1
|
Scotland BL, Dharmaraj S, Cottingham AL, Truong N, Chapoval SP, Keegan AD, Pearson RM. Impact of antigen loading in tolerogenic nanoparticles to mitigate Th2-mediated allergic lung inflammation. Drug Deliv Transl Res 2024; 14:2930-2944. [PMID: 38862755 DOI: 10.1007/s13346-024-01632-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Allergic disease is a major global health concern that imposes significant life-altering and economic burdens on affected individuals. However, there is still no cure. Polymer-based nanoparticles (NP) have shown the potential to induce antigen (Ag)-specific immune tolerance in various Th1/17 and Th2-mediated immune disorders including autoimmunity and allergy. Common methods by which Ags are associated with NPs are through surface conjugation or encapsulation. However, these Ag delivery strategies can be associated with several caveats that dampen their effectiveness such as uncontrolled Ag loading, a high Ag burst release, and an increased immune recognition profile. We previously developed Ag-polymer conjugate NPs (acNPs) to overcome those noted limitations, while allowing for controlled delivery of precise quantities of Ag to innate immune cells for Ag-specific CD4 T cell modulation. Here, we utilized ovalbumin (OVA) protein-poly(lactic-co-glycolic acid) (PLGA) conjugate NPs (acNP-OVA) to elucidate the impact of Ag loading on the induction of Th2 tolerance using a prophylactic and therapeutic OVA/ALUM-induced mouse model of allergic lung inflammation (ALI) in comparison to Ag-encapsulated PLGA NPs (NP(Ag)). We demonstrate that acNP-OVA formulations reduced OVA-specific IgE and inhibited Th2 cytokine secretions in an Ag loading-dependent manner when administered prophylactically. Administration of acNP-OVA to pre-sensitized mice did not affect OVA-specific IgE and Th2 cytokines tended to be reduced, however, there was no clear Ag loading dependency. acNP-OVA with medium-to-low Ag loadings were well tolerated, while formulations with high Ag loadings, including NP(Ag) resulted in anaphylaxis. Overall, our results clarify the relationship between Ag loading and Ag-specific IgE and Th2 cytokine responses in a murine model of ALI, which provides insight useful for future design of tolerogenic NP-based immunotherapies.
Collapse
Affiliation(s)
- Brianna L Scotland
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Shruti Dharmaraj
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Andrea L Cottingham
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Svetlana P Chapoval
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 W. Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA
| | - Achsah D Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 W. Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA
| | - Ryan M Pearson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
2
|
Rahman RS, Wesemann DR. Whence and wherefore IgE? Immunol Rev 2024; 326:48-65. [PMID: 39041740 PMCID: PMC11436312 DOI: 10.1111/imr.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite the near ubiquitous presence of Ig-based antibodies in vertebrates, IgE is unique to mammals. How and why it emerged remains mysterious. IgE expression is greatly constrained compared to other IgH isotypes. While other IgH isotypes are relatively abundant, soluble IgE has a truncated half-life, and IgE plasma cells are mostly short-lived. Despite its rarity, IgE is consequential and can trigger life-threatening anaphylaxis. IgE production reflects a dynamic steady state with IgG memory B cells feeding short-lived IgE production. Emerging evidence suggests that IgE may also potentially be produced in longer-lived plasma cells as well, perhaps as an aberrancy stemming from its evolutionary roots from an antibody isotype that likely functioned more like IgG. As a late derivative of an ancient systemic antibody system, the benefits of IgE in mammals likely stems from the antibody system's adaptive recognition and response capability. However, the tendency for massive, systemic, and long-lived production, common to IgH isotypes like IgG, were likely not a good fit for IgE. The evolutionary derivation of IgE from an antibody system that for millions of years was good at antigen de-sensitization to now functioning as a highly specialized antigen-sensitization function required heavy restrictions on antibody production-insufficiency of which may contribute to allergic disease.
Collapse
Affiliation(s)
- Rifat S Rahman
- Department of Internal Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Clinical Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Van der Borght K, Brimnes J, Haspeslagh E, Brand S, Neyt K, Gupta S, Knudsen NPH, Hammad H, Andersen PS, Lambrecht BN. Sublingual allergen immunotherapy prevents house dust mite inhalant type 2 immunity through dendritic cell-mediated induction of Foxp3 + regulatory T cells. Mucosal Immunol 2024; 17:618-632. [PMID: 38570140 DOI: 10.1016/j.mucimm.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Sublingual allergen immunotherapy (SLIT) is an emerging treatment option for allergic asthma and a potential disease-modifying strategy for asthma prevention. The key cellular events leading to such long-term tolerance remain to be fully elucidated. We administered prophylactic SLIT in a mouse model of house dust mite (HDM)-driven allergic asthma. HDM extract was sublingually administered over 3 weeks followed by intratracheal sensitization and intranasal challenges with HDM. Prophylactic SLIT prevented allergic airway inflammation and hyperreactivity with a low lab-to-lab variation. The HDM-specific T helper (Th)2 (cluster of differentiation 4 Th) response was shifted by SLIT toward a regulatory and Th17 response in the lung and mediastinal lymph node. By using Derp1-specific cluster of differentiation 4+ T cells (1-DER), we found that SLIT blocked 1-DER T cell recruitment to the mediastinal lymph node and dampened IL-4 secretion following intratracheal HDM sensitization. Sublingually administered Derp1 protein activated 1-DER T cells in the cervical lymph node via chemokine receptor7+ migratory dendritic cells (DC). DCs migrating from the oral submucosa to the cervical lymph node after SLIT-induced Foxp3+ regulatory T cells. When mice were sensitized with HDM, prior prophylactic SLIT increased Derp1 specific regulatory T cells (Tregs) and lowered Th2 recruitment in the lung. By using Foxp3-diphtheria toxin receptor mice, Tregs were found to contribute to the immunoregulatory prophylactic effect of SLIT on type 2 immunity. These findings in a mouse model suggest that DC-mediated functional Treg induction in oral mucosa draining lymph nodes is one of the driving mechanisms behind the disease-modifying effect of prophylactic SLIT.
Collapse
Affiliation(s)
- Katrien Van der Borght
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jens Brimnes
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Eline Haspeslagh
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Stephanie Brand
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Katrijn Neyt
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Shashank Gupta
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Peter S Andersen
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm, Denmark
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Parker KM, Dang TD, Wijesuriya R, Soriano VX, Lowe AJ, Dharmage SC, Loke P, Tang MLK, Allen KJ, Koplin JJ, Perrett KP, Peters RL. Longitudinal peanut and Ara h 2 specific-IgE, -IgG 4, and -IgG 4/-IgE ratios are associated with the natural resolution of peanut allergy in childhood. Allergy 2024; 79:1868-1880. [PMID: 38720169 DOI: 10.1111/all.16111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/19/2024] [Accepted: 03/12/2024] [Indexed: 07/11/2024]
Abstract
BACKGROUND There are no studies of longitudinal immunoglobulin measurements in a population-based cohort alongside challenge-confirmed peanut allergy outcomes. Little is known about biomarkers for identifying naturally resolving peanut allergy during childhood. OBJECTIVES To measure longitudinal trends in whole peanut and component Ara h 2 sIgE and sIgG4 in the first 10 years of life, in a population cohort of children with challenge-confirmed peanut allergy, and to determine whether peanut-specific immunoglobulin levels or trends are associated with peanut allergy persistence or resolution by 10 years of age. METHODS One-year-old infants with challenge-confirmed peanut allergy (n = 156) from the HealthNuts study (n = 5276) were prospectively followed at ages 4, 6, and 10 years with questionnaires, skin prick tests, oral food challenges, and plasma total-IgE, sIgE and sIgG4 to peanut and Ara h 2. RESULTS Peanut allergy resolved in 33.9% (95% CI = 25.3%, 43.3%) of children by 10 years old with most resolving (97.4%, 95% CI = 86.5%, 99.9%) by 6 years old. Decreasing Ara h 2 sIgE (p = .01) and increasing peanut sIgG4 (p < .001), Ara h 2 sIgG4 (p = .01), peanut sIgG4/sIgE (p < .001) and Ara h 2 sIgG4/sIgE (p < .001) from 1 to 10 years of age were associated with peanut allergy resolution. Peanut sIgE measured at 1 year old had the greatest prognostic value (AUC = 0.75 [95% CI = 0.66, 0.82]); however, no single threshold produced both high sensitivity and specificity. CONCLUSION One third of infant peanut allergy resolved by 10 years of age. Decreasing sIgE and sIgG4 to peanut and Ara h 2 over time were associated with natural resolution of peanut allergy. However, biomarker levels at diagnosis were not strongly associated with the natural history of peanut allergy.
Collapse
Affiliation(s)
- Kayla M Parker
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Thanh D Dang
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Rushani Wijesuriya
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Victoria X Soriano
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Adrian J Lowe
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Shyamali C Dharmage
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Paxton Loke
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Monash Children's Hospital, Monash Health, Clayton, Victoria, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Katie J Allen
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer J Koplin
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Kirsten P Perrett
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Rachel L Peters
- Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Furiness KN, El Ansari YS, Oettgen HC, Kanagaratham C. Allergen-specific IgA and IgG antibodies as inhibitors of mast cell function in food allergy. FRONTIERS IN ALLERGY 2024; 5:1389669. [PMID: 38919913 PMCID: PMC11196826 DOI: 10.3389/falgy.2024.1389669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Food allergy, a group of adverse immune responses to normally innocuous food protein antigens, is an increasingly prevalent public health issue. The most common form is IgE-mediated food allergy in which food antigen-induced crosslinking of the high-affinity IgE-receptor, FcεRI, on the surface of mast cells triggers the release of inflammatory mediators that contribute to a wide range of clinical manifestations, including systemic anaphylaxis. Mast cells also play a critical function in adaptive immunity to foods, acting as adjuvants for food-antigen driven Th2 cell responses. While the diagnosis and treatment of food allergy has improved in recent years, no curative treatments are currently available. However, there is emerging evidence to suggest that both allergen-specific IgA and IgG antibodies can counter the activating effects of IgE antibodies on mast cells. Most notably, both antigen-specific IgA and IgG antibodies are induced in the course of oral immunotherapy. In this review, we highlight the role of mast cells in food allergy, both as inducers of immediate hypersensitivity reactions and as adjuvants for type 2 adaptive immune responses. Furthermore, we summarize current understanding of the immunomodulatory effects of antigen-specific IgA and IgG antibodies on IgE-induced mast cell activation and effector function. A more comprehensive understanding of the regulatory role of IgA and IgG in food allergy may provide insights into physiologic regulation of immune responses to ingested antigens and could seed novel strategies to treat allergic disease.
