1
|
Xie L, Xue F, Cheng C, Sui W, Zhang J, Meng L, Lu Y, Xiong W, Bu P, Xu F, Yu X, Xi B, Zhong L, Yang J, Zhang C, Zhang Y. Cardiomyocyte-specific knockout of ADAM17 alleviates doxorubicin-induced cardiomyopathy via inhibiting TNFα-TRAF3-TAK1-MAPK axis. Signal Transduct Target Ther 2024; 9:273. [PMID: 39406701 PMCID: PMC11480360 DOI: 10.1038/s41392-024-01977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/27/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
The pathogenesis of doxorubicin-induced cardiomyopathy remains unclear. This study was carried out to test our hypothesis that ADAM17 aggravates cardiomyocyte apoptosis induced by doxorubicin and inhibition of ADAM17 may ameliorate doxorubicin-induced cardiomyopathy. C57BL/6J mice were intraperitoneally injected with a cumulative dose of doxorubicin to induce cardiomyopathy. Cardiomyocyte-specific ADAM17-knockout (A17α-MHCKO) and ADAM17-overexpressing (AAV9-oeA17) mice were generated. In addition, RNA sequencing of the heart tissues in different mouse groups and in vitro experiments in neonatal rat cardiomyocytes (NRCMs) receiving different treatment were performed. Mouse tumor models were constructed in A17fl/fl and A17α-MHCKO mice. In addition, cardiomyocyte-specific TRAF3-knockdown and TRAF3-overexpressing mice were generated. ADAM17 expression and activity were markedly upregulated in doxorubicin-treated mouse hearts and NRCMs. A17α-MHCKO mice showed less cardiomyocyte apoptosis induced by doxorubicin than A17fl/fl mice, and cardiomyocyte ADAM17 deficiency did not affect the anti-tumor effect of doxorubicin. In contrast, AAV9-oeA17 mice exhibited markedly aggravated cardiomyocyte apoptosis relative to AAV9-oeNC mice after doxorubicin treatment. Mechanistically, doxorubicin enhanced the expression of transcription factor C/EBPβ, leading to increased expression and activity of ADAM17 in cardiomyocyte, which enhanced TNF-α shedding and upregulated the expression of TRAF3. Increased TRAF3 promoted TAK1 autophosphorylation, resulting in activated MAPKs pathway and cardiomyocyte apoptosis. ADAM17 acted as a positive regulator of cardiomyocyte apoptosis and cardiac remodeling and dysfunction induced by doxorubicin by upregulating TRAF3/TAK1/MAPKs signaling. Thus, targeting ADAM17/TRAF3/TAK1/MAPKs signaling holds a promising potential for treating doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wenhai Sui
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Lu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjing Xiong
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peili Bu
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Chest Pain Center, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Xi
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lin Zhong
- Department of Cardiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jianmin Yang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Cheng Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Yun Zhang
- State Key Laboratory for Innovation and Transformation of Luobing Theory; Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
2
|
Hapeman JD, Galwa R, Carneiro CS, Nedelcu AM. In vitro evidence for the potential of EGFR inhibitors to decrease the TGF-β1-induced dispersal of circulating tumour cell clusters mediated by EGFR overexpression. Sci Rep 2024; 14:19980. [PMID: 39198539 PMCID: PMC11358385 DOI: 10.1038/s41598-024-70358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Most cancer-related deaths are due to the spread of tumour cells throughout the body-a process known as metastasis. While in the vasculature, these cells are referred to as circulating tumour cells (CTCs) and can be found as either single cells or clusters of cells (often including platelets), with the latter having the highest metastatic potential. However, the biology of CTC clusters is poorly understood, and there are no therapies that specifically target them. We previously developed an in vitro model system for CTC clusters and proposed a new extravasation model that involves cluster dissociation, adherence, and single-cell invasion in response to TGF-β1 released by platelets. Here, we investigated TGF-β1-induced gene expression changes in this model, focusing on genes for which targeted drugs are available. In addition to the upregulation of the TGF-β1 signalling pathway, we found that (i) genes in the EGF/EGFR pathway, including those coding for EGFR and several EGFR ligands, were also induced, and (ii) Erlotinib and Osimertinib, two therapeutic EGFR/tyrosine kinase inhibitors, decreased the TGF-β1-induced adherence and invasion of the CTC cluster-like line despite the line expressing wild-type EGFR. Overall, we suggest that EGFR inhibitors have the potential to decrease the dispersal of CTC clusters that respond to TGF-β1 and overexpress EGFR (irrespective of its status) and thus could improve patient survival.
Collapse
Affiliation(s)
- Jorian D Hapeman
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Rakshit Galwa
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Caroline S Carneiro
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
3
|
Ozgun O, Ozturk SD, Vural C, Kefeli AU, Balci S, Cabuk D, Uygun K, Kefeli U. Exploring the association of ADAM17 expression with survival in patients with non-small cell lung cancer. J Investig Med 2024:10815589241270543. [PMID: 39091062 DOI: 10.1177/10815589241270543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The A disintegrin and metalloprotease (ADAM) family is involved in many vital cellular events, from proliferation to migration, and accumulated evidence suggests its increased expression in malignant tumors. In this study, we investigated ADAM17 expression in non-small cell lung cancer (NSCLC) and its relationship with clinicopathological factors and survival. Immunohistochemical staining of ADAM expression was performed in 108 patients with NSCLC and in 54 control cases with no known malignant diagnosis. Association between ADAM17 expression, clinicopathological factors, and survival were analyzed. The Kaplan-Meier method was used for survival analysis. ADAM17 was lowly expressed in 89 (82.4%) and highly expressed in 19 (17.6%) of the patients with NSCLC. In univariate analysis, high ADAM17 expression, lymphovascular invasion, stage, and treatment response significantly affected progression-free survival (PFS) and overall survival (OS) (p < 0.05). Multivariate analysis also showed that high ADAM17 expression, lymphovascular invasion, stage, and treatment response were important prognostic factors for PFS and OS (p < 0.05). Our study revealed that high ADAM17 expression significantly associated with OS and PFS in patients with NSCLC. ADAM17 may potentially be the area of a new targeted treatment strategy in NSCLC. Thus, routine evaluation of ADAM17 expression in patients with NSCLC may be a future consideration.
Collapse
Affiliation(s)
- Ozge Ozgun
- Department of Internal Medicine, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Seda Duman Ozturk
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Cigdem Vural
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Aysegul Ucuncu Kefeli
- Department of Radiation Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Sibel Balci
- Department of Biostatistics and Medical Informatics, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Devrim Cabuk
- Department of Medical Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Kazim Uygun
- Department of Medical Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Umut Kefeli
- Department of Medical Oncology, Kocaeli University School of Medicine, Kocaeli, Turkey
| |
Collapse
|
4
|
Lee HJ, Choi HJ, Jeong YJ, Na YH, Hong JT, Han JM, Hoe HS, Lim KH. Developing theragnostics for Alzheimer's disease: Insights from cancer treatment. Int J Biol Macromol 2024; 269:131925. [PMID: 38685540 DOI: 10.1016/j.ijbiomac.2024.131925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The prevalence of Alzheimer's disease (AD) and its associated economic and societal burdens are on the rise, but there are no curative treatments for AD. Interestingly, this neurodegenerative disease shares several biological and pathophysiological features with cancer, including cell-cycle dysregulation, angiogenesis, mitochondrial dysfunction, protein misfolding, and DNA damage. However, the genetic factors contributing to the overlap in biological processes between cancer and AD have not been actively studied. In this review, we discuss the shared biological features of cancer and AD, the molecular targets of anticancer drugs, and therapeutic approaches. First, we outline the common biological features of cancer and AD. Second, we describe several anticancer drugs, their molecular targets, and their effects on AD pathology. Finally, we discuss how protein-protein interactions (PPIs), receptor inhibition, immunotherapy, and gene therapy can be exploited for the cure and management of both cancer and AD. Collectively, this review provides insights for the development of AD theragnostics based on cancer drugs and molecular targets.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Hee-Jeong Choi
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea
| | - Yoo Joo Jeong
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Yoon-Hee Na
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea
| | - Ji Min Han
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu 42988, Republic of Korea.
| | - Key-Hwan Lim
- College of Pharmacy, Chungbuk National University, Cheongju-si 28160, Republic of Korea.
| |
Collapse
|
5
|
Franke AK, Wessolowski C, Thaden V, Müller I, Cornils K. Glyco-binding domain chimeric antigen receptors as a new option for cancer immunotherapy. Gene Ther 2023; 30:603-611. [PMID: 36529796 PMCID: PMC10457195 DOI: 10.1038/s41434-022-00374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
In the last decade, treatment using Chimeric Antigen Receptor (CAR) are largely studied and demonstrate the potential of immunotherapeutic strategies, as seen mainly for blood related cancers. Still, efficient CAR-T cell approaches especially for the treatment of solid tumors are needed. Tn- and Sialyl-Tn antigens are tumor associated carbohydrate antigens correlating with poor prognosis and tumor metastasis on a variety of tumor entities. These glycans can be recognized by CD301 (CLEC10A, MGL), which is a surface receptor found primarily on immune cells. In the present study, we hypothesized, that it is possible to use newly generated CD301-bearing CARs, enabling cytotoxic effector cells to recognize and eliminate breast cancer cells. Thus, we genetically modified human NK92 cells with different chimeric receptors based on the carbohydrate recognition domain (CRD) of human CD301. We assessed their cytotoxic activity in vitro demonstrating the specific recognition of CD301 ligand positive cell lines. These results were confirmed by degranulation assays and in cytokine release assays. Overall, this study demonstrates CD301-CARs represent a cost-effective and fast alternative to conventional scFv CARs for cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Vanessa Thaden
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Ingo Müller
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Cornils
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, Raju GSR, Bhaskar L, Huh YS. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother 2023; 163:114822. [PMID: 37146418 DOI: 10.1016/j.biopha.2023.114822] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/07/2023] Open
Abstract
Breast cancer (BC) is the second most fatal disease and is the prime cause of cancer allied female deaths. BC is caused by aberrant tumor suppressor genes and oncogenes regulated by transcription factors (TFs) like NF-κB. NF-κB is a pro-inflammatory TF that crucially alters the expressions of various genes associated with inflammation, cell progression, metastasis, and apoptosis and modulates a network of genes that underlie tumorigenesis. Herein, we focus on NF-κB signaling pathways, its regulators, and the rationale for targeting NF-κB. This review also includes TFs that maintain NF-κB crosstalk and their roles in promoting angiogenesis and metastasis. In addition, we discuss the importance of combination therapies, resistance to treatment, and potential novel therapeutic strategies including nanomedicine that targets NF-κB.
