1
|
Chen B, Chen M, Chang M, Ge Y, Gunning W, Assaly R, Dworkin LD, Qiao YJ, Gong R. Melanocortin 5 receptor signaling protects against podocyte injury in proteinuric glomerulopathies. Kidney Int 2025:S0085-2538(25)00067-5. [PMID: 39862971 DOI: 10.1016/j.kint.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Melanocortin therapeutics, exemplified by adrenocorticotropic hormone, have a proven steroidogenic-independent anti-proteinuric and glomerular protective effect. The biological functions of melanocortins are mediated by melanocortin receptors (MCR), including MC1R, which recent studies have shown to protect against glomerular disease. However, the role of other MCRs like MC5R is unknown. Here, MC5R knockout exacerbated glomerulopathy in mice injured by adriamycin (ADR) or nephrotoxic serum (NTS), as demonstrated by increased albuminuria and podocyte injury. Conversely, selective MC5R agonism using a peptidomimetic agonist improved outcomes of glomerulopathies. Mechanistically, MC5R is expressed in glomerular podocytes. Reconstitution of MC5R in podocytes attenuated glomerular injury and proteinuria in MC5R knockout mouse models of glomerulopathies, indicating a direct podocyte protective effect. In vitro, MC5R agonism in primary wild-type podocytes attenuated ADR-elicited cytoskeleton disruption, hypermotility and apoptosis, associated with restored inhibitory phosphorylation of glycogen synthases kinase 3β (GSK3β), a signaling transducer downstream of MC5R and at the nexus of multiple podocytopathic pathways. In parallel, ADR-induced phosphorylation and activation of GSK3β substrates, such as paxillin and NFκB RelA/p65, were abrogated, leading to improved actin cytoskeleton integrity and diminished expression of mediators of podocyte injury, like MCP-1, B7-1 and Cathepsin L. This protective effect of MC5R agonism was blunted in wild-type podocytes expressing constitutively active GSK3β and was mimicked in MC5R knockout podocytes by ectopic expression of dominant negative GSK3β. Consistently in ADR-injured MC5R knockout mice, worsened podocytopathy was associated with enhanced GSK3β hyperactivity. These findings suggest that MC5R signaling protects against podocyte injury and may serve as a novel therapeutic target for glomerular diseases.
Collapse
Affiliation(s)
- Bohan Chen
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; Current address: Blood Purification Center, Institute of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Mengxuan Chen
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Mingyang Chang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - Yan Ge
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA
| | | | - Ragheb Assaly
- Department of Medicine, University of Toledo Medical Center, Toledo, Ohio, USA
| | - Lance D Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; Division of Kidney Disease and Hypertension, Rhode Island Hospital, the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ying Jin Qiao
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA.
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, Ohio, USA; Division of Kidney Disease and Hypertension, Rhode Island Hospital, the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
2
|
Conesa-Bakkali R, Morillo-Huesca M, Martínez-Fábregas J. Non-Canonical, Extralysosomal Activities of Lysosomal Peptidases in Physiological and Pathological Conditions: New Clinical Opportunities for Cancer Therapy. Cells 2025; 14:68. [PMID: 39851495 PMCID: PMC11763575 DOI: 10.3390/cells14020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Lysosomes are subcellular compartments characterised by an acidic pH, containing an ample variety of acid hydrolases involved in the recycling of biopolymers. Among these hydrolases, lysosomal proteases have merely been considered as end-destination proteases responsible for the digestion of waste proteins, trafficked to the lysosomal compartment through autophagy and endocytosis. However, recent reports have started to unravel specific roles for these proteases in the regulation of initially unexpected biological processes, both under physiological and pathological conditions. Furthermore, some lysosomal proteases are no longer restricted to the lysosomal compartment, as more novel non-canonical, extralysosomal targets are being identified. Currently, lysosomal proteases are accepted to play key functions in the extracellular milieu, attached to the plasma membrane and even in the cytosolic and nuclear compartments of the cell. Under physiological conditions, lysosomal proteases, through non-canonical, extralysosomal activities, have been linked to cell differentiation, regulation of gene expression, and cell division. Under pathological conditions, these proteases have been linked to cancer, mostly through their extralysosomal activities in the cytosol and nuclei of cells. In this review, we aim to provide a comprehensive summary of our current knowledge about the extralysosomal, non-canonical functions of lysosomal proteases, both under physiological and pathological conditions, with a particular interest in cancer, that could potentially offer new opportunities for clinical intervention.
Collapse
Affiliation(s)
- Ryan Conesa-Bakkali
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Macarena Morillo-Huesca
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
| | - Jonathan Martínez-Fábregas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa—CABIMER, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Américo Vespucio 24, 41092 Sevilla, Spain; (R.C.-B.); (M.M.-H.)
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Yang M, Hong M, Wang G, Wang S, Shen R, Guo J, Shen C, Wang Y. Preparation of 3D Zonal and Interactional Glomerular Models Based on Composite Core–Shell Hydrogel Microspheres. ACS MATERIALS LETTERS 2024; 6:5154-5162. [DOI: 10.1021/acsmaterialslett.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Menghan Yang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Meiying Hong
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Guanxiong Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Siping Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Rui Shen
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Jianxiu Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| | - Chongyang Shen
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Yaolei Wang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P.R. China
| |
Collapse
|
4
|
Rot AE, Hrovatin M, Bokalj B, Lavrih E, Turk B. Cysteine cathepsins: From diagnosis to targeted therapy of cancer. Biochimie 2024; 226:10-28. [PMID: 39245316 DOI: 10.1016/j.biochi.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Cysteine cathepsins are a fascinating group of proteolytic enzymes that play diverse and crucial roles in numerous biological processes, both in health and disease. Understanding these proteases is essential for uncovering novel insights into the underlying mechanisms of a wide range of disorders, such as cancer. Cysteine cathepsins influence cancer biology by participating in processes such as extracellular matrix degradation, angiogenesis, immune evasion, and apoptosis. In this comprehensive review, we explore foundational research that illuminates the diverse and intricate roles of cysteine cathepsins as diagnostic markers and therapeutic targets for cancer. This review aims to provide valuable insights into the clinical relevance of cysteine cathepsins and explore their capacity to advance personalised and targeted medical interventions in oncology.
Collapse
Affiliation(s)
- Ana Ercegovič Rot
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Matija Hrovatin
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Bor Bokalj
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Ernestina Lavrih
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jožef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Faro DC, Di Pino FL, Rodolico MS, Costanzo L, Losi V, Di Pino L, Monte IP. Relationship between Capillaroscopic Architectural Patterns and Different Variant Subgroups in Fabry Disease: Analysis of Cases from a Multidisciplinary Center. Genes (Basel) 2024; 15:1101. [PMID: 39202460 PMCID: PMC11354189 DOI: 10.3390/genes15081101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Anderson-Fabry disease (AFD) is a genetic lysosomal storage disorder caused by mutations in the α-galactosidase A gene, leading to impaired lysosomal function and resulting in both macrovascular and microvascular alterations. AFD patients often exhibit increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating non-atherosclerotic arterial thickening and the potential for cardiovascular events. Nailfold capillaroscopy, a non-invasive diagnostic tool, has shown potential in diagnosing and monitoring microcirculatory disorders in AFD, despite limited research. This study evaluates nailfold capillaroscopy findings in AFD patients, exploring correlations with GLA gene variant subgroups (associated with classical or late-onset phenotypes and variants of uncertain significance (VUSs)), and assessing morpho-functional differences between sexes. It aims to determine whether capillaroscopy can assist in the early identification of individuals with multiorgan vascular involvement. A retrospective observational study was conducted with 25 AFD patients from AOUP "G. Rodolico-San Marco" in Catania (2020-2023). Patients underwent genetic testing, enzyme activity evaluation, and nailfold capillaroscopy using Horus basic HS 200 videodermatoscopy. Parameters like angiotectonic disorder, vascular areas, capillary density, and intimal thickening were assessed. The study identified significant differences in capillaroscopy findings among patients with different GLA gene variant subgroups. Classic AFD variant patients showed reduced capillary length and signs of erythrocyte aggregation and dilated subpapillary plexus. No correlation was found between enzymatic activity and capillaroscopy parameters. However, Lyso-Gb3 levels were positively correlated with average capillary length (ῤ = 0.453; p = 0.059). Sex-specific differences in capillaroscopy findings were observed in neoangiogenesis and average capillary length, with distinct implications for men and women. This study highlights the potential of nailfold capillaroscopy in the diagnostic process and clinical management of AFD, particularly in relation to specific GLA gene mutations, as a valuable tool for the early diagnosis and monitoring of AFD.
Collapse
Affiliation(s)
- Denise Cristiana Faro
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
| | - Francesco Lorenzo Di Pino
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
| | - Margherita Stefania Rodolico
- Institute for Biomedical Research and Innovation, National Research Council (IRIB-CNR), Section of Catania, 95126 Catania, Italy;
| | - Luca Costanzo
- Unit of Angiology, Policlinico “G. Rodolico-San Marco” University Hospital, 95123 Catania, Italy;
| | - Valentina Losi
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
| | - Luigi Di Pino
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
- Unit of Cardiology, “G. Rodolico-S.Marco” University Hospital, 95123 Catania, Italy
| | - Ines Paola Monte
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95125 Catania, Italy; (D.C.F.); (F.L.D.P.); (V.L.); (L.D.P.)
- Unit of Cardiology, “G. Rodolico-S.Marco” University Hospital, 95123 Catania, Italy
| |
Collapse
|
6
|
Faro DC, Di Pino FL, Monte IP. Inflammation, Oxidative Stress, and Endothelial Dysfunction in the Pathogenesis of Vascular Damage: Unraveling Novel Cardiovascular Risk Factors in Fabry Disease. Int J Mol Sci 2024; 25:8273. [PMID: 39125842 PMCID: PMC11312754 DOI: 10.3390/ijms25158273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Anderson-Fabry disease (AFD), a genetic disorder caused by mutations in the α-galactosidase-A (GLA) gene, disrupts lysosomal function, leading to vascular complications. The accumulation of globotriaosylceramide (Gb3) in arterial walls triggers upregulation of adhesion molecules, decreases endothelial nitric oxide synthesis, and induces reactive oxygen species production. This cascade results in fibrotic thickening, endothelial dysfunction, hypercontractility, vasospasm, and a pro-thrombotic phenotype. AFD patients display increased intima-media thickness (IMT) and reduced flow-mediated dilation (FMD), indicating heightened cardiovascular risk. Nailfold capillaroscopy (NFC) shows promise in diagnosing and monitoring microcirculatory disorders in AFD, though it remains underexplored. Morphological evidence of AFD as a storage disorder can be demonstrated through electron microscopy and immunodetection of Gb3. Secondary pathophysiological disturbances at cellular, tissue, and organ levels contribute to the clinical manifestations, with prominent lysosomal inclusions observed in vascular, cardiac, renal, and neuronal cells. Chronic accumulation of Gb3 represents a state of ongoing toxicity, leading to increased cell turnover, particularly in vascular endothelial cells. AFD-related vascular pathology includes increased renin-angiotensin system activation, endothelial dysfunction, and smooth muscle cell proliferation, resulting in IMT increase. Furthermore, microvascular alterations, such as atypical capillaries observed through NFC, suggest early microvascular involvement. This review aims to unravel the complex interplay between inflammation, oxidative stress, and endothelial dysfunction in AFD, highlighting the potential connections between metabolic disturbances, oxidative stress, inflammation, and fibrosis in vascular and cardiac complications. By exploring novel cardiovascular risk factors and potential diagnostic tools, we can advance our understanding of these mechanisms, which extend beyond sphingolipid accumulation to include other significant contributors to disease pathogenesis. This comprehensive approach can pave the way for innovative therapeutic strategies and improved patient outcomes.
