, such as Otx2 and Mitf, appear to be important loci for cave adaptation, as remarkably similar patterns of expression were identified in both independent cave lineages. This work reveals that adaptation to an extreme environment, in two distinct cavefish lineages, evolves through a combination of unique and shared gene expression patterns. Shared expression profiles reflect common environmental pressures, while unique expression likely reflects the fact that similar adaptive traits evolve through diverse genetic mechanisms.
Collapse
Affiliation(s)
- Bethany A Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
49
|
Hernando B, Peña-Chilet M, Ibarrola-Villava M, Martin-Gonzalez M, Gomez-Fernandez C, Ribas G, Martinez-Cadenas C. Genetic 3'UTR variation is associated with human pigmentation characteristics and sensitivity to sunlight. Exp Dermatol 2017; 26:896-903. [PMID: 28266728 DOI: 10.1111/exd.13333] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2017] [Indexed: 12/14/2022]
Abstract
Sunlight exposure induces signalling pathways leading to the activation of melanin synthesis and tanning response. MicroRNAs (miRNAs) can regulate the expression of genes involved in pigmentation pathways by binding to the complementary sequence in their 3'untranslated regions (3'UTRs). Therefore, 3'UTR SNPs are predicted to modify the ability of miRNAs to target genes, resulting in differential gene expression. In this study, we investigated the role in pigmentation and sun-sensitivity traits, as well as in melanoma susceptibility, of 38 different 3'UTR SNPs from 38 pigmentation-related genes. A total of 869 individuals of Spanish origin (526 melanoma cases and 343 controls) were analysed. The association of genotypic data with pigmentation traits was analysed via logistic regression. Web-based tools for predicting the effect of genetic variants in microRNA-binding sites in 3'UTR gene regions were also used. Seven 3'UTR SNPs showed a potential implication in melanoma risk phenotypes. This association is especially noticeable for two of them, rs2325813 in the MLPH gene and rs752107 in the WNT3A gene. These two SNPs were predicted to disrupt a miRNA-binding site and to impact on miRNA-mRNA interaction. To our knowledge, this is the first time that these two 3'UTR SNPs have been associated with sun-sensitivity traits. We state the potential implication of these SNPs in human pigmentation and sensitivity to sunlight, possibly as a result of changes in the level of gene expression through the disruption of putative miRNA-binding sites.
Collapse
Affiliation(s)
- Barbara Hernando
- Department of Medicine, Jaume I University of Castellon, Castellon, Spain
| | - Maria Peña-Chilet
- Department of Medical Oncology, Biomedical Research Institute - INCLIVA, Valencia, Spain.,Network Centre for Biomedical Cancer Research (CIBERONC), Valencia, Spain
| | - Maider Ibarrola-Villava
- Department of Medical Oncology, Biomedical Research Institute - INCLIVA, Valencia, Spain.,Network Centre for Biomedical Cancer Research (CIBERONC), Valencia, Spain
| | | | | | - Gloria Ribas
- Department of Medical Oncology, Biomedical Research Institute - INCLIVA, Valencia, Spain.,Network Centre for Biomedical Cancer Research (CIBERONC), Valencia, Spain
| | | |
Collapse
|
50
|
Lindemann C, Thomanek N, Hundt F, Lerari T, Meyer HE, Wolters D, Marcus K. Strategies in relative and absolute quantitative mass spectrometry based proteomics. Biol Chem 2017; 398:687-699. [DOI: 10.1515/hsz-2017-0104] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/28/2017] [Indexed: 11/15/2022]
Abstract
Abstract
Quantitative mass spectrometry approaches are used for absolute and relative quantification in global proteome studies. To date, relative and absolute quantification techniques are available that differ in quantification accuracy, proteome coverage, complexity and robustness. This review focuses on most common relative or absolute quantification strategies exemplified by three experimental studies. A label-free relative quantification approach was performed for the investigation of the membrane proteome of sensory cilia to the depth of olfactory receptors in Mus musculus. A SILAC-based relative quantification approach was successfully applied for the identification of core components and transient interactors of the peroxisomal importomer in Saccharomyces cerevisiae. Furthermore, AQUA using stable isotopes was exemplified to unraveling the prenylome influenced by novel prenyltransferase inhibitors. Characteristic enrichment and fragmentation strategies for a robust quantification of the prenylome are also summarized.
Collapse
|