Collapse
Affiliation(s)
- Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea; 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea
| | - Jyothsna Kancharla
- Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan 304022, India
| | - Vivek Kumar Gupta
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India
| | - Ju Yong Sung
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jigyeong Kim
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health care informatics, Sacred Heart University, 5151Park Avenue, Fair fields, CT06825, USA
| | - Rino Choi
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jeong-Hwan Lee
- 3D Convergence Center, Inha University, Incheon 22212, Republic of Korea; Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur- 495009, Chhattisgarh, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
7
|
Pargett M, Ram AR, Murthy V, Davies AE. Live-Cell Sender-Receiver Co-cultures for Quantitative Measurement of Paracrine Signaling Dynamics, Gene Expression, and Drug Response. Methods Mol Biol 2023; 2634:285-314. [PMID: 37074584 DOI: 10.1007/978-1-0716-3008-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Paracrine signaling is a fundamental process regulating tissue development, repair, and pathogenesis of diseases such as cancer. Herein we describe a method for quantitatively measuring paracrine signaling dynamics, and resultant gene expression changes, in living cells using genetically encoded signaling reporters and fluorescently tagged gene loci. We discuss considerations for selecting paracrine "sender-receiver" cell pairs, appropriate reporters, the use of this system to ask diverse experimental questions and screen drugs blocking intracellular communication, data collection, and the use of computational approaches to model and interpret these experiments.
Collapse
Affiliation(s)
- Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Abhineet R Ram
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - Vaibhav Murthy
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Alexander E Davies
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
8
|
Li J, Chen P, Wu Q, Guo L, Leong KW, Chan KI, Kwok HF. A novel combination treatment of antiADAM17 antibody and erlotinib to overcome acquired drug resistance in non-small cell lung cancer through the FOXO3a/FOXM1 axis. Cell Mol Life Sci 2022; 79:614. [PMID: 36456730 DOI: 10.1007/s00018-022-04647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
After the identification of specific epidermal growth factor receptor (EGFR)-activating mutations as one of the most common oncogenic driver mutations in non-small cell lung cancer (NSCLC), several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) with different clinical efficacies have been approved by various health authorities in the last two decades in targeting NSCLC harboring specific EGFR-activating mutations. However, most patients whose tumor initially responded to the first-generation EGFR-TKI developed acquired resistance. In this study, we developed a novel combination strategy, "antiADAM17 antibody A9(B8) + EGFR-TKIs", to enhance the efficacy of EGFR-TKIs. The addition of A9(B8) was shown to restore the effectiveness of erlotinib and overcome acquired resistance. We found that when A9(B8) antibody was treated with erlotinib or gefitinib, the combination treatment synergistically increased apoptosis in an NSCLC cell line and inhibited tumor growth in vivo. Interestingly, the addition of A9(B8) could only reduce the survival of the erlotinib-resistant NSCLC cell line and inhibit the growth of erlotinib-resistant tumors in vivo but not gefitinib-resistant cells. Furthermore, we revealed that A9(B8) overcame erlotinib resistance through the FOXO3a/FOXM1 axis and arrested the cell cycle at the G1/S phase, resulting in the apoptosis of cancer cells. Hence, this study establishes a novel, promising strategy for overcoming acquired resistance to erlotinib through the FOXO3a/FOXM1 axis by arresting the cell cycle at the G1/S phase.
Collapse
Affiliation(s)
- Junnan Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Pengchen Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Qiushuang Wu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Libin Guo
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Ka Weng Leong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR
| | - Kin Iong Chan
- Department of Pathology, Kiang Wu Hospital, Macau, Macau SAR
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR. .,MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau SAR. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau SAR.
| |
Collapse
|
9
|
Tong Q, Li R, Wang R, Zuo C, Li D, Jia G, Peng Y, Li X, Yang J, Xue S, Bai Q, Li X. The inhibiting effect of alpha-based TARE on embolized vessels and neovascularization. Front Bioeng Biotechnol 2022; 10:1021499. [PMID: 36277378 PMCID: PMC9585162 DOI: 10.3389/fbioe.2022.1021499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Transarterial embolization (TAE) is a personalized technology that offers precise delivery of chemotherapeutic drugs or selective internal radiation therapy for hepatocellular carcinoma (HCC). Beta-emitting radionuclide embolisms for TAE (β-based TARE) are commonly used in the clinic via inducing biochemical lethality on tumor cells, while alpha-emitting radionuclides-based embolisms for TAE (α-based TARE) are still under study. The feeding artery plays a key role in tumor growth, metastasis, and recurrence. In this research, the auricular central arteries (ACAs) of rabbits were embolized with silk fibroin-based microspheres (SFMs) or SFMs integrated with α (Ra-223) or β (I-131) radionuclides to investigate the influence on vessels. TARE-induced tissue necrosis and the following neovascularization were measured by pathological analysis and 68Ga-DOTA-RGD PET/CT. The results showed that, compared to I-131, Ra-223 enhanced the growth inhibition of human hepatoma cells Huh-7 and induced more DNA double-strand breaks in vascular smooth muscle cells. Unlike β-based TARE, which mainly led to extensive necrosis of surrounding tissues, α-based TARE induced irreversible necrosis of a limited area adjacent to the embolized vessels. RGD PET revealed the inhibition on neovascularization in α-based TARE (SUVmax = 0.053 ± 0.004) when compared with normal group (SUVmax = 0.099 ± 0.036), the SFMs-lipiodol group (SUVmax = 0.240 ± 0.040), and β-based TARE (SUVmax = 0.141 ± 0.026), owing to the avoidance of the embolism-induced neovascularization. In conclusion, α-based TARE provided a promising strategy for HCC treatments via destroying the embolized vessels and inhibiting neovascularization.
Collapse
Affiliation(s)
- Qianqian Tong
- School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi, China
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rou Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ruizhi Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Danni Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Guorong Jia
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ye Peng
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaohong Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jian Yang
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Shuai Xue
- School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi, China
| | - Qingyun Bai
- School of Chemistry and Bioengineering, Yichun University, Yichun, Jiangxi, China
- *Correspondence: Qingyun Bai, ; Xiao Li,
| | - Xiao Li
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
- Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Qingyun Bai, ; Xiao Li,
| |
Collapse
|
10
|
Pospiech K, Orzechowska M, Nowakowska M, Anusewicz D, Płuciennik E, Kośla K, Bednarek AK. TGFα-EGFR pathway in breast carcinogenesis, association with WWOX expression and estrogen activation. J Appl Genet 2022; 63:339-359. [PMID: 35290621 PMCID: PMC8979909 DOI: 10.1007/s13353-022-00690-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
WWOX is a tumor-suppressive steroid dehydrogenase, which relationship with hormone receptors was shown both in animal models and breast cancer patients. Herein, through nAnT-iCAGE high-throughput gene expression profiling, we studied the interplay of estrogen receptors and the WWOX in breast cancer cell lines (MCF7, T47D, MDA-MB-231, BT20) under estrogen stimulation and either introduction of the WWOX gene by retroviral transfection (MDA-MB-231, T47D) or silenced with shRNA (MCF7, BT20). Additionally, we evaluated the consequent biological characteristics by proliferation, apoptosis, invasion, and adhesion assays. TGFα-EGFR signaling was found to be significantly affected in all examined breast cancer cell lines in response to estrogen and strongly associated with the level of WWOX expression, especially in ER-positive MCF7 cells. Under the influence of 17β-estradiol presence, biological characteristics of the cell lines were also delineated. The study revealed modulation of adhesion, invasion, and apoptosis. The obtained results point at a complex role of the WWOX gene in the carcinogenesis of the breast tissue, which seems to be closely related to the presence of estrogen α and/or β receptors.
Collapse
Affiliation(s)
- Karolina Pospiech
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Magdalena Nowakowska
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Dorota Anusewicz
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
11
|
Verhulst E, Garnier D, De Meester I, Bauvois B. Validating Cell Surface Proteases as Drug Targets for Cancer Therapy: What Do We Know, and Where Do We Go? Cancers (Basel) 2022; 14:624. [PMID: 35158891 PMCID: PMC8833564 DOI: 10.3390/cancers14030624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cell surface proteases (also known as ectoproteases) are transmembrane and membrane-bound enzymes involved in various physiological and pathological processes. Several members, most notably dipeptidyl peptidase 4 (DPP4/CD26) and its related family member fibroblast activation protein (FAP), aminopeptidase N (APN/CD13), a disintegrin and metalloprotease 17 (ADAM17/TACE), and matrix metalloproteinases (MMPs) MMP2 and MMP9, are often overexpressed in cancers and have been associated with tumour dysfunction. With multifaceted actions, these ectoproteases have been validated as therapeutic targets for cancer. Numerous inhibitors have been developed to target these enzymes, attempting to control their enzymatic activity. Even though clinical trials with these compounds did not show the expected results in most cases, the field of ectoprotease inhibitors is growing. This review summarizes the current knowledge on this subject and highlights the recent development of more effective and selective drugs targeting ectoproteases among which small molecular weight inhibitors, peptide conjugates, prodrugs, or monoclonal antibodies (mAbs) and derivatives. These promising avenues have the potential to deliver novel therapeutic strategies in the treatment of cancers.
Collapse
Affiliation(s)
- Emile Verhulst
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Delphine Garnier
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, University of Antwerp, 2000 Antwerp, Belgium; (E.V.); (I.D.M.)
| | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, F-75006 Paris, France;
| |
Collapse
|
12
|
Lucas LM, Dwivedi V, Senfeld JI, Cullum RL, Mill CP, Piazza JT, Bryant IN, Cook LJ, Miller ST, Lott JH, Kelley CM, Knerr EL, Markham JA, Kaufmann DP, Jacobi MA, Shen J, Riese DJ. The Yin and Yang of ERBB4: Tumor Suppressor and Oncoprotein. Pharmacol Rev 2022; 74:18-47. [PMID: 34987087 PMCID: PMC11060329 DOI: 10.1124/pharmrev.121.000381] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/15/2021] [Indexed: 12/11/2022] Open
Abstract
ERBB4 (HER4) is a member of the ERBB family of receptor tyrosine kinases, a family that includes the epidermal growth factor receptor (EGFR/ERBB1/HER1), ERBB2 (Neu/HER2), and ERBB3 (HER3). EGFR and ERBB2 are oncoproteins and validated targets for therapeutic intervention in a variety of solid tumors. In contrast, the role that ERBB4 plays in human malignancies is ambiguous. Thus, here we review the literature regarding ERBB4 function in human malignancies. We review the mechanisms of ERBB4 signaling with an emphasis on mechanisms of signaling specificity. In the context of this signaling specificity, we discuss the hypothesis that ERBB4 appears to function as a tumor suppressor protein and as an oncoprotein. Next, we review the literature that describes the role of ERBB4 in tumors of the bladder, liver, prostate, brain, colon, stomach, lung, bone, ovary, thyroid, hematopoietic tissues, pancreas, breast, skin, head, and neck. Whenever possible, we discuss the possibility that ERBB4 mutants function as biomarkers in these tumors. Finally, we discuss the potential roles of ERBB4 mutants in the staging of human tumors and how ERBB4 function may dictate the treatment of human tumors. SIGNIFICANCE STATEMENT: This articles reviews ERBB4 function in the context of the mechanistic model that ERBB4 homodimers function as tumor suppressors, whereas ERBB4-EGFR or ERBB4-ERBB2 heterodimers act as oncogenes. Thus, this review serves as a mechanistic framework for clinicians and scientists to consider the role of ERBB4 and ERBB4 mutants in staging and treating human tumors.