Collapse
Affiliation(s)
| | | | - Ines Paola Monte
- Department of General Surgery and Medical-Surgical Specialties (CHIRMED), University of Catania, Via S. Sofia 78, 95100 Catania, Italy; (D.C.F.); (F.L.D.P.)
| |
Collapse
|
7
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
8
|
Fernández-de-la-Pradilla A, Royo S, Schirmeister T, Barthels F, Świderek K, González FV, Moliner V. Impact of the Warhead of Dipeptidyl Keto Michael Acceptors on the Inhibition Mechanism of Cysteine Protease Cathepsin L. ACS Catal 2023; 13:13354-13368. [PMID: 37881790 PMCID: PMC10594577 DOI: 10.1021/acscatal.3c02748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Indexed: 10/27/2023]
Abstract
Cathepsin L (CatL) is a lysosomal cysteine protease whose activity has been related to several human pathologies. However, although preclinical trials using CatL inhibitors were promising, clinical trials have been unsuccessful up to now. We are presenting a study of two designed dipeptidyl keto Michael acceptor potential inhibitors of CatL with either a keto vinyl ester or a keto vinyl sulfone (KVS) warhead. The compounds were synthesized and experimentally assayed in vitro, and their inhibition molecular mechanism was explored based on molecular dynamics simulations at the density functional theory/molecular mechanics level. The results confirm that both compounds inhibit CatL in the nanomolar range and show a time-dependent inhibition. Interestingly, despite both presenting almost equivalent equilibrium constants for the reversible formation of the noncovalent enzyme/inhibitor complex, differences are observed in the chemical step corresponding to the enzyme-inhibitor covalent bond formation, results that are mirrored by the computer simulations. Theoretically determined kinetic and thermodynamic results, which are in very good agreement with the experiments, afford a detailed explanation of the relevance of the different structural features of both compounds having a significant impact on enzyme inhibition. The unprecedented binding interactions of both inhibitors in the P1' site of CatL represent valuable information for the design of inhibitors. In particular, the peptidyl KVS can be used as a starting lead compound in the development of drugs with medical applications for the treatment of cancerous pathologies since sulfone warheads have previously shown promising cell stability compared to other functions such as carboxylic esters. Future improvements can be guided by the atomistic description of the enzyme-inhibitor interactions established along the inhibition reaction derived from computer simulations.
Collapse
Affiliation(s)
| | - Santiago Royo
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Tanja Schirmeister
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Fabian Barthels
- Institute
of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, 55128 Mainz, Germany
| | - Katarzyna Świderek
- BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| | - Florenci V. González
- Departament
de Química Inorgànica i Orgànica, Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- BioComp
Group, Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló, Spain
| |
Collapse
|
9
|
Ruby M, Gifford CC, Pandey R, Raj VS, Sabbisetti VS, Ajay AK. Autophagy as a Therapeutic Target for Chronic Kidney Disease and the Roles of TGF-β1 in Autophagy and Kidney Fibrosis. Cells 2023; 12:cells12030412. [PMID: 36766754 PMCID: PMC9913737 DOI: 10.3390/cells12030412] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Autophagy is a lysosomal protein degradation system that eliminates cytoplasmic components such as protein aggregates, damaged organelles, and even invading pathogens. Autophagy is an evolutionarily conserved homoeostatic strategy for cell survival in stressful conditions and has been linked to a variety of biological processes and disorders. It is vital for the homeostasis and survival of renal cells such as podocytes and tubular epithelial cells, as well as immune cells in the healthy kidney. Autophagy activation protects renal cells under stressed conditions, whereas autophagy deficiency increases the vulnerability of the kidney to injury, resulting in several aberrant processes that ultimately lead to renal failure. Renal fibrosis is a condition that, if chronic, will progress to end-stage kidney disease, which at this point is incurable. Chronic Kidney Disease (CKD) is linked to significant alterations in cell signaling such as the activation of the pleiotropic cytokine transforming growth factor-β1 (TGF-β1). While the expression of TGF-β1 can promote fibrogenesis, it can also activate autophagy, which suppresses renal tubulointerstitial fibrosis. Autophagy has a complex variety of impacts depending on the context, cell types, and pathological circumstances, and can be profibrotic or antifibrotic. Induction of autophagy in tubular cells, particularly in the proximal tubular epithelial cells (PTECs) protects cells against stresses such as proteinuria-induced apoptosis and ischemia-induced acute kidney injury (AKI), whereas the loss of autophagy in renal cells scores a significant increase in sensitivity to several renal diseases. In this review, we discuss new findings that emphasize the various functions of TGF-β1 in producing not just renal fibrosis but also the beneficial TGF-β1 signaling mechanisms in autophagy.
Collapse
Affiliation(s)
- Miss Ruby
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India
| | - Cody C. Gifford
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - RamendraPati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India
- Correspondence: (R.P.); (A.K.A.); Tel.: +91-130-2203757 (R.P.); +1-(617)-525-7414 (A.K.A.); Fax: +1-(617)-525-7386 (A.K.A.)
| | - V. Samuel Raj
- Centre for Drug Design Discovery and Development (C4D), SRM University, Delhi-NCR, Rajiv Gandhi Education City, Sonepat 131029, Haryana, India
| | - Venkata S. Sabbisetti
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K. Ajay
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (R.P.); (A.K.A.); Tel.: +91-130-2203757 (R.P.); +1-(617)-525-7414 (A.K.A.); Fax: +1-(617)-525-7386 (A.K.A.)
| |
Collapse
|
10
|
Preston R, Meng QJ, Lennon R. The dynamic kidney matrisome - is the circadian clock in control? Matrix Biol 2022; 114:138-155. [PMID: 35569693 DOI: 10.1016/j.matbio.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
The circadian clock network in mammals is responsible for the temporal coordination of numerous physiological processes that are necessary for homeostasis. Peripheral tissues demonstrate circadian rhythmicity and dysfunction of core clock components has been implicated in the pathogenesis of diseases that are characterized by abnormal extracellular matrix, such as fibrosis (too much disorganized matrix) and tissue breakdown (too little matrix). Kidney disease is characterized by proteinuria, which along with the rate of filtration, displays robust circadian oscillation. Clinical observation and mouse studies suggest the presence of 24 h kidney clocks responsible for circadian oscillation in kidney function. Recent experimental evidence has also revealed that cell-matrix interactions and the biomechanical properties of extracellular matrix have key roles in regulating peripheral circadian clocks and this mechanism appears to be cell- and tissue-type specific. Thus, establishing a temporally resolved kidney matrisome may provide a useful tool for studying the two-way interactions between the extracellular matrix and the intracellular time-keeping mechanisms in this critical niche tissue. This review summarizes the latest genetic and biochemical evidence linking kidney physiology and disease to the circadian system with a particular focus on the extracellular matrix. We also review the experimental approaches and methodologies required to dissect the roles of circadian pathways in specific tissues and outline the translational aspects of circadian biology, including how circadian medicine could be used for the treatment of kidney disease.
Collapse
Affiliation(s)
- Rebecca Preston
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester M13 9PT, UK; Department of Pediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK.
| |
Collapse
|
11
|
Ye Q, Lan B, Liu H, Persson PB, Lai EY, Mao J. A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiol (Oxf) 2022; 235:e13850. [PMID: 35716094 DOI: 10.1111/apha.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023]
Abstract
Selective glomerular filtration relies on the membrane separating the glomerular arterioles from the Bowman space. As a major component of the glomerular filtration barrier, podocytes form foot processes by the actin cytoskeleton, which dynamically adjusts in response to environmental changes to maintain filtration barrier integrity. The slit diaphragms bridge the filtration slits between neighboring foot processes and act as signaling hubs interacting with the actin cytoskeleton. Focal adhesions relay signals to regulate actin dynamics while allowing podocyte adherence to the basement membrane. Mutations in actin regulatory and signaling proteins may disrupt the actin cytoskeleton, resulting in foot process retraction, effacement, and proteinuria. Large-scale gene expression profiling platforms, transgenic animal models, and other in vivo gene delivery methods now enhance our understanding of the interactions among podocyte focal adhesions, slit diaphragms, and actin dynamics. In addition, our team found that at least 66% of idiopathic nephrotic syndrome (INS) children have podocyte autoantibodies, which was defined as a new disease subgroup-, autoimmune podocytopathies. This review outlines the pathophysiological mechanisms of podocyte cytoskeleton protein interactions in proteinuria and glomerular podocytopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Bing Lan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany
| | - En Yin Lai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
12
|
Hamasaki E, Wakita N, Yasuoka H, Nagaoka H, Morita M, Takashima E, Uchihashi T, Takeda T, Abe T, Lee JW, Iimura T, Saleem MA, Ogo N, Asai A, Narita A, Takei K, Yamada H. The Lipid-Binding Defective Dynamin 2 Mutant in Charcot-Marie-Tooth Disease Impairs Proper Actin Bundling and Actin Organization in Glomerular Podocytes. Front Cell Dev Biol 2022; 10:884509. [PMID: 35620056 PMCID: PMC9127447 DOI: 10.3389/fcell.2022.884509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Dynamin is an endocytic protein that functions in vesicle formation by scission of invaginated membranes. Dynamin maintains the structure of foot processes in glomerular podocytes by directly and indirectly interacting with actin filaments. However, molecular mechanisms underlying dynamin-mediated actin regulation are largely unknown. Here, biochemical and cell biological experiments were conducted to uncover how dynamin modulates interactions between membranes and actin in human podocytes. Actin-bundling, membrane tubulating, and GTPase activities of dynamin were examined in vitro using recombinant dynamin 2-wild-type (WT) or dynamin 2-K562E, which is a mutant found in Charcot-Marie-Tooth patients. Dynamin 2-WT and dynamin 2-K562E led to the formation of prominent actin bundles with constant diameters. Whereas liposomes incubated with dynamin 2-WT resulted in tubule formation, dynamin 2-K562E reduced tubulation. Actin filaments and liposomes stimulated dynamin 2-WT GTPase activity by 6- and 20-fold, respectively. Actin-filaments, but not liposomes, stimulated dynamin 2-K562E GTPase activity by 4-fold. Self-assembly-dependent GTPase activity of dynamin 2-K562E was reduced to one-third compared to that of dynamin 2-WT. Incubation of liposomes and actin with dynamin 2-WT led to the formation of thick actin bundles, which often bound to liposomes. The interaction between lipid membranes and actin bundles by dynamin 2-K562E was lower than that by dynamin 2-WT. Dynamin 2-WT partially colocalized with stress fibers and actin bundles based on double immunofluorescence of human podocytes. Dynamin 2-K562E expression resulted in decreased stress fiber density and the formation of aberrant actin clusters. Dynamin 2-K562E colocalized with α-actinin-4 in aberrant actin clusters. Reformation of stress fibers after cytochalasin D-induced actin depolymerization and washout was less effective in dynamin 2-K562E-expressing cells than that in dynamin 2-WT. Bis-T-23, a dynamin self-assembly enhancer, was unable to rescue the decreased focal adhesion numbers and reduced stress fiber density induced by dynamin 2-K562E expression. These results suggest that the low affinity of the K562E mutant for lipid membranes, and atypical self-assembling properties, lead to actin disorganization in HPCs. Moreover, lipid-binding and self-assembly of dynamin 2 along actin filaments are required for podocyte morphology and functions. Finally, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in HPCs.
