1
|
Bulleeraz V, Goy M, Basheer F, Liongue C, Ward AC. Leukemia-associated truncation of granulocyte colony-stimulating factor receptor impacts granulopoiesis throughout the life-course. Front Immunol 2023; 13:1095453. [PMID: 36703974 PMCID: PMC9871641 DOI: 10.3389/fimmu.2022.1095453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction The granulocyte colony-stimulating factor receptor (G-CSFR), encoded by the CSF3R gene, is involved in the production and function of neutrophilic granulocytes. Somatic mutations in CSF3R leading to truncated G-CSFR forms are observed in acute myeloid leukemia (AML), particularly those subsequent to severe chronic neutropenia (SCN), as well as in a subset of patients with other leukemias. Methods This investigation introduced equivalent mutations into the zebrafish csf3r gene via genome editing and used a range of molecular and cellular techniques to understand the impact of these mutations on immune cells across the lifespan. Results Zebrafish harboring truncated G-CSFRs showed significantly enhanced neutrophil production throughout successive waves of embryonic hematopoiesis and a neutrophil maturation defect in adults, with the mutations acting in a partially dominant manner. Discussion This study has elucidated new insights into the impact of G-CSFR truncations throughout the life-course and created a bone fide zebrafish model for further investigation.
Collapse
Affiliation(s)
| | - Michelle Goy
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC, Australia,Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC, Australia,Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia,Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC, Australia,*Correspondence: Alister C. Ward,
| |
Collapse
|
2
|
Warren JT, Link DC. Impaired myelopoiesis in congenital neutropenia: insights into clonal and malignant hematopoiesis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:514-520. [PMID: 34889405 PMCID: PMC8791126 DOI: 10.1182/hematology.2021000286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A common feature of both congenital and acquired forms of bone marrow failure is an increased risk of developing acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Indeed, the development of MDS or AML is now the major cause of mortality in patients with congenital neutropenia. Thus, there is a pressing clinical need to develop better strategies to prevent, diagnose early, and treat MDS/AML in patients with congenital neutropenia and other bone marrow failure syndromes. Here, we discuss recent data characterizing clonal hematopoiesis and progression to myeloid malignancy in congenital neutropenia, focusing on severe congenital neutropenia (SCN) and Shwachman-Diamond syndrome. We summarize recent studies showing excellent outcomes after allogenic hematopoietic stem cell transplantation for many (but not all) patients with congenital neutropenia, including patients with SCN with active myeloid malignancy who underwent transplantation. Finally, we discuss how these new data inform the current clinical management of patients with congenital neutropenia.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Daniel C Link
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
3
|
Abstract
A considerable amount of continuous proliferation and differentiation is required to produce daily a billion new neutrophils in an adult human. Of the few cytokines and factors known to control neutrophil production, G-CSF is the guardian of granulopoiesis. G-CSF/CSF3R signaling involves the recruitment of non-receptor protein tyrosine kinases and their dependent signaling pathways of serine/threonine kinases, tyrosine phosphatases, and lipid second messengers. These pathways converge to activate the families of STAT and C/EBP transcription factors. CSF3R mutations are associated with human disorders of neutrophil production, including severe congenital neutropenia, neutrophilia, and myeloid malignancies. More than three decades after their identification, cloning, and characterization of G-CSF and G-CSF receptor, fundamental questions remain about their physiology.
Collapse
Affiliation(s)
- Hrishikesh M Mehta
- Departments of Cancer Biology and Pediatrics, Lerner Research Institute at the Cleveland Clinic, United States
| | - Seth J Corey
- Departments of Cancer Biology and Pediatrics, Lerner Research Institute at the Cleveland Clinic, United States.
| |
Collapse
|
4
|
Cooperating, congenital neutropenia-associated Csf3r and Runx1 mutations activate pro-inflammatory signaling and inhibit myeloid differentiation of mouse HSPCs. Ann Hematol 2020; 99:2329-2338. [PMID: 32821971 PMCID: PMC7481169 DOI: 10.1007/s00277-020-04194-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Patients with the pre-leukemia bone marrow failure syndrome called severe congenital neutropenia (CN) have an approximately 15% risk of developing acute myeloid leukemia (AML; called here CN/AML). Most CN/AML patients co-acquire CSF3R and RUNX1 mutations, which play cooperative roles in the development of AML. To establish an in vitro model of leukemogenesis, we utilized bone marrow lin- cells from transgenic C57BL/6-d715 Csf3r mice expressing a CN patient-mimicking truncated CSF3R mutation. We transduced these cells with vectors encoding RUNX1 wild type (WT) or RUNX1 mutant proteins carrying the R139G or R174L mutations. Cells transduced with these RUNX1 mutants showed diminished in vitro myeloid differentiation and elevated replating capacity, compared with those expressing WT RUNX1. mRNA expression analysis showed that cells transduced with the RUNX1 mutants exhibited hyperactivation of inflammatory signaling and innate immunity pathways, including IL-6, TLR, NF-kappaB, IFN, and TREM1 signaling. These data suggest that the expression of mutated RUNX1 in a CSF3R-mutated background may activate the pro-inflammatory cell state and inhibit myeloid differentiation.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The development of a myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) in patients with congenital neutropenia is now the major cause of mortality. Treatment options are limited and there are no effective prevention strategies. This review focuses on mechanisms of leukemic transformation in severe congenital neutropenia (SCN) and Shwachman-Diamond syndrome (SDS), the two most common types of congenital neutropenia. RECENT FINDINGS AML/MDS that develops in the setting of congenital neutropenia has distinct molecular features. Clonal hematopoiesis because of TP53 mutations is seen in nearly 50% of patients with SDS, but is not seen in patients with SCN. Accordingly, there is a very high frequency of TP53 mutations in AML/MDS arising in the setting of SDS but not SCN. The rate of mutation accumulation in hematopoietic stem cells (HSCs) from patients with congenital neutropenia is not increased. SUMMARY Both HSC cell-intrinsic and noncell-intrinsic changes contribute to the development of clonal hematopoiesis in congenital neutropenia and likely accounts for the high rate of leukemic transformation. In SCN, the persistently high levels of granulocyte colony-stimulating factor drive expansion of HSCs carrying truncation mutations of CSF3R. In SDS, impaired ribosome biogenesis induces p53-mediated growth inhibition and drives expansion of HSCs carrying TP53 mutations.
Collapse
|
6
|
Elliott MA, Tefferi A. Chronic neutrophilic leukemia: 2018 update on diagnosis, molecular genetics and management. Am J Hematol 2018; 93:578-587. [PMID: 29512199 DOI: 10.1002/ajh.24983] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
DISEASE OVERVIEW AND DIAGNOSIS Chronic neutrophilic leukemia (CNL) is a potentially aggressive myeloproliferative neoplasm, for which current WHO diagnostic criteria include leukocytosis of ≥ 25 x 109 /L of which ≥ 80% are neutrophils, with < 10% circulating neutrophil precursors with blasts rarely observed. In addition, there is no dysplasia, nor clinical or molecular criteria for other myeloproliferative neoplasms. UPDATE ON DIAGNOSIS Previously the diagnosis of CNL was often as one of exclusion based on no identifiable cause for physiologic neutrophilia in patients fulfilling the aforementioned criteria. The 2016 WHO classification now recognizes somatic activating mutations of CSF3R (most commonly CSF3RT618I) as diagnostic, allowing for an accurate diagnosis for the majority of suspected cases through molecular testing. These mutations are primary driver mutations, accounting for the characteristic clinical phenotype and potential susceptibility to molecularly targeted therapy. RISK STRATIFICATION Concurrent mutations, common to myeloid neoplasms and their precursor states, most frequently in SETBP1 and ASXL1, are frequent and appear to be of prognostic significance. Although data are evolving on the full genomic profile, the rarity of CNL has delayed complete understanding of its full molecular pathogenesis and individual patient prognosis.