Collapse
Affiliation(s)
- Lauren M Lucas
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Vipasha Dwivedi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jared I Senfeld
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Richard L Cullum
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Christopher P Mill
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - J Tyler Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Ianthe N Bryant
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Laura J Cook
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - S Tyler Miller
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - James H Lott
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Connor M Kelley
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Elizabeth L Knerr
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jessica A Markham
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David P Kaufmann
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Megan A Jacobi
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - Jianzhong Shen
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| | - David J Riese
- Department of Drug Discovery and Development, Harrison School of Pharmacy (L.M.L., V.D., J.I.S., R.L.C., C.P.M., J.T.P., L.J.C., S.T.M., J.H.L., C.M.K., E.L.K., J.A.M., D.P.K., M.A.J., J.S., D.J.R.), and Department of Chemical Engineering, Samuel Ginn College of Engineering (R.L.C.), Auburn University, Auburn, Alabama; The University of Texas M.D. Anderson Cancer Center, Houston, Texas (C.P.M.); Office of the Executive Vice President for Research and Partnerships, Purdue University, West Lafayette, Indiana (I.N.B.); and Cancer Biology and Immunology Program, O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, Alabama (D.J.R.)
| |
Collapse
|
13
|
Lofgren KA, Sreekumar S, Jenkins EC, Ernzen KJ, Kenny PA. Anti-tumor efficacy of an MMAE-conjugated antibody targeting cell surface TACE/ADAM17-cleaved Amphiregulin in breast cancer. Antib Ther 2021; 4:252-261. [PMID: 34877472 PMCID: PMC8643873 DOI: 10.1093/abt/tbab026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022] Open
Abstract
Background The Epidermal Growth Factor Receptor (EGFR) ligand, Amphiregulin (AREG), is a key proliferative effector of estrogen receptor signaling in breast cancer and also plays a role in other malignancies. AREG is a single-pass transmembrane protein proteolytically processed by TACE/ADAM17 to release the soluble EGFR ligand, leaving a residual transmembrane stalk that is subsequently internalized. Methods Using phage display, we identified antibodies that selectively recognize the residual transmembrane stalk of cleaved AREG. Conjugation with fluorescence labels and monomethyl auristatin E (MMAE) was used to study their intracellular trafficking and anti-cancer effects, respectively. Results We report the development of an antibody-drug conjugate (ADC), GMF-1A3-MMAE, targeting an AREG neo-epitope revealed following ADAM17-mediated cleavage. The antibody does not interact with uncleaved AREG, providing a novel means of targeting cells with high rates of AREG shedding. Using fluorescent dye conjugation, we demonstrated that the antibody is internalized by cancer cells in a manner dependent on the presence of cell surface cleaved AREG. Antibodies conjugated with MMAE were cytotoxic in vitro and induced rapid regression of established breast tumor xenografts in immunocompromised mice. We further demonstrate that these antibodies recognize the AREG neo-epitope in formalin-fixed, paraffin-embedded tumor tissue, suggesting their utility as a companion diagnostic for patient selection. Conclusions This ADC targeting AREG has potential utility in the treatment of breast and other tumors in which proteolytic AREG shedding is a frequent event.
Collapse
Affiliation(s)
- Kristopher A Lofgren
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA
| | - Sreeja Sreekumar
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA
| | - E Charles Jenkins
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kyle J Ernzen
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA
| | - Paraic A Kenny
- Kabara Cancer Research Institute, Gundersen Medical Foundation, La Crosse, Wisconsin, USA.,Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Chen JY, Cheng WH, Lee KY, Kuo HP, Chung KF, Chen CL, Chen BC, Lin CH. Abnormal ADAM17 expression causes airway fibrosis in chronic obstructive asthma. Biomed Pharmacother 2021; 140:111701. [PMID: 34051616 DOI: 10.1016/j.biopha.2021.111701] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022] Open
Abstract
Patients with chronic obstructive asthma (COA) develop airflow obstruction caused by subepithelial fibrosis. Although a disintegrin and metalloproteinase 17 (ADAM17) has been implicated in lung inflammation and tissue fibrosis, its role in airway fibrosis in COA has not been explored. Here, we found marked overexpression of ADAM17, phosphorylated ADAM17, and connective tissue growth factor (CTGF) in human airway fibroblasts from COA patients, compared with those of normal subjects. Similarly, levels of ADAM17, CTGF, α-smooth muscle actin (α-SMA), and collagen were increased in endobronchial biopsies from COA patients, but not in controls. In an ovalbumin-challenge asthma model, airway fibrosis was inhibited in ADAM17f/f/Cre+ mice compared to control mice. TGF-β- and thrombin-induced fibrotic protein expression was reduced by ADAM17 small interfering (si)RNA, TAPI-0 (an ADAM17 inhibitor), and EGFR siRNA. In addition, exogenous HB-EGF reversed fibrotic response in ADAM17 knockdown human lung fibroblasts. ADAM17 causes subepithelial fibrosis through regulation of enhanced extracellular matrix production and fibroblast differentiation and is the common pathway for airway fibrosis mediated by TGF-β and thrombin through an aberrant ADAM17/EGFR signalling pathway.
Collapse
Affiliation(s)
- Jing-Yun Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wun-Hao Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Han-Pin Kuo
- Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kian Fan Chung
- Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Respiratory Biomedical Research Unit, Royal Brompton NHS Foundation Trust, London, United Kingdom
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Thoracic Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
15
|
Kawai T, Elliott KJ, Scalia R, Eguchi S. Contribution of ADAM17 and related ADAMs in cardiovascular diseases. Cell Mol Life Sci 2021; 78:4161-4187. [PMID: 33575814 PMCID: PMC9301870 DOI: 10.1007/s00018-021-03779-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/23/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.
Collapse
Affiliation(s)
- Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Katherine J Elliott
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine At Temple University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Mechanical force-driven TNFα endocytosis governs stem cell homeostasis. Bone Res 2021; 8:44. [PMID: 33384406 PMCID: PMC7775432 DOI: 10.1038/s41413-020-00117-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) closely interact with the immune system, and they are known to secrete inflammatory cytokines in response to stress stimuli. The biological function of MSC-derived inflammatory cytokines remains elusive. Here, we reveal that even under physiological conditions, MSCs produce and release a low level of tumor necrosis factor alpha (TNFα), which is unexpectedly required for preserving the self-renewal and differentiation of MSCs via autocrine/paracrine signaling. Furthermore, TNFα critically maintains MSC function in vivo during bone homeostasis. Mechanistically, we unexpectedly discovered that physiological levels of TNFα safeguard MSC homeostasis in a receptor-independent manner through mechanical force-driven endocytosis and that endocytosed TNFα binds to mammalian target of rapamycin (mTOR) complex 2 and restricts mTOR signaling. Importantly, inhibition of mTOR signaling by rapamycin serves as an effective osteoanabolic therapeutic strategy to protect against TNFα deficiency and mechanical unloading. Collectively, these findings unravel the physiological framework of the dynamic TNFα shuttle-based mTOR equilibrium that governs MSC and bone homeostasis.
