1
|
Ambade AS, Naranjo M, Tuhy T, Yu R, Marimoutou M, Everett AD, Shimoda LA, Zimmerman SL, Cubero Salazar IM, Simpson CE, Tedford RJ, Hsu S, Hassoun PM, Damico RL. Collagen 18A1/Endostatin Expression in the Progression of Right Ventricular Remodeling and Dysfunction in Pulmonary Arterial Hypertension. Am J Respir Cell Mol Biol 2024; 71:343-355. [PMID: 38861354 PMCID: PMC11376241 DOI: 10.1165/rcmb.2024-0039oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
Numerous studies have demonstrated that endostatin (ES), a potent angiostatic peptide derived from collagen type XVIII α 1 chain and encoded by COL18A1, is elevated in pulmonary arterial hypertension (PAH). It is important to note that elevated ES has consistently been associated with altered hemodynamics, poor functional status, and adverse outcomes in adult and pediatric PAH. This study used serum samples from patients with Group I PAH and plasma and tissue samples derived from the Sugen/hypoxia rat pulmonary hypertension model to define associations between COL18A1/ES and disease development, including hemodynamics, right ventricle (RV) remodeling, and RV dysfunction. Using cardiac magnetic resonance imaging and advanced hemodynamic assessments with pressure-volume loops in patients with PAH to assess RV-pulmonary arterial coupling, we observed a strong relationship between circulating ES levels and metrics of RV structure and function. Specifically, RV mass and the ventricular mass index were positively associated with ES, whereas RV ejection fraction and RV-pulmonary arterial coupling were inversely associated with ES levels. Our animal data demonstrate that the development of pulmonary hypertension is associated with increased COL18A1/ES in the heart as well as the lungs. Disease-associated increases in COL18A1 mRNA and protein were most pronounced in the RV compared with the left ventricle and lung. COL18A1 expression in the RV was strongly associated with disease-associated changes in RV mass, fibrosis, and myocardial capillary density. These findings indicate that COL18A1/ES increases early in disease development in the RV and implicates COL18A1/ES in pathologic RV dysfunction in PAH.
Collapse
Affiliation(s)
| | - Mario Naranjo
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, Pennsylvania
| | - Tijana Tuhy
- Division of Pulmonary and Critical Care Medicine
| | - Rose Yu
- Division of Pulmonary Medicine, Johns Hopkins Community Physicians, Columbia, Maryland
| | - Mery Marimoutou
- Institute for In Vitro Sciences, Gaithersburg, Maryland; and
| | | | | | | | | | | | - Ryan J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven Hsu
- Division of Cardiology, Department of Medicine
| | | | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine
- Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
2
|
Zhang L, Xie F, Zhang F, Lu B. The potential roles of exosomes in pathological cardiomyocyte hypertrophy mechanisms and therapy: A review. Medicine (Baltimore) 2024; 103:e37994. [PMID: 38669371 PMCID: PMC11049793 DOI: 10.1097/md.0000000000037994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Pathological cardiac hypertrophy, characterized by the enlargement of cardiac muscle cells, leads to serious cardiac conditions and stands as a major global health issue. Exosomes, comprising small lipid bilayer vesicles, are produced by various cell types and found in numerous bodily fluids. They play a pivotal role in intercellular communication by transferring bioactive cargos to recipient cells or activating signaling pathways in target cells. Exosomes from cardiomyocytes, endothelial cells, fibroblasts, and stem cells are key in regulating processes like cardiac hypertrophy, cardiomyocyte survival, apoptosis, fibrosis, and angiogenesis within the context of cardiovascular diseases. This review delves into exosomes' roles in pathological cardiac hypertrophy, first elucidating their impact on cell communication and signaling pathways. It then advances to discuss how exosomes affect key hypertrophic processes, including metabolism, fibrosis, oxidative stress, and angiogenesis. The review culminates by evaluating the potential of exosomes as biomarkers and their significance in targeted therapeutic strategies, thus emphasizing their critical role in the pathophysiology and management of cardiac hypertrophy.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Xie
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Fengmei Zhang
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Beiyao Lu
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Cho SB. Molecular Mechanisms of Endometriosis Revealed Using Omics Data. Biomedicines 2023; 11:2210. [PMID: 37626707 PMCID: PMC10452455 DOI: 10.3390/biomedicines11082210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/22/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Endometriosis is a gynecological disorder prevalent in women of reproductive age. The primary symptoms include dysmenorrhea, irregular menstruation, and infertility. However, the pathogenesis of endometriosis remains unclear. With the advent of high-throughput technologies, various omics experiments have been conducted to identify genes related to the pathophysiology of endometriosis. This review highlights the molecular mechanisms underlying endometriosis using omics. When genes identified in omics experiments were compared with endometriosis disease genes identified in independent studies, the number of overlapping genes was moderate. However, the characteristics of these genes were found to be equivalent when functional gene set enrichment analysis was performed using gene ontology and biological pathway information. These findings indicate that omics technology provides invaluable information regarding the pathophysiology of endometriosis. Moreover, the functional characteristics revealed using enrichment analysis provide important clues for discovering endometriosis disease genes in future research.