Collapse
Affiliation(s)
- Michelle A. Elliott
- Department of Internal Medicine, Division of Hematology; Mayo Clinic College of Medicine, 200 First St. SW; Rochester Minnesota 55905
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology; Mayo Clinic College of Medicine, 200 First St. SW; Rochester Minnesota 55905
| |
Collapse
|
7
|
Zhang Y, Wang F, Chen X, Zhang Y, Wang M, Liu H, Cao P, Ma X, Wang T, Zhang J, Zhang X, Lu P, Liu H. CSF3R Mutations are frequently associated with abnormalities of RUNX1, CBFB, CEBPA, and NPM1 genes in acute myeloid leukemia. Cancer 2018; 124:3329-3338. [PMID: 29932212 DOI: 10.1002/cncr.31586] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Mutations in the colony-stimulating factor 3 receptor (CSF3R) gene occur frequently in chronic neutrophilic leukemia and are rare in de novo acute leukemia. The objective of this study was to assess the incidence of CSF3R mutations in acute leukemia and their association with other genetic abnormalities. METHODS Amplicon-targeted, next-generation sequencing of 58 genes was performed retrospectively on 1152 patients (acute myeloid leukemia [AML], n = 587; acute lymphoid leukemia [ALL], n = 565). Reverse transcriptase-polymerase chain reaction analysis was used to detect 35 leukemia-specific gene fusions. RESULTS CSF3R mutations (26 patients) were detected in 3.6% (13 of 364 patients), 4.6% (8 of 175 patients), and 8.3% (4 of 48 patients) of those with de novo, relapsed, and secondary AML, respectively, and in 0.2% (1 of 565 patients) of those with ALL. In total, 9 distinct CSF3R mutations were detected. Membrane-proximal missense mutations and cytoplasmic truncations were identified as mutually exclusive. The proportion of patients who had French-American-British subtypes M2 and M4 in the CSF3R-mutated group was significantly greater than that in the CSF3R wild-type group for both the de novo AML cohort (P = .001) and the relapsed AML cohort (P = .024). All de novo and relapsed AMLs with CSF3R mutations were associated with genetic alterations in transcription factors, including RUNX1-RUNX1T1, CBFB-MYH11, double-mutated CCAAT/enhancer binding protein α (CEBPAdm), and NPM1 mutations; and core-binding factor gene abnormalities and CEBPAdm accounted for 90.5% (19 of 21 patients). CONCLUSIONS CSF3R mutations are uncommon in AML; however, when they occur, they are often associated with core-binding factor gene abnormalities and CEBPAdm. An in-depth understanding of the interaction between these genetic alterations could facilitate a clearer understanding of the role of CSF3R mutations in AML development and may be used for disease classification, prognosis, and the development of targeted therapy.
Collapse
Affiliation(s)
- Yang Zhang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Fang Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xue Chen
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yu Zhang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Mingyu Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Hong Liu
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Panxiang Cao
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xiaoli Ma
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Tong Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jianping Zhang
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xian Zhang
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Peihua Lu
- International Medical Center, Hebei Yanda Lu Daopei Hospital, Langfang, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Hongxing Liu
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| |
Collapse
|
8
|
Corey SJ, Oyarbide U. New monogenic disorders identify more pathways to neutropenia: from the clinic to next-generation sequencing. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:172-180. [PMID: 29222253 PMCID: PMC5912212 DOI: 10.1182/asheducation-2017.1.172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Neutrophils are the most common type of leukocyte in human circulating blood and constitute one of the chief mediators for innate immunity. Defined as a reduction from a normal distribution of values, neutropenia results from a number of congenital and acquired conditions. Neutropenia may be insignificant, temporary, or associated with a chronic condition with or without a vulnerability to life-threatening infections. As an inherited bone marrow failure syndrome, neutropenia may be associated with transformation to myeloid malignancy. Recognition of an inherited bone marrow failure syndrome may be delayed into adulthood. The list of monogenic neutropenia disorders is growing, heterogeneous, and bewildering. Furthermore, greater knowledge of immune-mediated and drug-related causes makes the diagnosis and management of neutropenia challenging. Recognition of syndromic presentations and especially the introduction of next-generation sequencing are improving the accuracy and expediency of diagnosis as well as their clinical management. Furthermore, identification of monogenic neutropenia disorders is shedding light on the molecular mechanisms of granulopoiesis and myeloid malignancies.
Collapse
Affiliation(s)
- Seth J Corey
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| | - Usua Oyarbide
- Department of Pediatrics, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
9
|
Kesarwani M, Kincaid Z, Azam M. MEK/ERK addiction in CNL/aCML. Oncotarget 2017; 8:99215-99216. [PMID: 29245892 PMCID: PMC5725083 DOI: 10.18632/oncotarget.22283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Meenu Kesarwani
- Mohammad Azam: Division of Experimental Hematology and Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Zachary Kincaid
- Mohammad Azam: Division of Experimental Hematology and Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mohammad Azam
- Mohammad Azam: Division of Experimental Hematology and Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Somatic mutations and clonal hematopoiesis in congenital neutropenia. Blood 2017; 131:408-416. [PMID: 29092827 DOI: 10.1182/blood-2017-08-801985] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/21/2017] [Indexed: 12/28/2022] Open
Abstract
Severe congenital neutropenia (SCN) and Shwachman-Diamond syndrome (SDS) are congenital neutropenia syndromes with a high rate of leukemic transformation. Hematopoietic stressors may contribute to leukemic transformation by increasing the mutation rate in hematopoietic stem/progenitor cells (HSPCs) and/or by promoting clonal hematopoiesis. We sequenced the exome of individual hematopoietic colonies derived from 13 patients with congenital neutropenia to measure total mutation burden and performed error-corrected sequencing on a panel of 46 genes on 80 patients with congenital neutropenia to assess for clonal hematopoiesis. An average of 3.6 ± 1.2 somatic mutations per exome was identified in HSPCs from patients with SCN compared with 3.9 ± 0.4 for healthy controls (P = NS). Clonal hematopoiesis due to mutations in TP53 was present in 48% (13/27) of patients with SDS but was not seen in healthy controls (0/17, P < .001) or patients with SCN (0/40, P < .001). Our SDS cohort was young (median age 6.3 years), and many of the patients had multiple TP53 mutations. Conversely, clonal hematopoiesis due to mutations of CSF3R was present in patients with SCN but was not detected in healthy controls or patients with SDS. These data show that hematopoietic stress, including granulocyte colony-stimulating factor, do not increase the mutation burden in HSPCs in congenital neutropenia. Rather, distinct hematopoietic stressors result in the selective expansion of HSPCs carrying specific gene mutations. In particular, in SDS there is enormous selective pressure to expand TP53-mutated HSPCs, suggesting that acquisition of TP53 mutations is an early, likely initiating event, in the transformation to myelodysplastic syndrome/acute myeloid leukemia in patients with SDS.
Collapse
|
11
|
Dwivedi P, Greis KD. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. Exp Hematol 2017; 46:9-20. [PMID: 27789332 PMCID: PMC5241233 DOI: 10.1016/j.exphem.2016.10.008] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023]
Abstract
Granulocyte colony-stimulating factor is a hematopoietic cytokine that stimulates neutrophil production and hematopoietic stem cell mobilization by initiating the dimerization of homodimeric granulocyte colony-stimulating factor receptor. Different mutations of CSF3R have been linked to a unique spectrum of myeloid disorders and related malignancies. Myeloid disorders caused by the CSF3R mutations include severe congenital neutropenia, chronic neutrophilic leukemia, and atypical chronic myeloid leukemia. In this review, we provide an analysis of granulocyte colony-stimulating factor receptor, various mutations, and their roles in the severe congenital neutropenia, chronic neutrophilic leukemia, and malignant transformation, as well as the clinical implications and some perspective on approaches that could expand our knowledge with respect to the normal signaling mechanisms and those associated with mutations in the receptor.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Congenital Bone Marrow Failure Syndromes
- Genetic Predisposition to Disease
- Humans
- Janus Kinases/metabolism
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Neutrophilic, Chronic/etiology
- Leukemia, Neutrophilic, Chronic/metabolism
- MAP Kinase Signaling System
- Mutation
- Neutropenia/congenital
- Neutropenia/etiology
- Neutropenia/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Receptors, Granulocyte Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte Colony-Stimulating Factor/genetics
- Receptors, Granulocyte Colony-Stimulating Factor/metabolism
- STAT Transcription Factors/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Pankaj Dwivedi
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Kenneth D Greis
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH.
