1
|
Mhaske A, Shukla S, Ahirwar K, Singh KK, Shukla R. Receptor-Assisted Nanotherapeutics for Overcoming the Blood-Brain Barrier. Mol Neurobiol 2024; 61:8702-8738. [PMID: 38558360 PMCID: PMC11496374 DOI: 10.1007/s12035-024-04015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/03/2024] [Indexed: 04/04/2024]
Abstract
Blood-brain barrier (BBB) is a distinguishing checkpoint that segregates peripheral organs from neural compartment. It protects the central nervous system from harmful ambush of antigens and pathogens. Owing to such explicit selectivity, the BBB hinders passage of various neuroprotective drug molecules that escalates into poor attainability of neuroprotective agents towards the brain. However, few molecules can surpass the BBB and gain access in the brain parenchyma by exploiting surface transporters and receptors. For successful development of brain-targeted therapy, understanding of BBB transporters and receptors is crucial. This review focuses on the transporter and receptor-based mechanistic pathway that can be manoeuvred for better comprehension of reciprocity of receptors and nanotechnological vehicle delivery. Nanotechnology has emerged as one of the expedient noninvasive approaches for brain targeting via manipulating the hurdle of the BBB. Various nanovehicles are being reported for brain-targeted delivery such as nanoparticles, nanocrystals, nanoemulsion, nanolipid carriers, liposomes and other nanovesicles. Nanotechnology-aided brain targeting can be a strategic approach to circumvent the BBB without altering the inherent nature of the BBB.
Collapse
Affiliation(s)
- Akshada Mhaske
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Shalini Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
- Biomedical Evidence-based Transdisciplinary Health Research Institute, University of Central Lancashire, Preston, PR1 2HE, UK.
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
2
|
Pausova Z, Sliz E. Large-Scale Population-Based Studies of Blood Metabolome and Brain Health. Curr Top Behav Neurosci 2024; 68:177-219. [PMID: 38509405 DOI: 10.1007/7854_2024_463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Metabolomics technologies enable the quantification of multiple metabolomic measures simultaneously, which provides novel insights into molecular aspects of human health and disease. In large-scale, population-based studies, blood is often the preferred biospecimen. Circulating metabolome may relate to brain health either by affecting or reflecting brain metabolism. Peripheral metabolites may act at or cross the blood-brain barrier and, subsequently, influence brain metabolism, or they may reflect brain metabolism if similar pathways are engaged. Peripheral metabolites may also include those penetrating the circulation from the brain, indicating, for example, brain damage. Most brain health-related metabolomics studies have been conducted in the context of neurodegenerative disorders and cognition, but some studies have also focused on neuroimaging markers of these disorders. Moreover, several metabolomics studies of neurodevelopmental disorders have been performed. Here, we provide a brief background on the types of blood metabolites commonly assessed, and we review the literature describing the relationships between human blood metabolome (n > 50 metabolites) and brain health reported in large-scale studies (n > 500 individuals).
Collapse
Affiliation(s)
- Zdenka Pausova
- Centre hospitalier universitaire Sainte-Justine and Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Eeva Sliz
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Li F, Artiushin G, Sehgal A. Modulation of sleep by trafficking of lipids through the Drosophila blood-brain barrier. eLife 2023; 12:e86336. [PMID: 37140181 PMCID: PMC10205086 DOI: 10.7554/elife.86336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Endocytosis through Drosophila glia is a significant determinant of sleep amount and occurs preferentially during sleep in glia of the blood-brain barrier (BBB). To identify metabolites whose trafficking is mediated by sleep-dependent endocytosis, we conducted metabolomic analysis of flies that have increased sleep due to a block in glial endocytosis. We report that acylcarnitines, fatty acids conjugated to carnitine to promote their transport, accumulate in heads of these animals. In parallel, to identify transporters and receptors whose loss contributes to the sleep phenotype caused by blocked endocytosis, we screened genes enriched in barrier glia for effects on sleep. We find that knockdown of lipid transporters LRP1&2 or of carnitine transporters ORCT1&2 increases sleep. In support of the idea that the block in endocytosis affects trafficking through specific transporters, knockdown of LRP or ORCT transporters also increases acylcarnitines in heads. We propose that lipid species, such as acylcarnitines, are trafficked through the BBB via sleep-dependent endocytosis, and their accumulation reflects an increased need for sleep.
Collapse
Affiliation(s)
- Fu Li
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Gregory Artiushin
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Amita Sehgal
- Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
4
|
Mendiola AS, Tognatta R, Yan Z, Akassoglou K. ApoE and immunity in Alzheimer's disease and related tauopathies: Low-density lipoprotein receptor to the rescue. Neuron 2021; 109:2363-2365. [PMID: 34352209 DOI: 10.1016/j.neuron.2021.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this issue of Neuron, Shi et al. (2021) show a protective role for the low-density lipoprotein receptor (LDLR) in tau pathology. Brain overexpression of LDLR lowers apolipoprotein E (apoE), suppresses microglial activation, preserves myelin, and ameliorates neurodegeneration, pointing the way toward potential new therapies.
Collapse
Affiliation(s)
- Andrew S Mendiola
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Reshmi Tognatta
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Zhaoqi Yan
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Katerina Akassoglou
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
5
|
Prendecki M, Kowalska M, Toton E, Kozubski W. Genetic Editing and Pharmacogenetics in Current And Future Therapy Of Neurocognitive Disorders. Curr Alzheimer Res 2021; 17:238-258. [PMID: 32321403 DOI: 10.2174/1567205017666200422152440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Dementia is an important issue in western societies, and in the following years, this problem will also rise in the developing regions, such as Africa and Asia. The most common types of dementia in adults are Alzheimer's Disease (AD), Dementia with Lewy Bodies (DLB), Frontotemporal Dementia (FTD) and Vascular Dementia (VaD), of which, AD accounts for more than half of the cases. The most prominent symptom of AD is cognitive impairment, currently treated with four drugs: Donepezil, rivastigmine, and galantamine, enhancing cholinergic transmission; as well as memantine, protecting neurons against glutamate excitotoxicity. Despite ongoing efforts, no new drugs in the treatment of AD have been registered for the last ten years, thus multiple studies have been conducted on genetic factors affecting the efficacy of antidementia pharmacotherapy. The researchers investigate the effects of variants in multiple genes, such as ABCB1, ACE, CHAT, CHRNA7, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, CYP3A7, NR1I2, NR1I3, POR, PPAR, RXR, SLC22A1/2/5, SLC47A1, UGT1A6, UGT1A9 and UGT2B7, associated with numerous pathways: the development of pathological proteins, formation and metabolism of acetylcholine, transport, metabolism and excretion of antidementia drugs and transcription factors regulating the expression of genes responsible for metabolism and transport of drugs. The most promising results have been demonstrated for APOE E4, dementia risk variant, BCHE-K, reduced butyrylcholinesterase activity variant, and CYP2D6 UM, ultrarapid hepatic metabolism. Further studies investigate the possibilities of the development of emerging drugs or genetic editing by CRISPR/Cas9 for causative treatment. In conclusion, the pharmacogenetic studies on dementia diseases may improve the efficacy of pharmacotherapy in some patients with beneficial genetic variants, at the same time, identifying the carriers of unfavorable alleles, the potential group of novel approaches to the treatment and prevention of dementia.