Collapse
Affiliation(s)
- Seong Beom Cho
- Department of Biomedical Informatics, College of Medicine, Gachon University, 38-13, Dokgeom-ro 3 Street Namdon-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
4
|
Yang X, Cheng K, Wang LY, Jiang JG. The role of endothelial cell in cardiac hypertrophy: Focusing on angiogenesis and intercellular crosstalk. Biomed Pharmacother 2023; 163:114799. [PMID: 37121147 DOI: 10.1016/j.biopha.2023.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023] Open
Abstract
Cardiac hypertrophy is characterized by cardiac structural remodeling, fibrosis, microvascular rarefaction, and chronic inflammation. The heart is structurally organized by different cell types, including cardiomyocytes, fibroblasts, endothelial cells, and immune cells. These cells highly interact with each other by a number of paracrine or autocrine factors. Cell-cell communication is indispensable for cardiac development, but also plays a vital role in regulating cardiac response to damage. Although cardiomyocytes and fibroblasts are deemed as key regulators of hypertrophic stimulation, other cells, including endothelial cells, also exert important effects on cardiac hypertrophy. More particularly, endothelial cells are the most abundant cells in the heart, which make up the basic structure of blood vessels and are widespread around other cells in the heart, implicating the great and inbuilt advantage of intercellular crosstalk. Cardiac microvascular plexuses are essential for transport of liquids, nutrients, molecules and cells within the heart. Meanwhile, endothelial cell-mediated paracrine signals have multiple positive or negative influences on cardiac hypertrophy. However, a comprehensive discussion of these influences and consequences is required. This review aims to summarize the basic function of endothelial cells in angiogenesis, with an emphasis on angiogenic molecules under hypertrophic conditions. The secondary objective of the research is to fully discuss the key molecules involved in the intercellular crosstalk and the endothelial cell-mediated protective or detrimental effects on other cardiac cells. This review provides a more comprehensive understanding of the overall role of endothelial cells in cardiac hypertrophy and guides the therapeutic approaches and drug development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xing Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China
| | - Kun Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Lu-Yun Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Jian-Gang Jiang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| |
Collapse
|
5
|
Trager LE, Lyons M, Kuznetsov A, Sheffield C, Roh K, Freeman R, Rhee J, Guseh JS, Li H, Rosenzweig A. Beyond cardiomyocytes: Cellular diversity in the heart's response to exercise. JOURNAL OF SPORT AND HEALTH SCIENCE 2022:S2095-2546(22)00125-9. [PMID: 36549585 PMCID: PMC10362490 DOI: 10.1016/j.jshs.2022.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Cardiomyocytes comprise ∼70% to 85% of the total volume of the adult mammalian heart but only about 25% to 35% of its total number of cells. Advances in single cell and single nuclei RNA sequencing have greatly facilitated investigation into and increased appreciation of the potential functions of non-cardiomyocytes in the heart. While much of this work has focused on the relationship between non-cardiomyocytes, disease, and the heart's response to pathological stress, it will also be important to understand the roles that these cells play in the healthy heart, cardiac homeostasis, and the response to physiological stress such as exercise. The present review summarizes recent research highlighting dynamic changes in non-cardiomyocytes in response to the physiological stress of exercise. Of particular interest are changes in fibrotic pathways, the cardiac vasculature, and immune or inflammatory cells. In many instances, limited data are available about how specific lineages change in response to exercise or whether the changes observed are functionally important, underscoring the need for further research.