| |
Collapse
|
12
|
Qiu Y, Zhang Y, Hu N, Dong F. A Truncated Granulocyte Colony-stimulating Factor Receptor (G-CSFR) Inhibits Apoptosis Induced by Neutrophil Elastase G185R Mutant: IMPLICATION FOR UNDERSTANDING CSF3R GENE MUTATIONS IN SEVERE CONGENITAL NEUTROPENIA. J Biol Chem 2017; 292:3496-3505. [PMID: 28073911 DOI: 10.1074/jbc.m116.755157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
Mutations in ELANE encoding neutrophil elastase (NE) have been identified in the majority of patients with severe congenital neutropenia (SCN). The NE mutants have been shown to activate unfolded protein response and induce premature apoptosis in myeloid cells. Patients with SCN are predisposed to acute myeloid leukemia (AML), and progression from SCN to AML is accompanied by mutations in CSF3R encoding the granulocyte colony-stimulating factor receptor (G-CSFR) in ∼80% of patients. The mutations result in the expression of C-terminally truncated G-CSFRs that promote strong cell proliferation and survival. It is unknown why the CSF3R mutations, which are rare in de novo AML, are so prevalent in SCN/AML. We show here that a G-CSFR mutant, d715, derived from an SCN patient inhibited G-CSF-induced expression of NE in a dominant negative manner. Furthermore, G-CSFR d715 suppressed unfolded protein response and apoptosis induced by an SCN-derived NE mutant, which was associated with sustained activation of AKT and STAT5, and augmented expression of BCL-XL. Thus, the truncated G-CSFRs associated with SCN/AML may protect myeloid precursor cells from apoptosis induced by the NE mutants. We propose that acquisition of CSF3R mutations may represent a mechanism by which myeloid precursor cells carrying the ELANE mutations evade the proapoptotic activity of the NE mutants in SCN patients.
Collapse
Affiliation(s)
- Yaling Qiu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Yangyang Zhang
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Nan Hu
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Fan Dong
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606.
| |
Collapse
|
13
|
Enhanced MAPK signaling is essential for CSF3R-induced leukemia. Leukemia 2016; 31:1770-1778. [PMID: 28031554 PMCID: PMC5537052 DOI: 10.1038/leu.2016.376] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 01/10/2023]
Abstract
Both membrane-proximal and truncation mutations in CSF3R have recently been reported to drive the onset of chronic neutrophilic leukemia (CNL). Here we show that although truncation mutation alone can not induce leukemia, both proximal and compound mutations (proximal and truncation mutations on same allele) are leukemogenic with a disease latency of 90 and 23 days, respectively. Comparative whole-genome expression profiling and biochemical experiments revealed that induced expression of Mapk adaptor protein Ksr1 and enhanced Mapk signaling are crucial to leukemogenesis by CSF3R proximal and compound mutants. Moreover, inhibition of Mek1/2 by trametinib alone is sufficient to suppress leukemia induced by both CSF3R proximal and ruxolitinib-resistant compound mutations. Together, these findings elucidate a Mapk-dependent mechanism of CSF3R-induced pathogenesis, and they establish the rationale for clinical evaluation of MEK1/2 inhibition in CNL.
Collapse
|
14
|
Touw IP. Game of clones: the genomic evolution of severe congenital neutropenia. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2015; 2015:1-7. [PMID: 26637693 DOI: 10.1182/asheducation-2015.1.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Severe congenital neutropenia (SCN) is a genetically heterogeneous condition of bone marrow failure usually diagnosed in early childhood and characterized by a chronic and severe shortage of neutrophils. It is now well-established that mutations in HAX1 and ELANE (and more rarely in other genes) are the genetic cause of SCN. In contrast, it has remained unclear how these mutations affect neutrophil development. Innovative models based on induced pluripotent stem cell technology are being explored to address this issue. These days, most SCN patients receive life-long treatment with granulocyte colony-stimulating factor (G-CSF, CSF3). CSF3 therapy has greatly improved the life expectancy of SCN patients, but also unveiled a high frequency of progression toward myelodysplastic syndrome (MDS) and therapy refractory acute myeloid leukemia (AML). Expansion of hematopoietic clones with acquired mutations in the gene encoding the G-CSF receptor (CSF3R) is regularly seen in SCN patients and AML usually descends from one of these CSF3R mutant clones. These findings raised the questions how CSF3R mutations affect CSF3 responses of myeloid progenitors, how they contribute to the pre-leukemic state of SCN, and which additional events are responsible for progression to leukemia. The vast (sub)clonal heterogeneity of AML and the presence of AML-associated mutations in normally aged hematopoietic clones make it often difficult to determine which mutations are responsible for the leukemic process. Leukemia predisposition syndromes such as SCN are unique disease models to identify the sequential acquisition of these mutations and to interrogate how they contribute to clonal selection and leukemic evolution.
Collapse
Affiliation(s)
- Ivo P Touw
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Touw IP, Beekman R. Severe congenital neutropenia and chronic neutrophilic leukemia: an intriguing molecular connection unveiled by oncogenic mutations in CSF3R. Haematologica 2014; 98:1490-2. [PMID: 24091926 DOI: 10.3324/haematol.2013.090571] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
16
|
Liongue C, Ward AC. Granulocyte colony-stimulating factor receptor mutations in myeloid malignancy. Front Oncol 2014; 4:93. [PMID: 24822171 PMCID: PMC4013473 DOI: 10.3389/fonc.2014.00093] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022] Open
Abstract
Granulocyte colony-stimulating factor is a cytokine able to stimulate both myelopoiesis and hematopoietic stem cell mobilization, which has seen it used extensively in the clinic to aid hematopoietic recovery. It acts specifically via the homodimeric granulocyte colony-stimulating factor receptor (G-CSFR), which is principally expressed on the surface of myeloid and hematopoietic progenitor cells. A number of pathogenic mutations have now been identified in CSF3R, the gene encoding G-CSFR. These fall into distinct classes, each of which is associated with a particular spectrum of myeloid disorders, including malignancy. This review details the various CSF3R mutations, their mechanisms of action, and contribution to disease, as well as discussing the clinical implications of such mutations.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University , Geelong, VIC , Australia ; Strategic Research Centre in Molecular and Medical Research, Deakin University , Geelong, VIC , Australia
| | - Alister Curtis Ward
- School of Medicine, Deakin University , Geelong, VIC , Australia ; Strategic Research Centre in Molecular and Medical Research, Deakin University , Geelong, VIC , Australia
| |
Collapse
|
17
|
Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 2014; 123:2229-37. [DOI: 10.1182/blood-2013-11-538025] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Key Points
CN/AML patients have a high frequency of CSF3R and RUNX1 mutations. CSF3R and RUNX1 mutations induce elevated proliferation of CD34+ cells.
Collapse
|
18
|
Souza LR, Silva E, Calloway E, Cabrera C, McLemore ML. G-CSF activation of AKT is not sufficient to prolong neutrophil survival. J Leukoc Biol 2013; 93:883-93. [PMID: 23559492 DOI: 10.1189/jlb.1211591] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neutrophils play an important role in the innate immune response against bacterial and fungal infections. They have a short lifespan in circulation, and their survival can be modulated by several cytokines, including G-CSF. Previous studies have implicated AKT as a critical signaling intermediary in the regulation of neutrophil survival. Our results demonstrate that G-CSF activation of AKT is not sufficient to prolong neutrophil survival. Neutrophils treated with G-CSF undergo apoptosis, even in the presence of high levels of p-AKT. In addition, inhibitors of AKT and downstream targets failed to alter neutrophil survival. In contrast, neutrophil precursors appear to be dependent on AKT signaling pathways for survival, whereas high levels of p-AKT inhibit proliferation. Our data suggest that the AKT/mTOR pathway, although important in G-CSF-driven myeloid differentiation, proliferation, and survival of early hematopoietic progenitors, is less essential in G-CSF suppression of neutrophil apoptosis. Whereas basal AKT levels may be required for the brief life of neutrophils, further p-AKT expression is not able to extend the neutrophil lifespan in the presence of G-CSF.