Collapse
Affiliation(s)
- Michal Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
6
|
Chuang ST, Cruz S, Narayanaswami V. Reconfiguring Nature's Cholesterol Accepting Lipoproteins as Nanoparticle Platforms for Transport and Delivery of Therapeutic and Imaging Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E906. [PMID: 32397159 PMCID: PMC7279153 DOI: 10.3390/nano10050906] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Apolipoproteins are critical structural and functional components of lipoproteins, which are large supramolecular assemblies composed predominantly of lipids and proteins, and other biomolecules such as nucleic acids. A signature feature of apolipoproteins is the preponderance of amphipathic α-helical motifs that dictate their ability to make extensive non-covalent inter- or intra-molecular helix-helix interactions in lipid-free states or helix-lipid interactions with hydrophobic biomolecules in lipid-associated states. This review focuses on the latter ability of apolipoproteins, which has been capitalized on to reconstitute synthetic nanoscale binary/ternary lipoprotein complexes composed of apolipoproteins/peptides and lipids that mimic native high-density lipoproteins (HDLs) with the goal to transport drugs. It traces the historical development of our understanding of these nanostructures and how the cholesterol accepting property of HDL has been reconfigured to develop them as drug-loading platforms. The review provides the structural perspective of these platforms with different types of apolipoproteins and an overview of their synthesis. It also examines the cargo that have been loaded into the core for therapeutic and imaging purposes. Finally, it lays out the merits and challenges associated with apolipoprotein-based nanostructures with a future perspective calling for a need to develop "zip-code"-based delivery for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
| | | | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Blvd, Long Beach, CA 90840, USA; (S.T.C.); (S.C.)
| |
Collapse
|
7
|
Yang B, Li S, Chen Z, Feng F, He L, Liu B, He T, Wang X, Chen R, Chen Z, Xie P, Rong L. Amyloid β peptide promotes bone formation by regulating Wnt/β-catenin signaling and the OPG/RANKL/RANK system. FASEB J 2020; 34:3583-3593. [PMID: 31944393 DOI: 10.1096/fj.201901550r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Amyloid β peptide (Aβ) is involved in osteoporosis, but the effects of Aβ on osteoblast and bone formation remain unclear. In this study, we investigated the effect of Aβ on bone formation. METHODS An animal model of osteoporosis was established by ovariectomy in C57BL/6 mice. The mice received intraperitoneal injection of Aβ. The effect of Aβ on the osteogenic differentiation of human bone marrow stromal stem cells (hBMSCs) and differentiation of both pre-osteoblasts and pre-osteoclasts in a co-culture system were investigated. RESULTS In the animal study, intraperitoneal injection of Aβ for 8 weeks promoted early and late osteogenic differentiation of hBMSCs. Aβ treatment significantly elevated osterix+ (osteoblastic) cells but decreased TRAP+ cells (osteoclasts) in the distal femur bone. In vitro study showed that Aβ treatment significantly enhanced matrix mineralization and osteogenic markers (Runx2 and osteocalcin). Aβ treatment activated Wnt/β-catenin signaling in hBMSCs. The effect of Aβ was blocked by DKK1 (a Wnt/β-catenin inhibitor) treatment. In the co-culture system, Aβ treatment significantly increased the ALP activities of MC3T3-E1 cells (pre-osteoblasts) but reduced the TRAP+ RAW264.7 cells (pre-osteoclasts). Aβ treatment upregulated TCF1 and OPG proteins in MC3T3-E1 cells. Aβ treatment upregulated IκB-α but downregulated NFATc1protein in RAW264.7 cells. These effects were blocked by XAV-939 (a Wnt signaling antagonist), and then rescued by additional Wnt3a (a Wnt agonist). CONCLUSION Aβ treatment simultaneously promoted osteogenic differentiation via Wnt/β-catenin signaling, and inhibited osteoclasts differentiation via the OPG/RANKL/RANK system, suggesting Aβ is a positive regulator of osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Bu Yang
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Shangfu Li
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng Feng
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Lei He
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Bin Liu
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Tianwei He
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Xuan Wang
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Ruiqiang Chen
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Zihao Chen
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Peigen Xie
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Limin Rong
- Department of Spine surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
8
|
Fredriksson L, Lawrence DA, Medcalf RL. tPA Modulation of the Blood-Brain Barrier: A Unifying Explanation for the Pleiotropic Effects of tPA in the CNS. Semin Thromb Hemost 2017; 43:154-168. [PMID: 27677179 PMCID: PMC5848490 DOI: 10.1055/s-0036-1586229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The plasminogen activation (PA) system is best known for its role in fibrinolysis. However, it has also been shown to regulate many nonfibrinolytic functions in the central nervous system (CNS). In particular, tissue-type plasminogen activator (tPA) is reported to have pleiotropic activities in the CNS, regulating events such as neuronal plasticity, excitotoxicity, and cerebrovascular barrier integrity, whereas urokinase-type plasminogen activator is mainly associated with tissue remodeling and cell migration. It has been suggested that the role tPA plays in controlling barrier integrity may provide a unifying mechanism for the reported diverse, and often opposing, functions ascribed to tPA in the CNS. Here we will review the possibility that the pleiotropic effects reported for tPA in physiologic and pathologic processes in the CNS may be a consequence of its role in the neurovascular unit in regulation of cerebrovascular responses and subsequently parenchymal homeostasis. We propose that this might offer an explanation for the ongoing debate regarding the neurotoxic versus neuroprotective roles of tPA.
Collapse
Affiliation(s)
- Linda Fredriksson
- Department of Medical Biochemistry & Biophysics, Division of Vascular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI USA
| | - Robert L. Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
9
|
Chen HS, Qi SH, Shen JG. One-Compound-Multi-Target: Combination Prospect of Natural Compounds with Thrombolytic Therapy in Acute Ischemic Stroke. Curr Neuropharmacol 2017; 15:134-156. [PMID: 27334020 PMCID: PMC5327453 DOI: 10.2174/1570159x14666160620102055] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/21/2016] [Accepted: 06/15/2016] [Indexed: 12/11/2022] Open
Abstract
Tissue plasminogen activator (t-PA) is the only FDA-approved drug for acute ischemic stroke treatment, but its clinical use is limited due to the narrow therapeutic time window and severe adverse effects, including hemorrhagic transformation (HT) and neurotoxicity. One of the potential resolutions is to use adjunct therapies to reduce the side effects and extend t-PA's therapeutic time window. However, therapies modulating single target seem not to be satisfied, and a multitarget strategy is warranted to resolve such complex disease. Recently, large amount of efforts have been made to explore the active compounds from herbal supplements to treat ischemic stroke. Some natural compounds revealed both neuro- and bloodbrain- barrier (BBB)-protective effects by concurrently targeting multiple cellular signaling pathways in cerebral ischemia-reperfusion injury. Thus, those compounds are potential to be one-drug-multi-target agents as combined therapy with t-PA for ischemic stroke. In this review article, we summarize current progress about molecular targets involving in t-PA-mediated HT and neurotoxicity in ischemic brain injury. Based on these targets, we select 23 promising compounds from currently available literature with the bioactivities simultaneously targeting several important molecular targets. We propose that those compounds merit further investigation as combined therapy with t-PA. Finally, we discuss the potential drawbacks of the natural compounds' studies and raise several important issues to be addressed in the future for the development of natural compound as an adjunct therapy.
Collapse
Affiliation(s)
- Han-Sen Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| | - Su-Hua Qi
- Research Center for Biochemistry and Molecular Biology and Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, China
| | - Jian-Gang Shen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong S.A.R, P. R China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), China
| |
Collapse
|
10
|
Sinha RK, Yang XV, Fernández JA, Xu X, Mosnier LO, Griffin JH. Apolipoprotein E Receptor 2 Mediates Activated Protein C-Induced Endothelial Akt Activation and Endothelial Barrier Stabilization. Arterioscler Thromb Vasc Biol 2016; 36:518-24. [PMID: 26800564 DOI: 10.1161/atvbaha.115.306795] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Activated protein C (APC), a plasma serine protease, initiates cell signaling that protects endothelial cells from apoptosis and endothelial barrier disruption. Apolipoprotein E receptor 2 (ApoER2; LRP8) is a receptor known for mediating signaling initiated by reelin in neurons. ApoER2 contributes to APC-initiated signaling in monocytic U937 cells. The objective was to determine whether ApoER2 is required for APC's beneficial signaling in the endothelial cell surrogate EA.hy926 line. APPROACH AND RESULTS We used small interfering RNA and inhibitors to probe requirements for specific receptors for APC's antiapoptotic activity and for phosphorylation of disabled-1 by Src family kinases and of Akt. When small interfering RNA for ApoER2 or endothelial cell protein C receptor or protease activated receptor 1 was used, APC's antiapoptotic activity was ablated, indicating that each of these receptors was required. In EA.hy926 cells, APC induced a 2- to 3-fold increased phosphorylation of Ser473-Akt and Tyr232-disabled-1, a phosphorylation known to trigger disabled-1-mediated signaling in other cell types. Ser473-Akt phosphorylation was inhibited by ApoER2 small interfering RNA or by inhibitors of Src (PP2), phosphatidylinositol-3 kinase (LY303511), and protease activated receptor 1 (SCH79797). ApoER2 small interfering RNA blocked the ability of APC to prevent thrombin-induced endothelial barrier disruption in TransEndothelial Resistance assays. Binding studies using purified APC and purified immobilized wild-type and mutated ApoER2 ectodomains suggested that APC binding involves Lys49, Asp50, and Trp64 on the surface of the N-terminal LA1 domain of ApoER2. CONCLUSIONS ApoER2 contributes cooperatively with endothelial cell protein C receptor and protease activated receptor 1 to APC-initiated endothelial antiapoptotic and barrier protective signaling.