Collapse
Affiliation(s)
- Kameryn N. Furiness
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Alvarez-Arango S, Kumar M, Chow TG, Sabato V. Non-IgE-Mediated Immediate Drug-Induced Hypersensitivity Reactions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:1109-1119. [PMID: 38423288 PMCID: PMC11081849 DOI: 10.1016/j.jaip.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Immediate drug-induced hypersensitivity reactions (IDHSRs) have conventionally been attributed to an immunoglobulin E (IgE)-mediated mechanism. Nevertheless, it has now been acknowledged that IDHSRs can also occur independently of IgE involvement. Non-IgE-mediated IDHSRs encompass the activation of effector cells, both mast cell-dependent and -independent and the initiation of inflammatory pathways through immunogenic and nonimmunogenic mechanisms. The IDHSRs involve inflammatory mediators beyond histamine, including the platelet-activating factor, which activates multiple cell types, including smooth muscle, endothelium, and MC, and evidence supports its importance in IgE-mediated reactions in humans. Clinically, distinguishing IgE from non-IgE mechanisms is crucial for future treatment strategies, including drug(s) restriction, readministration approaches, and pretreatment considerations. However, this presents significant challenges because certain drugs can trigger both mechanisms, and their presentations can appear similarly, ranging from mild to life-threatening symptoms. Thus, history alone is often inadequate for differentiation, and skin tests lack a standardized approach. Moreover, drug-specific IgE immunoassays have favorable specificity but low sensitivity, and the usefulness of the basophil activation test remains debatable. Lastly, no biomarker reliably differentiates between both mechanisms. Whereas non-IgE-mediated mechanisms likely predominate in IDHSRs, reclassifying most drug-related IDHSRs as non-IgE-mediated, with suggested prevention through dose administration adjustments, is premature and risky. Therefore, continued research and validated diagnostic tests are crucial to improving our capacity to distinguish between these mechanisms, ultimately enhancing patient care.
Collapse
Affiliation(s)
- Santiago Alvarez-Arango
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Mukesh Kumar
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR
| | - Timothy G Chow
- Division of Allergy and Immunology, Department of Pediatrics and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vito Sabato
- Department of Immunology, Allergology and Rheumatology, Antwerp University Hospital, University Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Cossette BJ, Shetty S, Issah LA, Collier JH. Self-Assembling Allergen Vaccine Platform Raises Therapeutic Allergen-Specific IgG Responses without Induction of Systemic Allergic Responses. ACS Biomater Sci Eng 2024; 10:1819-1829. [PMID: 38366973 PMCID: PMC11382287 DOI: 10.1021/acsbiomaterials.3c01945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Allergen immunotherapies are often successful at desensitizing allergic patients but can require life-long dosing and suffer from frequent adverse events including instances of systemic anaphylaxis, leading to poor patient compliance and high cost. Allergen vaccines, in turn, can generate more durable immunological allergen desensitization with far fewer doses. However, like immunotherapies, allergen vaccines are often highly reactogenic in allergic patients, hampering their use in therapeutic settings. In this work, we utilize a peptide-based self-assembling nanofiber platform to design allergen vaccines against allergen B-cell epitopes that do not elicit systemic anaphylaxis when administered subcutaneously to allergic mice. We show that, in contrast to protein vaccines, nanofiber vaccines prevent leakage of allergen material into the vascular compartment, a feature that likely underpins their reduced systemic reactogenicity. Further, we show that our allergen vaccine platform elicits therapeutic IgG antibody responses capable of desensitizing allergic mice to allergen-induced Type I hypersensitivity reactions. Finally, we have demonstrated a proof-of-concept for the therapeutic potential of nanofiber-based peanut allergen vaccines directed against peanut allergen-derived epitopes.
Collapse
Affiliation(s)
- Benjamin J Cossette
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Shamitha Shetty
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Luqman A Issah
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
8
|
Storni F, Vogel M, Bachmann MF, Engeroff P. IgG in the control of FcεRI activation: a battle on multiple fronts. Front Immunol 2024; 14:1339171. [PMID: 38274816 PMCID: PMC10808611 DOI: 10.3389/fimmu.2023.1339171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
The rising global incidence of IgE-mediated allergic reactions poses a significant challenge to the quality of life of affected individuals and to healthcare systems, with current treatments being limited in effectiveness, safety, and disease-modifying capabilities. IgE acts by sensitizing the high-affinity IgE receptor FcεRI expressed by mast cells and basophils, tuning these cells for inflammatory degranulation in response to future allergen encounters. In recent years, IgG has emerged as an essential negative regulator of IgE-dependent allergic inflammation. Mechanistically, studies have proposed different pathways by which IgG can interfere with the activation of IgE-mediated inflammation. Here, we briefly summarize the major proposed mechanisms of action by which IgG controls the IgE-FcεRI inflammatory axis and how those mechanisms are currently applied as therapeutic interventions for IgE-mediated inflammation.
Collapse
Affiliation(s)
- Federico Storni
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Monique Vogel
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Martin F. Bachmann
- Department of BioMedical Research, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| | - Paul Engeroff
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
9
|
Koffert A, Liippo J, Löyttyniemi E, Savolainen J. Clinical outcome and component-specific antibody levels in egg allergic children after lightened oral immunotherapy. Allergol Immunopathol (Madr) 2024; 52:44-59. [PMID: 38186193 DOI: 10.15586/aei.v52i1.805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/07/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To evaluate the clinical outcome of lightened version of egg oral immunotherapy (OIT) and to analyze egg allergen component-specific antibody levels during short up-dosing with egg white powder and maintenance by egg in daily diet. PATIENTS AND METHODS Eighteen egg-allergic children received egg powder with short up--dosing and they maintained tolerance using egg in daily diet. Seventeen egg-allergic children served as a control group. Component-resolved analysis of serum immunoglobulin E (IgE), IgA1, IgA2, and IgG4 levels were determined at inclusion, after up-dosing and after 1 year of immunotherapy. Skin-prick tests were performed at inclusion and after 1 year of therapy. RESULTS All 18 patients in the egg OIT group were successfully desensitized. Desensitization was achieved on average in 4.5 months. In the control group, only two children tolerated egg in oral food challenge after 1 year. Of the measured immune markers, smaller wheal diameters in skin-prick testing, reduction in component-specific IgE levels, and increase in component-specific IgA1, IgA2, and IgG4 levels were associated with desensitization. CONCLUSION A lightened egg OIT is effective and safe in children with egg allergy. Increase in all egg component-specific IgA1, IgA2 and IgG4 levels and decrease in all egg component--specific IgE levels were observed after 12 months of OIT.
Collapse
Affiliation(s)
- Anna Koffert
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland;
| | - Jussi Liippo
- Department of Dermatology, University of Turku and Turku University Hospital, Turku, Finland
| | | | - Johannes Savolainen
- Department of Pulmonary Diseases and Clinical Allergology, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
10
|
Bachmann MF, Vogel M, Speiser DE. Successful Allergen-Specific Immunotherapy: Induction of Unresponsiveness by 'Vaccination'. Vaccines (Basel) 2023; 11:1852. [PMID: 38140255 PMCID: PMC10748047 DOI: 10.3390/vaccines11121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The mechanisms of action of allergen-specific immunotherapy (AIT) are often referred to as the induction of 'tolerance'. However, immunological 'tolerance' is defined as an alteration in the function or composition of immune cells. For AIT, this is not always the case, because it can also induce allergen-specific IgG antibodies that block allergic responses. To include all possible mechanisms that may mediate successful AIT, it is advantageous to use the scientific term 'unresponsiveness' instead of 'tolerance'. In praxis, the term 'vaccination' is also appropriate, as AIT medications are specialized vaccines.
Collapse
Affiliation(s)
- Martin F. Bachmann
- Department of Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.V.); (D.E.S.)
- Department of Rheumatology and Immunology, University Hospital of Bern, 3010 Bern, Switzerland
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford OX1 2JD, UK
| | - Monique Vogel
- Department of Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.V.); (D.E.S.)
- Department of Rheumatology and Immunology, University Hospital of Bern, 3010 Bern, Switzerland
| | - Daniel E. Speiser
- Department of Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland; (M.V.); (D.E.S.)
- Department of Rheumatology and Immunology, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Oncology, Lausanne University Hospital and University of Lausanne, 1066 Lausanne, Switzerland
| |
Collapse
|
11
|
Udoye CC, Ehlers M, Manz RA. The B Cell Response and Formation of Allergenic and Anti-Allergenic Antibodies in Food Allergy. BIOLOGY 2023; 12:1501. [PMID: 38132327 PMCID: PMC10740584 DOI: 10.3390/biology12121501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Food allergies are a growing public health concern worldwide, especially in children and young adults. Allergen-specific IgE plays a central role in the pathogenesis of food allergies, but their titers poorly correlate with allergy development. Host immune systems yield allergen-specific immunoglobulin (Ig)A, IgE and IgG subclasses with low or high affinities and differential Fc N-glycosylation patterns that can affect the allergic reaction to food in multiple ways. High-affinity IgE is required to induce strong mast cell activation eventually leading to allergic anaphylaxis, while low-affinity IgE can even inhibit the development of clinically relevant allergic symptoms. IgA and IgG antibodies can inhibit IgE-mediated mast cell activation through various mechanisms, thereby protecting IgE-positive individuals from allergy development. The production of IgE and IgG with differential allergenic potential seems to be affected by the signaling strength of individual B cell receptors, and by cytokines from T cells. This review provides an overview of the diversity of the B cell response and the diverse roles of antibodies in food allergy.
Collapse
Affiliation(s)
- Christopher C. Udoye
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
12
|
Kanagaratham C, Derakhshan T, El Ansari YS, Furiness KN, Hollers E, Keldsen M, Oettgen HC, Dwyer DF. IgG:FcγRIIb signals block effector programs of IgE:FcεRI-activated mast cells but spare survival pathways. J Allergy Clin Immunol 2023; 152:453-468. [PMID: 37030590 PMCID: PMC10524869 DOI: 10.1016/j.jaci.2023.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND IgE-induced mast cell (MC) degranulation can be inhibited by IgG antibodies, signaling via FcγRIIb, but the effects of IgG on IgE-induced MC transcription are unknown. OBJECTIVE We sought to assess inhibitory IgG:FcγRIIb effects on MC responses to IgE using complementary transcriptomic and functional approaches. METHODS RNA sequencing was performed on bone marrow-derived MCs from wild-type and FcγRIIb-deficient mice to identify genes activated following IgE receptor crosslinking that were further modulated in the presence of antigen-specific IgG in an FcγRIIb-dependent fashion. Parallel analyses of signaling pathways and allergic responses in vivo were performed to assess the impact of these changes in gene expression. RESULTS Rapid changes in the transcription of 879 genes occurred in MCs activated by IgE, peaking at 1 hour. Surprisingly, only 12% of these were altered by IgG signaling via FcγRIIb, including numerous transcripts involved in orchestrating type 2 responses linked to spleen tyrosine kinase signaling. Consistent with this finding, IgG suppressed IgE-induced phospho-intermediates in the spleen tyrosine kinase signaling pathway. In vivo studies confirmed that the IgG-mediated suppression of both systemic anaphylaxis and MC-driven tissue recruitment of inflammatory cells following allergen challenge was dependent on FcγRIIb. In contrast, genes in the STAT5a cell survival pathway were unaltered by IgG, and STAT5a phosphorylation increased after IgE-induced MC activation but was unaffected by IgG. CONCLUSIONS Our findings indicate that inhibitory IgG:FcγRIIb signals block an IgE-induced proallergic program but spare a prosurvival program.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Tahereh Derakhshan
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass
| | - Yasmeen S El Ansari
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | | | - Eleanor Hollers
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Boston, Mass
| | - Mats Keldsen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass
| | - Hans C Oettgen
- Department of Pediatrics, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| | - Daniel F Dwyer
- Division of Allergy and Clinical Immunology, Jeff and Penny Vinik Center for Allergic Disease Research, Brigham and Women's Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Boston, Mass.