Collapse
|
17
|
Goonoo N, Boodhun A, Ziman M, Gray E, Bhaw-Luximon A. Repurposing nano-enabled polymeric scaffolds for tumor-wound management and 3D tumor engineering. Regen Med 2020; 15:2229-2247. [PMID: 33284640 DOI: 10.2217/rme-2020-0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The main challenges of cancer drugs are toxicity, effect on wound healing/patient outcome and in vivo instability. Polymeric scaffolds have been used separately for tissue regeneration in wound healing and as anticancer drug releasing devices. Bringing these two together in bifunctional scaffolds can provide a tool for postoperative local tumor management by promoting healthy tissue regrowth and to deliver anticancer drugs. Another addition to the versatility of polymeric scaffold is its recently discovered ability to act as 3D cell culture models for in vitro isolation and amplification of cancer cells for personalized drug screening and to recapitulate the tumor microenvironment. This review focuses on the repurposing of 3D polymeric scaffolds for local tumor-wound management and development of in vitro cell culture models.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| | - Ajmal Boodhun
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| | - Melanie Ziman
- School of Medical & Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Elin Gray
- School of Medical & Health Sciences, Edith Cowan University, Perth, WA 6027, Australia
| | - Archana Bhaw-Luximon
- Biomaterials Drug Delivery & Nanotechnology Unit, Centre for Biomedical & Biomaterials Research, MSIRI Building, University of Mauritius, 80837 Réduit, Mauritius
| |
Collapse
|
18
|
Davies AE, Pargett M, Siebert S, Gillies TE, Choi Y, Tobin SJ, Ram AR, Murthy V, Juliano C, Quon G, Bissell MJ, Albeck JG. Systems-Level Properties of EGFR-RAS-ERK Signaling Amplify Local Signals to Generate Dynamic Gene Expression Heterogeneity. Cell Syst 2020; 11:161-175.e5. [PMID: 32726596 PMCID: PMC7856305 DOI: 10.1016/j.cels.2020.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 02/08/2023]
Abstract
Intratumoral heterogeneity is associated with aggressive tumor behavior, therapy resistance, and poor patient outcomes. Such heterogeneity is thought to be dynamic, shifting over periods of minutes to hours in response to signaling inputs from the tumor microenvironment. However, models of this process have been inferred from indirect or post-hoc measurements of cell state, leaving the temporal details of signaling-driven heterogeneity undefined. Here, we developed a live-cell model system in which microenvironment-driven signaling dynamics can be directly observed and linked to variation in gene expression. Our analysis reveals that paracrine signaling between two cell types is sufficient to drive continual diversification of gene expression programs. This diversification emerges from systems-level properties of the EGFR-RAS-ERK signaling cascade, including intracellular amplification of amphiregulin-mediated paracrine signals and differential kinetic filtering by target genes including Fra-1, c-Myc, and Egr1. Our data enable more precise modeling of paracrine-driven transcriptional variation as a generator of gene expression heterogeneity. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Alexander E Davies
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA; Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Michael Pargett
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Taryn E Gillies
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Yongin Choi
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Savannah J Tobin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA; Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Abhineet R Ram
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Vaibhav Murthy
- Department of Veterinary Biosciences, College of Veterinary Medicine, the Ohio State University, Columbus, OH 43210, USA
| | - Celina Juliano
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Gerald Quon
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA
| | - Mina J Bissell
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - John G Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
19
|
Hedegger K, Algül H, Lesina M, Blutke A, Schmid RM, Schneider MR, Dahlhoff M. Unraveling ERBB network dynamics upon betacellulin signaling in pancreatic ductal adenocarcinoma in mice. Mol Oncol 2020; 14:1653-1669. [PMID: 32335999 PMCID: PMC7400790 DOI: 10.1002/1878-0261.12699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/17/2020] [Accepted: 04/06/2020] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) will soon belong to the top three cancer killers. The only approved specific PDAC therapy targets the epidermal growth factor receptor (EGFR). Although EGFR is a crucial player in PDAC development, EGFR-based therapy is disappointing. In this study, we evaluated the role of the EGFR ligand betacellulin (BTC) in PDAC. The expression of BTC was investigated in human pancreatic cancer specimen. Then, we generated a BTC knockout mouse model by CRISPR/Cas9 technology and a BTC overexpression model. Both models were crossed with the Ptf1aCre/+ ;KRASG12D/+ (KC) mouse model (B-/- KC or BKC, respectively). In addition, EGFR, ERBB2, and ERBB4 were investigated by the pancreas-specific deletion of each receptor using the Cre-loxP system. Tumor initiation and progression were analyzed in all mouse lines, and the underlying molecular biology of PDAC was investigated at different time points. BTC is expressed in human and murine PDAC. B-/- KC mice showed a decelerated PDAC progression, associated with decreased EGFR activation. BKC mice developed severe PDAC with a poor survival rate. The dramatically increased BTC-mediated tumor burden was EGFR-dependent, but also ERBB4 and ERBB2 were involved in PDAC development or progression, as depletion of EGFR, ERBB2, or ERBB4 significantly improved the survival rate of BTC-mediated PDAC. BTC increases PDAC tumor burden dramatically by enhanced RAS activation. EGFR signaling, ERBB2 signaling, and ERBB4 signaling are involved in accelerated PDAC development mediated by BTC indicating that targeting the whole ERBB family, instead of a single receptor, is a promising strategy for the development of future PDAC therapies.
Collapse
Affiliation(s)
- Kathrin Hedegger
- Institute of Molecular Animal Breeding and BiotechnologyGene Center of the LMU MunichGermany
| | - Hana Algül
- Second Department of Internal MedicineKlinikum rechts der IsarTechnical University of MunichGermany
| | - Marina Lesina
- Second Department of Internal MedicineKlinikum rechts der IsarTechnical University of MunichGermany
| | - Andreas Blutke
- Research Unit Analytical PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Roland M. Schmid
- Second Department of Internal MedicineKlinikum rechts der IsarTechnical University of MunichGermany
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and BiotechnologyGene Center of the LMU MunichGermany
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and BiotechnologyGene Center of the LMU MunichGermany
| |
Collapse
|
20
|
Cai C, Geng A, Wang M, Yang L, Yu QC, Zeng YA. Amphiregulin mediates the hormonal regulation on Rspondin-1 expression in the mammary gland. Dev Biol 2020; 458:43-51. [DOI: 10.1016/j.ydbio.2019.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
|
21
|
Amphiregulin deletion strongly attenuates the development of estrogen receptor-positive tumors in p53 mutant mice. Breast Cancer Res Treat 2019; 179:653-660. [PMID: 31838731 DOI: 10.1007/s10549-019-05507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/07/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE The epidermal growth factor receptor ligand, Amphiregulin, is a transcriptional target of estrogen receptor alpha and is required for pubertal mammary gland development. Previous studies using immortalized human breast cancer cell line xenografts have suggested that Amphiregulin may be an important effector of estrogen receptor alpha during breast cancer development, at least in immune-compromised animals. Here, we evaluate the requirement for Amphiregulin in an immune-competent mouse model which is prone to developing estrogen receptor-positive tumors. METHODS We have intercrossed mice with mammary-specific mutation of p53 with mice deficient in Amphiregulin in order to assess the requirement for Amphiregulin in the initiation and progression of both estrogen receptor-positive and estrogen receptor-negative mammary tumors. RESULTS Deletion of Amphiregulin significantly delayed the onset of palpable mammary tumors and also strongly reduced the proportion of estrogen receptor alpha-positive tumors formed. Upon necropsy, no substantial differences in the prevalence of non-palpable lesions were observed between cohorts, suggesting that the importance of Amphiregulin in mammary tumorigenesis is limited to the post-initiation phase. CONCLUSIONS This study underlines the importance of the EGFR ligand, Amphiregulin, as a key mediator of estrogen receptor action in breast cancer.
Collapse
|
22
|
Foroughi S, Tie J, Gibbs P, Burgess AW. Epidermal growth factor receptor ligands: targets for optimizing treatment of metastatic colorectal cancer. Growth Factors 2019; 37:209-225. [PMID: 31878812 DOI: 10.1080/08977194.2019.1703702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The discovery of epidermal growth factor (EGF) and its receptor (EGFR) revealed the connection between EGF-like ligands, signaling from the EGFR family members and cancer. Over the next fifty years, analysis of EGFR expression and mutation led to the use of monoclonal antibodies to target EGFR in the treatment of metastatic colorectal cancer (mCRC) and this treatment has improved outcomes for patients. The use of the RAS oncogene mutational status has helped to refine patient selection for EGFR antibody therapy, but an effective molecular predictor of likely responders is lacking. This review analyzes the potential utility of measuring the expression, levels and activation of EGF-like ligands and associated processes as prognostic or predictive markers for the identification of patient risk and more effective mCRC therapies.
Collapse
Affiliation(s)
- Siavash Foroughi
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Jeanne Tie
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Oncology, Western Health, St Albans, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Medical Oncology, Western Health, St Albans, Australia
| | - Antony Wilks Burgess
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
23
|
Huang J, Pan Y, Hu G, Sun W, Jiang L, Wang P, Ding X. SRC fine-tunes ADAM10 shedding activity to promote pituitary adenoma cell progression. FEBS J 2019; 287:190-204. [PMID: 31365784 DOI: 10.1111/febs.15026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/20/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022]
Abstract
A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is a metalloproteinase known to modulate the progression of several types of tumor. However, the role played by ADAM10 in pituitary adenomas is currently unknown, and what factors orchestrate the activation of ADAM10 in this kind of tumor is also unclear. Here, we found that SRC kinase is an ADAM10-interacting partner and that SRC kinase activity is required for this interaction. As a new positive regulator promoting the shedding activity of ADAM10, SRC could compete with calmodulin 1 (CALM1) for ADAM10 binding in a mutually exclusive manner. Strikingly, the interaction between ADAM10 and CALM1 is regulated by SRC activity. Furthermore, we proved that the cytoplasmic region of ADAM10 is required for the shedding activity of ADAM10 upon SRC activation. As a proof-of-concept, we discovered that the combination of ADAM10 and SRC inhibitors can inhibit cell proliferation and migration to a great extent. Thus, our findings shed light on a novel therapeutic strategy to block the tumorigenesis and migration of pituitary adenoma.
Collapse
Affiliation(s)
- Jinxiang Huang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Pan
- Department of Neurosurgery, No.971 Hospital of People's Liberation Army Navy, Qingdao, Shandong, China
| | - Guohan Hu
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Sun
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lei Jiang
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Peng Wang
- Department of Radiology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuehua Ding
- Department of Neurosurgery, Shanghai Institute of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
24
|
Saad MI, Rose-John S, Jenkins BJ. ADAM17: An Emerging Therapeutic Target for Lung Cancer. Cancers (Basel) 2019; 11:E1218. [PMID: 31438559 PMCID: PMC6769596 DOI: 10.3390/cancers11091218] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/07/2019] [Accepted: 08/17/2019] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality, which histologically is classified into small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for approximately 85% of all lung cancer diagnoses, with the majority of patients presenting with lung adenocarcinoma (LAC). KRAS mutations are a major driver of LAC, and are closely related to cigarette smoking, unlike mutations in the epidermal growth factor receptor (EGFR) which arise in never-smokers. Although the past two decades have seen fundamental progress in the treatment and diagnosis of NSCLC, NSCLC still is predominantly diagnosed at an advanced stage when therapeutic interventions are mostly palliative. A disintegrin and metalloproteinase 17 (ADAM17), also known as tumour necrosis factor-α (TNFα)-converting enzyme (TACE), is responsible for the protease-driven shedding of more than 70 membrane-tethered cytokines, growth factors and cell surface receptors. Among these, the soluble interleukin-6 receptor (sIL-6R), which drives pro-inflammatory and pro-tumourigenic IL-6 trans-signaling, along with several EGFR family ligands, are the best characterised. This large repertoire of substrates processed by ADAM17 places it as a pivotal orchestrator of a myriad of physiological and pathological processes associated with the initiation and/or progression of cancer, such as cell proliferation, survival, regeneration, differentiation and inflammation. In this review, we discuss recent research implicating ADAM17 as a key player in the development of LAC, and highlight the potential of ADAM17 inhibition as a promising therapeutic strategy to tackle this deadly malignancy.