Collapse
Affiliation(s)
- Ranjeet K Sinha
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Xia V Yang
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - José A Fernández
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Xiao Xu
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - Laurent O Mosnier
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA
| | - John H Griffin
- From the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA.
| |
Collapse
|
11
|
zarebkohan A, Najafi F, Moghimi HR, Hemmati M, Deevband MR, Kazemi B. SRL-Coated PAMAM Dendrimer Nano-Carrier for Targeted Gene Delivery to the Glioma Cells and Competitive Inhibition by Lactoferrin. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:629-640. [PMID: 28243262 PMCID: PMC5316243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perform this investigation, our newly developed nanocarrier (PAMAM-PEG-SRL) was used for gene delivery to C6 glioma cell lines. DNA (GFP) was loaded in these functionalized nanoparticles and their cellular uptake/distribution and gene transfection efficacy was evaluated by fluorescence and confocal microscopy. In vitro studies showed that SRL-modified nanoparticles have good transfection efficacy. Results revealed improved gene transfection efficiency of newly-synthesized delivery system. We also found that lactoferrin, as a LRP ligand, reduced the gene transfection efficacy of the delivery system due to its higher affinity compared to SRL peptides (Competitive inhibition). The present results suggest that the synthesized delivery system has the potential to be used as an alternative targeted drug delivery system for brain tumors.
Collapse
Affiliation(s)
- Amir zarebkohan
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran.
| | - Hamid Reza Moghimi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hemmati
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Deevband
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. ,Corresponding author: E-mail: ,
| |
Collapse
|
12
|
Chintala SK. Tissue and urokinase plasminogen activators instigate the degeneration of retinal ganglion cells in a mouse model of glaucoma. Exp Eye Res 2015; 143:17-27. [PMID: 26474495 DOI: 10.1016/j.exer.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/25/2015] [Accepted: 10/05/2015] [Indexed: 01/16/2023]
Abstract
Elevated intraocular pressure (IOP) promotes the degeneration of retinal ganglion cells (RGCs) during the progression of Primary Open-Angle Glaucoma (POAG). However, the molecular mechanisms underpinning IOP-mediated degeneration of RGCs remain unclear. Therefore, by employing a mouse model of POAG, this study examined whether elevated IOP promotes the degeneration of RGCs by up-regulating tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) in the retina. IOP was elevated in mouse eyes by injecting fluorescent-microbeads into the anterior chamber. Once a week, for eight weeks, IOP in mouse eyes was measured by using Tono-Pen XL. At various time periods after injecting microbeads, proteolytic activity of tPA and uPA in retinal protein extracts was determined by fibrinogen/plasminogen zymography assays. Localization of tPA and uPA, and their receptor LRP-1 (low-density receptor-related protein-1) in the retina was determined by immunohistochemistry. RGCs' degeneration was assessed by immunostaining with antibodies against Brn3a. Injection of microbeads into the anterior chamber led to a progressive elevation in IOP, increased the proteolytic activity of tPA and uPA in the retina, activated plasminogen into plasmin, and promoted a significant degeneration of RGCs. Elevated IOP up-regulated tPA and LRP-1 in RGCs, and uPA in astrocytes. At four weeks after injecting microbeads, RAP (receptor associated protein; 0.5 and 1.0 μM) or tPA-Stop (1.0 and 4.0 μM) was injected into the vitreous humor. Treatment of IOP-elevated eyes with RAP led to a significant decrease in proteolytic activity of both tPA and uPA, and a significant decrease in IOP-mediated degeneration of RGCs. Also, treatment of IOP-elevated eyes with tPA-Stop decreased the proteolytic activity of both tPA and uPA, and, in turn, significantly attenuated IOP-mediated degeneration of RGCs. Results presented in this study provide evidence that elevated IOP promotes the degeneration of RGCs by up-regulating the levels of proteolytically active tPA and uPA.
Collapse
Affiliation(s)
- Shravan K Chintala
- Laboratory of Ophthalmic Neurobiology, Eye Research Institute of Oakland University, 2200 N. Squirrel Road, 409 DHE, Rochester MI 48309, USA.
| |
Collapse
|
13
|
Zarebkohan A, Najafi F, Moghimi HR, Hemmati M, Deevband MR, Kazemi B. Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain. Eur J Pharm Sci 2015; 78:19-30. [PMID: 26118442 DOI: 10.1016/j.ejps.2015.06.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 12/22/2022]
Abstract
Blood-brain barrier inhibits most of drugs and genetic materials from reaching the brain. So, developing high efficiency carriers for gene and drug delivery to the brain, is the challenging area in pharmaceutical sciences. This investigation aimed to target DNA to brain using Serine-Arginine-Leucine (SRL) functionalized PAMAM dendrimers as a novel gene delivery system. The SRL peptide was linked on G4 PAMAM dendrimers using bifunctional PEG. DNA was then loaded in these functionalized nanoparticles and their physicochemical properties and cellular uptake/distribution evaluated by AFM, NMR, FTIR and fluorescence and confocal microscopy. Also, biodistribution and brain localization of nanoparticles were studied after IV injection of nanoparticles into rat tail. Unmodified nanoparticles were used as control in all evaluations. In vitro studies showed that SRL-modified nanoparticles have good transfection efficacy and low toxicity. Results also showed that SRL is a LRP ligand and SRL-modified nanoparticles internalized by clathrin/caveolin energy-dependent endocytosis to brain capillary endothelial cells. After intravenous administration, the SRL-modified nanoparticles were able to cross the blood-brain barrier and enter the brain parenchyma. Our result showed that, SRL-modified nanoparticles provide a safe and effective nanocarrier for brain gene delivery.
Collapse
Affiliation(s)
- Amir Zarebkohan
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Hamid Reza Moghimi
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hemmati
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Deevband
- Biomedical Engineering and Medical Physics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Biotechnology, Faculty of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Agile delivery of protein therapeutics to CNS. J Control Release 2014; 190:637-63. [PMID: 24956489 DOI: 10.1016/j.jconrel.2014.06.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.
Collapse
|
15
|
Andrieux K, Couvreur P. Nanomedicine as a promising approach for the treatment and diagnosis of brain diseases: the example of Alzheimer's disease. ANNALES PHARMACEUTIQUES FRANÇAISES 2013; 71:225-33. [PMID: 23835020 DOI: 10.1016/j.pharma.2013.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/29/2013] [Accepted: 04/15/2013] [Indexed: 01/09/2023]
Abstract
Targeting of the central nervous system (CNS) in order to treat disorders is actually challenging due to the necessity to cross the blood brain barrier (BBB). This review aims to show how nanomedicine can propose new approach for the treatment and the diagnosis of CNS diseases focusing on Alzheimer's disease (AD). AD is a neurodegenerative disorder prevalent in the senile population. It is characterized by severe neuronal loss and proliferation of plaques composed of β-amyloid peptide (Aβ) and Tau protein deposites. An imbalance between production and clearance leading to the aggregation of Aβ peptides especially in neurotoxic forms, may be the initiating factor in AD. The absence of an effective therapeutic approach nowadays could be, in part, due to the bad knowledge of AD physiopathology and the lack of early diagnosis. Many drawbacks such as poor bioavailability or limited BBB arising of tested molecules in the current or new therapeutic strategies explain their failure but can be resolved by the use of nanotechnology. Examples of recently published works using nanoparticles for improving diagnosis and therapy of AD are presented. Ideal nanocarriers for this aim must be able to pass through the BBB and to interact with an AD marker as soluble extracellular Aβ forms which are known as the most toxic ones. These first results, even if many ones were obtained in vitro, brought to light the potential of nanoparticles for this challenging issue.