Collapse
Affiliation(s)
- Eriko Hamasaki
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Natsuki Wakita
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroki Yasuoka
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Tetsuya Takeda
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tadashi Abe
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ji-Won Lee
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Moin A Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akihiro Narita
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
Angiotensin II type-2-receptor stimulation ameliorates focal and segmental glomerulosclerosis in mice. Clin Sci (Lond) 2022; 136:715-731. [PMID: 35502764 PMCID: PMC9851172 DOI: 10.1042/cs20220188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/21/2023]
Abstract
Podocyte damage and loss are the early event in the development of focal segmental glomerulosclerosis (FSGS). Podocytes express angiotensin II type-2-receptor (AT2R), which may play a key role in maintaining kidney integrity and function. Here, we examined the effects of AT2R deletion and AT2R agonist compound 21 (C21) on the evolution of FSGS. FSGS was induced by adriamycin (ADR) injection in both male wild-type (WT) and AT2R knockout (KO) mice. C21 was administered to WT-FSGS mice either one day before or 7 days after ADR (Pre-C21 or Post-C21), using two doses of C21 at either 0.3 (low dose, LD) or 1.0 (high dose, HD) mg/kg/day. ADR-induced FSGS was more severe in AT2RKO mice compared with WT-FSGS mice, and included profound podocyte loss, glomerular fibrosis, and albuminuria. Glomerular cathepsin L expression increased more in AT2RKO-FSGS than in WT-FSGS mice. C21 treatment ameliorated podocyte injury, most significantly in the Pre C21-HD group, and inhibited glomerular cathepsin L expression. In vitro, Agtr2 knock-down in mouse podocyte cell line given ADR confirmed the in vivo data. Mechanistically, C21 inhibited cathepsin L expression, which protected synaptopodin from destruction and stabilized actin cytoskeleton. C21 also prevented podocyte apoptosis. In conclusion, AT2R activation by C21 ameliorated ADR-induced podocyte injury in mice by the inhibition of glomerular cathepsin L leading to the maintenance of podocyte integrity and prevention of podocyte apoptosis.
Collapse
|
14
|
Smarz-Widelska I, Chojęta D, Kozioł MM. The Role of Anti-PLA 2R and Anti-THSD7A Antibodies in the Pathogenesis and Diagnostics of Primary Membranous Nephropathy: A Review of Current Knowledge for Clinical Practice. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095301. [PMID: 35564696 PMCID: PMC9104191 DOI: 10.3390/ijerph19095301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022]
Abstract
Primary membranous nephropathy (PMN) is considered a major cause of nephrotic syndrome. The discovery of circulating autoantibodies directed against glomerular podocytes helped to classify them as autoimmune diseases. Over the past years, there has been an increasing significance of anti-Phospholipase A2 Receptor (anti-PLA2R), which has been detected in 70–80% of PMN cases, and relevance of anti-Thrombospondin type I domain-containing 7A (anti-THSD7A) even though they are present in 2–5% of patients. The results of clinical and experimental studies indicate that these antibodies are pathogenic. It radically changed the diagnostic and therapeutic approach. Measurement of antibody titers in the serum seems to be a valuable tool for identifying PMN and for the assessment of disease activity. By monitoring pathogenic antibodies levels rather than proteinuria or reduced glomerular filtration rate (GFR) as an indicator of glomerular disease, physicians would easier divide patients into those with active and inactive PMN disease and decide about their therapy. The aim of this review is to evaluate scientific evidence about the role of autoantibodies, namely anti-PLA2R and anti-THSD7A, as PMN biomarkers. The present manuscript focuses on PMN pathogenesis and key data of diagnosis, monitoring of the disease, and treatment strategies that are currently being used in clinical practice.
Collapse
Affiliation(s)
- Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital, 20-718 Lublin, Poland;
| | - Dariusz Chojęta
- Chair and Department of Medical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Małgorzata M. Kozioł
- Chair and Department of Medical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
15
|
Rudzinska-Radecka M, Frolova AS, Balakireva AV, Gorokhovets NV, Pokrovsky VS, Sokolova DV, Korolev DO, Potoldykova NV, Vinarov AZ, Parodi A, Zamyatnin AA. In Silico, In Vitro, and Clinical Investigations of Cathepsin B and Stefin A mRNA Expression and a Correlation Analysis in Kidney Cancer. Cells 2022; 11:1455. [PMID: 35563761 PMCID: PMC9101197 DOI: 10.3390/cells11091455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
The cysteine protease Cathepsin B (CtsB) plays a critical role in multiple signaling pathways, intracellular protein degradation, and processing. Endogenous inhibitors regulate its enzymatic activity, including stefins and other cystatins. Recent data proved that CtsB is implicated in tumor extracellular matrix remodeling, cell invasion, and metastasis: a misbalance between cathepsins and their natural inhibitors is often considered a sign of disease progression. In the present study, we investigated CtsB and stefin A (StfA) expression in renal cell carcinoma (RCC). mRNA analysis unveiled a significant CTSB and STFA increase in RCC tissues compared to adjacent non-cancerogenic tissues and a higher CtsB expression in malignant tumors than in benign renal neoplasms. Further analysis highlighted a positive correlation between CtsB and StfA expression as a function of patient sex, age, tumor size, grade, lymph node invasion, metastasis occurrence, and survival. Alternative overexpression and silencing of CtsB and StfA confirmed the correlation expression between these proteins in human RCC-derived cells through protein analysis and fluorescent microscopy. Finally, the ectopic expression of CtsB and StfA increased RCC cell proliferation. Our data strongly indicated that CtsB and StfA expression play an important role in RCC development by mutually stimulating their expression in RCC progression.
Collapse
Affiliation(s)
- Magdalena Rudzinska-Radecka
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Anastasia S. Frolova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Neonila V. Gorokhovets
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
| | - Vadim S. Pokrovsky
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, 115478 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Darina V. Sokolova
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Laboratory of Combined Treatment, N.N. Blokhin Cancer Research Center, 115478 Moscow, Russia
- Department of Biochemistry, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Dmitry O. Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Natalia V. Potoldykova
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Andrey Z. Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.O.K.); (N.V.P.); (A.Z.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.-R.); (A.S.F.); (A.V.B.); (N.V.G.); (A.P.)
- Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; (V.S.P.); (D.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Immunology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
16
|
Vaughan RH, Kresse J, Farmer LK, Thézénas ML, Kessler BM, Lindeman JHN, Sharples EJ, Welsh GI, Nørregaard R, Ploeg RJ, Kaisar M. Cytoskeletal protein degradation in brain death donor kidneys associates with adverse posttransplant outcomes. Am J Transplant 2022; 22:1073-1087. [PMID: 34878723 PMCID: PMC9305475 DOI: 10.1111/ajt.16912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/25/2023]
Abstract
In brain death, cerebral injury contributes to systemic biological dysregulation, causing significant cellular stress in donor kidneys adversely impacting the quality of grafts. Here, we hypothesized that donation after brain death (DBD) kidneys undergo proteolytic processes that may deem grafts susceptible to posttransplant dysfunction. Using mass spectrometry and immunoblotting, we mapped degradation profiles of cytoskeletal proteins in deceased and living donor kidney biopsies. We found that key cytoskeletal proteins in DBD kidneys were proteolytically cleaved, generating peptide fragments, predominantly in grafts with suboptimal posttransplant function. Interestingly, α-actinin-4 and talin-1 proteolytic fragments were detected in brain death but not in circulatory death or living donor kidneys with similar donor characteristics. As talin-1 is a specific proteolytic target of calpain-1, we investigated a potential trigger of calpain activation and talin-1 degradation using human ex vivo precision-cut kidney slices and in vitro podocytes. Notably, we showed that activation of calpain-1 by transforming growth factor-β generated proteolytic fragments of talin-1 that matched the degradation fragments detected in DBD preimplantation kidneys, also causing dysregulation of the actin cytoskeleton in human podocytes; events that were reversed by calpain-1 inhibition. Our data provide initial evidence that brain death donor kidneys are more susceptible to cytoskeletal protein degradation. Correlation to posttransplant outcomes may be established by future studies.
Collapse
Affiliation(s)
- Rebecca H. Vaughan
- Research and DevelopmentNHS Blood and TransplantBristol & OxfordUK,Nuffield Department of Surgical SciencesOxford University Hospital OxfordBiomedical Research CentreUniversity of OxfordOxfordUK
| | | | - Louise K. Farmer
- Bristol RenalBristol Medical SchoolUniversity of BristolBristolUK
| | - Marie L. Thézénas
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Benedikt M. Kessler
- Nuffield Department of MedicineTarget Discovery InstituteUniversity of OxfordOxfordUK
| | - Jan H. N. Lindeman
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | | | - Gavin I. Welsh
- Bristol RenalBristol Medical SchoolUniversity of BristolBristolUK
| | | | - Rutger J. Ploeg
- Research and DevelopmentNHS Blood and TransplantBristol & OxfordUK,Nuffield Department of Surgical SciencesOxford University Hospital OxfordBiomedical Research CentreUniversity of OxfordOxfordUK,Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | - Maria Kaisar
- Research and DevelopmentNHS Blood and TransplantBristol & OxfordUK,Nuffield Department of Surgical SciencesOxford University Hospital OxfordBiomedical Research CentreUniversity of OxfordOxfordUK
| |
Collapse
|
17
|
Reinheckel T, Tholen M. Low level lysosomal membrane permeabilization for limited release and sub-lethal functions of cathepsin proteases in the cytosol and nucleus. FEBS Open Bio 2022; 12:694-707. [PMID: 35203107 PMCID: PMC8972055 DOI: 10.1002/2211-5463.13385] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
For a long time, lysosomes were purely seen as organelles in charge of garbage disposal within the cell. They destroy any cargo delivered into their lumen with a plethora of highly potent hydrolytic enzymes, including various proteases. In case of damage to their limiting membranes, the lysosomes release their soluble content with detrimental outcomes for the cell. In recent years however, this view of the lysosome changed towards acknowledging it as a platform for integration of manifold intra- and extracellular signals. Even impaired lysosomal membrane integrity is no longer considered to be a one-way street to cell death. Increasing evidence suggests that lysosomal enzymes, mainly cathepsin proteases, can be released in a spatially and temporarily restricted manner that is compatible with cellular survival. This way, cathepsins can act in the cytosol and the nucleus, where they affect important cellular processes such as cell division. Here, we review this evidence and discuss the routes and molecular mechanisms by which the cathepsins may reach their unusual destination.