Collapse
Affiliation(s)
- Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University, D-24098 Kiel, Germany
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
25
|
Ren ZQ, Yan WJ, Zhang XZ, Zhang PB, Zhang C, Chen SK. CUL1 Knockdown Attenuates the Adhesion, Invasion, and Migration of Triple-Negative Breast Cancer Cells via Inhibition of Epithelial-Mesenchymal Transition. Pathol Oncol Res 2019; 26:1153-1163. [PMID: 31175550 DOI: 10.1007/s12253-019-00681-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 05/31/2019] [Indexed: 12/18/2022]
Abstract
Cullin-1 (CUL1) is an important factor for tumor growth and a potential therapeutic target for breast cancer therapy, but the molecular mechanism in triple-negative breast cancer (TNBC) is unknown. In the present study, CUL1 shRNA was transfected into BT549 and MDA-MB-231 breast cancer cells. Cell morphology, adhesion, invasion, and migration assays were carried out in the CUL1 knockdown cells. Additionally, protein expression levels of epithelial-mesenchymal transition (EMT)-related factors, Akt phosphorylation at S473 (pAkt), glycogen synthase kinase-3β phosphorylation at ser9 (pGSK3β), cytoplasmic and nuclear β-catenin, and epidermal growth factor receptor phosphorylation at Tyr1068 (pEGFR) were detected by Western blot analysis. CUL1 knockdown significantly suppressed the adhesion, invasion and migration capabilities of the cells, and decreased the expression of Snail1/2, ZEB1/2, Twist1/2, Vimentin, and increased the expression of Cytokeratin 18 (CK18). Moreover, CUL1 knockdown significantly downregulated the phosphorylated levels of Akt, GSK3β, and EGFR, inhibiting the translocation of β-catenin from the cytoplasm to the nucleus. The results indicate that CUL1 knockdown prohibited the metastasis behaviors of breast cancer cells through downregulation (dephosphorylation) of the EMT signaling pathways of EGFR and Akt/GSK3β/β-catenin in breast cancer. These results strongly suggested that reinforcement of the EMT might be a key for CUL1 to accelerate TNBC metastasis.
Collapse
Affiliation(s)
- Ze-Qiang Ren
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China.
| | - Wen-Jing Yan
- School of Nursing, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, People's Republic of China
| | - Xiu-Zhong Zhang
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China
| | - Peng-Bo Zhang
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China
| | - Chong Zhang
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China
| | - Shou-Kun Chen
- General Surgery of the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221006, People's Republic of China
| |
Collapse
|
26
|
Yunusova NV, Tugutova EA, Tamkovich SN, Kondakova IV. [The role of exosomal tetraspanins and proteases in tumor progression]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 64:123-133. [PMID: 29723143 DOI: 10.18097/pbmc20186402123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Major (CD9, CD63, CD81) and others (CD82, CD151, Tspan8) tetraspanins are widely represented in exosomes, where they interact with various proteins and form functional tetraspanin complexes. Tetraspanin complexes include proteases. Tetraspanin-associated exosomal proteases (ADAM proteases, MMPs, EMMPRIN) play an important role in the processes of cell motility, migration, invasion and formation of metastases. Also, a significant contribution to tumor progression is made by proteases that are not associated with tetraspanins. They destabilize intercellular contacts, promote migration and invasion of tumor cells, participate in the regulation of the expression IGF-I, VEGF and transcription factors activation/deactivation. The role of other proteases of exosomes in the processes of tumor progression is being clarified.
Collapse
Affiliation(s)
- N V Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia; Siberian State Medical University, Tomsk, Russia
| | - E A Tugutova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - S N Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; Novosibirsk State Medical University, Novosibirsk, Russia
| | - I V Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
27
|
Abstract
Eicosanoids are bioactive lipids that play crucial roles in various pathophysiological conditions, including inflammation and cancer. They include both the COX-derived prostaglandins and the LOX-derived leukotrienes. Furthermore, the epidermal growth factor receptor (EGFR) pathways family of receptor tyrosine kinases also are known to play a central role in the tumorigenesis. Various antitumor modalities have been approved cancer treatments that target therapeutically the COX-2 and EGFR pathways; these include selective COX-2 inhibitors and EGFR monoclonal antibodies. Research has shown that the COX-2 and epidermal growth factor receptor pathways actively interact with each other in order to orchestrate carcinogenesis. This has been used to justify a targeted combinatorial approach aimed at these two pathways. Although combined therapies have been found to have a greater antitumor effect than the administration of single agent, this does not exempt them from the possible fatal cardiac effects that are associated with COX-2 inhibition. In this review, we delineate the contribution of HB-EGF, an important EGFR ligand, to the cardiac dysfunction related to decreased shedding of HB-EGF after COX-2/PGE2 inhibition. A better understanding of the molecular mechanisms underlying these cardiac side effects will make possible more effective regimens that use the dual-targeting approach.
Collapse
Affiliation(s)
- Cheng-Chieh Yang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Kuo-Wei Chang
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan.
- School of Dentistry, National Yang-Ming University, Taipei, Taiwan.
- Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
28
|
Cellular sheddases are induced by Merkel cell polyomavirus small tumour antigen to mediate cell dissociation and invasiveness. PLoS Pathog 2018; 14:e1007276. [PMID: 30188954 PMCID: PMC6143273 DOI: 10.1371/journal.ppat.1007276] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/18/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023] Open
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is recognised as the causative factor in the majority of MCC cases. The MCPyV small tumour antigen (ST) is considered to be the main viral transforming factor, however potential mechanisms linking ST expression to the highly metastatic nature of MCC are yet to be fully elucidated. Metastasis is a complex process, with several discrete steps required for the formation of secondary tumour sites. One essential trait that underpins the ability of cancer cells to metastasise is how they interact with adjoining tumour cells and the surrounding extracellular matrix. Here we demonstrate that MCPyV ST expression disrupts the integrity of cell-cell junctions, thereby enhancing cell dissociation and implicate the cellular sheddases, A disintegrin and metalloproteinase (ADAM) 10 and 17 proteins in this process. Inhibition of ADAM 10 and 17 activity reduced MCPyV ST-induced cell dissociation and motility, attributing their function as critical to the MCPyV-induced metastatic processes. Consistent with these data, we confirm that ADAM 10 and 17 are upregulated in MCPyV-positive primary MCC tumours. These novel findings implicate cellular sheddases as key host cell factors contributing to virus-mediated cellular transformation and metastasis. Notably, ADAM protein expression may be a novel biomarker of MCC prognosis and given the current interest in cellular sheddase inhibitors for cancer therapeutics, it highlights ADAM 10 and 17 activity as a novel opportunity for targeted interventions for disseminated MCC.
Collapse
|
29
|
The psychoactive substance of cannabis Δ9-tetrahydrocannabinol (THC) negatively regulates CFTR in airway cells. Biochim Biophys Acta Gen Subj 2018; 1862:1988-1994. [DOI: 10.1016/j.bbagen.2018.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/21/2022]
|
30
|
Nagathihalli NS, Castellanos JA, Lamichhane P, Messaggio F, Shi C, Dai X, Rai P, Chen X, VanSaun MN, Merchant NB. Inverse Correlation of STAT3 and MEK Signaling Mediates Resistance to RAS Pathway Inhibition in Pancreatic Cancer. Cancer Res 2018; 78:6235-6246. [PMID: 30154150 DOI: 10.1158/0008-5472.can-18-0634] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 12/12/2022]
Abstract
Major contributors to therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC) include Kras mutations, a dense desmoplastic stroma that prevents drug delivery to the tumor, and activation of redundant signaling pathways. We have previously identified a mechanistic rationale for targeting STAT3 signaling to overcome therapeutic resistance in PDAC. In this study, we investigate the molecular mechanisms underlying the heterogeneous response to STAT3 and RAS pathway inhibition in PDAC. Effects of JAK/STAT3 inhibition (STAT3i) or MEK inhibition (MEKi) were established in Ptf1acre/+; LSL-KrasG12D/+ ; and Tgfbr2flox/flox (PKT) mice and patient-derived xenografts (PDX). Amphiregulin (AREG) levels were determined in serum from human patients with PDAC, LSL-KrasG12D/+;Trp53R172H/+;Pdx1Cre/+ (KPC), and PKT mice. MEKi/STAT3i-treated tumors were analyzed for integrity of the pancreas and the presence of cancer stem cells (CSC). We observed an inverse correlation between ERK and STAT3 phosphorylation. MEKi resulted in an immediate activation of STAT3, whereas STAT3i resulted in TACE-induced, AREG-dependent activation of EGFR and ERK. Combined MEKi/STAT3i sustained blockade of ERK, EGFR, and STAT3 signaling, overcoming resistance to individual MEKi or STAT3i. This combined inhibition attenuated tumor growth in PDX and increased survival of PKT mice while reducing serum AREG levels. Furthermore, MEKi/STAT3i altered the PDAC tumor microenvironment by depleting tumor fibrosis, maintaining pancreatic integrity, and downregulating CD44+ and CD133+ CSCs. These results demonstrate that resistance to MEKi is mediated through activation of STAT3, whereas TACE-AREG-EGFR-dependent activation of RAS pathway signaling confers resistance to STAT3 inhibition. Combined MEKi/STAT3i overcomes these resistances and provides a novel therapeutic strategy to target the RAS and STAT3 pathway in PDAC.Significance: This report describes an inverse correlation between MEK and STAT3 signaling as key mechanisms of resistance in PDAC and shows that combined inhibition of MEK and STAT3 overcomes this resistance and provides an improved therapeutic strategy to target the RAS pathway in PDAC.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6235/F1.large.jpg Cancer Res; 78(21); 6235-46. ©2018 AACR.
Collapse
Affiliation(s)
- Nagaraj S Nagathihalli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Jason A Castellanos
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Fanuel Messaggio
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Chanjuan Shi
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xizi Dai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Priyamvada Rai
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Xi Chen
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Public Health, University of Miami Miller School of Medicine, Miami, Florida
| | - Michael N VanSaun
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Nipun B Merchant
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
31
|
Ishii S, Isozaki T, Furuya H, Takeuchi H, Tsubokura Y, Inagaki K, Kasama T. ADAM-17 is expressed on rheumatoid arthritis fibroblast-like synoviocytes and regulates proinflammatory mediator expression and monocyte adhesion. Arthritis Res Ther 2018; 20:159. [PMID: 30071898 PMCID: PMC6090907 DOI: 10.1186/s13075-018-1657-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Background To examine the expression of ADAM-17 in rheumatoid arthritis (RA) biological fluids and the role it plays in monocyte adhesion to RA fibroblast-like synoviocytes (FLSs). Methods ADAM-17 expression was measured by enzyme-linked immunosorbent assays (ELISAs) in serum from normal (NL) subjects, osteoarthritis (OA) patients, and RA patients. We also analyzed the correlation between ADAM-17 and disease activity score 28 (DAS28) in RA. To determine expression of ADAM-17 in RA synovial tissues (STs) and RA FLS, we performed immunofluorescence analyses. To determine the role of ADAM-17 in RA, we transfected RA FLSs with small interfering RNA (siRNA) against ADAM-17. THP-1 adhesion to ADAM-17 siRNA-transfected RA FLSs was measured. Finally, adhesion molecules on ADAM-17 siRNA-transfected RA FLSs were measured using cell surface ELISAs. Results ADAM-17 in RA serum was significantly higher than that in NL and OA serum and correlated with DAS28. ADAM-17 in RA synovial fluids was higher than that in OA synovial fluids. ADAM-17 was expressed on RA cells lining STs and RA FLSs. THP-1 adhesion to ADAM-17 siRNA-transfected RA FLSs was decreased compared with that to control siRNA-transfected RA FLSs. ICAM-1 on TNF-α-stimulated ADAM-17 siRNA-transfected RA FLSs was significantly decreased compared with that on control siRNA-transfected RA FLSs. Conclusions These data indicate that ADAM-17 is expressed on RA STs and plays a role in RA inflammation by regulating monocyte adhesion to RA FLSs. ADAM-17 might be an important inflammatory mediator in inflammatory diseases such as RA.