Collapse
Affiliation(s)
- K Andrieux
- Institut Galien Paris-Sud, UMR CNRS 8612, faculté de pharmacie, université Paris-Sud, 5, rue Jean-Baptiste-Clément, 92296 Châtenay-Malabry cedex, France.
| | | |
Collapse
|
16
|
Zhang Z, Chen X, Li L, Zhang K, Tian S, Gao H, Li H. t-PA reduces ischemic impairment of blood-brain barrier by strengthening endothelium junction. Neurol Sci 2013; 34:1605-11. [PMID: 23423463 DOI: 10.1007/s10072-013-1293-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/05/2013] [Indexed: 12/11/2022]
Abstract
Cerebral ischemic stroke is one of the most prevalent diseases in senior individuals. Its therapeutical strategies include anticoagulation, thrombolysis and cell protection. Tissue-type plasminogen activator (t-PA) that interacts with thrombin for the lysis of thrombosis is widely used to treat stroke patients in early stage. The mechanism of action of t-PA is not clear. Here, we report a novel role of t-PA in protecting blood-brain barrier and its potential mechanisms. In a model of the blood-brain barrier with human umbilical vascular epithelium cells, we found that t-PA in low concentrations prevented the impairment of the blood-brain barrier as a result of oxygen and glucose deprivation. This protection was fulfilled by strengthening the junctions among vascular endothelia and by upregulating the productions of vascular endothelium growth factor and of zonula occludens-1. Therefore, t-PA may strengthen the junctions of vascular endothelia in the blood-brain barrier to improve the microenvironment of brain cells and, in turn, the outcome of stroke patients.
Collapse
Affiliation(s)
- Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, 23 You-Zheng Street, Nangang District, Harbin, 150001, Heilongjiang, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Stenger C, Pinçon A, Hanse M, Royer L, Comte A, Koziel V, Olivier JL, Pillot T, Yen FT. Brain region-specific immunolocalization of the lipolysis-stimulated lipoprotein receptor (LSR) and altered cholesterol distribution in aged LSR+/- mice. J Neurochem 2012; 123:467-76. [PMID: 22909011 DOI: 10.1111/j.1471-4159.2012.07922.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 11/29/2022]
Abstract
Brain lipid homeostasis is important for maintenance of brain cell function and synaptic communications, and is intimately linked to age-related cognitive decline. Because of the blood-brain barrier's limiting nature, this tissue relies on a complex system for the synthesis and receptor-mediated uptake of lipids between the different networks of neurons and glial cells. Using immunofluorescence, we describe the region-specific expression of the lipolysis-stimulated lipoprotein receptor (LSR), in the mouse hippocampus, cerebellum Purkinje cells, the ependymal cell interface between brain parenchyma and cerebrospinal fluid, and the choroid plexus. Colocalization with cell-specific markers revealed that LSR was expressed in neurons, but not astrocytes. Latency in arms of the Y-maze exhibited by young heterozygote LSR(+/-) mice was significantly different as compared to control LSR(+/+), and increased in older LSR(+/-) mice. Filipin and Nile red staining revealed membrane cholesterol content accumulation accompanied by significantly altered distribution of LSR in the membrane, and decreased intracellular lipid droplets in the cerebellum and hippocampus of old LSR(+/-) mice, as compared to control littermates as well as young LSR(+/-) animals. These data therefore suggest a potential role of LSR in brain cholesterol distribution, which is particularly important in preserving neuronal integrity and thereby cognitive functions during aging.
Collapse
|
18
|
Brunkhorst R, Foerch C. What causes hematoma enlargement in lobar intracerebral hemorrhage?: novel insights from a genetic study. Stroke 2012; 43:1458-9. [PMID: 22511011 DOI: 10.1161/strokeaha.112.651976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Makarova AM, Lebedeva TV, Nassar T, Higazi AAR, Xue J, Carinato ME, Bdeir K, Cines DB, Stepanova V. Urokinase-type plasminogen activator (uPA) induces pulmonary microvascular endothelial permeability through low density lipoprotein receptor-related protein (LRP)-dependent activation of endothelial nitric-oxide synthase. J Biol Chem 2011; 286:23044-53. [PMID: 21540184 PMCID: PMC3123072 DOI: 10.1074/jbc.m110.210195] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 04/19/2011] [Indexed: 01/11/2023] Open
Abstract
Urokinase plasminogen activator (uPA) and PA inhibitor type 1 (PAI-1) are elevated in acute lung injury, which is characterized by a loss of endothelial barrier function and the development of pulmonary edema. Two-chain uPA and uPA-PAI-1 complexes (1-20 nM) increased the permeability of monolayers of human pulmonary microvascular endothelial cells (PMVECs) in vitro and lung permeability in vivo. The effects of uPA-PAI-1 were abrogated by the nitric-oxide synthase (NOS) inhibitor L-NAME (N(D)-nitro-L-arginine methyl ester). Two-chain uPA (1-20 nM) and uPA-PAI-1 induced phosphorylation of endothelial NOS-Ser(1177) in PMVECs, which was followed by generation of NO and the nitrosylation and dissociation of β-catenin from VE-cadherin. uPA-induced phosphorylation of eNOS was decreased by anti-low density lipoprotein receptor-related protein-1 (LRP) antibody and an LRP antagonist, receptor-associated protein (RAP), and when binding to the uPA receptor was blocked by the isolated growth factor-like domain of uPA. uPA-induced phosphorylation of eNOS was also inhibited by the protein kinase A (PKA) inhibitor, myristoylated PKI, but was not dependent on PI3K-Akt signaling. LRP blockade and inhibition of PKA prevented uPA- and uPA-PAI-1-induced permeability of PMVEC monolayers in vitro and uPA-induced lung permeability in vivo. These studies identify a novel pathway involved in regulating PMVEC permeability and suggest the utility of uPA-based approaches that attenuate untoward permeability following acute lung injury while preserving its salutary effects on fibrinolysis and airway remodeling.
Collapse
Affiliation(s)
- Anastasia M. Makarova
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Tatiana V. Lebedeva
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Taher Nassar
- the Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel, and
| | - Abd Al-Roof Higazi
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- the Department of Clinical Biochemistry, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel, and
| | - Jing Xue
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- the Department of Laboratory Medicine, Tianjin Huanhu Hospital, Tianjin 300060, China
| | - Maria E. Carinato
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Khalil Bdeir
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Douglas B. Cines
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Victoria Stepanova
- From the Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
20
|
Rodríguez-González R, Agulla J, Pérez-Mato M, Sobrino T, Castillo J. Neuroprotective effect of neuroserpin in rat primary cortical cultures after oxygen and glucose deprivation and tPA. Neurochem Int 2011; 58:337-43. [PMID: 21163314 DOI: 10.1016/j.neuint.2010.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/22/2010] [Accepted: 12/06/2010] [Indexed: 11/16/2022]
Abstract
Besides its role as a thrombolytic agent, tissue plasminogen activator (tPA) triggers harmful effects in the brain parenchyma after stroke, such as inflammation, excitotoxicity and basal lamina degradation. Neuroserpin, a natural inhibitor of tPA, has shown neuroprotective effects in animal models of brain infarct. However, the molecular mechanisms of neuroserpin-mediated neuroprotection after brain ischemia remain to be well characterized. Then, our aim was to investigate such mechanisms in primary mixed cortical cell cultures after oxygen and glucose deprivation (OGD). Primary rat mixed cortical cultures containing both astrocytes and neurons were subjected to OGD for 150min and subsequently treated with either tPA (5μg/mL), neuroserpin (0.125, 0.25, 0.5 or 1μM), and tPA together with neuroserpin at the mentioned doses. Twenty-four hours after treatment, LDH release, caspase-3 activity, MCP-1, MIP-2, active MMP-9, GRO/KC and COX-2 were measured. Statistical differences were analyzed using Student's t-test or one-way ANOVA as appropriate. Treatment with tPA after OGD increased LDH release, active MMP-9, MCP-1 and MIP-2 (all p≤0.05), but not caspase-3, GRO/KC or COX-2 compared to control. Treatment with neuroserpin after OGD decreased LDH release and active MMP-9 (all p≤0.05). It had no effect on caspase-3 activity, or on MCP-1, MIP-2, GRO/KC or COX-2 expression compared to control. Administration of tPA together with neuroserpin decreased LDH release, active MMP-9 and MIP-2 (all p≤0.05) and showed no effect on MCP-1, GRO/KC or COX-2 compared to control. Our results suggest that neuroprotective activity of neuroserpin involves attenuation on tPA-mediated mechanisms of inflammation and BBB disruption after brain ischemia.