Collapse
Affiliation(s)
- Liliana R Souza
- Winship Cancer Institute, Department of Hematology and Oncology, Emory University, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
19
|
Touw IP, Palande K, Beekman R. Granulocyte colony-stimulating factor receptor signaling: implications for G-CSF responses and leukemic progression in severe congenital neutropenia. Hematol Oncol Clin North Am 2012; 27:61-73, viii. [PMID: 23351988 DOI: 10.1016/j.hoc.2012.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Following activation by their cognate ligands, cytokine receptors undergo intracellular routing toward lysosomes, where they are degraded. This review focuses on the signaling function of the G-CSFR in relation to the dynamics of endosomal routing of the G-CSFR. Mechanisms involving receptor lysine ubiquitination and redox-controlled phosphatase activities are discussed. Specific attention is paid to the consequences of G-CSFR mutations, acquired in patients with severe congenital neutropenias who receive G-CSF therapy, particularly in the context of leukemic transformation, a major clinical complication of the disease.
Collapse
Affiliation(s)
- Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Dr Molewaterplein 50 3015 GE, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
20
|
Sequential gain of mutations in severe congenital neutropenia progressing to acute myeloid leukemia. Blood 2012; 119:5071-7. [PMID: 22371884 DOI: 10.1182/blood-2012-01-406116] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Severe congenital neutropenia (SCN) is a BM failure syndrome with a high risk of progression to acute myeloid leukemia (AML). The underlying genetic changes involved in SCN evolution to AML are largely unknown. We obtained serial hematopoietic samples from an SCN patient who developed AML 17 years after the initiation of G-CSF treatment. Next- generation sequencing was performed to identify mutations during disease progression. In the AML phase, we found 12 acquired nonsynonymous mutations. Three of these, in CSF3R, LLGL2, and ZC3H18, co-occurred in a subpopulation of progenitor cells already in the early SCN phase. This population expanded over time, whereas clones harboring only CSF3R mutations disappeared from the BM. The other 9 mutations were only apparent in the AML cells and affected known AML-associated genes (RUNX1 and ASXL1) and chromatin remodelers (SUZ12 and EP300). In addition, a novel CSF3R mutation that conferred autonomous proliferation to myeloid progenitors was found. We conclude that progression from SCN to AML is a multistep process, with distinct mutations arising early during the SCN phase and others later in AML development. The sequential gain of 2 CSF3R mutations implicates abnormal G-CSF signaling as a driver of leukemic transformation in this case of SCN.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cell transplantation (HCT) is the only curative option for patients with severe congenital neutropenia (SCN). Transplant success is dependent on identifying at-risk patients and proceeding to transplant before the development of severe infections or malignant transformation. This review focuses on recent advancements in risk stratification of SCN patients, indications for HCT, and review of published transplant studies. RECENT FINDINGS Patients with poor neutrophil response despite high doses of granulocyte colony-stimulating factor (G-CSF) are at greatest risk for malignant transformation. Other studies demonstrate elevated risk with mutations in the G-CSF receptor gene and a specific mutation in the ELANE gene. These patients are at high-risk of sepsis or leukemia development and should proceed to transplant with best available donor. As recent published studies demonstrate, HCT is highly successful in patients without leukemia and, therefore, may be considered in selected low-risk patients given the life-long risk of malignancy and infection. SUMMARY The decision whether to proceed to HCT in healthy patients maintained on G-CSF is difficult. As transplant-related mortality continues to decrease, the role of transplant in SCN is likely to expand to more patients.
Collapse
|
22
|
Avalos BR, Lazaryan A, Copelan EA. Can G-CSF Cause Leukemia in Hematopoietic Stem Cell Donors? Biol Blood Marrow Transplant 2011; 17:1739-46. [DOI: 10.1016/j.bbmt.2011.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/05/2011] [Indexed: 11/27/2022]
|
23
|
Kunter G, Woloszynek JR, Link DC. A truncation mutant of Csf3r cooperates with PML-RARα to induce acute myeloid leukemia in mice. Exp Hematol 2011; 39:1136-43. [PMID: 21911095 DOI: 10.1016/j.exphem.2011.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 11/26/2022]
Abstract
Severe congenital neutropenia is associated with a marked propensity to develop myelodysplasia or acute myeloid leukemia (AML). Truncation mutations of CSF3R, encoding the granulocyte colony-stimulating factor receptor (G-CSFR), are associated with development of myelodysplasia/AML in severe congenital neutropenia. However, a causal relationship between CSF3R mutations and leukemic transformation has not been established. Herein, we show that truncated G-CSFR cooperates with the PML-RARα oncogene to induce AML in mice. Expression of truncated G-CSFR significantly shortens the latency of AML in a G-CSF-dependent fashion and it is associated with a distinct AML presentation characterized by higher blast counts and more severe myelosuppression. Basal and G-CSF-induced signal transducer and activator of transcription 3, signal transducer and activator of transcription 5, and extracellular signal-regulated kinase 1/2 phosphorylation were highly variable but similar in leukemic blasts expressing wild-type and truncated G-CSFR. These data provide new evidence suggesting a causative role for CSF3R mutations in human AML.
Collapse
Affiliation(s)
- Ghada Kunter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Mo., USA
| | | | | |
Collapse
|
24
|
Carlsson G, Winiarski J, Ljungman P, Ringdén O, Mattsson J, Nordenskjöld M, Touw I, Henter JI, Palmblad J, Fadeel B, Hägglund H. Hematopoietic stem cell transplantation in severe congenital neutropenia. Pediatr Blood Cancer 2011; 56:444-51. [PMID: 21072829 DOI: 10.1002/pbc.22836] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Severe congenital neutropenia (SCN) is an immunodeficiency characterized by disturbed myelopoiesis and an absolute neutrophil count (ANC) <0.5 × 10(9)/L. SCN is also a premalignant condition; a significant proportion of patients develop myelodysplastic syndrome or leukemia (MDS/L). Allogeneic hematopoietic stem cell transplantation (HSCT) is the only curative treatment for SCN. PROCEDURE Since 2004, eight HSCT have been performed in seven patients at our center. The indications were transformation to MDS/L (n = 2), granulocyte colony-stimulating factor receptor (CSF3R) mutation(s) (n = 2), granulocyte colony-stimulating factor (G-CSF) resistance (n = 2), and at the patient's own request (n = 1). RESULTS The mean age at transplantation was 13 years (2.8-28 years) (mean follow-up 32 months, range 21-60). Three patients harbored ELANE mutations, three HAX1 mutations, and in one patient no causative mutation was identified. Two of the ELANE mutations were novel mutations. Three patients initially received myeloablative conditioning and four had reduced intensity conditioning (RIC). Three grafts were from HLA-identical siblings, three from matched unrelated donors and two were cord blood units. Engraftment occurred in all patients. Two of seven (29%) patients died; both had MDS/L and both were among the three that underwent myeloablative conditioning. One patient has chronic GVHD 2 years post-transplant. CONCLUSIONS The role of HSCT should be explored further in patients with SCN. In particular, the influence of the conditioning regime needs to be evaluated in a larger cohort of patients.
Collapse
Affiliation(s)
- G Carlsson
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Granulocyte colony-stimulating factor (G-CSF) has been used in the clinic for more than 2 decades to treat congenital and acquired neutropenias and to reduce febrile neutropenia before or during courses of intensive cytoreductive therapy. In addition, healthy stem cell donors receive short-term treatment with G-CSF for mobilization of hematopoietic stem cells. G-CSF has also been applied in priming strategies designed to enhance the sensitivity of leukemia stem cells to cytotoxic agents, in protocols aimed to induce their differentiation and accompanying growth arrest and cell death, and in severe aplastic anemia and myelodysplastic syndrome (MDS) to alleviate anemia. The potential adverse effects of G-CSF administration, particularly the risk of malignant transformation, have fueled ongoing debates, some of which can only be settled in follow-up studies extending over several decades. This specifically applies to children with severe congenital neutropenia who receive lifelong treatment with G-CSF and in which the high susceptibility to develop MDS and acute myeloid leukemia (AML) has now become a major clinical concern. Here, we will highlight some of the controversies and challenges regarding the clinical application of G-CSF and discuss a possible role of G-CSF in malignant transformation, particularly in patients with neutropenia harboring mutations in the gene encoding the G-CSF receptor.