Collapse
Affiliation(s)
- Lena E Trager
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; University of Minnesota Medical School, Minneapolis, MI 55455, USA
| | - Margaret Lyons
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandra Kuznetsov
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cedric Sheffield
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kangsan Roh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rebecca Freeman
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - James Rhee
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Anesthesiology and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - J Sawalla Guseh
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Haobo Li
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Anthony Rosenzweig
- Corrigan Minehan Heart Center, Division of Cardiology, Cardiovascular Research Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI 48109, USA.
| |
Collapse
|
6
|
Sakurai K, Takeba Y, Osada Y, Mizuno M, Tsuzuki Y, Aso K, Kida K, Ohta Y, Ootaki M, Iiri T, Hokuto I, Shimizu N, Matsumoto N. Antenatal Glucocorticoid Administration Promotes Cardiac Structure and Energy Metabolism Maturation in Preterm Fetuses. Int J Mol Sci 2022; 23:10186. [PMID: 36077580 PMCID: PMC9456503 DOI: 10.3390/ijms231710186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Although the rate of preterm birth has increased in recent decades, a number of preterm infants have escaped death due to improvements in perinatal and neonatal care. Antenatal glucocorticoid (GC) therapy has significantly contributed to progression in lung maturation; however, its potential effects on other organs remain controversial. Furthermore, the effects of antenatal GC therapy on the fetal heart show both pros and cons. Translational research in animal models indicates that constant fetal exposure to antenatal GC administration is sufficient for lung maturation. We have established a premature fetal rat model to investigate immature cardiopulmonary functions in the lungs and heart, including the effects of antenatal GC administration. In this review, we explain the mechanisms of antenatal GC actions on the heart in the fetus compared to those in the neonate. Antenatal GCs may contribute to premature heart maturation by accelerating cardiomyocyte proliferation, angiogenesis, energy production, and sarcoplasmic reticulum function. Additionally, this review specifically focuses on fetal heart growth with antenatal GC administration in experimental animal models. Moreover, knowledge regarding antenatal GC administration in experimental animal models can be coupled with that from developmental biology, with the potential for the generation of functional cells and tissues that could be used for regenerative medical purposes in the future.
Collapse
Affiliation(s)
- Kenzo Sakurai
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Yosuke Osada
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Masanori Mizuno
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Yoshimitsu Tsuzuki
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Kentaro Aso
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Keisuke Kida
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Isamu Hokuto
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Naoki Shimizu
- Department of Pediatrics, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, Kawasaki 216-8511, Kanagawa, Japan
| |
Collapse
|
7
|
Hsu Y, Huang K, Cheng K. Resuscitating the Field of Cardiac Regeneration: Seeking Answers from Basic Biology. Adv Biol (Weinh) 2021; 6:e2101133. [PMID: 34939372 DOI: 10.1002/adbi.202101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/02/2021] [Indexed: 11/09/2022]
Abstract
Heart failure (HF) is one of the leading causes for hospital admissions worldwide. HF patients are classified based on the chronic changes in left ventricular ejection fraction (LVEF) as preserved (LVEF ≥ 50%), reduced (LVEF ≤ 40%), or mid-ranged (40% < LVEF < 50%) HFs. Treatments nowadays can prevent HFrEF progress, whereas only a few of the treatments have been proven to be effective in improving the survival of HFpEF. In this review, numerous mediators involved in the pathogenesis of HF are summarized. The regional upstream signaling and their diagnostic and therapeutic potential are also discussed. Additionally, the recent challenges and development in cardiac regenerative therapy that hold opportunities for future research and clinical translation are discussed.