Collapse
Affiliation(s)
- Raquel Rodríguez-González
- Clinical Neuroscience Research Laboratory, Department of Neurology, Hospital Clínico Universitario, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
21
|
Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN. Cholesterol metabolism and transport in the pathogenesis of Alzheimer's disease. J Neurochem 2010; 111:1275-308. [PMID: 20050287 DOI: 10.1111/j.1471-4159.2009.06408.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, affecting millions of people worldwide. Apart from age, the major risk factor identified so far for the sporadic form of AD is possession of the epsilon4 allele of apolipoprotein E (APOE), which is also a risk factor for coronary artery disease (CAD). Other apolipoproteins known to play an important role in CAD such as apolipoprotein B are now gaining attention for their role in AD as well. AD and CAD share other risk factors, such as altered cholesterol levels, particularly high levels of low density lipoproteins together with low levels of high density lipoproteins. Statins--drugs that have been used to lower cholesterol levels in CAD, have been shown to protect against AD, although the protective mechanism(s) involved are still under debate. Enzymatic production of the beta amyloid peptide, the peptide thought to play a major role in AD pathogenesis, is affected by membrane cholesterol levels. In addition, polymorphisms in several proteins and enzymes involved in cholesterol and lipoprotein transport and metabolism have been linked to risk of AD. Taken together, these findings provide strong evidence that changes in cholesterol metabolism are intimately involved in AD pathogenic processes. This paper reviews cholesterol metabolism and transport, as well as those aspects of cholesterol metabolism that have been linked with AD.
Collapse
Affiliation(s)
- Ian J Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, Edith Cowan University, Joondalup, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 2009; 30:6976-85. [PMID: 19765819 DOI: 10.1016/j.biomaterials.2009.08.049] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 08/28/2009] [Indexed: 01/12/2023]
Abstract
Angiopep targeting to the low-density lipoprotein receptor-related protein-1 (LRP1) was identified to exhibit high transcytosis capacity and parenchymal accumulation. In this study, it was exploited as a ligand for effective brain-targeting gene delivery. Polyamidoamine dendrimers (PAMAM) were modified with angiopep through bifunctional PEG, then complexed with DNA, yielding PAMAM-PEG-Angiopep/DNA nanoparticles (NPs). The angiopep-modified NPs were observed to be internalized by brain capillary endothelial cells (BCECs) through a clathrin- and caveolae-mediated energy-depending endocytosis, also partly through marcopinocytosis. Also, the cellular uptake of the angiopep-modified NPs were competed by angiopep-2, receptor-associated protein (RAP) and lactoferrin, indicating that LRP1-mediated endocytosis may be the main mechanism of cellular internalization of angiopep-modified NPs. And the angiopep-modified NPs showed higher efficiency in crossing blood-brain barrier (BBB) than unmodified NPs in an in vitro BBB model, and accumulated in brain more in vivo. The angiopep-modified NPs also showed higher efficiency in gene expressing in brain than the unmodified NPs. In conclusion, PAMAM-PEG-Angiopep showed great potential to be applied in designing brain-targeting drug delivery system.
Collapse
|
23
|
Xu N, Hurtig M, Ekström U, Nilsson-Ehle P. Adrenocorticotrophic hormone retarded metabolism of low‐density lipoprotein in rats. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 64:217-22. [PMID: 15222631 DOI: 10.1080/00365510410005730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In humans, treatment with adrenocorticotrophic hormone (ACTH) has well-documented plasma cholesterol lowering and low-density lipoprotein (LDL) lowering effects. Moreover, it has recently been demonstrated that ACTH directly inhibits apolipoprotein B expression and secretion in the HepG2 cell line. The aim of the present study was to demonstrate the effects of ACTH on lipid metabolism in the rat, and particularly on LDL metabolism. Rats were treated with porcine ACTH for 3 days and plasma lipid parameters were determined. Surprisingly, the total cholesterol level and LDL-cholesterol level were increased in plasma after ACTH administration, displaying an opposite effect of ACTH in humans. Furthermore, clearance and distribution of radiolabeled human LDL in different tissues were investigated in the rat after ACTH treatment. The clearance of radiolabeled LDL was slightly decreased after ACTH treatment suggesting that ACTH can inhibit LDL catabolism in the rat. Unlike previous observations performed in human hepatic cell cultures, there was no change in apoB expression in rat liver, or in apoE and apoM expression, after treatment with ACTH. This study clearly demonstrates that ACTH has species specificity differences in humans and in the rat.
Collapse
MESH Headings
- Adipose Tissue, Brown/chemistry
- Adrenal Glands/chemistry
- Adrenocorticotropic Hormone/pharmacology
- Adrenocorticotropic Hormone/physiology
- Animals
- Blood Glucose/analysis
- Blood Glucose/drug effects
- Brain Chemistry
- Cholesterol/blood
- Cholesterol, HDL/blood
- Cholesterol, HDL/drug effects
- Cholesterol, LDL/blood
- Cholesterol, LDL/drug effects
- Corticosterone/blood
- Fatty Acids/blood
- Humans
- Intestine, Small/chemistry
- Lipoproteins, LDL/blood
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/pharmacology
- Liver/chemistry
- Male
- Phospholipids/blood
- Rats
- Rats, Sprague-Dawley
- Tissue Distribution/drug effects
- Tissue Distribution/physiology
- Triglycerides/blood
Collapse
Affiliation(s)
- N Xu
- Department of Clinical Chemistry, Institute of Laboratory Medicine, University Hospital of Lund, Sweden.
| | | | | | | |
Collapse
|
24
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
25
|
Blood brain barrier (BBB) dysfunction associated with increased expression of tissue and urokinase plasminogen activators following peripheral thermal injury. Neurosci Lett 2008; 444:222-6. [DOI: 10.1016/j.neulet.2008.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/31/2008] [Accepted: 08/08/2008] [Indexed: 11/23/2022]
|
26
|
Shi Z, Rudzinski M, Meerovitch K, Lebrun-Julien F, Birman E, Di Polo A, Saragovi HU. Alpha2-macroglobulin is a mediator of retinal ganglion cell death in glaucoma. J Biol Chem 2008; 283:29156-65. [PMID: 18701465 DOI: 10.1074/jbc.m802365200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is defined as a chronic and progressive optic nerve neuropathy, characterized by apoptosis of retinal ganglion cells (RGC) that leads to irreversible blindness. Ocular hypertension is a major risk factor, but in glaucoma RGC death can persist after ocular hypertension is normalized. To understand the mechanism underlying chronic RGC death we identified and characterized a gene product, alpha2-macroglobulin (alpha2M), whose expression is up-regulated early in ocular hypertension and remains up-regulated long after ocular hypertension is normalized. In ocular hypertension retinal glia up-regulate alpha2M, which binds to low-density lipoprotein receptor-related protein-1 receptors in RGCs, and is neurotoxic in a paracrine fashion. Neutralization of alpha2M delayed RGC loss during ocular hypertension; whereas delivery of alpha2M to normal eyes caused progressive apoptosis of RGC mimicking glaucoma without ocular hypertension. This work adds to our understanding of the pathology and molecular mechanisms of glaucoma, and illustrates emerging paradigms for studying chronic neurodegeneration in glaucoma and perhaps other disorders.