| |
Collapse
|
13
|
Dispenza MC, Metcalfe DD, Olivera A. Research Advances in Mast Cell Biology and Their Translation Into Novel Therapies for Anaphylaxis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:2032-2042. [PMID: 36958519 PMCID: PMC10330051 DOI: 10.1016/j.jaip.2023.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
Anaphylaxis is an acute, potentially life-threatening systemic allergic reaction for which there are no known reliable preventative therapies. Its primary cell mediator, the mast cell, has several pathophysiologic roles and functions in IgE-mediated reactions that continue to be poorly understood. Recent advances in the understanding of allergic mechanisms have identified novel targets for inhibiting mast cell function and activation. The prevention of anaphylaxis is within reach with new drugs that could modulate immune tolerance, mast cell proliferation and differentiation, and IgE regulation and production. Several US Food and Drug Administration-approved drugs for chronic urticaria, mastocytosis, and cancer are also being repurposed to prevent anaphylaxis. New therapeutics have not only shown promise in potential efficacy for preventing IgE-mediated reactions, but in some cases, they are able to inform us about mast cell mechanisms in vivo. This review summarizes the most recent advances in the treatment of anaphylaxis that have arisen from new pharmacologic tools and our current understanding of mast cell biology.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergy Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| |
Collapse
|
14
|
Chen K, Hao Y, Guzmán M, Li G, Cerutti A. Antibody-mediated regulation of basophils: emerging views and clinical implications. Trends Immunol 2023; 44:408-423. [PMID: 37147229 PMCID: PMC10219851 DOI: 10.1016/j.it.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/07/2023]
Abstract
An increasing number of human diseases, including allergies, infections, inflammation, and cancer, involve roles for basophils. Traditionally viewed as the rarest leukocytes that are present only in the circulation, basophils have recently emerged as important players in systemic as well as tissue-specific immune responses. Their functions are regulated by immunoglobulins (Igs), and this enables basophils to integrate diverse adaptive and innate immunity signals. IgE is well known to regulate basophil responses in the context of type 2 immunity and allergic inflammation; however, growing evidence shows that IgG, IgA, and IgD also shape specific aspects of basophil functions relevant to many human diseases. We discuss recent mechanistic advances underpinning antibody-mediated basophil responses and propose strategies for the treatment of basophil-associated disorders.
Collapse
Affiliation(s)
- Kang Chen
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| | - Yujing Hao
- Departments of Obstetrics and Gynecology, Oncology, Biochemistry, and Microbiology and Immunology, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mauricio Guzmán
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Genxia Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Andrea Cerutti
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona Biomedical Research Park, Barcelona 08003, Spain; Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Catalan Institute for Research and Advanced Studies (ICREA), Barcelona Biomedical Research Park, Barcelona 08003, Spain.
| |
Collapse
|
15
|
Šošić L, Paolucci M, Flory S, Jebbawi F, Kündig TM, Johansen P. Allergen immunotherapy: progress and future outlook. Expert Rev Clin Immunol 2023:1-25. [PMID: 37122076 DOI: 10.1080/1744666x.2023.2209319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
INTRODUCTION Allergy, the immunological hypersensitivity to innocuous environmental compounds, is a global health problem. The disease triggers, allergens, are mostly proteins contained in various natural sources such as plant pollen, animal dander, dust mites, foods, fungi and insect venoms. Allergies can manifest with a wide range of symptoms in various organs, and be anything from just tedious to life-threatening. A majority of all allergy patients are self-treated with symptom-relieving medicines, while allergen immunotherapy (AIT) is the only causative treatment option. AREAS COVERED This review will aim to give an overview of the state-of-the-art allergy management, including the use of new biologics and the application of biomarkers, and a special emphasis and discussion on current research trends in the field of AIT. EXPERT OPINION Conventional AIT has proven effective, but the years-long treatment compromises patient compliance. Moreover, AIT is typically not offered in food allergy. Hence, there is a need for new, effective and safe AIT methods. Novel routes of administration (e.g. oral and intralymphatic), hypoallergenic AIT products and more effective adjuvants holds great promise. Most recently, the development of allergen-specific monoclonal antibodies for passive immunotherapy may also allow treatment of patients currently not treated or treatable.
Collapse
Affiliation(s)
- Lara Šošić
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Marta Paolucci
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Stephan Flory
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Fadi Jebbawi
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
16
|
Kazmi W, Berin MC. Oral tolerance and oral immunotherapy for food allergy: Evidence for common mechanisms? Cell Immunol 2023; 383:104650. [PMID: 36543052 DOI: 10.1016/j.cellimm.2022.104650] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022]
Abstract
Food allergies affect up to 10% of the US population, can be life-threatening, and have a significant negative impact on quality of life. Delayed dietary introduction of foods in childhood can hinder the induction of oral tolerance, an active regulatory response to foods that prevents the development of food allergy. Some children outgrow their food allergies naturally, while many others have persistent, lifelong food allergy for which there are few therapeutic options. Oral immunotherapy (OIT) is a therapeutic approach of giving increasing amounts of food to attempt to desensitize the allergic individual. In this review, we focus on the immune mechanisms common to oral tolerance and response to oral immunotherapy, with the objective of determining whether true tolerance can be achieved after food allergy has been established.
Collapse
Affiliation(s)
- Wajiha Kazmi
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M Cecilia Berin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Arai T, Kokubo T, Tang R, Abo H, Terui A, Hirakawa J, Akita H, Kawashima H, Hisaka A, Hatakeyama H. Tumor-associated neutrophils and macrophages exacerbate antidrug IgG-mediated anaphylactic reaction against an immune checkpoint inhibitor. J Immunother Cancer 2022; 10:jitc-2022-005657. [PMID: 36543377 PMCID: PMC9772690 DOI: 10.1136/jitc-2022-005657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With the increased use of immune checkpoint inhibitors (ICIs), side effects and toxicity are a great concern. Anaphylaxis has been identified as a potential adverse event induced by ICIs. Anaphylaxis is a life-threatening medical emergency. However, the mechanisms and factors that can potentially influence the incidence and severity of anaphylaxis in patients with cancer remain unclear. METHODS Healthy, murine colon 26, CT26, breast 4T1, EMT6, and renal RENCA tumor-bearing mice were treated with an anti-PD-L1 antibody (clone 10F.9G2). Symptoms of anaphylaxis were evaluated along with body temperature and mortality. The amounts of antidrug antibody and platelet-activating factor (PAF) in the blood were quantified via ELISA and liquid chromatography-mass spectrometry (LC-MS/MS). Immune cells were analyzed and isolated using a flow cytometer and magnetic-activated cell sorting, respectively. RESULTS Repeated administration of the anti-PD-L1 antibody 10F.9G2 to tumor-bearing mice caused fatal anaphylaxis, depending on the type of tumor model. After administration, antidrug immunoglobulin G (IgG), but not IgE antibodies, were produced, and PAF was released as a chemical mediator during anaphylaxis, indicating that anaphylaxis was caused by an IgG-dependent pathway. Anaphylaxis induced by 10F.9G2 was treated with a PAF receptor antagonist. We identified that neutrophils and macrophages were PAF-producing effector cells during anaphylaxis, and the tumor-bearing models with increased numbers of neutrophils and macrophages showed lethal anaphylaxis after treatment with 10F.9G2. Depletion of both neutrophils and macrophages using clodronate liposomes prevented anaphylaxis in tumor-bearing mice. CONCLUSIONS Thus, increased numbers of neutrophils and macrophages associated with cancer progression may be risk factors for anaphylaxis. These findings may provide useful insights into the mechanism of anaphylaxis following the administration of immune checkpoint inhibitors in human subjects.
Collapse
Affiliation(s)
- Takahiro Arai
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomomi Kokubo
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ruiheng Tang
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan,Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Ayu Terui
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Jotaro Hirakawa
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hidetaka Akita
- Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Akihiro Hisaka
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroto Hatakeyama
- Lratory of Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan,Laboratory of DDS Design and Drug Disposition, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
18
|
Drønen EK, Namork E, Dirven H, Nygaard UC. Suspected gut barrier disruptors and development of food allergy: Adjuvant effects and early immune responses. FRONTIERS IN ALLERGY 2022; 3:1029125. [PMID: 36483186 PMCID: PMC9723362 DOI: 10.3389/falgy.2022.1029125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/03/2022] [Indexed: 08/22/2023] Open
Abstract
Food allergy is an increasing public health challenge worldwide. It has recently been hypothesized that the increase in exposure to intestinal epithelial barrier-damaging biological and chemical agents contribute to this development. In animal models, exposure to adjuvants with a food allergen has been shown to promote sensitization and development of food allergy, and barrier disrupting capacities have been suggested to be one mechanism of adjuvant action. Here, we investigated how gut barrier disrupting compounds affected food allergy development in a mouse model of peanut allergy. Sensitization and clinical peanut allergy in C3H/HEOuJ mice were assessed after repeated oral exposure to peanut extract together with cholera toxin (CT; positive control), the mycotoxin deoxynivalenol (DON), house dust mite (HDM) or the pesticide glyphosate (GLY). In addition, we investigated early effects 4 to 48 h after a single exposure to the compounds by assessing markers of intestinal barrier permeability, alarmin production, intestinal epithelial responses, and local immune responses. CT and DON exerted adjuvant effects on peanut allergy development assessed as clinical anaphylaxis in mice. Early markers were affected only by DON, observed as increased IL-33 (interleukin 33) and thymic stromal lymphopoietin (TSLP) alarmin production in intestines and IL-33 receptor ST2 in serum. DON also induced an inflammatory immune response in lymph node cells stimulated with lipopolysaccharide (LPS). HDM and GLY did not clearly promote clinical food allergy and affected few of the early markers at the doses tested. In conclusion, oral exposure to CT and DON promoted development of clinical anaphylaxis in the peanut allergy mouse model. DON, but not CT, affected the early markers measured in this study, indicating that DON and CT have different modes of action at the early stages of peanut sensitization.
Collapse
Affiliation(s)
- Elena Klåpbakken Drønen
- Department for Chemical Toxicology, Division for Climate and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ellen Namork
- Department for Chemical Toxicology, Division for Climate and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hubert Dirven
- Department for Chemical Toxicology, Division for Climate and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Unni Cecilie Nygaard
- Department for Chemical Toxicology, Division for Climate and Health, Norwegian Institute of Public Health, Oslo, Norway
- Section for Immunology, Division for Infection Control, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
19
|
Qin L, Tang LF, Cheng L, Wang HY. The clinical significance of allergen-specific IgG4 in allergic diseases. Front Immunol 2022; 13:1032909. [PMID: 36389804 PMCID: PMC9648126 DOI: 10.3389/fimmu.2022.1032909] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 09/10/2023] Open
Abstract
IgG4 is a subclass of IgG antibody with a unique molecular feature of (Fragment antigen- binding) Fab-arm exchange, allowing bispecific antigen binding in a mono-valent manner. With low binding affinity to C1q and Fcγreceptors, IgG4 is incapable of forming immune complexes and activating the complement pathway, exhibiting a non-inflammatory feature. IgG4 is produced similarly to IgE and is considered a modified reaction to IgE class-switching response under certain conditions. It could also counteract IgE-activated inflammation. However, the clinical significance of IgG4 in allergic diseases is complex and controversial. Three viewpoints have been suggested to describe the role of IgG4. IgG4 can act as a tolerance-inducer to play a protective role under repeated and rapid incremental dosing of allergen exposure in allergen immunotherapy (AIT), supported by allergies in cat raisers and venom desensitization in beekeepers. Another viewpoint accepted by mainstream specialists and guidelines of Food Allergy and Management in different countries points out that food-specific IgG4 is a bystander in food allergy and should not be used as a diagnostic tool in clinical work. However, eosinophilic esophagitis (EoE) investigation revealed a direct clinical relevance between physiopathology and serum IgG4 in cow milk and wheat. These factors indicate that allergen-specific IgG4 plays a multifaceted role in allergic diseases that is protective or pathogenic depending on different allergens or exposure conditions.