Collapse
|
26
|
Piper MG, Massullo PR, Loveland M, Druhan LJ, Kindwall-Keller TL, Ai J, Copelan A, Avalos BR. Neutrophil elastase downmodulates native G-CSFR expression and granulocyte-macrophage colony formation. JOURNAL OF INFLAMMATION-LONDON 2010; 7:5. [PMID: 20205821 PMCID: PMC2824667 DOI: 10.1186/1476-9255-7-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 01/21/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND The granulocyte colony-stimulating factor receptor (G-CSFR) plays a critical role in maintaining homeostatic levels of circulating neutrophils (PMN). The mechanisms modulating G-CSFR surface expression to prevent chronic neutrophilia are poorly understood. Here, we report that neutrophil elastase (NE) proteolytically cleaves the G-CSFR on human PMN and blocks G-CSFR-mediated granulopoiesis in vitro. METHODS Human peripheral blood PMN isolated from healthy donors were incubated with NE. Expression of the G-CSFR was analyzed by flow cytometry and western blot analyses. Detection of G-CSFR cleavage products from the culture supernatants was also performed. Human bone marrow mononuclear cells were also cultured in the presence or absence of NE to determine its effects on the proliferation of granulocyte-macrophage colony forming units (CFU-GM). RESULTS Treatment of PMN with NE induced a time-dependent decrease in G-CSFR expression that correlated with its degradation and the appearance of proteolytic cleavage fragments in conditioned media. Immunoblot analysis confirmed the G-CSFR was cleaved at its amino-terminus. Treatment of progenitor cells with NE prior to culture inhibited the growth of granulocyte-macrophage colony forming units. CONCLUSIONS These findings indicate that in addition to transcriptional controls and ligand-induced internalization, direct proteolytic cleavage of the G-CSFR by NE also downregulates G-CSFR expression and inhibits G-CSFR-mediated granulopoiesis in vitro. Our results suggest that NE negatively regulates granulopoiesis through a novel negative feedback loop.
Collapse
Affiliation(s)
- Melissa G Piper
- The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, 43210, OH, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Plo I, Zhang Y, Le Couédic JP, Nakatake M, Boulet JM, Itaya M, Smith SO, Debili N, Constantinescu SN, Vainchenker W, Louache F, de Botton S. An activating mutation in the CSF3R gene induces a hereditary chronic neutrophilia. ACTA ACUST UNITED AC 2009; 206:1701-7. [PMID: 19620628 PMCID: PMC2722170 DOI: 10.1084/jem.20090693] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We identify an autosomal mutation in the CSF3R gene in a family with a chronic neutrophilia. This T617N mutation energetically favors dimerization of the granulocyte colony-stimulating factor (G-CSF) receptor transmembrane domain, and thus, strongly promotes constitutive activation of the receptor and hypersensitivity to G-CSF for proliferation and differentiation, which ultimately leads to chronic neutrophilia. Mutant hematopoietic stem cells yield a myeloproliferative-like disorder in xenotransplantation and syngenic mouse bone marrow engraftment assays. The survey of 12 affected individuals during three generations indicates that only one patient had a myelodysplastic syndrome. Our data thus indicate that mutations in the CSF3R gene can be responsible for hereditary neutrophilia mimicking a myeloproliferative disorder.
Collapse
Affiliation(s)
- Isabelle Plo
- Research Laboratory on Hematopoiesis and Normal and Leukemic Stem Cells, U790, Institut National de la Santé et de la Recherche Médicale, 94805 Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Congenital neutropenia (CN) is a genetically heterogeneous bone marrow failure syndrome characterized by a maturation arrest of myelopoiesis at the level of the promyelocyte/myelocyte stage with peripheral blood absolute neutrophil counts below 0.5 x 10(9)/L. From early infancy patients who have CN suffer from bacterial infections. Leukemias occur in both the autosomal dominant and recessive subtypes of CN. The individual risk for each genetic subtype needs to be evaluated further, because the number of patients tested for the underlying genetic defect is still limited. Acquired G-CSFR (CSF3R) mutations are detected in approximately 80% of patients who had CN and who developed acute myeloid leukemia, suggesting that these mutations are involved in leukemogenesis.
Collapse
Affiliation(s)
- Karl Welte
- Department of Molecular Hematopoiesis, Kinderklinik, Medizinische Hochschule Hannover, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| | | |
Collapse
|
29
|
Pharmacologic rationale for early G-CSF prophylaxis in cancer patients and role of pharmacogenetics in treatment optimization. Crit Rev Oncol Hematol 2008; 72:21-44. [PMID: 19111474 DOI: 10.1016/j.critrevonc.2008.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 10/14/2008] [Accepted: 10/22/2008] [Indexed: 11/22/2022] Open
Abstract
The use of recombinant human granulocyte colony stimulating factors (G-CSF) has become an integral part of supportive care during cytotoxic chemotherapy. Current guidelines recommend the use of G-CSF in patients with substantial risk of febrile neutropenia. However, little consensus exists about optimal timing and tailoring of this therapy. Based on the known effects of chemotherapy and G-CSF on bone marrow compartments, we propose a model that supports the prophylactic rather than therapeutic use of G-CSF therapy. In addition, several genetic alterations in G-CSF signalling pathway have been described. These genetic variants may predict the risk of febrile neutropenia and response to G-CSF. Thus, future pharmacogenetic/omics studies in this field are warranted. Through the identification of patients at risk and the knowledge of biological basis for optimal timing, hopefully we should soon be able to improve the application of the existing guidelines for G-CSF therapy and patient's prognosis.
Collapse
|
30
|
Zeidler C, Germeshausen M, Klein C, Welte K. Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br J Haematol 2008; 144:459-67. [PMID: 19120359 DOI: 10.1111/j.1365-2141.2008.07425.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Congenital Neutropenia (CN) is a heterogeneous bone marrow failure syndrome characterized by a maturation arrest of myelopoiesis at the level of the promyelocyte/myelocyte stage with peripheral blood absolute neutrophil counts below 0.5 x 10(9)/l. There are two major subtypes of CN as judged by inheritance: an autosomal dominant subtype, e.g. defined by neutrophil elastase mutations (approximately 60% of patients) and an autosomal recessive subtype (approximately 30% of patients), both presenting with the same clinical and morphological phenotype. Different mutations have been described (e.g. HAX1, p14 etc) in autosomal recessive CN, with HAX1 mutations in the majority of these patients. CN in common is considered as a preleukemic syndrome, since the cumulative incidence for leukemia is more than 25% after 20 years of observation. Leukemias occur in both, the autosomal dominant and recessive subtypes of CN. The individual risk for each genetic subtype needs to be further evaluated. Numbers of patients tested for the underlying genetic defect are still limited. Acquired G-CSFR (CSF3R) mutations are detected in approximately 80% of CN patients who developed acute myeloid leukemia independent of the ELA2 or HAX1 genetic subtype, suggesting that these mutations are involved in leukemogenesis. As the majority of patients benefit from G-CSF administration, HSCT should be restricted to non-responders and patients with leukaemic transformation.
Collapse
Affiliation(s)
- Cornelia Zeidler
- Department of Paediatric Haematology/Oncology, Medical University Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
31
|
Efficacy of LL-37 and granulocyte colony-stimulating factor in a neutropenic murine sepsis due to Pseudomonas aeruginosa. Shock 2008; 30:443-8. [PMID: 18391859 DOI: 10.1097/shk.0b013e31816d2269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A promising therapeutic strategy for the management of severe Pseudomonas infection in neutropenic patients may result from the coadministration of colony-stimulating factors (CSFs) that help maintain immune competence and antimicrobial peptides, a novel generation of adjunctive therapeutic agents with antimicrobial and anti-inflammatory properties. A promising peptide with these properties is LL-37, the only member of the cathelicidin family of antimicrobial peptides found in humans. BALB/c male mice were rendered neutropenic by intraperitoneal administration of cyclophosphamide on days -4 and -2 preinfection. Septic shock was induced at time 0 by intraperitoneal injection of 2x10 colony-forming units of P. aeruginosa American Type Culture Collection (ATCC) 27853. All animals were randomized to receive intravenously isotonic sodium chloride solution, 1 mg/kg of LL-37, 20 mg/kg of imipenem, 0.1 mg/kg of granulocyte CSF (G-CSF), 1 mg/kg of LL-37+0.1 mg/kg of G-CSF, or 20 mg/kg of imipenem+0.1 mg/kg of G-CSF. Lethality and bacterial growth in blood, peritoneum, spleen, liver, and kidney were evaluated. All regimens were significantly superior to controls at reducing the mouse lethality rate and bacterial burden in organs. Particularly, the combination between LL-37 and G-CSF was the most effective in protecting neutropenic mice from the onset of sepsis and in vitro significantly reduced the apoptosis of neutrophils. Combination therapy between LL-37 and G-CSF is a promising therapeutic strategy for the management of severe Pseudomonas infection complicated by neutropenia.