Collapse
Affiliation(s)
- ZhiHua Shi
- Lady Davis Institute-Jewish General Hospital, Montreal, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Clifford PM, Siu G, Kosciuk M, Levin EC, Venkataraman V, D'Andrea MR, Nagele RG. Alpha7 nicotinic acetylcholine receptor expression by vascular smooth muscle cells facilitates the deposition of Abeta peptides and promotes cerebrovascular amyloid angiopathy. Brain Res 2008; 1234:158-71. [PMID: 18708033 DOI: 10.1016/j.brainres.2008.07.092] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 07/14/2008] [Accepted: 07/16/2008] [Indexed: 01/21/2023]
Abstract
Deposition of beta-amyloid (Abeta) peptides in the walls of brain blood vessels, cerebral amyloid angiopathy (CAA), is common in patients with Alzheimer's disease (AD). Previous studies have demonstrated Abeta peptide deposition among vascular smooth muscle cells (VSMCs), but the source of the Abeta and basis for its selective deposition in VSMCs are unknown. In the present study, we examined the deposition patterns of Abeta peptides, Abeta40 and Abeta42, within the cerebrovasculature of AD and control patients using single- and double-label immunohistochemistry. Abeta40 and Abeta42 were abundant in VSMCs, especially in leptomeningeal arteries and their initial cortical branches; in later-stage AD brains this pattern extended into the microvasculature. Abeta peptide deposition was linked to loss of VSMC viability. Perivascular leak clouds of Abeta-positive material were associated primarily with arterioles. By contrast, control brains possessed far fewer Abeta42- and Abeta40-immunopositive blood vessels, with perivascular leak clouds of Abeta-immunopositive material rarely observed. We also demonstrate that VSMCs in brain blood vessels express the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), which has high binding affinity for Abeta peptides, especially Abeta42. These results suggest that the blood and blood-brain barrier permeability provide a major source of the Abeta peptides that gradually deposit in brain VSMCs, and the presence and abundance of the alpha7nAChR on VSMCs may facilitate the selective accumulation of Abeta peptides in these cells.
Collapse
Affiliation(s)
- Peter M Clifford
- University of Medicine and Dentistry of New Jersey/Graduate School of Biomedical Sciences, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The blood-brain barrier (BBB) limits the bioavailability of most bioactive molecules and drugs in the CNS, leaving clinicians with only a few options for pharmacotherapy. In this issue Regina et al. demonstrate that a 'Trojan horse' drug conjugate, acting as a substrate of a physiological BBB receptor that facilitates transcytosis, significantly improves drug transport into the CNS. Specifically, the low-density lipoprotein receptor-related protein (LRP) is used to carry a conjugate of paclitaxel and Angiopep-2, an aprotinin-derived peptide, across the BBB. Interestingly, in its conjugated form paclitaxel circumvents the efflux pumps at the BBB but still retains its activity against microtubules. Importantly, the authors were able to demonstrate improved therapeutic efficacy of this approach in orthotopic models of primary and metastatic brain cancer. This proof-of-principle study thus represents a milestone for drug delivery across the BBB but also a starting point for studies exploring wider applicability and potential limitations of the approach.
Collapse
|
29
|
Activation of PDGF-CC by tissue plasminogen activator impairs blood-brain barrier integrity during ischemic stroke. Nat Med 2008; 14:731-7. [PMID: 18568034 DOI: 10.1038/nm1787] [Citation(s) in RCA: 346] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 05/23/2008] [Indexed: 11/09/2022]
Abstract
Thrombolytic treatment of ischemic stroke with tissue plasminogen activator (tPA) is markedly limited owing to concerns about hemorrhagic complications and the requirement that tPA be administered within 3 h of symptoms. Here we report that tPA activation of latent platelet-derived growth factor-CC (PDGF-CC) may explain these limitations. Intraventricular injection of tPA or active PDGF-CC, in the absence of ischemia, leads to significant increases in cerebrovascular permeability. In contrast, co-injection of neutralizing antibodies to PDGF-CC with tPA blocks this increased permeability, indicating that PDGF-CC is a downstream substrate of tPA within the neurovascular unit. These effects are mediated through activation of PDGF-alpha receptors (PDGFR-alpha) on perivascular astrocytes, and treatment of mice with the PDGFR-alpha antagonist imatinib after ischemic stroke reduces both cerebrovascular permeability and hemorrhagic complications associated with late administration of thrombolytic tPA. These data demonstrate that PDGF signaling regulates blood-brain barrier permeability and suggest potential new strategies for stroke treatment.
Collapse
|
30
|
Hamilton JA, Hillard CJ, Spector AA, Watkins PA. Brain uptake and utilization of fatty acids, lipids and lipoproteins: application to neurological disorders. J Mol Neurosci 2008; 33:2-11. [PMID: 17901539 DOI: 10.1007/s12031-007-0060-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
Transport, synthesis, and utilization of brain fatty acids and other lipids have been topics of investigation for more than a century, yet many fundamental aspects are unresolved and, indeed, subject to controversy. Understanding the mechanisms by which lipids cross the blood brain barrier and how they are utilized by neurons and glia is critical to understanding normal brain development and function, for the diagnosis and therapy of human diseases, and for the planning and delivery of optimal human nutrition throughout the world. Two particularly important fatty acids, both of which are abundant in neuronal membranes are: (a) the omega3 polyunsaturated fatty acid docosahexaenoic acid, deficiencies of which can impede brain development and compromise optimal brain function, and (b) the omega6 polyunsaturated fatty acid arachidonic acid, which yields essential, but potentially toxic, metabolic products. There is an exciting emerging evidence that modulating dietary intake of these fatty acids could have a beneficial effect on human neurological health. A workshop was held in October, 2004, in which investigators from diverse disciplines interacted to present new findings and to discuss issues relevant to lipid uptake, utilization, and metabolism in the brain. The objectives of this workshop were: (1) to assess the state-of-the-art of research in brain fatty acid/lipid uptake and utilization; (2) to discuss progress in understanding molecular mechanisms and the treatment of neurological diseases related to lipids and lipoproteins; (3) to identify areas in which current knowledge is insufficient; (4) to provide recommendations for future research; and (5) to stimulate the interest and involvement of additional neuroscientists, particularly young scientists, in these areas. The meeting was divided into four sessions: (1) mechanisms of lipid uptake and transport in the brain, (2) lipoproteins and polyunsaturated fatty acids, (3) eicosanoids in brain function, and (4) fatty acids and lipids in brain disorders. In this article, we will provide an overview of the topics discussed in these sessions.
Collapse
|
31
|
Rock N, Chintala SK. Mechanisms regulating plasminogen activators in transformed retinal ganglion cells. Exp Eye Res 2008; 86:492-9. [PMID: 18243176 DOI: 10.1016/j.exer.2007.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/15/2007] [Accepted: 12/09/2007] [Indexed: 01/08/2023]
Abstract
Irreversible loss of retinal ganglion cells (RGCs) is a major clinical issue in glaucoma, but the mechanisms that lead to RGC death are currently unclear. We have previously reported that elevated levels of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) cause the death of RGCs in vivo and transformed retinal ganglion cells (RGC-5) in vitro. Yet, it is unclear how secreted proteases such as tPA and uPA directly cause RGCs' death. In this study, by employing RGC-5 cells, we report that tPA and uPA elicit their direct effect through the low-density lipoprotein-related receptor-1 (LRP-1). We also show that blockade of protease-LRP-1 interaction leads to a complete reduction in autocrine synthesis of tPA and uPA, and prevents protease-mediated death of RGC-5 cells. RGC-5 cells were cultured in serum-free medium and treated with 2.0 microM Staurosporine to induce their differentiation. Neurite outgrowth was observed by a phase contrast microscope and quantified by NeuroJ imaging software. Proteolytic activities of tPA and uPA were determined by zymography assays. Cell viability was determined by MTT assays. Compared to untreated RGC-5 cells, cells treated with Staurosporine differentiated, synthesized and secreted elevated levels of tPA and uPA, and underwent cell death. In contrast, when RGC-5 cells were treated with Staurosporine along with the receptor associated protein (RAP), proteolytic activities of both tPA and uPA were significantly reduced. Under these conditions, a significant number of RGC-5 cells survived and showed increased neurite outgrowth. These results indicate that LRP-1 regulates autocrine synthesis of tPA and uPA in RGC-5 cells and suggest that the use of RAP to antagonize the effect of proteases may be a way to prevent RGC death in glaucoma.