Collapse
Affiliation(s)
- Sho Ishii
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Takeo Isozaki
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| | - Hidekazu Furuya
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Hiroko Takeuchi
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yumi Tsubokura
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Katsunori Inagaki
- Department of Orthopedic Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Kasama
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| |
Collapse
|
32
|
Crosstalk between cancer cells and endothelial cells: implications for tumor progression and intervention. Arch Pharm Res 2018; 41:711-724. [DOI: 10.1007/s12272-018-1051-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
33
|
Li Y, Ren Z, Wang Y, Dang YZ, Meng BX, Wang GD, Zhang J, Wu J, Wen N. ADAM17 promotes cell migration and invasion through the integrin β1 pathway in hepatocellular carcinoma. Exp Cell Res 2018; 370:373-382. [PMID: 29966664 DOI: 10.1016/j.yexcr.2018.06.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
ADAM17 is believed to promote tumor development by facilitating both cell proliferation and migration. In this study, we investigated the involvement of ADAM17 and the activation of the integrin pathway in the regulation of the malignant properties of hepatocellular carcinoma cells and tissues. ADAM17 was positively correlated with active integrin β1, which was determined using a human tissue microarray and an N-nitrosodiethylamine-induced HCC mouse model. We found elevated ADAM17 and active integrin β1 levels in HCC tissues compared with adjacent liver tissues, and the active integrin β1 levels were associated with tumor size and TNM grade. High ADAM17 and active integrin β1 levels in tumor tissues were significantly associated with poor survival of HCC patients. RNAi-mediated ADAM17 knockdown and integrin β1 blockade significantly attenuated the migration and invasion of HCC cells, and overexpression of ADAM17 showed the reverse effects. ADAM17 interference attenuated the intrahepatic growth and metastasis of HCC cells in an orthotopic xenograft model. ADAM17-knockdown cells showed diminished levels of active integrin β1, p-FAK, p-AKT, MMP-2 and MMP-9. ADAM17 knockdown significantly attenuated the translocation of the Notch1 intracellular domain into the nucleus, whereas overexpression of the Notch1 intracellular domain rescued the translocation and enhanced the activation of integrin β1. Our data provide evidence for ADAM17 as an important determinant of malignant properties via regulation of integrin β1 activation and Notch1 signaling. Inhibition of ADAM17 may provide viable therapeutic potential for preventing HCC metastasis.
Collapse
Affiliation(s)
- Yong Li
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China; Department of Oncology, PLA 323 Hospital, Xi'an, Shaanxi, China
| | - Zhen Ren
- Ultrasound Department, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Wang
- Department of Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ya-Zheng Dang
- Department of Oncology, PLA 323 Hospital, Xi'an, Shaanxi, China
| | | | - Guo-Dong Wang
- Department of Oncology, PLA 323 Hospital, Xi'an, Shaanxi, China
| | - Jing Zhang
- Department of Oncology, PLA 323 Hospital, Xi'an, Shaanxi, China
| | - Jiao Wu
- National Translational Science Center for Molecular Medicine, Xi'an, Shaanxi, China; Department of Cell Biology, Air Force Medical University, Xi'an 710032, China.
| | - Ning Wen
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
34
|
Dong W, Liu L, Dou Y, Xu M, Liu T, Wang S, Zhang Y, Deng B, Wang B, Cao H. Deoxycholic acid activates epidermal growth factor receptor and promotes intestinal carcinogenesis by ADAM17-dependent ligand release. J Cell Mol Med 2018; 22:4263-4273. [PMID: 29956475 PMCID: PMC6111862 DOI: 10.1111/jcmm.13709] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
High fat diet is implicated in the elevated deoxycholic acid (DCA) in the intestine and correlated with increased colon cancer risk. However, the potential mechanisms of intestinal carcinogenesis by DCA remain unclarified. Here, we investigated the carcinogenic effects and mechanisms of DCA using the intestinal tumour cells and Apcmin/+ mice model. We found that DCA could activate epidermal growth factor receptor (EGFR) and promote the release of EGFR ligand amphiregulin (AREG), but not HB‐EGF or TGF‐α in intestinal tumour cells. Moreover, ADAM‐17 was required in DCA‐induced promotion of shedding of AREG and activation of EGFR/Akt signalling pathway. DCA significantly increased the multiplicity of intestinal tumours and accelerated adenoma‐carcinoma sequence in Apcmin/+ mice. ADAM‐17/EGFR signalling axis was also activated in intestinal tumours of DCA‐treated Apcmin/+ mice, whereas no significant change occurred in tumour adjacent tissues after DCA exposure. Conclusively, DCA activated EGFR and promoted intestinal carcinogenesis by ADAM17‐dependent ligand release.
Collapse
Affiliation(s)
- Wenxiao Dong
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Li Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Dou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Mengque Xu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Sinan Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Yujie Zhang
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Baoru Deng
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
35
|
Nakayama H, Sakaue T, Maekawa M, Fujisaki A, Higashiyama S. Cullin 3 regulates ADAMs-mediated ectodomain shedding of amphiregulin. Biochem Biophys Res Commun 2018; 499:17-23. [DOI: 10.1016/j.bbrc.2018.03.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 01/01/2023]
|
36
|
Hedemann N, Rogmans C, Sebens S, Wesch D, Reichert M, Schmidt-Arras D, Oberg HH, Pecks U, van Mackelenbergh M, Weimer J, Arnold N, Maass N, Bauerschlag DO. ADAM17 inhibition enhances platinum efficiency in ovarian cancer. Oncotarget 2018; 9:16043-16058. [PMID: 29662625 PMCID: PMC5882316 DOI: 10.18632/oncotarget.24682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 02/28/2018] [Indexed: 12/18/2022] Open
Abstract
Chemotherapeutic resistance evolves in about 70 % of ovarian cancer patients and is a major cause of death in this tumor entity. Novel approaches to overcome these therapeutic limitations are therefore highly warranted. A disintegrin and metalloprotease 17 (ADAM17) is highly expressed in ovarian cancer and required for releasing epidermal growth factor receptor (EGFR) ligands like amphiregulin (AREG). This factor has recently been detected in ascites of advanced stage ovarian cancer patients. However, it is not well understood, whether and how ADAM17 might contribute to chemo resistance of ovarian cancer. In this study, we identified ADAM17 as an essential upstream regulator of AREG release under chemotherapeutic treatment in ovarian cancer cell lines and patient derived cells. In the majority of ovarian cancer cells cisplatin treatment resulted in enhanced ADAM17 activity, as shown by an increased shedding of AREG. Moreover, both mRNA and the protein content of AREG were dose-dependently increased by cisplatin exposure. Consequently, cisplatin strongly induced phosphorylation of ADAM17-downstream mediators, the EGFR and extracellular signal-regulated kinases (ERK). Phorbol 12-myristate 13-acetate (PMA), similarly to cisplatin, mediated AREG shedding and membrane fading of surface ADAM17. Inhibition of ADAM17 with either GW280264X or the anti-ADAM17 antibody D1 (A12) as well as silencing of ADAM17 by siRNA selectively reduced AREG release. Thus, ADAM17 inhibition sensitized cancer cells to cisplatin-induced apoptosis, and significantly reduced cell viability. Based on these findings, we propose that targeting of ADAM17 in parallel to chemotherapeutic treatment suppresses survival pathways and potentially diminish evolving secondary chemo resistance mechanisms.
Collapse
Affiliation(s)
- Nina Hedemann
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Christoph Rogmans
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Manuel Reichert
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Hans-Heinrich Oberg
- Institute of Immunology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Ulrich Pecks
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Marion van Mackelenbergh
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jörg Weimer
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Norbert Arnold
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynecology and Obstetrics, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| |
Collapse
|
37
|
Erin N, Türker S, Elpek Ö, Yildirim B. ADAM proteases involved in inflammation are differentially altered in patients with gastritis or ulcer. Exp Ther Med 2018; 15:1999-2005. [PMID: 29434796 PMCID: PMC5776559 DOI: 10.3892/etm.2017.5619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/11/2017] [Indexed: 02/05/2023] Open
Abstract
ADAM metallopeptidase domain (ADAM)9, 10 and 17 have α-secretase activity that regulates ectodomain shedding of factors involved in inflammation, cell proliferation, angiogenesis, and wound healing. The secretase activity of ADAM proteins is known to induce an inflammatory response. However, under certain conditions, a lack of secretase activity may induce inflammation suggesting differential roles of ADAM proteins with secretase activity. To the best of our knowledge, the present study evaluated the changes in α-secretase activity and expression of associated ADAM proteases (ADAM9, 10 and 17) in the gastric mucosa of patients with gastritis and ulcers, for the first time. Gastroduedonal mucosal samples from 42 patients were snap-frozen to determine changes in α-secretase activity. Twenty-four of these patients had gastritis, 9 patients had duedonal ulcers and 9 patients did not have any pathological changes. Paraffin-embedded gastric specimens (n=32) were used for immunohistochemical detection of ADAM9, ADAM10 and ADAM17. α-secretase activity of the gastric mucosa of healthy subjects was significantly higher compared with the uninvolved mucosa of patients with gastritis or ulcer. These results were associated with the immunohistochemical staining results, which demonstrated that ADAM10 expression markedly decreased in glandular epithelial cells and ADAM9 expression was lost in foveolar epithelial cells of gastric mucosa adjacent to ulcer. However, ADAM17 expression was increased in the normal gastric mucosa of patients with bleeding peptic ulcers and in the gastric mucosa adjacent to the ulcer suggesting a counteracting role of ADAM17. Decreased ADAM9 and 10 expression, and an associated decrease in α-secretase activity may predispose to chronic gastritis and ulcer. Further studies are required to determine the possible etiological role of increased ADAM17 expression.