Collapse
|
32
|
Abstract
Severe congenital neutropenia (SCN) was first described just over 50 years ago. The progress in elucidating the clinical features and molecular pathophysiology of SCN closely parallels the progressive growth in our understanding of myelopoiesis. In this historical review, I have delineated this parallel progression in our understanding of the processes of granulocyte differentiation and the pathogenesis of congenital neutropenia. SCN is a heterogeneous disease that can serve as a model for the failure of myelopoiesis, and dissection of its pathogenesis has yielded important insights into the normal process of myeloid development.
Collapse
|
33
|
Liu F, Kunter G, Krem MM, Eades WC, Cain JA, Tomasson MH, Hennighausen L, Link DC. Csf3r mutations in mice confer a strong clonal HSC advantage via activation of Stat5. J Clin Invest 2008; 118:946-55. [PMID: 18292815 DOI: 10.1172/jci32704] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 12/19/2007] [Indexed: 12/11/2022] Open
Abstract
A fundamental property of leukemic stem cells is clonal dominance of the bone marrow microenvironment. Truncation mutations of CSF3R, which encodes the G-CSF receptor (G-CSFR), are implicated in leukemic progression in patients with severe congenital neutropenia. Here we show that expression of a truncated mutant Csf3r in mice confers a strong clonal advantage at the HSC level that is dependent upon exogenous G-CSF. G-CSF-induced proliferation, phosphorylation of Stat5, and transcription of Stat5 target genes were increased in HSCs isolated from mice expressing the mutant Csf3r. Conversely, the proliferative advantage conferred by the mutant Csf3r was abrogated in myeloid progenitors lacking both Stat5A and Stat5B, and HSC function was reduced in mice expressing a truncated mutant Csf3r engineered to have impaired Stat5 activation. These data indicate that in mice, inappropriate Stat5 activation plays a key role in establishing clonal dominance by stem cells expressing mutant Csf3r.
Collapse
Affiliation(s)
- Fulu Liu
- Department of Medicine, Division of Oncology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 2008; 42:277-88. [PMID: 18400509 DOI: 10.1016/j.cyto.2008.03.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/14/2008] [Accepted: 03/03/2008] [Indexed: 01/13/2023]
Abstract
Neutrophils are phagocytes whose principal function is to maintain anti-bacterial immunity. Neutrophils ingest and kill invading bacteria, releasing cytotoxic, chemotactic and inflammatory mediators at sites of infection. This serves to control the immediate host immune response and attract other cells, such as macrophages and dendritic cells, which are important for establishing long-term adaptive immunity. Neutrophils thus contribute to both the initiation and the maintenance of inflammation at sites of infection. Aberrant neutrophil activity is deleterious; suppressed responses can cause extreme susceptibility to infection while overactivation can lead to excessive inflammation and tissue damage. This review will focus on neutrophil regulation by granulocyte colony-stimulating factor (G-CSF), the principal cytokine controlling neutrophil development and function. The review will emphasize the molecular aspects of G-CSF-driven granulopoiesis in steady state (healthy) conditions and during demand-driven or 'emergency' conditions elicited by infection or clinical administration of G-CSF. Understanding the molecular control of granulopoiesis will aid in the development of new approaches designed to treat disorders of neutrophil production and function.
Collapse
Affiliation(s)
- Athanasia D Panopoulos
- Department of Immunology and Center for Cancer Immunology Research, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, PO Box 301402, Unit 902, Houston, TX 77030, USA
| | | |
Collapse
|
35
|
Tachyplesin III and granulocyte-colony stimulating factor enhance the efficacy of tazobactam/piperacillin in a neutropenic mouse model of polymicrobial peritonitis. Peptides 2008. [PMID: 18068869 DOI: 10.1016/j.peptides.2007.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Link DC, Kunter G, Kasai Y, Zhao Y, Miner T, McLellan MD, Ries RE, Kapur D, Nagarajan R, Dale DC, Bolyard AA, Boxer LA, Welte K, Zeidler C, Donadieu J, Bellanné-Chantelot C, Vardiman JW, Caligiuri MA, Bloomfield CD, DiPersio JF, Tomasson MH, Graubert TA, Westervelt P, Watson M, Shannon W, Baty J, Mardis ER, Wilson RK, Ley TJ. Distinct patterns of mutations occurring in de novo AML versus AML arising in the setting of severe congenital neutropenia. Blood 2007; 110:1648-55. [PMID: 17494858 PMCID: PMC1975847 DOI: 10.1182/blood-2007-03-081216] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Accepted: 04/23/2007] [Indexed: 01/06/2023] Open
Abstract
Severe congenital neutropenia (SCN) is an inborn disorder of granulopoiesis. Like most other bone marrow failure syndromes, it is associated with a marked propensity to transform into a myelodysplastic syndrome (MDS) or acute leukemia, with a cumulative rate of transformation to MDS/leukemia that exceeds 20%. The genetic (and/or epigenetic) changes that contribute to malignant transformation in SCN are largely unknown. In this study, we performed mutational profiling of 14 genes previously implicated in leukemogenesis using 14 MDS/leukemia samples from patients with SCN. We used high-throughput exon-based resequencing of whole-genome-amplified genomic DNA with a semiautomated method to detect mutations. The sensitivity and specificity of the sequencing pipeline was validated by determining the frequency of mutations in these 14 genes using 188 de novo AML samples. As expected, mutations of tyrosine kinase genes (FLT3, KIT, and JAK2) were common in de novo AML, with a cumulative frequency of 30%. In contrast, no mutations in these genes were detected in the SCN samples; instead, mutations of CSF3R, encoding the G-CSF receptor, were common. These data support the hypothesis that mutations of CSF3R may provide the "activated tyrosine kinase signal" that is thought to be important for leukemogenesis.
Collapse
Affiliation(s)
- Daniel C Link
- Division of Oncology, Department of Medicine, Washington University, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Carlsson G, Melin M, Dahl N, Ramme KG, Nordenskjöld M, Palmblad J, Henter JI, Fadeel B. Kostmann syndrome or infantile genetic agranulocytosis, part two: Understanding the underlying genetic defects in severe congenital neutropenia. Acta Paediatr 2007; 96:813-9. [PMID: 17537008 DOI: 10.1111/j.1651-2227.2007.00274.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UNLABELLED Congenital neutropenia in man was first reported 50 years ago by the Swedish paediatrician Rolf Kostmann. He coined the term 'infantile genetic agranulocytosis' for this condition, which is now known as Kostmann syndrome. Recent studies have revealed mutations in ELA-2, encoding the neutrophil granule protease, neutrophil elastase, in autosomal dominant neutropenia, and mutations in HAX-1, encoding an anti-apoptotic protein, in autosomal recessive neutropenia. CONCLUSION Future studies should aim to clarify the mechanisms underlying the evolution of secondary malignancies in these patients.
Collapse
Affiliation(s)
- Göran Carlsson
- Childhood Cancer Research Unit, Department of Woman and Child Health, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Touw IP, Bontenbal M. Granulocyte Colony-Stimulating Factor: Key (F)actor or Innocent Bystander in the Development of Secondary Myeloid Malignancy? ACTA ACUST UNITED AC 2007; 99:183-6. [PMID: 17284707 DOI: 10.1093/jnci/djk057] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Gits J, van Leeuwen D, Carroll HP, Touw IP, Ward AC. Multiple pathways contribute to the hyperproliferative responses from truncated granulocyte colony-stimulating factor receptors. Leukemia 2006; 20:2111-8. [PMID: 17066093 DOI: 10.1038/sj.leu.2404448] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the granulocyte colony-stimulating factor receptor (G-CSF-R) gene leading to a truncated protein have been identified in a cohort of neutropenia patients highly predisposed to acute myeloid leukemia. Such mutations act in a dominant manner resulting in hyperproliferation but impaired differentiation in response to G-CSF. This is due, at least in part, to defective internalization and loss of binding sites for several negative regulators, leading to sustained receptor activation. However, those signaling pathways responsible for mediating the hyperproliferative function have remained unclear. In this study, analysis of an additional G-CSF-R mutant confirmed the importance of residues downstream of Box 2 as important contributors to the sustained proliferation. However, maximal proliferation correlated with the ability to robustly activate signal transducer and activator of transcription (STAT) 5 in a sustained manner, whereas co-expression of dominant-negative STAT5, but not dominant-negative STAT3, was able to inhibit G-CSF-stimulated proliferation from a truncated receptor. Furthermore, a Janus kinase (JAK) inhibitor also strongly reduced the proliferative response, whereas inhibitors of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) or phosphatidylinositol (PI) 3-kinase reduced proliferation to a lesser degree. These data suggest that sustained JAK2/STAT5 activation is a major contributor to the hyperproliferative function of truncated G-CSF receptors, with pathways involving MEK and PI 3-kinase playing a reduced role.