Collapse
Affiliation(s)
- Lu Qin
- Department of Pulmonology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lan-Fang Tang
- Department of Pulmonology, the Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Hui-Ying Wang
- Department of Allergy and Clinical Immunology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
20
|
Gonzalez-Visiedo M, Li X, Munoz-Melero M, Kulis MD, Daniell H, Markusic DM. Single-dose AAV vector gene immunotherapy to treat food allergy. Mol Ther Methods Clin Dev 2022; 26:309-322. [PMID: 35990748 PMCID: PMC9361215 DOI: 10.1016/j.omtm.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022]
Abstract
Immunotherapies for patients with food allergy have shown some success in limiting allergic responses. However, these approaches require lengthy protocols with repeated allergen dosing and patients can relapse following discontinuation of treatment. The purpose of this study was to test if a single dose of an adeno-associated virus (AAV) vector can safely prevent and treat egg allergy in a mouse model. AAV vectors expressing ovalbumin (OVA) under an ubiquitous or liver-specific promoter were injected prior to or after epicutaneous sensitization with OVA. Mice treated with either AAV8-OVA vector were completely protected from allergy sensitization. These animals had a significant reduction in anaphylaxis mediated by a reduction in OVA-specific IgE titers. In mice with established OVA allergy, allergic responses were mitigated only in mice treated with an AAV8-OVA vector expressing OVA from an ubiquitous promoter. In conclusion, an AAV vector with a liver-specific promoter was more effective for allergy prevention, but higher OVA levels were necessary for reducing symptoms in preexisting allergy. Overall, our AAV gene immunotherapy resulted in an expansion of OVA-specific FoxP3+ CD4+ T cells, an increase in the regulatory cytokine IL-10, and a reduction in the IgE promoting cytokine IL-13.
Collapse
Affiliation(s)
- Miguel Gonzalez-Visiedo
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Xin Li
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Maite Munoz-Melero
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| | - Michael D Kulis
- Department of Pediatrics, Division of Allergy and Immunology, School of Medicine, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M Markusic
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, R4-155, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Heine S, Aguilar-Pimentel A, Russkamp D, Alessandrini F, Gailus-Durner V, Fuchs H, Ollert M, Bredehorst R, Ohnmacht C, Zissler UM, Hrabě de Angelis M, Schmidt-Weber CB, Blank S. Thermosensitive PLGA–PEG–PLGA Hydrogel as Depot Matrix for Allergen-Specific Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081527. [PMID: 35893787 PMCID: PMC9329805 DOI: 10.3390/pharmaceutics14081527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the only currently available curative treatment option for allergic diseases. AIT often includes depot-forming and immunostimulatory adjuvants, to prolong allergen presentation and to improve therapeutic efficacy. The use of aluminium salts in AIT, which are commonly used as depot-forming adjuvants, is controversially discussed, due to health concerns and Th2-promoting activity. Therefore, there is the need for novel delivery systems in AIT with similar therapeutic efficacy compared to classical AIT strategies. In this study, a triblock copolymer (hydrogel) was assessed as a delivery system for AIT in a murine model of allergic asthma. We show that the hydrogel combines the advantages of both depot function and biodegradability at the same time. We further demonstrate the suitability of hydrogel to release different bioactive compounds in vitro and in vivo. AIT delivered with hydrogel reduces key parameters of allergic inflammation, such as inflammatory cell infiltration, mucus hypersecretion, and allergen-specific IgE, in a comparable manner to standard AIT treatment. Additionally, hydrogel-based AIT is superior in inducing allergen-specific IgG antibodies with potentially protective functions. Taken together, hydrogel represents a promising delivery system for AIT that is able to combine therapeutic allergen administration with the prolonged release of immunomodulators at the same time.
Collapse
Affiliation(s)
- Sonja Heine
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Antonio Aguilar-Pimentel
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
| | - Dennis Russkamp
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Francesca Alessandrini
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 4354 Esch-Sur-Alzette, Luxembourg;
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, 5000 Odense, Denmark
| | - Reinhard Bredehorst
- Institute of Biochemistry and Molecular Biology, University of Hamburg, 20146 Hamburg, Germany;
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; (A.A.-P.); (V.G.-D.); (H.F.); (M.H.d.A.)
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Munich, Germany; (S.H.); (D.R.); (F.A.); (C.O.); (U.M.Z.); (C.B.S.-W.)
- Correspondence: ; Tel.: +49-89-318-726-25
| |
Collapse
|
22
|
Germundson DL, Nookala S, Smith NA, Warda Y, Nagamoto-Combs K. HLA-II Alleles Influence Physical and Behavioral Responses to a Whey Allergen in a Transgenic Mouse Model of Cow's Milk Allergy. FRONTIERS IN ALLERGY 2022; 3:870513. [PMID: 35769584 PMCID: PMC9234862 DOI: 10.3389/falgy.2022.870513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
The symptoms of food allergies vary significantly between individuals, likely due to genetic determinants. In humans, allergy development is initiated by antigen-presenting cells via class II human leukocyte antigen (HLA-II). The HLA-II gene is highly polymorphic, and its allelic variance is thought to influence the susceptibility of individuals to a particular allergen. However, whether antigen presentation by different HLA-II variants contributes to symptom variation is not clear. We hypothesized that HLA-II allelic variance affects symptom phenotypes, including immediate physical reactions and delayed behavioral changes, in individuals with food hypersensitivity. To test our hypothesis, male and female mice of three transgenic strains expressing an HLA-II variant, DR3, DR15, or DQ8, were used to establish a cow's milk allergy model. Mice were sensitized to a bovine whey allergen, β-lactoglobulin (BLG; Bos d 5), weekly for 5 weeks, followed by an acute oral allergen challenge. At 30 min post-challenge, BLG-sensitized DR3 mice showed moderate to severe anaphylaxis resulting in perioral redness, swelling, and death. In contrast, DQ8 and DR15 mice were generally asymptomatic. The production of allergen-specific immunoglobulins was also HLA- and sex-dependent. Both male and female DR3 and female DR15 mice significantly increased BLG-specific IgE production, while robust elevation in BLG-specific IgG1 was observed in sensitized DQ8 mice of both sexes and, to a lesser extent, in DR15 males. Furthermore, BLG-sensitized DR15 mice showed sex-specific behavior changes, with males exhibiting mobility changes and anxiety-like behavior and females showing spatial memory impairment. When splenocytes from transgenic mice were stimulated in vitro with BLG, phenotypes of immune cells were HLA- and sex-specific, further underscoring the influence of HLA-II on immune responses. Our results support that HLA-II alleles influence behavioral responses in addition to immune and physical reactions of food allergy, suggesting that certain HLA-II variants may predispose individuals to food-allergy-associated behavioral changes.
Collapse
Affiliation(s)
- Danielle L. Germundson
- Department of Pathology, Clinical and Translational Sciences Graduate Program, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Nicholas A. Smith
- Department of Pathology, Clinical and Translational Sciences Graduate Program, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Yassmine Warda
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
| | - Kumi Nagamoto-Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, ND, United States
- *Correspondence: Kumi Nagamoto-Combs
| |
Collapse
|
23
|
Nagata Y, Suzuki R. FcεRI: A Master Regulator of Mast Cell Functions. Cells 2022; 11:cells11040622. [PMID: 35203273 PMCID: PMC8870323 DOI: 10.3390/cells11040622] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Mast cells (MCs) perform multiple functions thought to underlie different manifestations of allergies. Various aspects of antigens (Ags) and their interactions with immunoglobulin E (IgE) cause diverse responses in MCs. FcεRI, a high-affinity IgE receptor, deciphers the Ag–IgE interaction and drives allergic responses. FcεRI clustering is essential for signal transduction and, therefore, determines the quality of MC responses. Ag properties precisely regulate FcεRI dynamics, which consequently initiates differential outcomes by switching the intracellular-signaling pathway, suggesting that Ag properties can control MC responses, both qualitatively and quantitatively. Thus, the therapeutic benefits of FcεRI-targeting strategies have long been examined. Disrupting IgE–FcεRI interactions is a potential therapeutic strategy because the binding affinity between IgE and FcεRI is extremely high. Specifically, FcεRI desensitization, due to internalization, is also a potential therapeutic target that is involved in the mechanisms of allergen-specific immunotherapy. Several recent findings have suggested that silent internalization is strongly associated with FcεRI dynamics. A comprehensive understanding of the role of FcεRI may lead to the development of novel therapies for allergies. Here, we review the qualitatively diverse responses of MCs that impact the attenuation/development of allergies with a focus on the role of FcεRI toward Ag exposure.
Collapse
|
24
|
McKendry RT, Kwok M, Hemmings O, James LK, Santos AF. Allergen-specific IgG show distinct patterns in persistent and transient food allergy. Pediatr Allergy Immunol 2021; 32:1508-1518. [PMID: 34057765 DOI: 10.1111/pai.13567] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Immediate food-allergic reactions are IgE-mediated, but many individuals with detectable allergen-specific IgE do not react to the food. Allergen-specific IgG may interfere with allergen-IgE interaction and/or through intracellular inhibitory signalling to suppress mast cell and basophil response to food allergens. We aimed to understand the role of allergen-specific IgG in food allergy and natural tolerance. METHODS IgG and IgG isotypes specific to peanut, cow's milk and egg were measured using ImmunoCAP and ELISA respectively in samples of children with suspected food allergies. Expression of IgE and IgG and their receptors and expression of activation markers following allergen stimulation were measured on basophils and mast cells by flow cytometry, with and without blockade of FcγRIIα or FcγRIIβ receptors. RESULTS The levels of peanut-specific IgG, IgG1, IgG2, IgG3 and IgG4 in ELISA were higher in peanut-allergic than in non-peanut-allergic children. No difference in allergen-specific IgG isotypes was observed between allergic and non-allergic children to milk or egg, except for milk-specific IgG4 that was higher in non-cow's milk-allergic than in cow's milk-allergic children. Basophils and LAD2 cells expressed IgG receptors, but IgG and IgA were not detected on the surface of either cell type and blocking FcγRIIα or FcγRIIβ did not modify basophil or mast cell activation in response to allergen in allergic or tolerant children. CONCLUSION Allergen-specific IgG patterns were distinct in persistent (peanut) versus transient (milk and egg) food allergies. We found no evidence that FcγRIIα or FcγRIIβ receptors affect allergen-induced activation of mast cells and basophils in food allergy or natural tolerance.