Collapse
Affiliation(s)
- Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany
| | - Martina Tholen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| |
Collapse
|
18
|
Tian X, Bunda P, Ishibe S. Podocyte Endocytosis in Regulating the Glomerular Filtration Barrier. Front Med (Lausanne) 2022; 9:801837. [PMID: 35223901 PMCID: PMC8866310 DOI: 10.3389/fmed.2022.801837] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/06/2022] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a mechanism that internalizes and recycles plasma membrane components and transmembrane receptors via vesicle formation, which is mediated by clathrin-dependent and clathrin-independent signaling pathways. Podocytes are specialized, terminally differentiated epithelial cells in the kidney, located on the outermost layer of the glomerulus. These cells play an important role in maintaining the integrity of the glomerular filtration barrier in conjunction with the adjacent basement membrane and endothelial cell layers within the glomerulus. An intact podocyte endocytic machinery appears to be necessary for maintaining podocyte function. De novo pathologic human genetic mutations and loss-of-function studies of critical podocyte endocytosis genes in genetically engineered mouse models suggest that this pathway contributes to the pathophysiology of development and progression of proteinuria in chronic kidney disease. Here, we review the mechanism of cellular endocytosis and its regulation in podocyte injury in the context of glomerular diseases. A thorough understanding of podocyte endocytosis may shed novel insights into its biological function in maintaining a functioning filter and offer potential targeted therapeutic strategies for proteinuric glomerular diseases.
Collapse
Affiliation(s)
| | | | - Shuta Ishibe
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
19
|
Yuan J, Xue X, Wang XQ, Cheng YG. Wenyang Huoxue Lishui decoction alleviates dynamin hydrolysis caused by cathepsin L and stabilizes podocyte cytoskeleton. Asian J Surg 2022; 45:1024-1026. [DOI: 10.1016/j.asjsur.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/15/2022] [Indexed: 11/02/2022] Open
|
20
|
Baker JR, O'Brien NS, Prichard KL, Robinson PJ, McCluskey A, Russell CC. Dynole 34-2 and Acrylo-Dyn 2-30, Novel Dynamin GTPase Chemical Biology Probes. Methods Mol Biol 2022; 2417:221-238. [PMID: 35099803 DOI: 10.1007/978-1-0716-1916-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This protocol describes the chemical synthesis of the dynamin inhibitors Dynole 34-2 and Acrylo-Dyn 2-30, and their chemical scaffold matched partner inactive compounds. The chosen active and inactive paired compounds represent potent dynamin inhibitors and very closely related dynamin-inactive compounds, with the synthesis of three of the four compounds readily possible via a common intermediate. Combined with the assay data provided, this allows the interrogation of dynamin in vitro and potentially in vivo.
Collapse
Affiliation(s)
- Jennifer R Baker
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Nicholas S O'Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate L Prichard
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Phillip J Robinson
- Cell Signaling Unit, Children's Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Cecilia C Russell
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
21
|
Glerup R, Svensson M, Jakobsen LH, Fellstrøm B, Jensen JD, Christensen JH. Multiplex proteomics as risk predictor of infection in patients treated with hemodialysis-A prospective multicenter study. Hemodial Int 2021; 26:191-201. [PMID: 34964538 DOI: 10.1111/hdi.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/11/2021] [Accepted: 11/30/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Severe infection is a major problem in hemodialysis patients. Multiplex proteomics might reveal novel insights into disease mechanisms increasing the risk of infection and might also be used as a risk prediction tool. The aims of this study were (1) to evaluate associations between 92 proteins assessed by a proximity extension assay and the development of severe infection in patients on hemodialysis and (2) to develop a risk prediction model for severe infection using prespecified clinical variables and proteomics. METHODS Prospective, observational multicenter cohort study with 5-year follow-up. Patients receiving in-center hemodialysis in five facilities in Denmark were included. The primary composite endpoint was death caused by infection, bacteremia, and infections requiring hospitalization of at least 2 days or prolonging a hospital stay. FINDINGS Of 331 patients included 210 patients reached the primary endpoint during follow-up. In adjusted Cox regression analyses, 14 plasma proteins were associated with severe infection. Correcting for multiple testing revealed only cathepsin-L1 and interleukin-6 significantly associated with the primary outcome. Cathepsin-L1-hazard ratio: 1.64 (95% confidence interval [CI] 1.24-2.17) and interleukin-6-hazard ratio: 1.16 (95% CI 1.05-1.29). Apparent C-statistics of the risk prediction model using clinical variables was 0.605, addition of cathepsin-L1 and interleukin-6 to the model improved discrimination slightly: C = 0.625. DISCUSSION Proteomic profiling identified cathepsin-L1 and interleukin-6 as markers for infectious risk in hemodialysis patients. Further studies are needed to replicate the results and to examine possible causality. The developed risk prediction models need considerable improvement before implementation in clinical practice is meaningful.
Collapse
Affiliation(s)
- Rie Glerup
- Department of Nephrology, Aalborg University Hospital, Aalborg, Denmark
| | - My Svensson
- Department of Renal Medicine, Akershus University Hospital, Lørenskog, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lasse H Jakobsen
- Department of Hematology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Bengt Fellstrøm
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jens D Jensen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jeppe H Christensen
- Department of Nephrology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
22
|
Lin B, Liu J, Zhang Y, Wu Y, Chen S, Bai Y, Liu Q, Qin X. Urinary peptidomics reveals proteases involved in idiopathic membranous nephropathy. BMC Genomics 2021; 22:852. [PMID: 34819020 PMCID: PMC8613922 DOI: 10.1186/s12864-021-08155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Idiopathic membranous nephropathy (IMN) is a cause of nephrotic syndrome that is increasing in incidence but has unclear pathogenesis. Urinary peptidomics is a promising technology for elucidating molecular mechanisms underlying diseases. Dysregulation of the proteolytic system is implicated in various diseases. Here, we aimed to conduct urinary peptidomics to identify IMN-related proteases. RESULTS Peptide fingerprints indicated differences in naturally produced urinary peptide components among 20 healthy individuals, 22 patients with IMN, and 15 patients with other kidney diseases. In total, 1,080 peptide-matched proteins were identified, 279 proteins differentially expressed in the urine of IMN patients were screened, and 32 proteases were predicted; 55 of the matched proteins were also differentially expressed in the kidney tissues of IMN patients, and these were mainly involved in the regulation of proteasome-, lysosome-, and actin cytoskeleton-related signaling pathways. The 32 predicted proteases showed abnormal expression in the glomeruli of IMN patients based on Gene Expression Omnibus databases. Western blot revealed abnormal expression of calpain, matrix metalloproteinase 14, and cathepsin S in kidney tissues of patients with IMN. CONCLUSIONS This work shown the calpain/matrix metalloproteinase/cathepsin axis might be dysregulated in IMN. Our study is the first to systematically explore the role of proteases in IMN by urinary peptidomics, which are expected to facilitate discovery of better biomarkers for IMN.
Collapse
Affiliation(s)
- Baoxu Lin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yue Zhang
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yabin Wu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Shixiao Chen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Yibo Bai
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Qiuying Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, 110004, Shenyang, P. R. China.
| |
Collapse
|
23
|
Hackl A, Zed SEDA, Diefenhardt P, Binz-Lotter J, Ehren R, Weber LT. The role of the immune system in idiopathic nephrotic syndrome. Mol Cell Pediatr 2021; 8:18. [PMID: 34792685 PMCID: PMC8600105 DOI: 10.1186/s40348-021-00128-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic nephrotic syndrome (INS) in children is characterized by massive proteinuria and hypoalbuminemia and usually responds well to steroids. However, relapses are frequent, which can require multi-drug therapy with deleterious long-term side effects. In the last decades, different hypotheses on molecular mechanisms underlying INS have been proposed and several lines of evidences strongly indicate a crucial role of the immune system in the pathogenesis of non-genetic INS. INS is traditionally considered a T-cell-mediated disorder triggered by a circulating factor, which causes the impairment of the glomerular filtration barrier and subsequent proteinuria. Additionally, the imbalance between Th17/Tregs as well as Th2/Th1 has been implicated in the pathomechanism of INS. Interestingly, B-cells have gained attention, since rituximab, an anti-CD20 antibody demonstrated a good therapeutic response in the treatment of INS. Finally, recent findings indicate that even podocytes can act as antigen-presenting cells under inflammatory stimuli and play a direct role in activating cellular pathways that cause proteinuria. Even though our knowledge on the underlying mechanisms of INS is still incomplete, it became clear that instead of a traditionally implicated cell subset or one particular molecule as a causative factor for INS, a multi-step control system including soluble factors, immune cells, and podocytes is necessary to prevent the occurrence of INS. This present review aims to provide an overview of the current knowledge on this topic, since advances in our understanding of the immunopathogenesis of INS may help drive new tailored therapeutic approaches forward.
Collapse
Affiliation(s)
- Agnes Hackl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany. .,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| | - Seif El Din Abo Zed
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Julia Binz-Lotter
- Department of Internal Medicine II and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Rasmus Ehren
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
24
|
Wu M, Zhang M, Zhang Y, Li Z, Li X, Liu Z, Liu H, Li X. Relationship between lysosomal dyshomeostasis and progression of diabetic kidney disease. Cell Death Dis 2021; 12:958. [PMID: 34663802 PMCID: PMC8523726 DOI: 10.1038/s41419-021-04271-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
Lysosomes are organelles involved in cell metabolism, waste degradation, and cellular material circulation. They play a key role in the maintenance of cellular physiological homeostasis. Compared with the lysosomal content of other organs, that of the kidney is abundant, and lysosomal abnormalities are associated with the occurrence and development of certain renal diseases. Lysosomal structure and function in intrinsic renal cells are impaired in diabetic kidney disease (DKD). Promoting lysosomal biosynthesis and/or restoring lysosomal function can repair damaged podocytes and proximal tubular epithelial cells, and delay the progression of DKD. Lysosomal homeostasis maintenance may be advantageous in alleviating DKD. Here, we systematically reviewed the latest advances in the relationship between lysosomal dyshomeostasis and progression of DKD based on recent literature to further elucidate the mechanism of renal injury in diabetes mellitus and to highlight the application potential of lysosomal homeostasis maintenance as a new prevention and treatment strategy for DKD. However, research on screening effective interventions for lysosomal dyshomeostasis is still in its infancy, and thus should be the focus of future research studies. The screening out of cell-specific lysosomal function regulation targets according to the different stages of DKD, so as to realize the controllable targeted regulation of cell lysosomal function during DKD, is the key to the successful clinical development of this therapeutic strategy.