Collapse
Affiliation(s)
- Nuray Erin
- Department of Medical Pharmacology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
- Correspondence to: Professor Nuray Erin, Department of Medical Pharmacology, School of Medicine, Akdeniz University, B-blok kat 1 Immunoloji, Antalya 07070, Turkey, E-mail:
| | - Sema Türker
- Department of Internal Medicine, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Özlem Elpek
- Department of Pathology, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| | - Bülent Yildirim
- Department of Internal Medicine, School of Medicine, Akdeniz University, Antalya 07070, Turkey
| |
Collapse
|
38
|
Lee SY, Bissell MJ. A Functionally Robust Phenotypic Screen that Identifies Drug Resistance-associated Genes Using 3D Cell Culture. Bio Protoc 2018; 8:e3083. [PMID: 30687772 DOI: 10.21769/bioprotoc.3083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drug resistance is a major obstacle in cancer treatment: A case in point is the failure of cancer patients to respond to tyrosine kinase inhibitors (TKI) of EGFR, a receptor that is highly expressed in many cancers. Identification of the targets and delineation of mechanisms of drug resistance remain major challenges. Traditional pharmacological assays of drug resistance measure the response of tumor cells using cell proliferation or cell death as readouts. These assays performed using traditional plastic tissue culture plates (2D) do not translate to in vivo realities. Here, we describe a genetic screen based on phenotypic changes that can be completed over a period of 1-1½ months using functional endpoints in physiologically relevant 3D culture models. This phenotype-based assay could lead to the discovery of previously unknown therapeutic targets and could explain the source of the resistance and relapse. As a proof of principle, we performed our 3D culture assay with a small cDNA library in that yielded five unknown intermediates in EGFR and PI3K signaling pathways. Here, we describe the screening method and the characterization of one of the five molecules, but this approach could be easily expanded for a high-throughput screening to identify or evaluate many more unknown intermediates in oncogenic signaling pathways.
Collapse
Affiliation(s)
- Sun-Young Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mina J Bissell
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
39
|
Klein T, Eckhard U, Dufour A, Solis N, Overall CM. Proteolytic Cleavage-Mechanisms, Function, and "Omic" Approaches for a Near-Ubiquitous Posttranslational Modification. Chem Rev 2017; 118:1137-1168. [PMID: 29265812 DOI: 10.1021/acs.chemrev.7b00120] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteases enzymatically hydrolyze peptide bonds in substrate proteins, resulting in a widespread, irreversible posttranslational modification of the protein's structure and biological function. Often regarded as a mere degradative mechanism in destruction of proteins or turnover in maintaining physiological homeostasis, recent research in the field of degradomics has led to the recognition of two main yet unexpected concepts. First, that targeted, limited proteolytic cleavage events by a wide repertoire of proteases are pivotal regulators of most, if not all, physiological and pathological processes. Second, an unexpected in vivo abundance of stable cleaved proteins revealed pervasive, functionally relevant protein processing in normal and diseased tissue-from 40 to 70% of proteins also occur in vivo as distinct stable proteoforms with undocumented N- or C-termini, meaning these proteoforms are stable functional cleavage products, most with unknown functional implications. In this Review, we discuss the structural biology aspects and mechanisms of catalysis by different protease classes. We also provide an overview of biological pathways that utilize specific proteolytic cleavage as a precision control mechanism in protein quality control, stability, localization, and maturation, as well as proteolytic cleavage as a mediator in signaling pathways. Lastly, we provide a comprehensive overview of analytical methods and approaches to study activity and substrates of proteolytic enzymes in relevant biological models, both historical and focusing on state of the art proteomics techniques in the field of degradomics research.
Collapse
Affiliation(s)
- Theo Klein
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Ulrich Eckhard
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Antoine Dufour
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Nestor Solis
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| | - Christopher M Overall
- Life Sciences Institute, Department of Oral Biological and Medical Sciences, and ‡Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
40
|
Stolarczyk M, Veit G, Schnúr A, Veltman M, Lukacs GL, Scholte BJ. Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity. Am J Physiol Lung Cell Mol Physiol 2017; 314:L555-L568. [PMID: 29351448 DOI: 10.1152/ajplung.00458.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The EGF receptor (EGFR)/a disintegrin and metalloproteinase 17 (ADAM17) signaling pathway mediates the shedding of growth factors and secretion of cytokines and is involved in chronic inflammation and tissue remodeling. Since these are hallmarks of cystic fibrosis (CF) lung disease, we hypothesized that CF transmembrane conductance regulator (CFTR) deficiency enhances EGFR/ADAM17 activity in human bronchial epithelial cells. In CF bronchial epithelial CFBE41o- cells lacking functional CFTR (iCFTR-) cultured at air-liquid interface (ALI) we found enhanced ADAM17-mediated shedding of the EGFR ligand amphiregulin (AREG) compared with genetically identical cells with induced CFTR expression (iCFTR+). Expression of the inactive G551D-CFTR did not have this effect, suggesting that active CFTR reduces EGFR/ADAM17 activity. This was confirmed in CF compared with normal differentiated primary human bronchial epithelial cells (HBEC-ALI). ADAM17-mediated AREG shedding was tightly regulated by the EGFR/MAPK pathway. Compared with iCFTR+ cells, iCFTR- cells displayed enhanced apical presentation and phosphorylation of EGFR, in accordance with enhanced EGFR/ADAM17 activity in CFTR-deficient cells. The nonpermeant natural antioxidant glutathione (GSH) strongly inhibited AREG release in iCFTR and in primary HBEC-ALI, suggesting that ADAM17 activity is directly controlled by extracellular redox potentials in differentiated airway epithelium. Furthermore, the fluorescent redox probe glutaredoxin 1-redox-sensitive green fluorescent protein-glycosylphosphatidylinositol (Grx1-roGFP-GPI) indicated more oxidized conditions in the extracellular space of iCFTR- cells, consistent with the role of CFTR in GSH transport. Our data suggest that in CFTR-deficient airway epithelial cells a more oxidized state of the extracellular membrane, likely caused by defective GSH secretion, leads to enhanced activity of the EGFR/ADAM17 signaling axis. In CF lungs this could contribute to tissue remodeling and hyperinflammation.
Collapse
Affiliation(s)
| | - Guido Veit
- Department of Physiology, McGill University , Montreal, Quebec , Canada
| | - Andrea Schnúr
- Department of Physiology, McGill University , Montreal, Quebec , Canada
| | - Mieke Veltman
- Cell Biology, Erasmus MC, Rotterdam , The Netherlands
| | - Gergely L Lukacs
- Department of Physiology, McGill University , Montreal, Quebec , Canada
| | - Bob J Scholte
- Cell Biology, Erasmus MC, Rotterdam , The Netherlands.,Pediatric Pulmonology, Erasmus MC, Rotterdam , The Netherlands
| |
Collapse
|
41
|
Amar S, Minond D, Fields GB. Clinical Implications of Compounds Designed to Inhibit ECM-Modifying Metalloproteinases. Proteomics 2017; 17. [PMID: 28613012 DOI: 10.1002/pmic.201600389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/03/2017] [Indexed: 12/19/2022]
Abstract
Remodeling of the extracellular matrix (ECM) is crucial in development and homeostasis, but also has a significant role in disease progression. Two metalloproteinase families, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteases (ADAMs), participate in the remodeling of the ECM, either directly or through the liberation of growth factors and cell surface receptors. The correlation of MMP and ADAM activity to a variety of diseases has instigated numerous drug development programs. However, broad-based and Zn2+ -chelating MMP and ADAM inhibitors have fared poorly in the clinic. Selective MMP and ADAM inhibitors have been described recently based on (a) antibodies or antibody fragments or (b) small molecules designed to take advantage of protease secondary binding sites (exosites) or allosteric sites. Clinical trials have been undertaken with several of these inhibitors, while others are in advanced pre-clinical stages.
Collapse
Affiliation(s)
- Sabrina Amar
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA
| | - Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Gregg B Fields
- Department of Chemistry & Biochemistry, Florida Atlantic University, Jupiter, FL, USA.,Department of Chemistry, The Scripps Research Institute/Scripps Florida, Jupiter, FL, USA
| |
Collapse
|
42
|
Bray LJ, Werner C. Evaluation of Three-Dimensional in Vitro Models to Study Tumor Angiogenesis. ACS Biomater Sci Eng 2017; 4:337-346. [DOI: 10.1021/acsbiomaterials.7b00139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Laura J. Bray
- Institute
of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove 4059 Queensland Australia
- Mater
Research Institute - University of Queensland (MRI-UQ), Translational Research Institute, 37 Kent Street, Woolloongabba 4102, QLD Australia
| | - Carsten Werner
- Leibniz
Institute of Polymer Research Dresden e.V., Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Saxony, Germany
- Center
for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Saxony, Germany
| |
Collapse
|
43
|
Grieve AG, Xu H, Künzel U, Bambrough P, Sieber B, Freeman M. Phosphorylation of iRhom2 at the plasma membrane controls mammalian TACE-dependent inflammatory and growth factor signalling. eLife 2017; 6. [PMID: 28432785 PMCID: PMC5436907 DOI: 10.7554/elife.23968] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Proteolytic cleavage and release from the cell surface of membrane-tethered ligands is an important mechanism of regulating intercellular signalling. TACE is a major shedding protease, responsible for the liberation of the inflammatory cytokine TNFα and ligands of the epidermal growth factor receptor. iRhoms, catalytically inactive members of the rhomboid-like superfamily, have been shown to control the ER-to-Golgi transport and maturation of TACE. Here, we reveal that iRhom2 remains associated with TACE throughout the secretory pathway, and is stabilised at the cell surface by this interaction. At the plasma membrane, ERK1/2-mediated phosphorylation and 14-3-3 protein binding of the cytoplasmic amino-terminus of iRhom2 alter its interaction with mature TACE, thereby licensing its proteolytic activity. We show that this molecular mechanism is responsible for triggering inflammatory responses in primary mouse macrophages. Overall, iRhom2 binds to TACE throughout its lifecycle, implying that iRhom2 is a primary regulator of stimulated cytokine and growth factor signalling. DOI:http://dx.doi.org/10.7554/eLife.23968.001 Injury or infection can cause tissues in the body to become inflamed. The immune system triggers this inflammation to help repair the injury or fight the infection. A signal molecule known as TNF – which is produced by immune cells called macrophages – triggers inflammation. This protein is normally attached to the surface of the macrophage, and it only activates inflammation once it has been cut free. An enzyme called TACE cuts and releases TNF from the surface of macrophages. This enzyme is made inside the cell and is then transported to the surface. On the way, TACE matures from an inactive form to a fully functional enzyme. Previous work revealed that a protein called iRhom2 controls TACE maturation, but it has been unclear whether iRhom2 affects TACE in any additional ways. Grieve et al. studied the relationship between iRhom2 and TACE in more detail. The experiments show two new roles for iRhom2: in protecting TACE from being destroyed at the cell surface, and prompting TACE to release TNF to trigger inflammation. Injury or infection causes small molecules called phosphate groups to be attached to iRhom2 in macrophages, which causes TACE to release TNF. The findings of Grieve et al. provide the first evidence that iRhom2 influences the activity of TACE throughout the enzyme’s lifetime. Excessive inflammation, often triggered by the uncontrolled release of TNF, can lead to rheumatoid arthritis, cancer and many other diseases. Therefore, iRhom2 could be a promising new target for anti-inflammatory drugs that may help to treat these conditions. DOI:http://dx.doi.org/10.7554/eLife.23968.002
Collapse
Affiliation(s)
- Adam Graham Grieve
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Hongmei Xu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Ulrike Künzel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul Bambrough
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Matthew Freeman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
44
|
Furuta S, Bissell MJ. Pathways Involved in Formation of Mammary Organoid Architecture Have Keys to Understanding Drug Resistance and to Discovery of Druggable Targets. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:207-217. [PMID: 28416576 DOI: 10.1101/sqb.2016.81.030825] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signals from the extracellular matrix (ECM) are received at the cell surface receptor, transmitted to the cytoskeletons, and transferred to the nucleus and chromatin for tissue- and context-specific gene expression. Cells, in return, modulate the cell shape and ECM, allowing for the maintenance of tissue homeostasis as well as for coevolution and adaptation to the environmental signals. We postulated the existence of dynamic and reciprocal interactions between the ECM and the nucleus more than three decades ago, but now these pathways have been proven experimentally thanks to the advances in imaging and cell/molecular biology techniques. In this review, we will introduce some of our recent work that has validated the critical roles of the three-dimensional (3D) tissue architecture in determining mammary biology, therapeutic response, and druggable targets. We describe a novel screen based on reversion of the malignant phenotype in 3D assays. We will also summarize our recent discoveries of the integration of feedback signaling for mammary acinar formation and phenotypic reversion of tumor cells in the LrECM. Lastly, we will introduce our exciting discovery of the physical linkages between the cell surface and cytofibers within a tunnel deep inside of the nucleus, enabling interaction with nuclear lamin and SUN proteins.