Collapse
Affiliation(s)
- Richard T McKendry
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Matthew Kwok
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Oliver Hemmings
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Louisa K James
- Blizard Institute, Queen Mary University of London, London, UK
| | - Alexandra F Santos
- Department of Women and Children's Health (Paediatric Allergy), Faculty of Life Sciences and Medicine, School of Life Course Sciences, King's College London, London, UK.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK.,MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.,Children's Allergy Service, Guy's and St Thomas' Hospital, London, UK
| |
Collapse
|
25
|
Ehlers AM, Hartog Jager CF, Knulst AC, Otten HG. Distinction between peanut allergy and tolerance by characterization of B cell receptor repertoires. Allergy 2021; 76:2753-2764. [PMID: 33969502 PMCID: PMC8453529 DOI: 10.1111/all.14897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022]
Abstract
Background Specific IgE against a peanut 2S albumin (Ara h 2 or 6) is the best predictor of clinically relevant peanut sensitization. However, sIgE levels of peanut allergic and those of peanut sensitized but tolerant patients partly overlap, highlighting the need for improved diagnostics to prevent incorrect diagnosis and consequently unnecessary food restrictions. Thus, we sought to explore differences in V(D)J gene transcripts coding for peanut 2S albumin‐specific monoclonal antibodies (mAbs) from allergic and sensitized but tolerant donors. Methods 2S albumin‐binding B‐cells were single‐cell sorted from peripheral blood of peanut allergic (n=6) and tolerant (n=6) donors sensitized to Ara h2 and/or 6 (≥ 0.1 kU/l) and non‐atopic controls (n=5). h 2 and/or 6 (≥ 0.1 kU/l). Corresponding h heavy and light chain gene transcripts were heterologously expressed as mAbs and tested for specificity to native Ara h2 and 6. HCDR3 sequence motifs were identified by Levenshtein distances and hierarchically clustering. Results The frequency of 2S albumin‐binding B cells was increased in allergic (median: 0.01%) compared to tolerant (median: 0.006%) and non‐atopic donors (median: 0.0015%, p = 0.008). The majority of mAbs (74%, 29/39) bound specifically to Ara h 2 and/or 6. Non‐specific mAbs (9/10) were mainly derived from non‐atopic controls. In allergic donors, 89% of heavy chain gene transcripts consisted of VH3 family genes, compared with only 54% in sensitized but tolerant and 63% of non‐atopic donors. Additionally, certain HCDR3 sequence motifs were associated with allergy (n = 4) or tolerance (n = 3) upon hierarchical clustering of their Levenshtein distances. Conclusions Peanut allergy is associated with dominant VH3 family gene usage and certain public antibody sequences (HCDR3 motifs).
Collapse
Affiliation(s)
- Anna M. Ehlers
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
- Department of Dermatology/Allergology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Constance F. Hartog Jager
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
- Department of Dermatology/Allergology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - André C. Knulst
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
- Department of Dermatology/Allergology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Henny G. Otten
- Center for Translational Immunology University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| |
Collapse
|
26
|
Tontini C, Bulfone-Paus S. Novel Approaches in the Inhibition of IgE-Induced Mast Cell Reactivity in Food Allergy. Front Immunol 2021; 12:613461. [PMID: 34456900 PMCID: PMC8387944 DOI: 10.3389/fimmu.2021.613461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 06/23/2021] [Indexed: 01/21/2023] Open
Abstract
Allergy is an IgE-dependent type-I hypersensitivity reaction that can lead to life-threatening systemic symptoms such as anaphylaxis. In the pathogenesis of the allergic response, the common upstream event is the binding of allergens to specific IgE, inducing cross-linking of the high-affinity FcεRI on mast cells, triggering cellular degranulation and the release of histamine, proteases, lipids mediators, cytokines and chemokines with inflammatory activity. A number of novel therapeutic options to curb mast cell activation are in the pipeline for the treatment of severe allergies. In addition to anti-IgE therapy and allergen-specific immunotherapy, monoclonal antibodies targeted against several key Th2/alarmin cytokines (i.e. IL-4Rα, IL-33, TSLP), active modification of allergen-specific IgE (i.e. inhibitory compounds, monoclonal antibodies, de-sialylation), engagement of inhibitory receptors on mast cells and allergen-specific adjuvant vaccines, are new promising options to inhibit the uncontrolled release of mast cell mediators upon allergen exposure. In this review, we critically discuss the novel approaches targeting mast cells limiting allergic responses and the immunological mechanisms involved, with special interest on food allergy treatment.
Collapse
Affiliation(s)
- Chiara Tontini
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Silvia Bulfone-Paus
- Lydia Becker Institute for Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
27
|
Chang X, Zha L, Wallimann A, Mohsen MO, Krenger P, Liu X, Vogel M, Bachmann MF. Low-affinity but high-avidity interactions may offer an explanation for IgE-mediated allergen cross-reactivity. Allergy 2021; 76:2565-2574. [PMID: 33866583 PMCID: PMC8361967 DOI: 10.1111/all.14864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/23/2021] [Accepted: 03/14/2021] [Indexed: 12/04/2022]
Abstract
Background Allergy is a global disease with overall frequencies of >20%. Symptoms vary from irritating local itching to life‐threatening systemic anaphylaxis. Even though allergies are allergen‐specific, there is a wide range of cross‐reactivities (eg apple and latex) that remain largely unexplained. Given the abilities of low‐affinity IgG antibodies to inhibit mast cells activation, here we elucidate the minimal affinity of IgE antibodies to induce type I hypersensitivity. Methods Three mature (high‐affinity) IgE antibodies recognizing three distinct epitopes on Fel d 1, the major cat allergen, were back‐mutated to germline conformation, resulting in binding to Fel d 1 with low affinity. The ability of these IgE antibodies to activate mast cells in vitro and in vivo was tested. Results We demonstrate that affinities as low as 10−7 M are sufficient to activate mast cells in vitro and drive allergic reactions in vivo. Low‐affinity IgE antibodies are able to do so, since they bind allergens bivalently on the surface of mast cells, leading to high‐avidity interactions. Conclusions These results suggest that the underlying mechanism of allergen cross‐reactivity may be low‐affinity but high‐avidity binding between IgE antibodies and cross‐reactive allergen.
Collapse
Affiliation(s)
- Xinyue Chang
- International Immunology Center Anhui Agricultural University Anhui China
- Immunology RIA, Inselspital University of Bern Bern Switzerland
| | - Lisha Zha
- International Immunology Center Anhui Agricultural University Anhui China
- Immunology RIA, Inselspital University of Bern Bern Switzerland
| | | | - Mona O. Mohsen
- International Immunology Center Anhui Agricultural University Anhui China
| | - Pascal Krenger
- International Immunology Center Anhui Agricultural University Anhui China
| | - Xuelan Liu
- International Immunology Center Anhui Agricultural University Anhui China
- Immunology RIA, Inselspital University of Bern Bern Switzerland
| | - Monique Vogel
- International Immunology Center Anhui Agricultural University Anhui China
| | - Martin F. Bachmann
- International Immunology Center Anhui Agricultural University Anhui China
- Immunology RIA, Inselspital University of Bern Bern Switzerland
- Nuffield Department of Medicine Centre for Cellular and Molecular Physiology (CCMP) The Jenner Institute, University of Oxford Oxford UK
| |
Collapse
|
28
|
MacGlashan D, Alvarez-Arango S, Tversky J. Subclasses of allergen-specific IgG: Serum IgG2 and IgG3 levels are not predicted by IgG1/IgG4 levels. Clin Exp Allergy 2021; 51:1093-1095. [PMID: 34192382 PMCID: PMC9235034 DOI: 10.1111/cea.13977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/19/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Donald MacGlashan
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Jody Tversky
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Satitsuksanoa P, Daanje M, Akdis M, Boyd SD, Veen W. Biology and dynamics of B cells in the context of IgE-mediated food allergy. Allergy 2021; 76:1707-1717. [PMID: 33274454 DOI: 10.1111/all.14684] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/16/2022]
Abstract
An increasing number of people suffer from IgE-mediated food allergies. The immunological mechanisms that cause IgE-mediated food allergy have been extensively studied. B cells play a key role in the development of IgE-mediated food allergies through the production of allergen-specific antibodies. While this particular function of B cells has been known for many years, we still do not fully understand the mechanisms that regulate the induction and maintenance of allergen-specific IgE production. It is still not fully understood where in the body IgE class switch recombination of food allergen-specific B cells occurs, and what processes are involved in the immunological memory of allergen-specific IgE responses. B cells can also contribute to the regulation of allergen-specific immune responses through other mechanisms such as antigen presentation and cytokine production. Recent technological advances have enabled highly detailed analysis of small subsets of B cells down to the single-cell level. In this review, we provide an overview of the current knowledge on the biology of B cells in relation to IgE-mediated food allergies.
Collapse
Affiliation(s)
| | - Monique Daanje
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Scott D. Boyd
- Sean N. Parker Center for Allergy and Asthma Research Stanford University School of Medicine Stanford CA USA
- Department of Pathology Stanford University School of Medicine Stanford CA USA
| | - Willem Veen
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
- Christine Kühne‐Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| |
Collapse
|
30
|
Bruhns P, Chollet-Martin S. Mechanisms of human drug-induced anaphylaxis. J Allergy Clin Immunol 2021; 147:1133-1142. [PMID: 33832695 DOI: 10.1016/j.jaci.2021.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/11/2021] [Indexed: 02/08/2023]
Abstract
Drug-induced anaphylaxis is a hyperacute reaction affecting multiple organs that can be of fatal consequence. Its incidence is increasing, consistent with a global increased sensitization to various allergens and drugs in the population. Few risk factors and mechanisms have been identified from human studies due to the rarity of anaphylactic events and their unpredictability. This systemic reaction is caused by the rapid release of a large range of functionally diverse mediators, including histamine and platelet-activating factor as the main drivers identified. Mechanisms defined from models of experimental anaphylaxis identify drug-specific antibodies of the IgE and IgG class that link the drug to antibody receptors on multiple cell types, causing their activation and mediator release. In the case of drugs with peculiar chemical structures, antibodies may not be necessary because drug-binding receptors, such as Mas-related G protein-coupled receptor member X2, have been identified. This review describes the complex reaction leading to drug-induced anaphylaxis that can involve various antibody classes, various cell types-including mast cells, neutrophils, platelets, basophils, macrophages, and monocytes-and their mediators and receptors that, importantly, can be activated alone or in association to participate in the severity of the reaction.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unit of Antibodies in Therapy and Pathology, UMR 1222 INSERM, Institut Pasteur, Paris, France; DHU FIRE, Labex Inflamex, Université Paris Diderot Paris 7, Paris, France.