Collapse
Affiliation(s)
- Yaching Hsu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Raleigh, NC, 27607, USA
| |
Collapse
|
8
|
King O, Sunyovszki I, Terracciano CM. Vascularisation of pluripotent stem cell-derived myocardium: biomechanical insights for physiological relevance in cardiac tissue engineering. Pflugers Arch 2021; 473:1117-1136. [PMID: 33855631 PMCID: PMC8245389 DOI: 10.1007/s00424-021-02557-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 12/22/2022]
Abstract
The myocardium is a diverse environment, requiring coordination between a variety of specialised cell types. Biochemical crosstalk between cardiomyocytes (CM) and microvascular endothelial cells (MVEC) is essential to maintain contractility and healthy tissue homeostasis. Yet, as myocytes beat, heterocellular communication occurs also through constantly fluctuating biomechanical stimuli, namely (1) compressive and tensile forces generated directly by the beating myocardium, and (2) pulsatile shear stress caused by intra-microvascular flow. Despite endothelial cells (EC) being highly mechanosensitive, the role of biomechanical stimuli from beating CM as a regulatory mode of myocardial-microvascular crosstalk is relatively unexplored. Given that cardiac biomechanics are dramatically altered during disease, and disruption of myocardial-microvascular communication is a known driver of pathological remodelling, understanding the biomechanical context necessary for healthy myocardial-microvascular interaction is of high importance. The current gap in understanding can largely be attributed to technical limitations associated with reproducing dynamic physiological biomechanics in multicellular in vitro platforms, coupled with limited in vitro viability of primary cardiac tissue. However, differentiation of CM from human pluripotent stem cells (hPSC) has provided an unlimited source of human myocytes suitable for designing in vitro models. This technology is now converging with the diverse field of tissue engineering, which utilises in vitro techniques designed to enhance physiological relevance, such as biomimetic extracellular matrix (ECM) as 3D scaffolds, microfluidic perfusion of vascularised networks, and complex multicellular architectures generated via 3D bioprinting. These strategies are now allowing researchers to design in vitro platforms which emulate the cell composition, architectures, and biomechanics specific to the myocardial-microvascular microenvironment. Inclusion of physiological multicellularity and biomechanics may also induce a more mature phenotype in stem cell-derived CM, further enhancing their value. This review aims to highlight the importance of biomechanical stimuli as determinants of CM-EC crosstalk in cardiac health and disease, and to explore emerging tissue engineering and hPSC technologies which can recapitulate physiological dynamics to enhance the value of in vitro cardiac experimentation.
Collapse
Affiliation(s)
- Oisín King
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK.
| | - Ilona Sunyovszki
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| | - Cesare M Terracciano
- National Heart & Lung Institute, Imperial College London, Hammersmith Campus, ICTEM 4th floor, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
9
|
Nicin L, Abplanalp WT, Schänzer A, Sprengel A, John D, Mellentin H, Tombor L, Keuper M, Ullrich E, Klingel K, Dettmeyer RB, Hoffmann J, Akintuerk H, Jux C, Schranz D, Zeiher AM, Rupp S, Dimmeler S. Single Nuclei Sequencing Reveals Novel Insights Into the Regulation of Cellular Signatures in Children With Dilated Cardiomyopathy. Circulation 2021; 143:1704-1719. [PMID: 33618539 DOI: 10.1161/circulationaha.120.051391] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a leading cause of death in children with heart failure. The outcome of pediatric heart failure treatment is inconsistent, and large cohort studies are lacking. Progress may be achieved through personalized therapy that takes age- and disease-related pathophysiology, pathology, and molecular fingerprints into account. We present single nuclei RNA sequencing from pediatric patients with DCM as the next step in identifying cellular signatures. METHODS We performed single nuclei RNA sequencing with heart tissues from 6 children with DCM with an age of 0.5, 0.75, 5, 6, 12, and 13 years. Unsupervised clustering of 18 211 nuclei led to the identification of 14 distinct clusters with 6 major cell types. RESULTS The number of nuclei in fibroblast clusters increased with age in patients with DCM, a finding that was confirmed by histological analysis and was consistent with an age-related increase in cardiac fibrosis quantified by cardiac magnetic resonance imaging. Fibroblasts of patients with DCM >6 years of age showed a profoundly altered gene expression pattern with enrichment of genes encoding fibrillary collagens, modulation of proteoglycans, switch in thrombospondin isoforms, and signatures of fibroblast activation. In addition, a population of cardiomyocytes with a high proregenerative profile was identified in infant patients with DCM but was absent in children >6 years of age. This cluster showed high expression of cell cycle activators such as cyclin D family members, increased glycolytic metabolism and antioxidative genes, and alterations in ß-adrenergic signaling genes. CONCLUSIONS Novel insights into the cellular transcriptomes of hearts from pediatric patients with DCM provide remarkable age-dependent changes in the expression patterns of fibroblast and cardiomyocyte genes with less fibrotic but enriched proregenerative signatures in infants.