Collapse
Affiliation(s)
- Man Wu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Minjie Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Yaozhi Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zixian Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xingyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zejian Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Huafeng Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| | - Xiaoyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
25
|
Sever S. Role of actin cytoskeleton in podocytes. Pediatr Nephrol 2021; 36:2607-2614. [PMID: 33188449 PMCID: PMC8116355 DOI: 10.1007/s00467-020-04812-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
The selectivity of the glomerular filter is established by physical, chemical, and signaling interplay among its three core constituents: glomerular endothelial cells, the glomerular basement membrane, and podocytes. Functional impairment or injury of any of these three components can lead to proteinuria. Podocytes are injured in many forms of human and experimental glomerular disease, including minimal change disease, focal segmental glomerulosclerosis, and diabetes mellitus. One of the earliest signs of podocyte injury is loss of their distinct structure, which is driven by dysregulated dynamics of the actin cytoskeleton. The status of the actin cytoskeleton in podocytes depends on a set of actin binding proteins, nucleators and inhibitors of actin polymerization, and regulatory GTPases. Mutations that alter protein function in each category have been implicated in glomerular diseases in humans and animal models. In addition, a growing body of studies suggest that pharmacological modifications of the actin cytoskeleton have the potential to become novel therapeutics for podocyte-dependent chronic kidney diseases. This review presents an overview of the essential proteins that establish actin cytoskeleton in podocytes and studies demonstrating the feasibility of drugging actin cytoskeleton in kidney diseases.
Collapse
Affiliation(s)
- Sanja Sever
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
26
|
Zhuang A, Yap FYT, Borg DJ, McCarthy D, Fotheringham A, Leung S, Penfold SA, Sourris KC, Coughlan MT, Schulz BL, Forbes JM. The AGE receptor, OST48 drives podocyte foot process effacement and basement membrane expansion (alters structural composition). Endocrinol Diabetes Metab 2021; 4:e00278. [PMID: 34277994 PMCID: PMC8279619 DOI: 10.1002/edm2.278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022] Open
Abstract
AIMS The accumulation of advanced glycation end products is implicated in the development and progression of diabetic kidney disease. No study has examined whether stimulating advanced glycation clearance via receptor manipulation is reno-protective in diabetes. Podocytes, which are early contributors to diabetic kidney disease and could be a target for reno-protection. MATERIALS AND METHODS To examine the effects of increased podocyte oligosaccharyltransferase-48 on kidney function, glomerular sclerosis, tubulointerstitial fibrosis and proteome (PXD011434), we generated a mouse with increased oligosaccharyltransferase-48kDa subunit abundance in podocytes driven by the podocin promoter. RESULTS Despite increased urinary clearance of advanced glycation end products, we observed a decline in renal function, significant glomerular damage including glomerulosclerosis, collagen IV deposition, glomerular basement membrane thickening and foot process effacement and tubulointerstitial fibrosis. Analysis of isolated glomeruli identified enrichment in proteins associated with collagen deposition, endoplasmic reticulum stress and oxidative stress. Ultra-resolution microscopy of podocytes revealed denudation of foot processes where there was co-localization of oligosaccharyltransferase-48kDa subunit and advanced glycation end-products. CONCLUSIONS These studies indicate that increased podocyte expression of oligosaccharyltransferase-48 kDa subunit results in glomerular endoplasmic reticulum stress and a decline in kidney function.
Collapse
Affiliation(s)
- Aowen Zhuang
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
| | | | - Danielle J. Borg
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Domenica McCarthy
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Amelia Fotheringham
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | - Sherman Leung
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
| | | | - Karly C. Sourris
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Melinda T. Coughlan
- Baker Heart and Diabetes InstituteMelbourneVicAustralia
- Department of DiabetesCentral Clinical SchoolMonash UniversityMelbourneVicAustralia
| | - Benjamin L. Schulz
- School of Chemistry and Molecular BiosciencesUniversity of QueenslandSt LuciaQldAustralia
| | - Josephine M. Forbes
- Glycation and Diabetes ComplicationsMater Research Institute – The University of QueenslandTranslational Research InstituteWoolloongabbaQldAustralia
- Faculty of MedicineUniversity of QueenslandSt LuciaQldAustralia
| |
Collapse
|
27
|
Abstract
Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general.
Collapse
|
28
|
Haddad G, Lorenzen JM, Ma H, de Haan N, Seeger H, Zaghrini C, Brandt S, Kölling M, Wegmann U, Kiss B, Pál G, Gál P, Wüthrich RP, Wuhrer M, Beck LH, Salant DJ, Lambeau G, Kistler AD. Altered glycosylation of IgG4 promotes lectin complement pathway activation in anti-PLA2R1-associated membranous nephropathy. J Clin Invest 2021; 131:140453. [PMID: 33351779 DOI: 10.1172/jci140453] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Primary membranous nephropathy (pMN) is a leading cause of nephrotic syndrome in adults. In most cases, this autoimmune kidney disease is associated with autoantibodies against the M-type phospholipase A2 receptor (PLA2R1) expressed on kidney podocytes, but the mechanisms leading to glomerular damage remain elusive. Here, we developed a cell culture model using human podocytes and found that anti-PLA2R1-positive pMN patient sera or isolated IgG4, but not IgG4-depleted sera, induced proteolysis of the 2 essential podocyte proteins synaptopodin and NEPH1 in the presence of complement, resulting in perturbations of the podocyte cytoskeleton. Specific blockade of the lectin pathway prevented degradation of synaptopodin and NEPH1. Anti-PLA2R1 IgG4 directly bound mannose-binding lectin in a glycosylation-dependent manner. In a cohort of pMN patients, we identified increased levels of galactose-deficient IgG4, which correlated with anti-PLA2R1 titers and podocyte damage induced by patient sera. Assembly of the terminal C5b-9 complement complex and activation of the complement receptors C3aR1 or C5aR1 were required to induce proteolysis of synaptopodin and NEPH1 by 2 distinct proteolytic pathways mediated by cysteine and aspartic proteinases, respectively. Together, these results demonstrated a mechanism by which aberrantly glycosylated IgG4 activated the lectin pathway and induced podocyte injury in primary membranous nephropathy.
Collapse
Affiliation(s)
- George Haddad
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Johan M Lorenzen
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Hong Ma
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Netherlands
| | - Harald Seeger
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Christelle Zaghrini
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Simone Brandt
- Institute of Pathology, University Hospital of Zurich, Switzerland
| | - Malte Kölling
- Institute of Physiology, University of Zurich, Switzerland
| | - Urs Wegmann
- Institute of Physiology, University of Zurich, Switzerland
| | - Bence Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rudolf P Wüthrich
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Netherlands
| | - Laurence H Beck
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David J Salant
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Andreas D Kistler
- Institute of Physiology, University of Zurich, Switzerland.,Division of Nephrology, University Hospital of Zurich, Switzerland.,Department of Medicine, Cantonal Hospital Frauenfeld, Switzerland
| |
Collapse
|
29
|
Abstract
The lysosome represents an important regulatory platform within numerous vesicle trafficking pathways including the endocytic, phagocytic, and autophagic pathways. Its ability to fuse with endosomes, phagosomes, and autophagosomes enables the lysosome to break down a wide range of both endogenous and exogenous cargo, including macromolecules, certain pathogens, and old or damaged organelles. Due to its center position in an intricate network of trafficking events, the lysosome has emerged as a central signaling node for sensing and orchestrating the cells metabolism and immune response, for inter-organelle and inter-cellular signaling and in membrane repair. This review highlights the current knowledge of general lysosome function and discusses these findings in their implication for renal glomerular cell types in health and disease including the involvement of glomerular cells in lysosomal storage diseases and the role of lysosomes in nongenetic glomerular injuries.
Collapse
|
30
|
Peng S, Yang Q, Li H, Pan Y, Wang J, Hu P, Zhang N. CTSB Knockdown Inhibits Proliferation and Tumorigenesis in HL-60 Cells. Int J Med Sci 2021; 18:1484-1491. [PMID: 33628106 PMCID: PMC7893552 DOI: 10.7150/ijms.54206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/04/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Cathepsin B (CTSB) was well documented in solid tumors, up-regulated of CTSB expression is linked with progression of tumors. However, the study of CTSB in adult leukemia has not been reported. Methods: Total RNA was isolated from PBMC (peripheral blood mononuclear cell) of AML patients and healthy donors. qRT-PCR was performed to detect the expression of CTSB. The association of CTSB expression with the patients' overall survival (OS) and disease-free survival (DFS) were analyzed. Stable HL-60 CTSB-shRNA cell lines were established by retrovirus infection and puromycin selection. Cell proliferation was detected by CCK-8 analysis. Tumorigenesis ability was analyzed by soft agar and xenograft nude mice model. Western blot was performed to detect the expression of CTSB and the proteins of cell signaling pathway. Results: The mRNA expression level of CTSB was up-regulated in AML patients compared to healthy control (p<0.001), and CTSB expression was significantly higher in M1, M2, M4 and M5 AML samples than healthy control. The CTSB expression in AML was associated with WBC count (p=0.037). Patients with high CTSB expression had a relatively poor OS (p=0.007) and a shorter DFS (p=0.018). Moreover, the expression level of CTSB may act as an independent prognostic factor for both OS (p=0.011) and DFS (p=0.004). Knockdown CTSB expression in HL-60 cells could inhibit the cells' proliferation and tumorigeneses in vitro and in vivo. Further study showed knockdown CTSB expression in HL-60 cells could inactive the AKT signaling pathway. Conclusions: CTSB mRNA was upregulated in AML patients. CTSB overexpression was correlated with poor prognosis and may serve as an independent prognostic factor for both OS and DFS in AML patients. Knockdown CTSB expression in HL-60 cells could inhibit the cells' proliferation and tumorigenesis. The underlying mechanism may be the inhibition of the AKT signaling pathway.