| | - Sylvie Chollet-Martin
- Department "Auto-immunité et Hypersensibilités," DMU BioGeM, APHP, Hôpital Bichat, Paris, France; "Inflammation, Microbiome and Immunosurveillance" INSERM UMR 996, Faculté de Pharmacie, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
31
|
Nkurunungi G, Nassuuna J, Mpairwe H, Kabagenyi J, Nampijja M, Sanya RE, Webb EL, Elliott AM. Allergen skin test reactivity and asthma are inversely associated with ratios of IgG4/IgE and total IgE/allergen-specific IgE in Ugandan communities. Clin Exp Allergy 2021; 51:703-715. [PMID: 33512036 PMCID: PMC7610822 DOI: 10.1111/cea.13834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/12/2020] [Accepted: 01/22/2021] [Indexed: 11/28/2022]
Abstract
Background Serum inhibition of allergen‐specific IgE has been associated with competing IgG4 and non‐specific polyclonal IgE. In allergen immunotherapy, beneficial responses have been associated with high IgG4/IgE ratios. Helminths potentiate antibody class switching to IgG4 and stimulate polyclonal IgE synthesis; therefore, we hypothesized a role for helminth‐associated IgG4 and total IgE in protection against atopic sensitization and clinical allergy (asthma) in tropical low‐income countries. Methods Among community residents of Ugandan rural Schistosoma mansoni (Sm)–endemic islands and a mainland urban setting with lower helminth exposure, and among urban asthmatic schoolchildren and non‐asthmatic controls, we measured total, Schistosoma adult worm antigen (SWA)–specific, Schistosoma egg antigen (SEA)–specific and allergen (house dust mite [HDM] and German cockroach)–specific IgE and IgG4 by ImmunoCAP® and/or ELISA. We assessed associations between these antibody profiles and current Sm infection, the rural‐urban environment, HDM and cockroach skin prick test (SPT) reactivity, and asthma. Results Total IgE, total IgG4 and SWA‐, SEA‐ and allergen‐specific IgE and IgG4 levels were significantly higher in the rural, compared to the urban setting. In both community settings, both Sm infection and SPT reactivity were positively associated with allergen‐specific and total IgE responses. SPT reactivity was inversely associated with Schistosoma‐specific IgG4, allergen‐specific IgG4/IgE ratios and total IgE/allergen‐specific IgE ratios. Asthmatic schoolchildren, compared with non‐asthmatic controls, had significantly higher levels of total and allergen‐specific IgE, but lower ratios of allergen‐specific IgG4/IgE and total IgE/allergen‐specific IgE. Conclusions and clinical relevance Our immuno‐epidemiological data support the hypothesis that the IgG4–IgE balance and the total IgE–allergen‐specific IgE balance are more important than absolute total, helminth‐ or allergen‐specific antibody levels in inhibition of allergies in the tropics.
Collapse
Affiliation(s)
- Gyaviira Nkurunungi
- Immunomodulation and Vaccines Programme, Medical Research Council / Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, Medical Research Council / Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Harriet Mpairwe
- Immunomodulation and Vaccines Programme, Medical Research Council / Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda.,Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Joyce Kabagenyi
- Immunomodulation and Vaccines Programme, Medical Research Council / Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Margaret Nampijja
- Immunomodulation and Vaccines Programme, Medical Research Council / Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Richard E Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council / Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda.,College of Health Sciences, Makerere University, Kampala, Uganda
| | - Emily L Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council / Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine (MRC/UVRI and LSHTM) Uganda Research Unit, Entebbe, Uganda.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
32
|
Nguyen TG. The therapeutic implications of activated immune responses via the enigmatic immunoglobulin D. Int Rev Immunol 2021; 41:107-122. [PMID: 33410368 DOI: 10.1080/08830185.2020.1861265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Immunoglobulin D (IgD) is an enigmatic antibody and the least appreciated member of the immunoglobulin (Ig) family. Since its discovery over half a century ago, the essence of its function in the immune system has been somewhat enigmatic and less well-defined than other antibody classes. Membrane-bound IgD (mIgD) is mostly recognized as B-cell receptor (BCR) while secreted IgD (sIgD) has been recently implicated in 'arming' basophils and mast cells in mucosal innate immunity. Activations of immune responses via mIgD-BCR or sIgD by specific antigens or anti-IgD antibody thereby produce a broad and complex mix of cellular, antibody and cytokine responses from both the innate and adaptive immune systems. Such broadly activated immune responses via IgD were initially deemed to potentiate and exacerbate the onset of autoimmune and allergic conditions. Paradoxically, treatments with anti-IgD antibody suppressed and ameliorated autoimmune conditions and allergic inflammations in mouse models without compromising the host's general immune defence, demonstrating a unique and novel therapeutic application for anti-IgD antibody treatment. Herein, this review endeavored to collate and summarize the evidence of the unique characteristics and features of activated immune responses via mIgD-BCR and sIgD that revealed an unappreciated immune-regulatory function of IgD in the immune system via an amplifying loop of anti-inflammatory Th2 and tolerogenic responses, and highlighted a novel therapeutic paradigm in harnessing these immune responses to treat human autoimmune and allergic conditions.
Collapse
|
33
|
Dispenza MC, Bochner BS, MacGlashan DW. Targeting the FcεRI Pathway as a Potential Strategy to Prevent Food-Induced Anaphylaxis. Front Immunol 2021; 11:614402. [PMID: 33391286 PMCID: PMC7773654 DOI: 10.3389/fimmu.2020.614402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 12/25/2022] Open
Abstract
Despite attempts to halt it, the prevalence of food allergy is increasing, and there is an unmet need for strategies to prevent morbidity and mortality from food-induced allergic reactions. There are no known medications that can prevent anaphylaxis, but several novel therapies show promise for the prevention of food-induced anaphylaxis through targeting of the high-affinity IgE receptor (FcϵRI) pathway. This pathway includes multiple candidate targets, including tyrosine kinases and the receptor itself. Small molecule inhibitors of essential kinases have rapid onset of action and transient efficacy, which may be beneficial for short-term use for immunotherapy buildup or desensitizations. Short courses of FDA-approved inhibitors of Bruton’s tyrosine kinase can eliminate IgE-mediated basophil activation and reduce food skin test size in allergic adults, and prevent IgE-mediated anaphylaxis in humanized mice. In contrast, biologics may provide longer-lasting protection, albeit with slower onset. Omalizumab is an anti-IgE antibody that sequesters IgE, thereby reducing FcϵRI expression on mast cells and basophils. As a monotherapy, it can increase the clinical threshold dose of food allergen, and when used as an adjunct for food immunotherapy, it decreases severe reactions during buildup phase. Finally, lirentelimab, an anti-Siglec-8 antibody currently in clinical trials, can prevent IgE-mediated anaphylaxis in mice through mast cell inhibition. This review discusses these and other emerging therapies as potential strategies for preventing food-induced anaphylaxis. In contrast to other food allergy treatments which largely focus on individual allergens, blockade of the FcϵRI pathway has the advantage of preventing clinical reactivity from any food.
Collapse
Affiliation(s)
- Melanie C Dispenza
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Donald W MacGlashan
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Jacquet A. Perspectives in Allergen-Specific Immunotherapy: Molecular Evolution of Peptide- and Protein-Based Strategies. Curr Protein Pept Sci 2020; 21:203-223. [PMID: 31416410 DOI: 10.2174/1389203720666190718152534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/30/2019] [Accepted: 06/20/2019] [Indexed: 12/13/2022]
Abstract
Allergen-specific Immunotherapy (AIT), through repetitive subcutaneous or sublingual administrations of allergen extracts, represents up to now the unique treatment against allergic sensitizations. However, the clinical efficacy of AIT can be largely dependent on the quality of natural allergen extracts. Moreover, the long duration and adverse side effects associated with AIT negatively impact patient adherence. Tremendous progress in the field of molecular allergology has made possible the design of safer, shorter and more effective new immunotherapeutic approaches based on purified and characterized natural or recombinant allergen derivatives and peptides. This review will summarize the characteristics of these different innovative vaccines including their effects in preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
35
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
36
|
Suprun M, Getts R, Grishina G, Tsuang A, Suárez‐Fariñas M, Sampson HA. Ovomucoid epitope-specific repertoire of IgE, IgG 4 , IgG 1 , IgA 1 , and IgD antibodies in egg-allergic children. Allergy 2020; 75:2633-2643. [PMID: 32391917 DOI: 10.1111/all.14357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Egg-white ovomucoid, that is, Gal d 1, is associated with IgE-mediated allergic reactions in most egg-allergic children. Epitope-specific IgE levels have been correlated with the severity of egg allergy, while emerging evidence suggests that other antibody isotypes (IgG1 , IgG4 , IgA, and IgD) may have a protective function; yet, their epitope-specific repertoires and associations with atopic comorbidities have not been studied. METHODS Bead-based epitope assay (BBEA) was used to quantitate the levels of epitope-specific (es)IgA, esIgE, esIgD, esIgG1 , and esIgG4 antibodies directed at 58 (15-mer) overlapping peptides, covering the entire sequence of ovomucoid, in plasma of 38 egg-allergic and 6 atopic children. Intraclass correlation (ICC) and coefficient of variation (CV) were used for the reliability assessment. The relationships across esIgs were evaluated using network analysis; linear and logistic regressions were used to compare groups based on egg allergy status and comorbidities. RESULTS BBEA had high reliability (ICC >0.75) and low variability (CV <20%) and could detect known IgE-binding epitopes. Egg-allergic children had lower esIgA1 (P = .010) and esIgG1 (P = .016) and higher esIgE (P < .001) and esIgD (P = .015) levels compared to the atopic controls. Interestingly, within the allergic group, children with higher esIgD had decreased odds of anaphylactic reactions (OR =0.48, P = .038). Network analysis identified most associations between esIgE with either esIgG4 or esIgD; indicating that IgE-secreting plasma cells could originate from either sequential isotype switch from antigen-experienced intermediate isotypes or directly from the IgD+ B cells. CONCLUSIONS Collectively, these data point toward a contribution of epitope-specific antibody repertoires to the pathogenesis of egg allergy.
Collapse
Affiliation(s)
- Maria Suprun
- Icahn School of Medicine at Mount Sinai New Yok NY USA
| | | | | | - Angela Tsuang
- Icahn School of Medicine at Mount Sinai New Yok NY USA
| | | | | |
Collapse
|
37
|
O'Konek JJ, Landers JJ, Janczak KW, Lindsey HK, Mondrusov AM, Totten TD, Baker JR. Intranasal nanoemulsion vaccine confers long-lasting immunomodulation and sustained unresponsiveness in a murine model of milk allergy. Allergy 2020; 75:872-881. [PMID: 31557317 DOI: 10.1111/all.14064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Immunotherapy for food allergy requires prolonged treatment protocols and, in most cases, does not lead to durable modulation of the allergic immune response. We have demonstrated an intranasal (IN) nanoemulsion adjuvant that redirects allergen-specific Th2 responses toward Th1 and Th17 immunity, and protects from allergen challenge after only 2-4 monthly administrations. Here, we investigate the ability of this technology to provide long-term modulation of allergy in a murine model of cow's milk allergy. METHODS Six weeks after sensitization to bovine casein, mice received four, monthly IN immunizations with nanoemulsion formulated with casein. Protection from casein challenge was assessed at 4 and 16 weeks after the final vaccine administration. RESULTS The NE vaccine significantly blunted the physiological responses to allergen challenge, and this effect persisted for at least 16 weeks. The protection from challenge was associated with the suppression of casein-specific Th2 immunity and induced Th1 and Th17 cytokines as well as induction of IL-10. Of interest, while immunized animals showed significantly decreased Th2 cytokine responses, cow's milk-specific IgE remained elevated in the serum at levels associated with reactivity in control sensitized animals. Protection was associated with suppressed mast cell activation and markedly reduced mast cell infiltration into the small intestine. CONCLUSION The sustained unresponsiveness of at least 16 weeks after vaccination suggests that the nanoemulsion vaccine alters the allergic phenotype in a persistent manner different from traditional desensitization, and this leads to long-term suppressive effects on allergic disease without eliminating serum IgE.