Collapse
Affiliation(s)
- Luka Nicin
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany.,German Center for Cardiovascular Research, Frankfurt, Germany (L.N., W.T.A., S.D.).,Cardio-Pulmonary Institute, Frankfurt, Germany (L.N., W.T.A., S.D.)
| | - Wesley T Abplanalp
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany.,German Center for Cardiovascular Research, Frankfurt, Germany (L.N., W.T.A., S.D.).,Cardio-Pulmonary Institute, Frankfurt, Germany (L.N., W.T.A., S.D.)
| | - Anne Schänzer
- Institute of Neuropathology (A.S., M.K.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Anke Sprengel
- Pediatric Heart Center, Department of Pediatric Cardiac Surgery (A.S., H.A.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - David John
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany
| | - Hannah Mellentin
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany
| | - Lukas Tombor
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany
| | - Matthias Keuper
- Institute of Neuropathology (A.S., M.K.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Evelyn Ullrich
- Experimental Immunology, Division of Pediatric Stem Cell Transplantation and Immunology, Children and Adolescents Medicine, University Hospital Frankfurt (E.U.), Goethe University, Germany.,Frankfurt Cancer Institute (E.U.), Goethe University, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tuebingen, Germany (K.K.)
| | | | - Jedrzej Hoffmann
- Internal Medicine Clinic III, Department of Cardiology (J.H., A.M.Z.), Goethe University, Germany
| | - Hakan Akintuerk
- Pediatric Heart Center, Department of Pediatric Cardiac Surgery (A.S., H.A.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Christian Jux
- Department of Pediatric Cardiology and Congenital Heart Disease (C.J., D.S., S.R.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Dietmar Schranz
- Department of Pediatric Cardiology and Congenital Heart Disease (C.J., D.S., S.R.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Andreas M Zeiher
- Internal Medicine Clinic III, Department of Cardiology (J.H., A.M.Z.), Goethe University, Germany
| | - Stefan Rupp
- Department of Pediatric Cardiology and Congenital Heart Disease (C.J., D.S., S.R.), University Hospital Giessen, Justus Liebig Universität, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration (L.N., W.T.A., D.J., H.M., L.T., S.D.), Goethe University, Germany.,German Center for Cardiovascular Research, Frankfurt, Germany (L.N., W.T.A., S.D.).,Cardio-Pulmonary Institute, Frankfurt, Germany (L.N., W.T.A., S.D.)
| |
Collapse
|
10
|
Turner A, Aggarwal P, Matter A, Olson B, Gu CC, Hunt SC, Lewis CE, Arnett DK, Lorier R, Broeckel U. Donor-specific phenotypic variation in hiPSC cardiomyocyte-derived exosomes impacts endothelial cell function. Am J Physiol Heart Circ Physiol 2021; 320:H954-H968. [PMID: 33416449 DOI: 10.1152/ajpheart.00463.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exosomes are an important mechanism of cell-cell interaction in the cardiovascular system, both in maintaining homeostasis and in stress response. Interindividual differences that alter content in exosomes may play a role in cardiovascular disease pathology. To study the effect of interindividual cardiomyocyte (CM) variation, we characterized exosomal content in phenotypically diverse human induced pluripotent stem cell-derived CMs (hiPSC-CMs). Cell lines were generated from six participants in the HyperGEN cohort: three with left ventricular hypertrophy (LVH) and three with normal left ventricular mass (LVM). Sequence analysis of the intracellular and exosomal RNA populations showed distinct expression pattern differences between hiPSC-CM lines derived from individuals with LVH and those with normal LVM. Functional analysis of hiPSC-endothelial cells (hiPSC-ECs) treated with exosomes from both hiPSC-CM groups showed significant variation in response, including differences in tube formation, migration, and proliferation. Overall, treatment of hiPSC-ECs with exosomes resulted in significant expression changes associated with angiogenesis and endothelial cell vasculogenesis. However, the hiPSC-ECs treated with exosomes from the LVH-affected donors exhibited significantly increased proliferation but decreased tube formation and migration, suggesting angiogenic dysregulation.NEW & NOTEWORTHY The intracellular RNA and the miRNA content in exosomes are significantly different in hiPSC-CMs derived from LVH-affected individuals compared with those from unaffected individuals. Treatment of endothelial cells with these exosomes functionally affects cellular phenotypes in a donor-specific manner. These findings provide novel insight into underlying mechanisms of hypertrophic cell signaling between different cell types. With a growing interest in stem cells and exosomes for cardiovascular therapeutic use, this also provides information important for regenerative medicine.