Collapse
Affiliation(s)
- Sida Peng
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.,Cell genetics laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Qingqing Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China.,Cell genetics laboratory, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510230, China
| | - Huan Li
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Yuhang Pan
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, P. R. China
| | - Jiani Wang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Pan Hu
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China
| | - Nana Zhang
- Department of Pathology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, P. R. China
| |
Collapse
|
31
|
Yang X, Jiang W, Huang M, Dai Y, Li B, Wang X, Yu Y, Shen T, Wu C, Zhu Q. Intracellular complement activation in podocytes aggravates immune kidney injury in trichloroethylene-sensitized mice. J Toxicol Sci 2020; 45:681-693. [PMID: 33132242 DOI: 10.2131/jts.45.681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Trichloroethylene (TCE) as a common organic solvent in industrial production can cause occupational medicamentosa-like dermatitis (OMDT) in some exposed workers. In addition to systemic skin damage, OMDT is also accompanied by severe kidney injury. Our previous studies show that complement (C) plays an important role in immune kidney injury caused by TCE. Specifically, C3 is mainly deposited on glomeruli. Recent studies have found that intracellular complement can be activated by cathepsin L (CTSL) and exert a series of biological effects. The purpose of this study was to explore where C3 on glomeruli comes from and what role it plays. A BALB/c mouse model of skin sensitization induced by TCE in the presence or absence of CTSL inhibitor (CTSLi,10 mg/kg). In TCE sensitization-positive mice, C3 was mainly expressed on podocytes and the expression of CTSL significantly increased in podocytes. Kidney function test and related indicators showed abnormal glomerular filtration and transmission electron microscopy revealed ultrastructure damage to podocytes. These lesions were alleviated in TCE/CTSLi positive mice. These results provide the first evidence that in TCE-induced immune kidney injury, intracellular complement in podocytes can be over-activated by CTSL and aggravates podocytes injury, thereby damaging glomerular filtration function. Intracellular complement activation and cathepsin L in podocytes may be a potential target for treating immune kidney injury induced by TCE.
Collapse
Affiliation(s)
- Xiaodong Yang
- Anhui Cancer Institute, The First Affiliated Hospital of Anhui Medical University, China.,Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Wei Jiang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Meng Huang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Yuying Dai
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Bodong Li
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Xian Wang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Yun Yu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Tong Shen
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, China
| | - Changhao Wu
- School of Biosciences and Medicine, FHMS, University of Surrey, UK
| | - Qixing Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, China.,Key Laboratory of Dermatology, Ministry of Education, China
| |
Collapse
|
32
|
La TM, Tachibana H, Li SA, Abe T, Seiriki S, Nagaoka H, Takashima E, Takeda T, Ogawa D, Makino SI, Asanuma K, Watanabe M, Tian X, Ishibe S, Sakane A, Sasaki T, Wada J, Takei K, Yamada H. Dynamin 1 is important for microtubule organization and stabilization in glomerular podocytes. FASEB J 2020; 34:16449-16463. [PMID: 33070431 DOI: 10.1096/fj.202001240rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022]
Abstract
Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; however, its physiological significance to this organ remains unknown. Here, we show that dynamin 1 is crucial for microtubule organization and stabilization in glomerular podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 1 was concentrated at microtubules at primary processes in rat podocytes. By immunofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often colocalized with microtubule bundles, which radially arranged toward periphery of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, α-tubulin showed a dispersed linear filament-like localization, and microtubule bundles were rarely observed. Furthermore, dynamin 1 depletion resulted in the formation of discontinuous, short acetylated α-tubulin fragments, and the decrease of microtubule-rich protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acetylated α-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around microtubules and cross-linked them into bundles, and increased their resistance to the disassembly-inducing reagents Ca2+ and podophyllotoxin. In addition, overexpression and depletion of dynamin 1 in MPCs increased and decreased the nocodazole resistance of microtubules, respectively. These results suggest that dynamin 1 supports the microtubule bundle formation and participates in the stabilization of microtubules.
Collapse
Affiliation(s)
- The Mon La
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiromi Tachibana
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shun-Ai Li
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Tadashi Abe
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sayaka Seiriki
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tetsuya Takeda
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Ogawa
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shin-Ichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba-shi, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba-shi, Japan
| | - Masami Watanabe
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Xuefei Tian
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
33
|
Brings S, Fleming T, Herzig S, Nawroth PP, Kopf S. Urinary cathepsin L is predictive of changes in albuminuria and correlates with glucosepane in patients with type 2 diabetes in a closed-cohort study. J Diabetes Complications 2020; 34:107648. [PMID: 32532588 DOI: 10.1016/j.jdiacomp.2020.107648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
AIMS Cathepsin D (CTSD) and L (CTSL) are lysosomal proteases which degrade and detoxify advanced glycation end product (AGE)-modified proteins which are predictive of the development of diabetic nephropathy. We aimed to quantify cathepsin levels in urine from patients with type 2 diabetes and to relate these to the amount of urinary free AGEs at baseline and with kidney function after four years of follow-up in this closed cohort study. METHODS We established and validated a LC MS/MS method for the quantification of CTSD and CTSL in urine. Patients with type 2 diabetes were screened for diabetic kidney disease and 141 patients were seen at baseline and after four years. CTSD and CTSL and free AGEs were quantified in urine by LC MS/MS at baseline in these patients. RESULTS The detection limit of CTSD and CTSL in urine was 2.4 ng/l and 19.1 ng/l, respectively. CTSD (p < 0.0001, r = 0.555) and CTSL (p < 0.0001, r = 0.608) correlated positively with albuminuria at time of recruitment. In addition levels of the proteases but not albuminuria correlated with urinary levels of the major cross-linking AGE glucosepane (CTSD: p = 0.012, r = 0.225; CTSL: p < 0.001, r = 0.376). A strong non-linear association between CTSD (r = 0.568), CTSL (r = 0.588) and change in albuminuria over four years was present. High levels of CTSL (p = 0.007, beta = -0.366) were associated with an improvement of albuminuria after four years. CONCLUSIONS A sensitive LC MS/MS assay for the quantification of CTSD and CTSL in urine was established. High CTSL baseline levels were associated with an improvement in albuminuria at follow-up. An increased excretion and thus detoxification of the free form of the pathogenic cross-linking AGE glucosepane could explain the positive predictive value of high CTSL levels on albuminuria.
Collapse
Affiliation(s)
- Sebastian Brings
- Department of internal medicine I and clinical chemistry, University Hospital Heidelberg, Heidelberg, Germany.
| | - Thomas Fleming
- Department of internal medicine I and clinical chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes and Cancer (IDC), Helmholtz Center, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center, Neuherberg, Germany
| | - Peter P Nawroth
- Department of internal medicine I and clinical chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Department of internal medicine I and clinical chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kopf
- Department of internal medicine I and clinical chemistry, University Hospital Heidelberg, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
34
|
Yadati T, Houben T, Bitorina A, Shiri-Sverdlov R. The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells 2020; 9:cells9071679. [PMID: 32668602 PMCID: PMC7407943 DOI: 10.3390/cells9071679] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cathepsins are the most abundant lysosomal proteases that are mainly found in acidic endo/lysosomal compartments where they play a vital role in intracellular protein degradation, energy metabolism, and immune responses among a host of other functions. The discovery that cathepsins are secreted and remain functionally active outside of the lysosome has caused a paradigm shift. Contemporary research has unraveled many versatile functions of cathepsins in extralysosomal locations including cytosol and extracellular space. Nevertheless, extracellular cathepsins are majorly upregulated in pathological states and are implicated in a wide range of diseases including cancer and cardiovascular diseases. Taking advantage of the differential expression of the cathepsins during pathological conditions, much research is focused on using cathepsins as diagnostic markers and therapeutic targets. A tailored therapeutic approach using selective cathepsin inhibitors is constantly emerging to be safe and efficient. Moreover, recent development of proteomic-based approaches for the identification of novel physiological substrates offers a major opportunity to understand the mechanism of cathepsin action. In this review, we summarize the available evidence regarding the role of cathepsins in health and disease, discuss their potential as biomarkers of disease progression, and shed light on the potential of extracellular cathepsin inhibitors as safe therapeutic tools.
Collapse
|
35
|
Keisuke S, Kohei M, Takuji E, Tomoki M, Yuichi M, Rina O, Tsukasa T, Mitsuru O. Role of cathepsin L in idiopathic nephrotic syndrome in children. Med Hypotheses 2020; 141:109718. [PMID: 32289645 DOI: 10.1016/j.mehy.2020.109718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 01/12/2023]
Abstract
Nephrotic syndrome (NS) is one of the most common glomerular diseases in children. Glomerular podocyte dysfunction can result in proteinuria, the presence of a large amount of protein in the urine. Podocytes are unique epithelial cells that divide into 3 separate structural and functional segments: a cell body, major processes, and foot processes. Since synaptopodin, dynamin, and actin are crucial components of the podocyte cytoskeleton, degradation of these proteins is associated with cytoskeleton instability, resulting in the development of proteinuria. Cathepsin L (CatL), a cysteine proteinase, plays a crucial role in various renal diseases. CatL expression is elevated in rats with puromycin aminonucleoside-induced nephropathy, which is used as a model of minimal change NS. In CatL-deficient mice, which do not develop proteinuria, dynamin is retained through the escape of CatL-mediated decomposition, resulting in no changes in the filtration barrier of podocytes. However, there is limited information on the roles of CatL in NS. Based on these data, CatL might play an important role in the development of proteinuria. Furthermore, identifying the functions of CatL may contribute to a better understanding of the pathogenesis of childhood-onset NS. We hypothesize that high levels of CatL can lead to cytoskeletal instability of podocytes, resulting in proteinuria in childhood-onset NS.
Collapse
Affiliation(s)
- Sugimoto Keisuke
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan.
| | - Miyazaki Kohei
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Enya Takuji
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Miyazawa Tomoki
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Morimoto Yuichi
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Oshima Rina
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| | - Takemura Tsukasa
- Department of Pediatrics, Kushimoto Municipality Hospital, Wakayama, Japan
| | - Okada Mitsuru
- Department of Pediatrics, Kindai University, Faculty of Medicine, Osaka, Japan
| |
Collapse
|
36
|
Podocyte Lysosome Dysfunction in Chronic Glomerular Diseases. Int J Mol Sci 2020; 21:ijms21051559. [PMID: 32106480 PMCID: PMC7084483 DOI: 10.3390/ijms21051559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Podocytes are visceral epithelial cells covering the outer surface of glomerular capillaries in the kidney. Blood is filtered through the slit diaphragm of podocytes to form urine. The functional and structural integrity of podocytes is essential for the normal function of the kidney. As a membrane-bound organelle, lysosomes are responsible for the degradation of molecules via hydrolytic enzymes. In addition to its degradative properties, recent studies have revealed that lysosomes may serve as a platform mediating cellular signaling in different types of cells. In the last decade, increasing evidence has revealed that the normal function of the lysosome is important for the maintenance of podocyte homeostasis. Podocytes have no ability to proliferate under most pathological conditions; therefore, lysosome-dependent autophagic flux is critical for podocyte survival. In addition, new insights into the pathogenic role of lysosome and associated signaling in podocyte injury and chronic kidney disease have recently emerged. Targeting lysosomal functions or signaling pathways are considered potential therapeutic strategies for some chronic glomerular diseases. This review briefly summarizes current evidence demonstrating the regulation of lysosomal function and signaling mechanisms as well as the canonical and noncanonical roles of podocyte lysosome dysfunction in the development of chronic glomerular diseases and associated therapeutic strategies.