Collapse
Affiliation(s)
- J Gits
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
Erkeland SJ, Aarts LH, Irandoust M, Roovers O, Klomp A, Valkhof M, Gits J, Eyckerman S, Tavernier J, Touw IP. Novel role of WD40 and SOCS box protein-2 in steady-state distribution of granulocyte colony-stimulating factor receptor and G-CSF-controlled proliferation and differentiation signaling. Oncogene 2006; 26:1985-94. [PMID: 17001306 DOI: 10.1038/sj.onc.1210004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Signals induced by granulocyte colony-stimulating factor (G-CSF), the major cytokine involved in neutrophil development, are tightly controlled by ligand-induced receptor internalization. Truncated G-CSF receptors (G-CSF-Rs) that fail to internalize show sustained proliferation and defective differentiation signaling. Steady-state forward routing also determines cell surface levels of cytokine receptors, but mechanisms controlling this are poorly understood. Here, we show that WD40 and suppressor of cytokine signaling (SOCS) box protein-2 (Wsb-2), an SOCS box-containing WD40 protein with currently unknown function, binds to the COOH-terminal region of G-CSF-R. Removal of this region did not affect internalization, yet resulted in increased membrane expression of G-CSF-R and enhanced proliferation signaling at the expense of differentiation induction. Conversely, Wsb-2 binding to the G-CSF-R reduced its cell surface expression and inhibited proliferation signaling. These effects depended on the SOCS box involved in ubiquitylation and on cytosolic lysines of G-CSF-R and imply a major role for ubiquitylation through the G-CSF-R C-terminus in forward routing of the receptor. Importantly, the Wsb-2 gene is commonly disrupted by virus integrations in mouse leukemia. We conclude that control of forward routing of G-CSF-R is essential for a balanced response of myeloid progenitors to G-CSF and suggest that disturbance of this balance may contribute to myeloid leukemia.
Collapse
Affiliation(s)
- S J Erkeland
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Germeshausen M, Ballmaier M, Welte K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: Results of a long-term survey. Blood 2006; 109:93-9. [PMID: 16985178 DOI: 10.1182/blood-2006-02-004275] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Point mutations in the gene for the granulocyte colony-stimulating factor (G-CSF) receptor CSF3R have been implicated in the progression of severe congenital neutropenia (CN) to leukemia. In this study we present data on a total of 218 patients with chronic neutropenia, including 148 patients with CN (23/148 with secondary malignancies). We detected CSF3R nonsense mutations at 17 different nucleotide positions (thereof 10 new mutations) which lead to a loss of 1 to all 4 tyrosine residues in the intracellular domain of the receptor. Of 23 patients with CN with signs of malignant transformation, 18 (78%) were shown to harbor a CSF3R mutation, indicating that these mutations, although not a necessary condition, are highly predictive for malignant transformation even if detected in a low percentage of transcripts. In serial analyses of 50 patients with CSF3R mutations we were able to follow the clonal dynamics of mutated cells. We could demonstrate that even a highly clonal hematopoiesis did not inevitably show a rapid progression to leukemia. Our results strongly suggest that acquisition of a CSF3R mutation is an early event in leukemogenesis that has to be accompanied by cooperating molecular events, which remain to be defined.
Collapse
Affiliation(s)
- Manuela Germeshausen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Germany.
| | | | | |
Collapse
|
42
|
Mermel CH, McLemore ML, Liu F, Pereira S, Woloszynek J, Lowell CA, Link DC. Src family kinases are important negative regulators of G-CSF-dependent granulopoiesis. Blood 2006; 108:2562-8. [PMID: 16772601 PMCID: PMC1895577 DOI: 10.1182/blood-2006-05-024307] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is the principal cytokine regulating granulopoiesis. Truncation mutations of the G-CSF receptor (G-CSFR) are associated with the development of acute myeloid leukemia in patients with severe congenital neutropenia. Although increased proliferative signaling by a representative G-CSFR truncation mutation (termed d715) has been documented, the molecular basis for this hyperproliferative phenotype has not been fully characterized. Given the accumulating evidence implicating Src family kinases in the transduction of cytokine receptor signals, the role of these kinases in the regulation of G-CSF signaling was examined. We show that Hck and Lyn, Src family kinases expressed in myeloid cells, are negative regulators of granulopoiesis that act at distinct stages of granulocytic differentiation. Whereas Hck regulates the G-CSF-induced proliferation of granulocytic precursors, Lyn regulates the production of myeloid progenitors. Interestingly, d715 G-CSFR myeloid progenitors were resistant to the growth-stimulating effect of treatment with a Src kinase inhibitor. Together, these data establish Lyn and Hck as key negative regulators of granulopoiesis and raise the possibility that loss of Src family kinase activation by the d715 G-CSFR may contribute to its hyperproliferative phenotype.
Collapse
Affiliation(s)
- Craig H Mermel
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8007, Saint Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Neutrophils are critical components of the innate immune response, and persistent neutropenia is associated with a marked susceptibility to infection. There are a number of inherited clinical syndromes in which neutropenia is a prominent feature. A study of these rare disorders has provided insight into the mechanisms regulating normal neutrophil homeostasis. Tremendous progress has been made at defining the genetic basis of these disorders. Herein, progress in understanding the genetic basis and molecular mechanisms of these disorders is discussed. We have focused our discussion on inherited disorders in which neutropenia is the sole or major hematopoietic defect.
Collapse
Affiliation(s)
- David S Grenda
- Division of Oncology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
44
|
Steffen B, Müller-Tidow C, Schwäble J, Berdel WE, Serve H. The molecular pathogenesis of acute myeloid leukemia. Crit Rev Oncol Hematol 2005; 56:195-221. [PMID: 16236521 DOI: 10.1016/j.critrevonc.2004.10.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 09/30/2004] [Accepted: 10/28/2004] [Indexed: 10/25/2022] Open
Abstract
The description of the molecular pathogenesis of acute myeloid leukemias (AML) has seen dramatic progress over the last years. Two major types of genetic events have been described that are crucial for leukemic transformation: alterations in myeloid transcription factors governing hematopoietic differentiation and activating mutations of signal transduction intermediates. These processes are highly interdependent, since the molecular events changing the transcriptional control in hematopoietic progenitor cells modify the composition of signal transduction molecules available for growth factor receptors, while the activating mutations in signal transduction molecules induce alterations in the activity and expression of several transcription factors that are crucial for normal myeloid differentiation. The purpose of this article is to review the current literature describing these genetic events, their biological consequences and their clinical implications. As the article will show, the recent description of several critical transforming mutations in AML may soon give rise to more efficient and less toxic molecularly targeted therapies of this deadly disease.