Collapse
Affiliation(s)
- Nathan Rock
- Eye Research Institute, Oakland University, Rochester, MI 48309, USA
| | | |
Collapse
|
32
|
Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu FF, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee JM. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 2006; 26:10939-48. [PMID: 17065436 PMCID: PMC6674654 DOI: 10.1523/jneurosci.2085-06.2006] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has been postulated that the development of amyloid plaques in Alzheimer's disease (AD) may result from an imbalance between the generation and clearance of the amyloid-beta peptide (Abeta). Although familial AD appears to be caused by Abeta overproduction, sporadic AD (the most prevalent form) may result from impairment in clearance. Recent evidence suggests that several proteases may contribute to the degradation of Abeta. Furthermore, astrocytes have recently been implicated as a potential cellular mediator of Abeta degradation. In this study, we examined the possibility that matrix metalloproteinases (MMPs), proteases known to be expressed and secreted by astrocytes, could play a role in extracellular Abeta degradation. We found that astrocytes surrounding amyloid plaques showed enhanced expression of MMP-2 and MMP-9 in aged amyloid precursor protein (APP)/presenilin 1 mice. Moreover, astrocyte-conditioned medium (ACM) degraded Abeta, lowering levels and producing several fragments after incubation with synthetic human Abeta(1-40) and Abeta(1-42). This activity was attenuated with specific inhibitors of MMP-2 and -9, as well as in ACM derived from mmp-2 or -9 knock-out (KO) mice. In vivo, significant increases in the steady-state levels of Abeta were found in the brains of mmp-2 and -9 KO mice compared with wild-type controls. Furthermore, pharmacological inhibition of the MMPs with N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide (GM 6001) increased brain interstitial fluid Abeta levels and elimination of half-life in APPsw mice. These results suggest that MMP-2 and -9 may contribute to extracellular brain Abeta clearance by promoting Abeta catabolism.
Collapse
Affiliation(s)
- Ke-Jie Yin
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - John R. Cirrito
- Department of Neurology and the Hope Center for Neurological Disorders, and
- Departments of Psychiatry
| | - Ping Yan
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Xiaoyan Hu
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Qingli Xiao
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Xiaoou Pan
- Molecular Biology and Pharmacology
- Pathology and Immunology, and
| | - Randall Bateman
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Haowei Song
- Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Fong-Fu Hsu
- Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - John Turk
- Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Jan Xu
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Chung Y Hsu
- Taipei Medical University, Taipei City, Taiwan 110
| | - Jason C. Mills
- Molecular Biology and Pharmacology
- Pathology and Immunology, and
| | - David M. Holtzman
- Department of Neurology and the Hope Center for Neurological Disorders, and
- Molecular Biology and Pharmacology
| | - Jin-Moo Lee
- Department of Neurology and the Hope Center for Neurological Disorders, and
| |
Collapse
|
33
|
Sadowski MJ, Pankiewicz J, Scholtzova H, Mehta PD, Prelli F, Quartermain D, Wisniewski T. Blocking the apolipoprotein E/amyloid-beta interaction as a potential therapeutic approach for Alzheimer's disease. Proc Natl Acad Sci U S A 2006; 103:18787-92. [PMID: 17116874 PMCID: PMC1654132 DOI: 10.1073/pnas.0604011103] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The amyloid-beta (Abeta) cascade hypothesis of Alzheimer's disease (AD) maintains that accumulation of Abeta peptide constitutes a critical event in the early disease pathogenesis. The direct binding between Abeta and apolipoprotein E (apoE) is an important factor implicated in both Abeta clearance and its deposition in the brain's parenchyma and the walls of meningoencephalic vessels as cerebral amyloid angiopathy. With the aim of testing the effect of blocking the apoE/Abeta interaction in vivo as a potential novel therapeutic target for AD pharmacotherapy, we have developed Abeta12-28P, which is a blood-brain-barrier-permeable nontoxic, and nonfibrillogenic synthetic peptide homologous to the apoE binding site on the full-length Abeta. Abeta12-28P binds with high affinity to apoE, preventing its binding to Abeta, but has no direct effect on Abeta aggregation. Abeta12-28P shows a strong pharmacological effect in vivo. Its systemic administration resulted in a significant reduction of Abeta plaques and cerebral amyloid angiopathy burden and a reduction of the total brain level of Abeta in two AD transgenic mice models. The treatment did not affect the levels of soluble Abeta fraction or Abeta oligomers, indicating that inhibition of the apoE/Abeta interaction in vivo has a net effect of increasing Abeta clearance over deposition and at the same time does not create conditions favoring formation of toxic oligomers. Furthermore, behavioral studies demonstrated that treatment with Abeta12-28P prevents a memory deficit in transgenic animals. These findings provide evidence of another therapeutic approach for AD.
Collapse
Affiliation(s)
- Martin J. Sadowski
- *Departments of Neurology
- Psychiatry, and
- To whom correspondence may be addressed. E-mail:
or
| | | | | | - Pankaj D. Mehta
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314
| | | | | | - Thomas Wisniewski
- *Departments of Neurology
- Psychiatry, and
- Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016; and
- New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
34
|
Wang YJ, Zhou HD, Zhou XF. Clearance of amyloid-beta in Alzheimer's disease: progress, problems and perspectives. Drug Discov Today 2006; 11:931-8. [PMID: 16997144 DOI: 10.1016/j.drudis.2006.08.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/14/2006] [Accepted: 08/11/2006] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is the most common form of senile dementia and the fourth highest cause of disability and death in the elderly. Amyloid-beta (Abeta) has been widely implicated in the etiology of AD. Several mechanisms have been proposed for Abeta clearance, including receptor-mediated Abeta transport across the blood-brain barrier and enzyme-mediated Abeta degradation. Moreover, pre-existing immune responses to Abeta might also be involved in Abeta clearance. In AD, such mechanisms appear to have become impaired. Recently, therapeutic approaches for Abeta clearance, targeting immunotherapy and molecules binding Abeta, have been developed. In this review, we discuss recent progress and problems with respect to Abeta clearance mechanisms and propose strategies for the development of therapeutics targeting Abeta clearance.
Collapse
Affiliation(s)
- Yan-Jiang Wang
- Department of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide 5042, Australia
| | | | | |
Collapse
|
35
|
Lebeurrier N, Vivien D, Ali C. The complexity of tissue-type plasminogen activator: can serine protease inhibitors help in stroke management? Expert Opin Ther Targets 2006; 8:309-20. [PMID: 15268626 DOI: 10.1517/14728222.8.4.309] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stroke, the third leading cause of death in industrialised countries, represents a major burden on healthcare authorities. The elucidation of molecular events sustaining infarct evolution in experimental models has allowed the development of putative therapeutic agents. However, despite marked benefits in animals, most of them have failed in clinical trials. At present, the only approved therapy for stroke is early reperfusion by intravenous injection of the thrombolytic agent, tissue-type plasminogen activator (tPA). tPA-dependent thrombolysis sometimes promotes haemorrhage, but improves neurological outcome in a great proportion of patients, provided it is performed within the recommended therapeutic window. In addition to the benefit of tPA injection in the vascular compartment, this endogenously produced serine protease could also promote excitotoxic processes within the cerebral parenchyma. This article reviews the various aspects of tPA during stroke, and discusses potential improvements to current clinical management, with a particular emphasis on targeting the deleterious actions of tPA through endogenous serine protease inhibitors (serpins).
Collapse
|
36
|
Abstract
The safest and most effective way of targeting drugs to the entire brain is via delivery systems directed at endogenous receptor-mediated uptake mechanisms present at the cerebral capillaries. Such systems have been shown to be effective in animal models including primates, but no clinical trials have been performed so far. This review focuses on the well-characterised transferrin and insulin receptor-targeted systems, as well as on the more recently described systems that use the low-density lipoprotein-related protein 1 receptor, the low-density lipoprotein-related protein 2 receptor (also known as megalin and glycoprotein 330) or the diphtheria toxin receptor (which is the membrane-bound precursor of heparin-binding epidermal growth factor-like growth factor). The possibilities and limitations of these systems are compared and their future for human application is discussed.