Collapse
|
37
|
Dana D, Pathak SK. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Molecules 2020; 25:E698. [PMID: 32041276 PMCID: PMC7038230 DOI: 10.3390/molecules25030698] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Human cathepsin L belongs to the cathepsin family of proteolytic enzymes with primarily an endopeptidase activity. Although its primary functions were originally thought to be only of a housekeeping enzyme that degraded intracellular and endocytosed proteins in lysosome, numerous recent studies suggest that it plays many critical and specific roles in diverse cellular settings. Not surprisingly, the dysregulated function of cathepsin L has manifested itself in several human diseases, making it an attractive target for drug development. Unfortunately, several redundant and isoform-specific functions have recently emerged, adding complexities to the drug discovery process. To address this, a series of chemical biology tools have been developed that helped define cathepsin L biology with exquisite precision in specific cellular contexts. This review elaborates on the recently developed small molecule inhibitors and probes of human cathepsin L, outlining their mechanisms of action, and describing their potential utilities in dissecting unknown function.
Collapse
Affiliation(s)
- Dibyendu Dana
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| | - Sanjai K. Pathak
- Chemistry and Biochemistry Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Flushing, NY 11367, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York (CUNY), 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
38
|
Subramanian B, Chun J, Perez-Gill C, Yan P, Stillman IE, Higgs HN, Alper SL, Schlöndorff JS, Pollak MR. FSGS-Causing INF2 Mutation Impairs Cleaved INF2 N-Fragment Functions in Podocytes. J Am Soc Nephrol 2020; 31:374-391. [PMID: 31924668 DOI: 10.1681/asn.2019050443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear. METHODS We examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment. RESULTS The INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage. CONCLUSIONS INF2 is cleaved into an N-terminal DID-containing fragment and a C-terminal DAD-containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.
Collapse
Affiliation(s)
| | - Justin Chun
- Division of Nephrology, Department of Medicine, and
| | | | - Paul Yan
- Division of Nephrology, Department of Medicine, and
| | - Isaac E Stillman
- Department of Pathology, Beth Israel Deaconess Medical center, Harvard Medical School, Boston, Massachusetts
| | - Henry N Higgs
- Department of Biochemistry, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; and
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, and.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Martin R Pollak
- Division of Nephrology, Department of Medicine, and .,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
39
|
van der Vlag J, Buijsers B. Heparanase in Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:647-667. [PMID: 32274730 DOI: 10.1007/978-3-030-34521-1_26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary filtration of blood occurs in the glomerulus in the kidney. Destruction of any of the layers of the glomerular filtration barrier might result in proteinuric disease. The glomerular endothelial cells and especially its covering layer, the glycocalyx, play a pivotal role in development of albuminuria. One of the main sulfated glycosaminoglycans in the glomerular endothelial glycocalyx is heparan sulfate. The endoglycosidase heparanase degrades heparan sulfate, thereby affecting glomerular barrier function, immune reactivity and inflammation. Increased expression of glomerular heparanase correlates with loss of glomerular heparan sulfate in many glomerular diseases. Most importantly, heparanase knockout in mice prevented the development of albuminuria after induction of experimental diabetic nephropathy and experimental glomerulonephritis. Therefore, heparanase could serve as a pharmacological target for glomerular diseases. Several factors that regulate heparanase expression and activity have been identified and compounds aiming to inhibit heparanase activity are currently explored.
Collapse
Affiliation(s)
- Johan van der Vlag
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Baranca Buijsers
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Ansermet C, Centeno G, Nikolaeva S, Maillard MP, Pradervand S, Firsov D. The intrinsic circadian clock in podocytes controls glomerular filtration rate. Sci Rep 2019; 9:16089. [PMID: 31695128 PMCID: PMC6838779 DOI: 10.1038/s41598-019-52682-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/21/2019] [Indexed: 12/20/2022] Open
Abstract
Glomerular filtration rate (GFR), or the rate of primary urine formation, is the key indicator of renal function. Studies have demonstrated that GFR exhibits significant circadian rhythmicity and, that these rhythms are disrupted in a number of pathologies. Here, we tested a hypothesis that the circadian rhythm of GFR is driven by intrinsic glomerular circadian clocks. We used mice lacking the circadian clock protein BMAL1 specifically in podocytes, highly specialized glomerular cells critically involved in the process of glomerular filtration (Bmal1lox/lox/Nphs2-rtTA/LC1 or, cKO mice). Circadian transcriptome profiling performed on isolated glomeruli from control and cKO mice revealed that the circadian clock controls expression of multiple genes encoding proteins essential for normal podocyte function. Direct assessment of glomerular filtration by inulin clearance demonstrated that circadian rhythmicity in GFR was lost in cKO mice that displayed an ultradian rhythm of GFR with 12-h periodicity. The disruption of circadian rhythmicity in GFR was paralleled by significant changes in circadian patterns of urinary creatinine, sodium, potassium and water excretion and by alteration in the diurnal pattern of plasma aldosterone levels. Collectively, these results indicate that the intrinsic circadian clock in podocytes participate in circadian rhythmicity of GFR.
Collapse
Affiliation(s)
- Camille Ansermet
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Gabriel Centeno
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Svetlana Nikolaeva
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.,Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St-Petersburg, Russia
| | - Marc P Maillard
- Service of Nephrology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sylvain Pradervand
- Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland
| | - Dmitri Firsov
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
41
|
Abstract
Minimal change disease (MCD) or minimal change glomerulonephritis and focal segmental glomerulosclerosis (FSGS) are the two major causes of nephrotic syndrome in children and young adults. Both disease entities resemble each other and can sometimes only be discriminated on the basis of their clinical courses. MCD and FSGS display two classical examples that share a common pathophysiology in which the glomerular podocyte and the cytoskeleton of its foot processes play important roles. Therefore, the term "podocytopathy" was introduced for both diseases. In this article, we compare their differences and similarities, and summarized new data on pathophysiology and treatment. In adults, only a renal biopsy including electron microscopy allows for the discrimination of MCD and FSGS and other differential diagnoses. The identification of a primary or secondary form of the disease is based on the clinical course. Data from studies on the treatment are sparse; hence, treatment is still based on high-dose steroids followed by additional immunosuppressive agents. In secondary forms, treatment of the underlying disease is elementary.
Collapse
|
42
|
Choi KM, Joo MS, Cho DH, Han HJ, Kim MS, Cho MY, Jung SH, Kim DH, Park CI. Functional analysis and gene expression profiling of extracellular cathepsin Z in red sea bream, Pagrus major. FISH & SHELLFISH IMMUNOLOGY 2019; 93:208-215. [PMID: 31306760 DOI: 10.1016/j.fsi.2019.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Cathepsin Z (CTSZ) is a lysosomal cysteine protease that is known to be involved in the maintenance of homeostasis and the biological mechanisms of immune cells. In this study, we have confirmed the tissue specific expression of the cathepsin Z (PmCTSZ) gene in Pagrus major, and confirmed its biological function after producing recombinant protein using Escherichia coli (E. coli). Multiple sequence alignment analysis revealed that the active site of the cysteine proteases and three N-glycosylation sites of the deduced protein sequence were highly conserved among all of the organisms. Phylogenetic analysis revealed that PmCTSZ was included in the clusters of CTSZ and the cysteine proteases of other bony fish and is most closely related to Japanese flounder CTSZ. PmCTSZ was distributed in all of the tissues from healthy red sea bream that were used in the experiment and was most abundantly found in the spleen and gill. Analysis of mRNA expression after bacterial (Edwardsiella piscicida: E. piscicida and Streptococcus iniae: S. iniae) or viral (red seabream iridovirus: RSIV) challenge showed significant gene expression regulation in immune-related tissues, but they maintained relatively normal levels of expression. We produced recombinant PmCTSZ (rPmCTSZ) using an E. coli expression system and confirmed the biological function of extracellular rPmCTSZ in vitro. We found that bacterial proliferation was significantly inhibited by rPmCTSZ, and the leukocytes of red sea bream also induced apoptosis and viability reduction.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Myoung Sug Kim
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Sung Hee Jung
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
43
|
Rudzińska M, Parodi A, Soond SM, Vinarov AZ, Korolev DO, Morozov AO, Daglioglu C, Tutar Y, Zamyatnin AA. The Role of Cysteine Cathepsins in Cancer Progression and Drug Resistance. Int J Mol Sci 2019; 20:E3602. [PMID: 31340550 PMCID: PMC6678516 DOI: 10.3390/ijms20143602] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Cysteine cathepsins are lysosomal enzymes belonging to the papain family. Their expression is misregulated in a wide variety of tumors, and ample data prove their involvement in cancer progression, angiogenesis, metastasis, and in the occurrence of drug resistance. However, while their overexpression is usually associated with highly aggressive tumor phenotypes, their mechanistic role in cancer progression is still to be determined to develop new therapeutic strategies. In this review, we highlight the literature related to the role of the cysteine cathepsins in cancer biology, with particular emphasis on their input into tumor biology.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Andrey Z Vinarov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Dmitry O Korolev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Andrey O Morozov
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia
| | - Cenk Daglioglu
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, 35430 Urla/Izmir, Turkey
| | - Yusuf Tutar
- Faculty of Pharmacy, University of Health Sciences, 34668 Istanbul, Turkey
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
44
|
TMEM33 regulates intracellular calcium homeostasis in renal tubular epithelial cells. Nat Commun 2019; 10:2024. [PMID: 31048699 PMCID: PMC6497644 DOI: 10.1038/s41467-019-10045-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Mutations in the polycystins cause autosomal dominant polycystic kidney disease (ADPKD). Here we show that transmembrane protein 33 (TMEM33) interacts with the ion channel polycystin-2 (PC2) at the endoplasmic reticulum (ER) membrane, enhancing its opening over the whole physiological calcium range in ER liposomes fused to planar bilayers. Consequently, TMEM33 reduces intracellular calcium content in a PC2-dependent manner, impairs lysosomal calcium refilling, causes cathepsins translocation, inhibition of autophagic flux upon ER stress, as well as sensitization to apoptosis. Invalidation of TMEM33 in the mouse exerts a potent protection against renal ER stress. By contrast, TMEM33 does not influence pkd2-dependent renal cystogenesis in the zebrafish. Together, our results identify a key role for TMEM33 in the regulation of intracellular calcium homeostasis of renal proximal convoluted tubule cells and establish a causal link between TMEM33 and acute kidney injury.