Collapse
Affiliation(s)
- Saori Furuta
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720.,Department of Biochemistry and Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science, Toledo, Ohio 43614
| | - Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
45
|
Termini CM, Gillette JM. Tetraspanins Function as Regulators of Cellular Signaling. Front Cell Dev Biol 2017; 5:34. [PMID: 28428953 PMCID: PMC5382171 DOI: 10.3389/fcell.2017.00034] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
Tetraspanins are molecular scaffolds that distribute proteins into highly organized microdomains consisting of adhesion, signaling, and adaptor proteins. Many reports have identified interactions between tetraspanins and signaling molecules, finding unique downstream cellular consequences. In this review, we will explore these interactions as well as the specific cellular responses to signal activation, focusing on tetraspanin regulation of adhesion-mediated (integrins/FAK), receptor-mediated (EGFR, TNF-α, c-Met, c-Kit), and intracellular signaling (PKC, PI4K, β-catenin). Additionally, we will summarize our current understanding for how tetraspanin post-translational modifications (palmitoylation, N-linked glycosylation, and ubiquitination) can regulate signal propagation. Many of the studies outlined in this review suggest that tetraspanins offer a potential therapeutic target to modulate aberrant signal transduction pathways that directly impact a host of cellular behaviors and disease states.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| |
Collapse
|
46
|
Duhachek-Muggy S, Qi Y, Wise R, Alyahya L, Li H, Hodge J, Zolkiewska A. Metalloprotease-disintegrin ADAM12 actively promotes the stem cell-like phenotype in claudin-low breast cancer. Mol Cancer 2017; 16:32. [PMID: 28148288 PMCID: PMC5288940 DOI: 10.1186/s12943-017-0599-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND ADAM12 is upregulated in human breast cancers and is a predictor of chemoresistance in estrogen receptor-negative tumors. ADAM12 is induced during epithelial-to-mesenchymal transition, a feature associated with claudin-low breast tumors, which are enriched in cancer stem cell (CSC) markers. It is currently unknown whether ADAM12 plays an active role in promoting the CSC phenotype in breast cancer cells. METHODS ADAM12 expression was downregulated in representative claudin-low breast cancer cell lines, SUM159PT and Hs578T, using siRNA transfection or inducible shRNA expression. Cell characteristics commonly associated with the CSC phenotype in vitro (cell migration, invasion, anoikis resistance, mammosphere formation, ALDH activity, and expression of the CD44 and CD24 cell surface markers) and in vivo (tumor formation in mice using limiting dilution transplantation assays) were evaluated. RNA sequencing was performed to identify global gene expression changes after ADAM12 knockdown. RESULTS We found that sorted SUM159PT cell populations with high ADAM12 levels had elevated expression of CSC markers and an increased ability to form mammospheres. ADAM12 knockdown reduced cell migration and invasion, decreased anoikis resistance, and compromised mammosphere formation. ADAM12 knockdown also diminished ALDEFLUOR+ and CD44hi/CD24-/lo CSC-enriched populations in vitro and reduced tumorigenesis in mice in vivo. RNA sequencing identified a significant overlap between ADAM12- and Epidermal Growth Factor Receptor (EGFR)-regulated genes. Consequently, ADAM12 knockdown lowered the basal activation level of EGFR, and this effect was abolished by batimastat, a metalloproteinase inhibitor. Furthermore, incubation of cells with exogenously added EGF prevented the downregulation of CD44hi/CD24-/lo cell population by ADAM12 knockdown. CONCLUSIONS These results indicate that ADAM12 actively supports the CSC phenotype in claudin-low breast cancer cells via modulation of the EGFR pathway.
Collapse
Affiliation(s)
- Sara Duhachek-Muggy
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.,Current address: Department of Radiation Oncology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Yue Qi
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.,Current address: Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Randi Wise
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
| | - Linda Alyahya
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
| | - Hui Li
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.,Current address: Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jacob Hodge
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA
| | - Anna Zolkiewska
- Department of Biochemistry and Molecular Biophysics, Kansas State University, 141 Chalmers Hall, Manhattan, KS, 66506, USA.
| |
Collapse
|
47
|
Abstract
A compelling long-term goal of cancer biology is to understand the crucial players during tumorigenesis in order to develop new interventions. Here, we review how the four non-redundant tissue inhibitors of metalloproteinases (TIMPs) regulate the pericellular proteolysis of a vast range of matrix and cell surface proteins, generating simultaneous effects on tumour architecture and cell signalling. Experimental studies demonstrate the contribution of TIMPs to the majority of cancer hallmarks, and human cancers invariably show TIMP deregulation in the tumour or stroma. Of the four TIMPs, TIMP1 overexpression or TIMP3 silencing is consistently associated with cancer progression or poor patient prognosis. Future efforts will align mouse model systems with changes in TIMPs in patients, will delineate protease-independent TIMP function, will pinpoint therapeutic targets within the TIMP-metalloproteinase-substrate network and will use TIMPs in liquid biopsy samples as biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Hartland W Jackson
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
- Bodenmiller Laboratory, University of Zürich, Institute for Molecular Life Sciences, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Virginie Defamie
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Paul Waterhouse
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Rama Khokha
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| |
Collapse
|
48
|
Discovery of an enzyme and substrate selective inhibitor of ADAM10 using an exosite-binding glycosylated substrate. Sci Rep 2016; 6:11. [PMID: 28442704 PMCID: PMC5431342 DOI: 10.1038/s41598-016-0013-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/12/2016] [Indexed: 02/01/2023] Open
Abstract
ADAM10 and ADAM17 have been shown to contribute to the acquired drug resistance of HER2-positive breast cancer in response to trastuzumab. The majority of ADAM10 and ADAM17 inhibitor development has been focused on the discovery of compounds that bind the active site zinc, however, in recent years, there has been a shift from active site to secondary substrate binding site (exosite) inhibitor discovery in order to identify non-zinc-binding molecules. In the present work a glycosylated, exosite-binding substrate of ADAM10 and ADAM17 was utilized to screen 370,276 compounds from the MLPCN collection. As a result of this uHTS effort, a selective, time-dependent, non-zinc-binding inhibitor of ADAM10 with Ki = 883 nM was discovered. This compound exhibited low cell toxicity and was able to selectively inhibit shedding of known ADAM10 substrates in several cell-based models. We hypothesize that differential glycosylation of these cognate substrates is the source of selectivity of our novel inhibitor. The data indicate that this novel inhibitor can be used as an in vitro and, potentially, in vivo, probe of ADAM10 activity. Additionally, results of the present and prior studies strongly suggest that glycosylated substrate are applicable as screening agents for discovery of selective ADAM probes and therapeutics.
Collapse
|
49
|
Xu M, Zhou H, Zhang C, He J, Wei H, Zhou M, Lu Y, Sun Y, Ding JW, Zeng J, Peng W, Du F, Gong A. ADAM17 promotes epithelial-mesenchymal transition via TGF-β/Smad pathway in gastric carcinoma cells. Int J Oncol 2016; 49:2520-2528. [DOI: 10.3892/ijo.2016.3744] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 10/11/2016] [Indexed: 11/06/2022] Open
|
50
|
Abstract
INTRODUCTION Esophageal cancer (EC) is one of the most common causes of cancer-related death worldwide. Identifying suitable biomarkers for early diagnosis as well as predicting lymph node metastasis, prognosis and the therapeutic response of EC is essential for the effective and efficient management for EC. There is an urgent need to develop effective, novel approaches for patients who do not respond to conventional treatment. Areas covered: EC is characterized by the presence of two main histological types such as squamous cell carcinoma and adenocarcinoma, which differ in their response to treatments and prognosis. Thus, this review describes the latest research into biomarkers and novel treatment targets generated by cancer proteomics for the two main histological types. Finally, the main difficulties facing the translation of biomarkers and novel treatment targets into the clinical settings are discussed. Expert commentary: EC proteomics have provided useful results and, after their validation, novel clinical tools should be developed to improve the clinical outcomes for EC patients.
Collapse
Affiliation(s)
- Norihisa Uemura
- a Department of Gastroenterological Surgery , Aichi Cancer Center Hospital , Nagoya , Japan
| | - Tadashi Kondo
- b Division of Rare Cancer Research, Department of Innovative Seeds Evaluation , National Cancer Center Research Institute , Tokyo , Japan
| |
Collapse
|