Collapse
Affiliation(s)
- Amy Turner
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Praful Aggarwal
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrea Matter
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin Olson
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Molecular Genetics and Genomics, Washington University, St. Louis, Missouri
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar.,Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Cora E Lewis
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donna K Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky
| | - Rachel Lorier
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
11
|
Capillary Rarefaction in Obesity and Metabolic Diseases-Organ-Specificity and Possible Mechanisms. Cells 2020; 9:cells9122683. [PMID: 33327460 PMCID: PMC7764934 DOI: 10.3390/cells9122683] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its comorbidities like diabetes, hypertension and other cardiovascular disorders are the leading causes of death and disability worldwide. Metabolic diseases cause vascular dysfunction and loss of capillaries termed capillary rarefaction. Interestingly, obesity seems to affect capillary beds in an organ-specific manner, causing morphological and functional changes in some tissues but not in others. Accordingly, treatment strategies targeting capillary rarefaction result in distinct outcomes depending on the organ. In recent years, organ-specific vasculature and endothelial heterogeneity have been in the spotlight in the field of vascular biology since specialized vascular systems have been shown to contribute to organ function by secreting varying autocrine and paracrine factors and by providing niches for stem cells. This review summarizes the recent literature covering studies on organ-specific capillary rarefaction observed in obesity and metabolic diseases and explores the underlying mechanisms, with multiple modes of action proposed. It also provides a glimpse of the reported therapeutic perspectives targeting capillary rarefaction. Further studies should address the reasons for such organ-specificity of capillary rarefaction, investigate strategies for its prevention and reversibility and examine potential signaling pathways that can be exploited to target it.
Collapse
|
12
|
Yin H, Favreau-Lessard AJ, deKay JT, Herrmann YR, Robich MP, Koza RA, Prudovsky I, Sawyer DB, Ryzhov S. Protective role of ErbB3 signaling in myeloid cells during adaptation to cardiac pressure overload. J Mol Cell Cardiol 2020; 152:1-16. [PMID: 33259856 DOI: 10.1016/j.yjmcc.2020.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/06/2020] [Accepted: 11/23/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND Myeloid cells play an important role in a wide variety of cardiovascular disorders, including both ischemic and non-ischemic cardiomyopathies. Neuregulin-1 (NRG-1)/ErbB signaling has recently emerged as an important factor contributing to the control of inflammatory activation of myeloid cells after an ischemic injury. However, the role of ErbB signaling in myeloid cells in non-ischemic cardiomyopathy is not fully understood. This study investigated the role of ErbB3 receptors in the regulation of early adaptive response using a mouse model of transverse aortic constriction (TAC) for non-ischemic cardiomyopathy. METHODS AND RESULTS TAC surgery was performed in groups of age- and sex-matched myeloid cell-specific ErbB3-deficient mice (ErbB3MyeKO) and control animals (ErbB3MyeWT). The number of cardiac CD45 immune cells, CD11b myeloid cells, Ly6G neutrophils, and Ly6C monocytes was determined using flow cytometric analysis. Five days after TAC, survival was dramatically reduced in male but not female ErbB3MyeKO mice or control animals. The examination of lung weight to body weight ratio suggested that acute pulmonary edema was present in ErbB3MyeKO male mice after TAC. To determine the cellular and molecular mechanisms involved in the increased mortality in ErbB3MyeKO male mice, cardiac cell populations were examined at day 3 post-TAC using flow cytometry. Myeloid cells accumulated in control but not in ErbB3MyeKO male mouse hearts. This was accompanied by increased proliferation of Sca-1 positive non-immune cells (endothelial cells and fibroblasts) in control but not ErbB3MyeKO male mice. No significant differences in intramyocardial accumulation of myeloid cells or proliferation of Sca-1 cells were found between the groups of ErbB3MyeKO and ErbB3MyeWT female mice. An antibody-based protein array analysis revealed that IGF-1 expression was significantly downregulated only in ErbB3MyeKO mice hearts compared to control animals after TAC. CONCLUSION Our data demonstrate the crucial role of myeloid cell-specific ErbB3 signaling in the cardiac accumulation of myeloid cells, which contributes to the activation of cardiac endothelial cells and fibroblasts and development of an early adaptive response to cardiac pressure overload in male mice.