Collapse
|
45
|
Plegge T, Spiegel M, Krüger N, Nehlmeier I, Winkler M, González Hernández M, Pöhlmann S. Inhibitors of signal peptide peptidase and subtilisin/kexin-isozyme 1 inhibit Ebola virus glycoprotein-driven cell entry by interfering with activity and cellular localization of endosomal cathepsins. PLoS One 2019; 14:e0214968. [PMID: 30973897 PMCID: PMC6459477 DOI: 10.1371/journal.pone.0214968] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/24/2019] [Indexed: 11/30/2022] Open
Abstract
Emerging viruses such as severe fever and thrombocytopenia syndrome virus (SFTSV) and Ebola virus (EBOV) are responsible for significant morbidity and mortality. Host cell proteases that process the glycoproteins of these viruses are potential targets for antiviral intervention. The aspartyl protease signal peptide peptidase (SPP) has recently been shown to be required for processing of the glycoprotein precursor, Gn/Gc, of Bunyamwera virus and for viral infectivity. Here, we investigated whether SPP is also required for infectivity of particles bearing SFTSV-Gn/Gc. Entry driven by the EBOV glycoprotein (GP) and the Lassa virus glycoprotein (LASV-GPC) depends on the cysteine proteases cathepsin B and L (CatB/CatL) and the serine protease subtilisin/kexin-isozyme 1 (SKI-1), respectively, and was examined in parallel for control purposes. We found that inhibition of SPP and SKI-1 did not interfere with SFTSV Gn + Gc-driven entry but, unexpectedly, blocked entry mediated by EBOV-GP. The inhibition occurred at the stage of proteolytic activation and the SPP inhibitor was found to block CatL/CatB activity. In contrast, the SKI-1 inhibitor did not interfere with CatB/CatL activity but disrupted CatB localization in endo/lysosomes, the site of EBOV-GP processing. These results underline the potential of protease inhibitors for antiviral therapy but also show that previously characterized compounds might exert broader specificity than initially appreciated and might block viral entry via diverse mechanisms.
Collapse
Affiliation(s)
- Teresa Plegge
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Martin Spiegel
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, Senftenberg, Germany
| | - Nadine Krüger
- Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Mariana González Hernández
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
46
|
Khalil R, Koop K, Kreutz R, Spaink HP, Hogendoorn PC, Bruijn JA, Baelde HJ. Increased dynamin expression precedes proteinuria in glomerular disease. J Pathol 2018; 247:177-185. [PMID: 30350425 PMCID: PMC6587474 DOI: 10.1002/path.5181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/10/2018] [Accepted: 10/10/2018] [Indexed: 11/08/2022]
Abstract
Dynamin plays an essential role in maintaining the structure and function of the glomerular filtration barrier. Specifically, dynamin regulates the actin cytoskeleton and the turnover of nephrin in podocytes, and knocking down dynamin expression causes proteinuria. Moreover, promoting dynamin oligomerization with Bis-T-23 restores podocyte function and reduces proteinuria in several animal models of chronic kidney disease. Thus, dynamin is a promising therapeutic target for treating chronic kidney disease. Here, we investigated the pathophysiological role of dynamin under proteinuric circumstances in a rat model and in humans. We found that glomerular Dnm2 and Dnm1 mRNA levels are increased prior to the onset of proteinuria in a rat model of spontaneous proteinuria. Also, in zebrafish embryos, we confirm that knocking down dynamin translation results in proteinuria. Finally, we show that the glomerular expression of dynamin and cathepsin L protein is increased in several human proteinuric kidney diseases. We propose that the increased expression of glomerular dynamin reflects an exhausted attempt to maintain and/or restore integrity of the glomerular filtration barrier. These results confirm that dynamin plays an important role in maintaining the glomerular filtration barrier, and they support the notion that dynamin is a promising therapeutic target in proteinuric kidney disease. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ramzi Khalil
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Klaas Koop
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Reinhold Kreutz
- Institute of Clinical Pharmacology and Toxicology, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Herman P Spaink
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Jan A Bruijn
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans J Baelde
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Rinschen MM, Huesgen PF, Koch RE. The podocyte protease web: uncovering the gatekeepers of glomerular disease. Am J Physiol Renal Physiol 2018; 315:F1812-F1816. [PMID: 30230368 DOI: 10.1152/ajprenal.00380.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proteases regulate glomerular physiology. The last decade has revealed a multitude of podocyte proteases that govern the glomerular response to numerous chemical, mechanical, and metabolic cues. These proteases form a protein signaling web that integrates stress stimuli and serves as a key controller of the glomerular microenvironment. Both the extracellular and intracellular proteolytic networks are perturbed in focal segmental glomerulosclerosis, as well as hypertensive and diabetic nephropathy. Accordingly, the highly intertwined podocyte protease web is an integrative part of the podocyte's damage response. Novel mass spectrometry-based technologies will help to untangle this proteolytic network: functional readouts acquired from deep podocyte proteomics, single glomerular proteomics, and degradomics have exposed unanticipated protease activity in podocytes. Future efforts should characterize the interdependency and upstream regulation of key proteases, along with their role in promoting tissue heterogeneity in glomerular diseases. These efforts will not only illuminate the machinery of podocyte proteostasis but also reveal avenues for therapeutic intervention in the podocyte protease web.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany.,Center for Mass Spectrometry and Metabolomics, The Scripps Research Institute , La Jolla, California
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics ZEA-3, Forschungszentrum Jülich, Jülich , Germany
| | - Rachelle E Koch
- Division of Graduate Medical Sciences, Boston University School of Medicine , Boston, Massachusetts
| |
Collapse
|
48
|
Empitu MA, Kadariswantiningsih IN, Aizawa M, Asanuma K. MAGI-2 and scaffold proteins in glomerulopathy. Am J Physiol Renal Physiol 2018; 315:F1336-F1344. [PMID: 30110567 DOI: 10.1152/ajprenal.00292.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In many cells and tissues, including the glomerular filtration barrier, scaffold proteins are critical in optimizing signal transduction by enhancing structural stability and functionality of their ligands. Recently, mutations in scaffold protein membrane-associated guanylate kinase inverted 2 (MAGI-2) encoding gene were identified among the etiology of steroid-resistant nephrotic syndrome. MAGI-2 interacts with core proteins of multiple pathways, such as transforming growth factor-β signaling, planar cell polarity pathway, and Wnt/β-catenin signaling in podocyte and slit diaphragm. Through the interaction with its ligand, MAGI-2 modulates the regulation of apoptosis, cytoskeletal reorganization, and glomerular development. This review aims to summarize recent findings on the role of MAGI-2 and some other scaffold proteins, such as nephrin and synaptopodin, in the underlying mechanisms of glomerulopathy.
Collapse
Affiliation(s)
- Maulana A Empitu
- Department of Nephrology, Graduate School of Medicine, Chiba University , Chiba , Japan.,Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Airlangga , Surabaya , Indonesia
| | - Ika N Kadariswantiningsih
- Department of Nephrology, Graduate School of Medicine, Chiba University , Chiba , Japan.,Department of Medical Microbiology, Faculty of Medicine, Universitas Airlangga , Surabaya , Indonesia
| | - Masashi Aizawa
- Department of Nephrology, Graduate School of Medicine, Chiba University , Chiba , Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University , Chiba , Japan
| |
Collapse
|
49
|
Kubo A, Shirato I, Hidaka T, Takagi M, Sasaki Y, Asanuma K, Ishidoh K, Suzuki Y. Expression of Cathepsin L and Its Intrinsic Inhibitors in Glomeruli of Rats With Puromycin Aminonucleoside Nephrosis. J Histochem Cytochem 2018; 66:863-877. [PMID: 30052474 DOI: 10.1369/0022155418791822] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cathepsin L, a lysosomal cysteine proteinase, may have a key role in various biological and disease processes by intracellular and extracellular degradation of proteins. We examined the levels of cathepsin L and its intrinsic inhibitors in glomeruli of rats with puromycin aminonucleoside (PAN) nephrosis. In contrast to the weak levels of cathepsin L in normal glomeruli, on days 4 and 8, strong immunostaining was detected in almost all podocytes when proteinuria and pathological changes of the podocytes developed. Cathepsin L was reduced after day 28, but remained in a focal and segmental manner. Cystatin β, an intracellular inhibitor, was not detected in podocytes. However, cystatin C, an extracellular inhibitor, was detected in podocytes after day 4, coincident with cathepsin L. Cystatin C levels were gradually reduced but sustained in many podocytes on day 28, while cystatin C was not detected in podocytes sustained cathepsin L. These results demonstrated that cathepsin L levels are not always accompanied by the levels of its inhibitors in podocytes of PAN nephrosis, suggesting a potential role of cathepsin L in podocyte injury, which is a critical process for the development and progression of tuft adhesion and sclerosis.
Collapse
Affiliation(s)
- Ayano Kubo
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | | | - Teruo Hidaka
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Miyuki Takagi
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yu Sasaki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazumi Ishidoh
- Division of Molecular Biology, Institute for Health Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
50
|
Solanki AK, Arif E, Morinelli T, Wilson RC, Hardiman G, Deng P, Arthur JM, Velez JC, Nihalani D, Janech MG, Budisavljevic MN. A Novel CLCN5 Mutation Associated With Focal Segmental Glomerulosclerosis and Podocyte Injury. Kidney Int Rep 2018; 3:1443-1453. [PMID: 30426109 PMCID: PMC6224352 DOI: 10.1016/j.ekir.2018.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/05/2018] [Accepted: 06/09/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction Tubular dysfunction is characteristic of Dent’s disease; however, focal segmental glomerulosclerosis (FSGS) can also be present. Glomerulosclerosis could be secondary to tubular injury, but it remains uncertain whether the CLCN5 gene, which encodes an endosomal chloride and/or hydrogen exchanger, plays a role in podocyte biology. Here, we implicate a role for CLCN5 in podocyte function and pathophysiology. Methods Whole exome capture and sequencing of the proband and 5 maternally-related family members was conducted to identify X-linked mutations associated with biopsy-proven FSGS. Human podocyte cultures were used to characterize the mutant phenotype on podocyte function. Results We identified a novel mutation (L521F) in CLCN5 in 2 members of a Hispanic family who presented with a histologic diagnosis of FSGS and low-molecular-weight proteinuria without hypercalciuria. Presence of CLCN5 was confirmed in cultured human podocytes. Podocytes transfected with the wild-type or the mutant (L521F) CLCN5 constructs showed differential localization. CLCN5 knockdown in podocytes resulted in defective transferrin endocytosis and was associated with decreased cell proliferation and increased cell migration, which are hallmarks of podocyte injury. Conclusions The CLCN5 mutation, which causes Dent’s disease, may be associated with FSGS without hyercalcuria and nepthrolithiasis. The present findings supported the hypothesis that CLCN5 participates in protein trafficking in podocytes and plays a critical role in organizing the components of the podocyte slit diaphragm to help maintain normal cell physiology and a functional filtration barrier. In addition to tubular dysfunction, mutations in CLCN5 may also lead to podocyte dysfunction, which results in a histologic picture of FSGS that may be a primary event and not a consequence of tubular damage.
Collapse
Affiliation(s)
- Ashish K Solanki
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ehtesham Arif
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Thomas Morinelli
- Division of Transplant Surgery, Department of Surgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary Hardiman
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.,MUSC Bioinformatics, Center for Genomics Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Peifeng Deng
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - John M Arthur
- Division of Nephrology, Department of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Juan Cq Velez
- Department of Nephrology, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| | - Deepak Nihalani
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael G Janech
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Milos N Budisavljevic
- Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, USA
| |
Collapse
|