Collapse
Affiliation(s)
- Pieter J Gaillard
- to-BBB technologies BV, Bio Science Park Leiden, Gorlaeus Laboratories, LACDR Facilities-FCOL, The Netherlands.
| | | | | |
Collapse
|
37
|
Abstract
From Alois Alzheimer's description of Auguste D.'s brain in 1907 to George Glenner's biochemical dissection of beta-amyloid in 1984, the "amyloid hypothesis" of Alzheimer's disease has continued to gain support over the past two decades, particularly from genetic studies. Here we assess the amyloid hypothesis based on both known and putative Alzheimer's disease genes.
Collapse
Affiliation(s)
- Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Diseases, Department of Neurology, Massachussetts General Hospital, Harvard Medical School, Charlestown, Massachussetts 02129, USA.
| | | |
Collapse
|
38
|
May P, Rohlmann A, Bock HH, Zurhove K, Marth JD, Schomburg ED, Noebels JL, Beffert U, Sweatt JD, Weeber EJ, Herz J. Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. Mol Cell Biol 2004; 24:8872-83. [PMID: 15456862 PMCID: PMC517900 DOI: 10.1128/mcb.24.20.8872-8883.2004] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LDL receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor that is highly expressed on neurons. Neuronal LRP1 in vitro can mediate ligand endocytosis, as well as modulate signal transduction processes. However, little is known about its role in the intact nervous system. Here, we report that mice that lack LRP1 selectively in differentiated neurons develop severe behavioral and motor abnormalities, including hyperactivity, tremor, and dystonia. Since their central nervous systems appear histoanatomically normal, we suggest that this phenotype is likely attributable to abnormal neurotransmission. This conclusion is supported by studies of primary cultured neurons that show that LRP1 is present in close proximity to the N-methyl-D-aspartate (NMDA) receptor in dendritic synapses and can be coprecipitated with NMDA receptor subunits and the postsynaptic density protein PSD-95 from neuronal cell lysates. Moreover, treatment with NMDA, but not dopamine, reduces the interaction of LRP1 with PSD-95, indicating that LRP1 participates in transmitter-dependent postsynaptic responses. Together, these findings suggest that LRP1, like other ApoE receptors, can modulate synaptic transmission in the brain.
Collapse
Affiliation(s)
- Petra May
- Zentrum für Neurowissenschaften, University of Freiburg, Albertstrabetae 23, 79104 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jensen PEH, Humle Jørgensen S, Datta P, Sørensen PS. Significantly increased fractions of transformed to total α2-macroglobulin concentrations in plasma from patients with multiple sclerosis. Biochim Biophys Acta Mol Basis Dis 2004; 1690:203-7. [PMID: 15511627 DOI: 10.1016/j.bbadis.2004.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 10/26/2022]
Abstract
We examined the proteinase inhibitor alpha2-macroglobulin (alpha2M) in plasma from patients with multiple sclerosis (MS); a neurological disease of the central nervous system. The plasma concentrations of native and transformed alpha2M were measured in 90 patients with clinically definite MS, 73 with relapsing-remitting and 17 with secondary progressive MS, and 132 healthy individuals. Significantly lower concentrations of native alpha2M and significantly higher concentrations of transformed alpha2M were found in MS patients. A significant correlation between the concentrations of native and transformed alpha2M was found. The fraction of transformed to total alpha2M in the MS patients was 36% higher than in the healthy individuals. The results suggest an important involvement of alpha2M in regulation of increased proteolytic activity occurring in MS disease.
Collapse
Affiliation(s)
- Poul Erik H Jensen
- The Neuroimmunology Laboratory, Section 9302, MS Research Unit, Copenhagen University Hospital, Juliane Mariesvej 20, 2100 Copenhagen, Denmark.
| | | | | | | |
Collapse
|
40
|
Abstract
The amyloid hypothesis of Alzheimer's disease (AD) maintains that the accumulation of the amyloid beta protein (Abeta) is a critical event in disease pathogenesis. A great deal of both academic and commercial research has focused on the mechanisms by which Abeta is generated. However, investigations into the mechanisms underlying Abeta clearance have blossomed over the last several years. This minireview will summarize pathways involved in the removal of cerebral Abeta, including enzymatic degradation and receptor-mediated efflux out of the brain.
Collapse
Affiliation(s)
- R E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown 02129, USA.
| | | | | |
Collapse
|
41
|
Abstract
Tissue plasminogen activator (tPA), a fibrin specific activator for the conversion of plasminogen to plasmin, stimulates thrombolysis and rescues ischemic brain by restoring blood flow. However, emerging data suggests that under some conditions, both tPA and plasmin, which are broad spectrum protease enzymes, are potentially neurotoxic if they reach the extracellular space. Animal models suggest that in severe ischemia with injury to the blood brain barrier (BBB) there is injury attributed to the protease effects of this exogenous tPA. Besides clot lysis per se, tPA may have pleiotropic actions in the brain, including direct vasoactivity, cleaveage of the N-methyl-D-aspartate (NMDA) NR1 subunit, amplification of intracellular Ca++ conductance, and activation of other extracellular proteases from the matrix metalloproteinase (MMP) family, e.g. MMP-9. These effects may increase excitotoxicity, further damage the BBB, and worsen edema and cerebral hemorrhage. If tPA is effective and reverses ischemia promptly, the BBB remains intact and exogenous tPA remains within the vascular space. If tPA is ineffective and ischemia is prolonged, there is the risk that exogenous tPA will injure both the neurovascular unit and the brain. Methods of neuroprotection, which prevent tPA toxicity or additional mechanical means to open cerebral vessels, are now needed.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Stroke Program, Calgary Brain Institute, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
42
|
Petersen HH, Hilpert J, Jacobsen C, Lauwers A, Roebroek AJM, Willnow TE. Low-density lipoprotein receptor-related protein interacts with MafB, a regulator of hindbrain development. FEBS Lett 2004; 565:23-7. [PMID: 15135046 DOI: 10.1016/j.febslet.2004.03.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Revised: 03/24/2004] [Accepted: 03/25/2004] [Indexed: 11/20/2022]
Abstract
The intracellular domain (ICD) of the low-density lipoprotein receptor-related protein (LRP) functionally interacts with adaptor proteins both as an integral part of the receptor polypeptide and after proteolytic release. Identification of such adaptors has been difficult because the ICD is self-activating in conventional transcription factor-based yeast two-hybrid screens. We adopted an alternative screen for the ICD that depends on the activation of the Ras-signaling pathway and uncovered the transcription factor MafB as novel ICD interacting protein. MafB is a regulator of hindbrain segmentation and interacts with the ICD through a leucine zipper domain. The ICD co-localizes with MafB to the nucleus and negatively regulates its transcriptional activity, suggesting a possible role for LRP in brain development.
Collapse
|
43
|
Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, Miyamori I, Yamamoto TT. The Very Low-density Lipoprotein (VLDL) Receptor: Characterization and Functions as a Peripheral Lipoprotein Receptor. J Atheroscler Thromb 2004; 11:200-8. [PMID: 15356379 DOI: 10.5551/jat.11.200] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The very low-density lipoprotein (VLDL) receptor is a member of the low-density lipoprotein (LDL) receptor family. In vitro and in vivo studies have shown that VLDL receptor binds triglyceride (TG)-rich lipoproteins but not LDL, and functions as a peripheral remnant lipoprotein receptor. VLDL receptor is expressed abundantly in fatty acid-active tissues (heart, skeletal muscle and fat), the brain and macrophages. It is likely that VLDL receptor functions in concert with lipoprotein lipase (LPL), which hydrolyses TG in VLDL and chylomicron. In contrast to the LDL receptor, VLDL receptor binds apolipoprotein (apo) E2/2 VLDL particles as well as apoE3/3 VLDL, and the expression is not down-regulated by intracellular lipoproteins. Recently, various functions of the VLDL receptor have been reported in lipoprotein metabolism, metabolic syndrome/atherosclerosis, cardiac fatty acid metabolism, neuronal migration and angiogenesis/tumor growth. Gene therapy of VLDL receptor into the liver showed a benefit effect for lipoprotein metabolism in both LDL receptor knockout and apoE mutant mice. Beyond its function as a peripheral lipoprotein receptor, possibilities of its physiological function have been extended to include signal transduction, angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Sadao Takahashi
- The Third Department of Internal Medicine, University of Fukui, 23-3, Matsuokacho, Fukui, 910-1193, Japan.
| | | | | | | | | | | | | | | |
Collapse
|