Collapse
Affiliation(s)
- Björn Steffen
- Department of Medicine, Hematology/Oncology, University of Münster, Albert-Schweitzer-Strasse 33, 48129 Münster, Germany
| | | | | | | | | |
Collapse
|
45
|
Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Levesque JP, Chappel J, Ross FP, Link DC. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106:3020-7. [PMID: 16037394 PMCID: PMC1895331 DOI: 10.1182/blood-2004-01-0272] [Citation(s) in RCA: 376] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence indicates that interaction of stromal cell-derived factor 1 (SDF-1/CXCL12 [CXC motif, ligand 12]) with its cognate receptor, CXCR4 (CXC motif, receptor 4), generates signals that regulate hematopoietic progenitor cell (HPC) trafficking in the bone marrow. During granulocyte colony-stimulating factor (G-CSF)-induced HPC mobilization, CXCL12 protein expression in the bone marrow decreases. Herein, we show that in a series of transgenic mice carrying targeted mutations of their G-CSF receptor and displaying markedly different G-CSF-induced HPC mobilization responses, the decrease in bone marrow CXCL12 protein expression closely correlates with the degree of HPC mobilization. G-CSF treatment induced a decrease in bone marrow CXCL12 mRNA that closely mirrored the fall in CXCL12 protein. Cell sorting experiments showed that osteoblasts and to a lesser degree endothelial cells are the major sources of CXCL12 production in the bone marrow. Interestingly, osteoblast activity, as measured by histomorphometry and osteocalcin expression, is strongly down-regulated during G-CSF treatment. However, the G-CSF receptor is not expressed on osteoblasts; accordingly, G-CSF had no direct effect on osteoblast function. Collectively, these data suggest a model in which G-CSF, through an indirect mechanism, potently inhibits osteoblast activity resulting in decreased CXCL12 expression in the bone marrow. The consequent attenuation of CXCR4 signaling ultimately leads to HPC mobilization.
Collapse
Affiliation(s)
- Craig L Semerad
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S Euclid Ave, Campus Box 8007, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Germeshausen M, Schulze H, Kratz C, Wilkens L, Repp R, Shannon K, Welte K, Ballmaier M. An acquired G-CSF receptor mutation results in increased proliferation of CMML cells from a patient with severe congenital neutropenia. Leukemia 2005; 19:611-7. [PMID: 15729385 DOI: 10.1038/sj.leu.2403663] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe congenital neutropenia (CN) is characterized by a maturation arrest of myelopoiesis at the promyelocyte stage. Treatment with pharmacological doses of recombinant human granulocyte colony-stimulating factor (rh-G-CSF) stimulates neutrophil production and decreases the risk of major infectious complications. However, approximately 15% of CN patients develop myeloid malignancies that have been associated with somatic mutations in the G-CSF receptor (G-CSFR) and RAS genes as well as with acquired monosomy 7. We report a CN patient with chronic myelomonocytic leukemia (CMML) who never received rh-G-CSF. Molecular analysis demonstrated a somatic G-CSFR mutation (C2390T), which led to expression of a truncated G-CSFR protein in the CMML. Normal G-CSFR expression was unexpectedly absent in primary and cultured CMML. In addition, CMML cells showed monosomy 7 and an oncogenic NRAS mutation. In vitro culture revealed a G-CSF-dependent proliferation of CMML cells, which subsequently differentiated along the monocytic/macrophage lineage. Our results provide direct evidence for the in vivo expression of a truncated G-CSFR in leukemic cells, which emerged in the absence of rh-G-CSF treatment and transduces proliferative signals.
Collapse
Affiliation(s)
- M Germeshausen
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Druhan LJ, Ai J, Massullo P, Kindwall-Keller T, Ranalli MA, Avalos BR. Novel mechanism of G-CSF refractoriness in patients with severe congenital neutropenia. Blood 2004; 105:584-91. [PMID: 15353486 DOI: 10.1182/blood-2004-07-2613] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a rare disease diagnosed at or soon after birth, characterized by a myeloid maturation arrest in the bone marrow, ineffective neutrophil production, and recurrent infections. Most patients respond to treatment with granulocyte colony-stimulating factor (G-CSF), and the majority harbor mutations in the neutrophil elastase gene. In the subset of patients with SCN transforming to acute myeloid leukemia (AML), mutations that truncate the cytoplasmic tail of the G-CSF receptor (G-CSFR) have been detected. Here, we report a novel mutation in the extracellular portion of the G-CSFR within the WSXWS motif in a patient with SCN without AML who was refractory to G-CSF treatment. The mutation affected a single allele and introduced a premature stop codon that deletes the distal extracellular region and the entire transmembrane and cytoplasmic portions of the G-CSFR. Expression of the mutant receptor in either myeloid or lymphoid cells was shown to alter subcellular trafficking of the wild-type (WT) G-CSFR by constitutively heterodimerizing with it. WT/mutant G-CSFR heterodimers appeared to be retained in the endoplasmic reticulum and/or Golgi and accumulate intracellularly. These findings together with 2 previous case reports of extracellular mutations in the G-CSFR in patients with SCN unresponsive to G-CSF suggest a common mechanism underlying G-CSF refractoriness.
Collapse
Affiliation(s)
- Lawrence J Druhan
- Bone Marrow Transplant Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Congenital neutropenia is strictly defined as neutropenia present at birth. However, it is more generally used to describe neutropenia secondary to inherited genetic mutations. This review will discuss the presentation of such children and the various causes of congenital neutropenia. In particular, it will focus on severe congenital neutropenia (SCN) and the recent discovery of mutations in the gene encoding neutrophil elastase in the majority of cases of SCN. The potential mechanisms of pathogenesis and of transformation to leukaemia will be discussed. Shwachman-Diamond Syndrome and other less common causes of congenital neutropenia will also be reviewed. Finally, an approach to the child with potential congenital neutropenia will be presented.
Collapse
|
49
|
van de Geijn GJM, Gits J, Aarts LHJ, Heijmans-Antonissen C, Touw IP. G-CSF receptor truncations found in SCN/AML relieve SOCS3-controlled inhibition of STAT5 but leave suppression of STAT3 intact. Blood 2004; 104:667-74. [PMID: 15069015 DOI: 10.1182/blood-2003-08-2913] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Truncated granulocyte colony-stimulating factor receptors (G-CSF-Rs) are implicated in severe congenital neutropenia (SCN) and the consecutive development of acute myeloid leukemia (AML). Mice expressing G-CSF-R truncation mutants (gcsfr-d715) show defective receptor internalization, an increased signal transducer and activator of transcription 5 (STAT5)/STAT3 activation ratio, and hyperproliferative responses to G-CSF treatment. We determined whether a lack of negative feedback by suppressor of cytokine signaling (SOCS) proteins contributes to the signaling abnormalities of G-CSF-R-d715. Expression of SOCS3 transcripts in bone marrow cells from G-CSF-treated gcsfr-d715 mice was approximately 60% lower than in wild-type (WT) littermates. SOCS3 efficiently suppressed STAT3 and STAT5 activation by WT G-CSF-R in luciferase reporter assays. In contrast, while SOCS3 still inhibited STAT3 activation by G-CSF-R-d715, STAT5 activation was no longer affected. This was due mainly to loss of the SOCS3 recruitment site Tyr729, with an additional contribution of the internalization defects of G-CSF-R-d715. Because Tyr729 is also a docking site for the Src homology 2-containing protein tyrosine phosphatase-2 (SHP-2), which binds to and inactivates STAT5, we suggest a model in which reduced SOCS3 expression, combined with the loss of recruitment of both SOCS3 and SHP-2 to the activated receptor complex, determine the increased STAT5/STAT3 activation ratio and the resulting signaling abnormalities projected by truncated G-CSF-R mutants.
Collapse
|
50
|
van de Geijn GJM, Aarts LHJ, Erkeland SJ, Prasher JM, Touw IP. Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease. Rev Physiol Biochem Pharmacol 2004; 149:53-71. [PMID: 12687405 DOI: 10.1007/s10254-003-0014-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hematopoiesis, the process of blood cell formation, is orchestrated by cytokines and growth factors that stimulate the expansion of different progenitor cell subsets and regulate their survival and differentiation into mature blood cells. Granulocyte colony-stimulating factor (G-CSF) is the major hematopoietic growth factor involved in the control of neutrophil development. G-CSF is now applied on a routine basis in the clinic for treatment of congenital and acquired neutropenias. G-CSF activates a receptor of the hematopoietin receptor superfamily, the G-CSF receptor (G-CSF-R), which subsequently triggers multiple signaling mechanisms. Here we review how these mechanisms contribute to the specific responses of hematopoietic cells to G-CSF and how perturbations in the function of the G-CSF-R are implicated in various types of myeloid disease.
Collapse
Affiliation(s)
- G J M van de Geijn
- Department of Hematology, Erasmus University Medical Center, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|