Collapse
Affiliation(s)
- Jessica J. O'Konek
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - Jeffrey J. Landers
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | | | - Hayley K. Lindsey
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - Anna M. Mondrusov
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - Tiffanie D. Totten
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| | - James R. Baker
- Mary H. Weiser Food Allergy Center University of Michigan Ann Arbor MI USA
| |
Collapse
|
38
|
Wai CY, Leung NY, Chu KH, Leung PS, Leung AS, Wong GW, Leung TF. Overcoming Shellfish Allergy: How Far Have We Come? Int J Mol Sci 2020; 21:ijms21062234. [PMID: 32210187 PMCID: PMC7139905 DOI: 10.3390/ijms21062234] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/19/2020] [Indexed: 12/25/2022] Open
Abstract
Shellfish allergy caused by undesirable immunological responses upon ingestion of crustaceans and mollusks is a common cause of food allergy, especially in the Asia-Pacific region. While the prevalence of shellfish allergy is increasing, the mainstay of clinical diagnosis for these patients includes extract-based skin prick test and specific IgE measurement while clinical management consists of food avoidance and as-needed use of adrenaline autoinjector should they develop severe allergic reactions. Such a standard of care is unsatisfactory to both patients and healthcare practitioners. There is a pressing need to introduce more specific diagnostic methods, as well as effective and safe therapies for patients with shellfish allergy. Knowledge gained on the identifications and defining the immuno-molecular features of different shellfish allergens over the past two decades have gradually translated into the design of new diagnostic and treatment options for shellfish allergy. In this review, we will discuss the epidemiology, the molecular identification of shellfish allergens, recent progress in various diagnostic methods, as well as current development in immunotherapeutic approaches including the use of unmodified allergens, hypoallergens, immunoregulatory peptides and DNA vaccines for the prevention and treatment of shellfish allergy. The prospect of a “cure “for shellfish allergy is within reach.
Collapse
Affiliation(s)
- Christine Y.Y. Wai
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicki Y.H. Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong;
| | - Patrick S.C. Leung
- Division of Rheumatology/Allergy, School of Medicine, University of California, Davis, CA 95616, USA;
| | - Agnes S.Y. Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Gary W.K. Wong
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin, Hong Kong
- Correspondence: ; Tel.: +852-3505-2981; Fax: +852-2636-0020
| |
Collapse
|
39
|
Matsui T, Naito M, Tagami K, Tajima I, Teshigawara M, Makino A, Kitamura K, Takasato Y, Sugiura S, Yamada C, Izumi H, Tsuge I, Kondo Y, Ito K. Changes in passively-sensitized basophil activation to αS1-casein after oral immunotherapy. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:188-197. [PMID: 32125071 PMCID: PMC7212200 DOI: 10.1002/iid3.294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Immune response to cow's milk allergen (CMA) has been analyzed mostly using crude milk antigen or a mixture of various caseins. This study aimed to assess the changes in the immunological response against αS1-casein during oral immunotherapy (OIT) and to investigate the mechanism of tolerance. METHODS We have performed rush OIT to 39 patients with CMA and obtained the serum samples up to 3 years after OIT. Immunoglobulin E (IgE) and IgG4 antibodies specific to highly purified αS1-casein as well as passively-sensitized basophil activation were evaluated using the serial samples. Furthermore, we examined whether basophil activation led by the pre-OIT serum was suppressed by the post-OIT serum, or by the tolerant serum obtained from naturally outgrown patients. RESULTS Specific IgE to αS1-casein was significantly reduced after OIT. Specific IgG4 (sIgG4) to αS1-casein was also detected in most of the pre-OIT sera, which was not significantly increased after OIT. Activation of passively-sensitized basophils to αS1-casein was significantly reduced after 2 years (14% ± 19%) and 3 years (19% ± 18%) post-OIT compared with pre-OIT (%CD63high basophils; 51% ± 27%). Furthermore, the addition of post-OIT or tolerant serum to pre-OIT serum significantly suppressed the basophil activation. This suppression was abrogated by washing the supernatant after passive sensitization, but not by depleting IgG antibodies from post-OIT or tolerant sera, nor by blocking FcγRIIb using an anti-FcγR antibody. CONCLUSIONS αS1-casein-sIgG4 plays a minor role in tolerance mechanisms in cases of CMA; humoral factors other than antigen-sIgG4 may be involved.
Collapse
Affiliation(s)
- Teruaki Matsui
- Department of Allergy, Aichi Children's Health and Medical Center
| | - Michihiro Naito
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences
| | - Kazunori Tagami
- Department of Allergy, Aichi Children's Health and Medical Center.,Department of Nutritional Sciences, Kasugai Municipal Hospital
| | - Iwao Tajima
- Department of Allergy, Aichi Children's Health and Medical Center.,Department of Pediatrics, Toyohashi Municipal Hospital
| | | | - Atsushi Makino
- Department of Allergy, Aichi Children's Health and Medical Center
| | | | | | - Shiro Sugiura
- Department of Allergy, Aichi Children's Health and Medical Center
| | - Chikako Yamada
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences
| | - Hidehiko Izumi
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences
| | - Ikuya Tsuge
- Department of Pediatrics, Fujita Health University
| | - Yasuto Kondo
- Department of Pediatrics, Fujita Health University
| | - Komei Ito
- Department of Allergy, Aichi Children's Health and Medical Center
| |
Collapse
|
40
|
Galli SJ, Metz M, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against lethality of venoms: Possible "benefit" of allergy[]. ALLERGO JOURNAL INTERNATIONAL 2020; 29:46-62. [PMID: 33224714 PMCID: PMC7673288 DOI: 10.1007/s40629-020-00118-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/20/2019] [Indexed: 01/15/2023]
Abstract
Physicians think of mast cells and IgE primarily in the context of allergic disorders, including fatal anaphylaxis. This 'bad side' of mast cells and IgE is so well accepted that it can be difficult to think of them in other contexts, particularly those in which they may have beneficial functions. However, there is evidence that mast cells and IgE, as well as basophils (circulating granulocytes whose functions partially overlap with those of mast cells), can contribute to host defense as components of adaptive type 2 immune responses to helminths, ticks and certain other parasites. Accordingly, allergies often are conceptualized as "misdirected" type 2 immune responses, in which IgE antibodies are produced against any of a diverse group of apparently harmless antigens, and against components of animal venoms. Indeed, certain unfortunate patients who have become sensitized to venoms develop severe IgE-associated allergic reactions, including fatal anaphylaxis, upon subsequent venom exposure. In this review, we will describe evidence that mast cells can enhance innate resistance, and survival, to challenge with reptile or arthropod venoms during a first exposure to such venoms. We also will discuss findings indicating that, in mice surviving an initial encounter with venom, acquired type 2 immune responses, IgE antibodies, the high affinity IgE receptor (FcεRI), and mast cells can contribute to acquired resistance to the lethal effects of both honeybee venom and Russell's viper venom. These findings support the hypothesis that mast cells and IgE can help protect the host against venoms and perhaps other noxious substances.
Collapse
Affiliation(s)
- Stephen J. Galli
- Department of Pathology and the Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, California, 94305; USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, 94305; USA
| | - Martin Metz
- Department of Dermatology and Allergy, Charité – Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Philipp Starkl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Department of Medicine 1, Laboratory of Infection Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Marichal
- GIGA-Research and Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Mindy Tsai
- Department of Pathology and the Sean N. Parker Center for Allergy Research, Stanford University School of Medicine, Stanford, California, 94305; USA
| |
Collapse
|
41
|
Galli SJ, Metz M, Starkl P, Marichal T, Tsai M. Mast cells and IgE in defense against lethality of venoms: Possible "benefit" of allergy*. ALLERGO JOURNAL 2020. [DOI: 10.1007/s15007-020-0746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
A Solid-in-Oil Nanodispersion System for Transcutaneous Immunotherapy of Cow's Milk Allergies. Pharmaceutics 2020; 12:pharmaceutics12030205. [PMID: 32120968 PMCID: PMC7150982 DOI: 10.3390/pharmaceutics12030205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023] Open
Abstract
An allergy to cow’s milk proteins is the most common food allergy in infants and toddlers. Conventional oral immunotherapy for cow’s milk allergies requires hospital admission due to the risk of severe allergic reactions, including anaphylaxis. Therefore, a simpler and safer immunotherapeutic method is desirable. We examined transcutaneous immunotherapy with a solid-in-oil (S/O) system. In the S/O system, nano-sized particles of proteins are dispersed in an oil-vehicle with the assistance of nonionic surfactants. In the present study, the S/O system enhanced the skin permeation of the allergen molecule β-lactoglobulin (BLG), as compared with a control PBS solution. The patches containing BLG in the S/O nanodispersion skewed the immune response in the allergy model mice toward T helper type 1 immunity, indicating the amelioration of allergic symptoms. This effect was more pronounced when the immunomodulator resiquimod (R-848) was included in the S/O system.
Collapse
|
43
|
Gao Y, Qi R, Zhang X, Xu X, Han Y, Fei Q, Wang X, Cai R, Sun G, Qi Y. Qing-Kai-Ling Injection Induces Immediate Hypersensitivity Reaction via the Activation of Anaphylatoxin C3. Front Pharmacol 2020; 10:1524. [PMID: 31998128 PMCID: PMC6962097 DOI: 10.3389/fphar.2019.01524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background and Objective: Qing-Kai-Ling (QKL) is derived from a famous ancient Chinese patent medicine Angong Niuhuang pills (ANP) which has been used across Asia, especially in China, for the treatment of “febrile disease,” such as stroke, encephalitis and meningitis for hundreds of years. As an extract of ANP without heavy metal, the clinical applicability of QKL is more intensive, of which its injection is commonly used in acute and serious diseases. This study aims to clarify the potential mechanisms of immediate hypersensitivity reaction (IHR) induced by QKL injection (QKLI). Methods: β-hexosaminidase release assay was performed on the human mast cell line LAD2 and mouse peritoneal mast cells. T helper 2 (Th2) immunity-amplified mice were prepared by aluminum adjuvant. Anaphylactic shock was detected by measuring rectal thermometry in propranolol-pretreated mice. For evaluating microvascular permeability, Evans Blue extravasation assay was used. Serum total IgE (tIgE) and the activated complement-derived anaphylatoxin C3 (C3a) levels were measured by ELISA. Results: QKLI was unable to elevate serum tIgE level in the Th2 immunity-amplified mice, but can increase vasopermeability and trigger anaphylaxis after the first injection. By screening seven fractions of QKLI, only the extract of Isatidis Radix (Isatis tinctoria L.) induced hindpaw Evans Blue extravasation, which was disappeared in Isatidis Radix-free QKLI. Mechanism study indicated that QKLI or Isatidis Radix-caused IHR could be blocked by the antagonists for histamine or C3a, rather than PAF or C5a. Consistently, QKLI and Isatidis Radix could also directly activate human serum complement-derived anaphylatoxin 3 (C3) in vitro with the half effective concentration values of 0.69% and 218.6 μg/ml, respectively. Conclusion: QKLI-IHR is complement activation-related pseudoallergy, rather than an IgE-mediated allergy. QKLI activates C3 and might consequently provoke mast cells to release histamine, which is a principal effector of its IHR. The pseudoallergic reaction induced by QKLI was attributed to the extract of Isatidis Radix. This study suggests a potential therapeutic strategy for the prophylaxis and treatment of QKLI-IHR.
Collapse
Affiliation(s)
- Yuan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xudong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yixin Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiaoling Fei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaojing Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Runlan Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yun Qi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
44
|
Schmiechen ZC, Weissler KA, Frischmeyer-Guerrerio PA. Recent developments in understanding the mechanisms of food allergy. Curr Opin Pediatr 2019; 31:807-814. [PMID: 31693591 PMCID: PMC6993896 DOI: 10.1097/mop.0000000000000806] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE OF REVIEW The prevalence of food allergy is rising globally. This review will discuss recent discoveries regarding the immunologic mechanisms that drive the initial sensitization and allergic response to food antigens, which may inform prevention and treatment strategies. RECENT FINDINGS Tolerance to food antigens is antigen-specific and promoted by oral exposure early in life and maternal transfer of immune complexes via breast milk. IgG can inhibit both the initiation and effector phases of allergic responses to food antigens in mice, and high levels of food-specific IgG4 are associated with acquisition of tolerance in humans. Disruption of the skin barrier provides a route for food sensitization through the actions of mast cells, type 2 innate lymphoid cells, and IL-33 signaling. Regulatory T cells (Tregs) promote acquisition of oral tolerance, although defects in circulating allergen-specific Tregs are not evident in children with established food allergy. Certain microbes can offer protection against the development of IgE and food allergic responses, while dysbiosis increases susceptibility to food allergy. SUMMARY Tolerance to food antigens is antigen-specific and is promoted by oral exposure early in life, maternal transfer of immune complexes, food-specific IgG, Tregs, an intact skin barrier, and a healthy microbiome.
Collapse
Affiliation(s)
- Zoe C Schmiechen
- Laboratory of Allergic Diseases, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | | |
Collapse
|
45
|
Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell 2019; 178:1072-1087.e14. [DOI: 10.1016/j.cell.2019.07.047] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/30/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
|
46
|
Sharma S, Tomar S, Dharne M, Ganesan V, Smith A, Yang Y, Waggoner L, Wang YH, Hogan SP. Deletion of ΔdblGata motif leads to increased predisposition and severity of IgE-mediated food-induced anaphylaxis response. PLoS One 2019; 14:e0219375. [PMID: 31369572 PMCID: PMC6675080 DOI: 10.1371/journal.pone.0219375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/21/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Previous studies have revealed an important role for the transcription factor GATA-1 in mast cell maturation and degranulation. However, there have been conflicting reports with respect to the requirement of GATA-1 function in mast cell dependent inflammatory processes. Herein, we examine the requirement of GATA-1 signaling in mast cell effector function and IgE-mast cell-dependent anaphylaxis. OBJECTIVE To study the requirement of GATA-1 dependent signaling in the development and severity of IgE-mast cell-dependent anaphylaxis in mice. METHODS Wild type (Balb/c) and mutant ΔdblGata (Balb/c) mice were employed to study the role of GATA-1 signaling in in vitro IgE-mediated activation of bone marrow derived mast cells (BMMCs). Murine models of passive IgE-mediated and oral antigen-induced IgE-mediated anaphylaxis were employed in mice. Frequency of steady state mast cells in various tissues (duodenum, ear, and tongue), peritoneal cavity, and clinical symptoms (diarrhea, shock, and mast cell activation) and intestinal Type 2 immune cell analysis including CD4+ Th2 cells, type 2 innate lymphoid cells (ILC2), and IL-9 secreting mucosal mast cells (MMC9) were assessed. RESULTS In vitro analysis revealed that ΔdblGata BMMCs exhibit a reduced maturation rate, decreased expression of FcεRIα, and degranulation capacity when compared to their wildtype (WT) counterparts. These in vitro differences did not impact tissue resident mast cell numbers, total IgE, and susceptibility to or severity of IgE-mediated passive anaphylaxis. Surprisingly, ΔdblGata mice were more susceptible to IgE-mast cell-mediated oral antigen induced anaphylaxis. The increased allergic response was associated with increased Type 2 immunity (antigen-specific IgE, and CD4+ TH2 cells), MMC9 cells and small intestine (SI) mast cell load. CONCLUSION Diminished GATA-1 activity results in reduced in vitro mast cell FcεRIα expression, proliferation, and degranulation activity. However, in vivo, diminished GATA-1 activity results in normal homeostatic tissue mast cell levels and increased antigen-induced CD4+ Th2 and iMMC9 cell levels and heightened IgE-mast cell mediated reactions.
Collapse
Affiliation(s)
- Sribava Sharma
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Immunobiology graduate program, Division of Immunobiology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Sunil Tomar
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Mayuri Dharne
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Varsha Ganesan
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States of America
| | - Andrew Smith
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Yanfen Yang
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Lisa Waggoner
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Yui-Hsi Wang
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Simon P. Hogan
- Division of Allergy and Immunology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
47
|
Martin RK, Damle SR, Valentine YA, Zellner MP, James BN, Lownik JC, Luker AJ, Davis EH, DeMeules MM, Khandjian LM, Finkelman FD, Urban JF, Conrad DH. B1 Cell IgE Impedes Mast Cell-Mediated Enhancement of Parasite Expulsion through B2 IgE Blockade. Cell Rep 2019; 22:1824-1834. [PMID: 29444434 PMCID: PMC5832064 DOI: 10.1016/j.celrep.2018.01.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 12/05/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Helminth infection is known for generating large amounts of poly-specific IgE. Here we demonstrate that innate-like B1 cells are responsible for this IgE production during infection with the nematode parasites Nippostrongylus brasiliensis and Heligmosomoides polygyrus bakeri. In vitro analysis of B1 cell immunoglobulin class switch recombination to IgE demonstrated a requirement for anti-CD40 and IL-4 that was further enhanced when IL-5 was added or when the B1 source was helminth infected mice. An IL-25-induced upregulation of IgE in B1 cells was also demonstrated. In T cell-reconstituted RAG1−/− mice, N. brasiliensis clearance was enhanced with the addition of B2 cells in an IgE-dependent manner. This enhanced clearance was impeded by reconstitution with IgE sufficient B1 cells. Mucosal mast cells mediated the B2 cell enhancement of clearance in the absence of B1 cells. The data support B1 cell IgE secretion as a regulatory response exploited by the helminth.
Collapse
Affiliation(s)
- Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sheela R Damle
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yolander A Valentine
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Matthew P Zellner
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Briana N James
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph C Lownik
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Center for Clinical and Translational Research, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrea J Luker
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Elijah H Davis
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Martha M DeMeules
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Laura M Khandjian
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Fred D Finkelman
- Division of Immunology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Medicine Service, Veterans Administration Medical Center, Cincinnati, OH, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Diet, Genomics and Immunology Laboratory, Beltsville, MD 20705, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
48
|
Gomez G. Current Strategies to Inhibit High Affinity FcεRI-Mediated Signaling for the Treatment of Allergic Disease. Front Immunol 2019; 10:175. [PMID: 30792720 PMCID: PMC6374298 DOI: 10.3389/fimmu.2019.00175] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Allergies and asthma are a major cause of chronic disease whose prevalence has been on the rise. Allergic disease including seasonal rhinitis, atopic dermatitis, urticaria, anaphylaxis, and asthma, are associated with activation of tissue-resident mast cells and circulating basophils. Although these cells can be activated in different ways, allergic reactions are normally associated with the crosslinking of the high affinity Fc receptor for Immunoglobulin E, FcεRI, with multivalent antigen. Inflammatory mediators released from cytoplasmic granules, or biosynthesized de novo, following FcεRI crosslinking induce immediate hypersensitivity reactions, including life-threatening anaphylaxis, and contribute to prolonged inflammation leading to chronic diseases like asthma. Thus, inappropriate or unregulated activation of mast cells and basophils through antigenic crosslinking of FcεRI can have deleterious, sometimes deadly, consequences. Accordingly, FcεRI has emerged as a viable target for the development of biologics that act to inhibit or attenuate the activation of mast cells and basophils. At the forefront of these strategies are (1) Anti-IgE monoclonal antibody, namely omalizumab, which has the secondary effect of reducing FcεRI surface expression, (2) Designed Ankyrin Repeat Proteins (DARPins), which take advantage of the most common structural motifs in nature involved in protein-protein interactions, to inhibit FcεRI-IgE interactions, and (3) Fusion proteins to co-aggregate FcεRI with the inhibitory FcγRIIb. This review presents the published research studies that support omalizumab, DARPins, and fusion proteins as, arguably, the three most currently viable strategies for inhibiting the expression and activation of the high affinity FcεRI on mast cells and basophils.
Collapse
Affiliation(s)
- Gregorio Gomez
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
49
|
|
50
|
Won DI, Kim S, Lee EH. Neutrophil oxidative burst as a diagnostic indicator of IgG-mediated anaphylaxis. Blood Res 2018; 53:299-306. [PMID: 30588467 PMCID: PMC6300672 DOI: 10.5045/br.2018.53.4.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 11/17/2022] Open
Abstract
Background IgG-mediated anaphylaxis occurs after infusion of certain monoclonal antibody-based therapeutics. New in vitro tests are urgently needed to diagnose such reactions. We investigated whether allergens trigger neutrophil oxidative burst (OB) and if neutrophil OB occurs due to allergen-specific IgG (sIgG). Methods Neutrophil OB was measured by dihydrorhodamine 123 flow cytometry using a leukocyte suspension spiked with a very small patch of the allergen crude extract, Dermatophagoides farinae (Der f). The mean fluorescence intensity ratio of stimulated to unstimulated samples was calculated as the neutrophil oxidative index (NOI). Results The Der f-specific NOI (Der f-sNOI) showed a time-dependent increase after Der f extract addition. At 15 min activation, higher Der f-sIgG levels were associated with lower Der f-sNOI values in 31 subjects (P<0.05). This inverse relationship occurs due to the initial blocking effect of free Der f-sIgG. Additionally, neutrophil OB was nearly absent (Der f-sNOI of -1) in two cases: a subject with undetectable Der f-sIgG levels and washed leukocyte suspensions deprived of Der f-sIgG. Conclusion Allergens can trigger neutrophil OB via preexisting allergen-sIgG. Neutrophil OB can be easily measured in a leukocyte suspension spiked with the allergen. This assay can be used to diagnose IgG-mediated anaphylaxis.
Collapse
Affiliation(s)
- Dong Il Won
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Sujeong Kim
- Division of Allergy and Infectious Diseases, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eun Hee Lee
- Green Cross Reference Laboratory, Yongin, Korea
| |
Collapse
|