Collapse
Affiliation(s)
- Haifeng Yin
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | | | - Joanne T deKay
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Yodit R Herrmann
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Michael P Robich
- Maine Medical Center Research Institute, Scarborough, ME, United States of America; Maine Medical Center, Cardiovascular Institute, Portland, ME, United States of America
| | - Robert A Koza
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Igor Prudovsky
- Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Douglas B Sawyer
- Maine Medical Center Research Institute, Scarborough, ME, United States of America; Maine Medical Center, Cardiovascular Institute, Portland, ME, United States of America
| | - Sergey Ryzhov
- Maine Medical Center Research Institute, Scarborough, ME, United States of America.
| |
Collapse
|
13
|
Shrestha S, Sewell JA, Santoso CS, Forchielli E, Carrasco Pro S, Martinez M, Fuxman Bass JI. Discovering human transcription factor physical interactions with genetic variants, novel DNA motifs, and repetitive elements using enhanced yeast one-hybrid assays. Genome Res 2020; 29:1533-1544. [PMID: 31481462 PMCID: PMC6724672 DOI: 10.1101/gr.248823.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
Identifying transcription factor (TF) binding to noncoding variants, uncharacterized DNA motifs, and repetitive genomic elements has been technically and computationally challenging. Current experimental methods, such as chromatin immunoprecipitation, generally test one TF at a time, and computational motif algorithms often lead to false-positive and -negative predictions. To address these limitations, we developed an experimental approach based on enhanced yeast one-hybrid assays. The first variation of this approach interrogates the binding of >1000 human TFs to repetitive DNA elements, while the second evaluates TF binding to single nucleotide variants, short insertions and deletions (indels), and novel DNA motifs. Using this approach, we detected the binding of 75 TFs, including several nuclear hormone receptors and ETS factors, to the highly repetitive Alu elements. Further, we identified cancer-associated changes in TF binding, including gain of interactions involving ETS TFs and loss of interactions involving KLF TFs to different mutations in the TERT promoter, and gain of a MYB interaction with an 18-bp indel in the TAL1 superenhancer. Additionally, we identified TFs that bind to three uncharacterized DNA motifs identified in DNase footprinting assays. We anticipate that these enhanced yeast one-hybrid approaches will expand our capabilities to study genetic variation and undercharacterized genomic regions.
Collapse
Affiliation(s)
- Shaleen Shrestha
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - Jared Allan Sewell
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | - Elena Forchielli
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | | | - Melissa Martinez
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA
| | - Juan Ignacio Fuxman Bass
- Department of Biology, Boston University, Boston, Massachusetts 02215, USA.,Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
14
|
Lahm T, Douglas IS, Archer SL, Bogaard HJ, Chesler NC, Haddad F, Hemnes AR, Kawut SM, Kline JA, Kolb TM, Mathai SC, Mercier O, Michelakis ED, Naeije R, Tuder RM, Ventetuolo CE, Vieillard-Baron A, Voelkel NF, Vonk-Noordegraaf A, Hassoun PM. Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2019; 198:e15-e43. [PMID: 30109950 DOI: 10.1164/rccm.201806-1160st] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology.
Collapse
|
15
|
Tocchetti CG, Cadeddu C, Di Lisi D, Femminò S, Madonna R, Mele D, Monte I, Novo G, Penna C, Pepe A, Spallarossa P, Varricchi G, Zito C, Pagliaro P, Mercuro G. From Molecular Mechanisms to Clinical Management of Antineoplastic Drug-Induced Cardiovascular Toxicity: A Translational Overview. Antioxid Redox Signal 2019; 30:2110-2153. [PMID: 28398124 PMCID: PMC6529857 DOI: 10.1089/ars.2016.6930] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: Antineoplastic therapies have significantly improved the prognosis of oncology patients. However, these treatments can bring to a higher incidence of side-effects, including the worrying cardiovascular toxicity (CTX). Recent Advances: Substantial evidence indicates multiple mechanisms of CTX, with redox mechanisms playing a key role. Recent data singled out mitochondria as key targets for antineoplastic drug-induced CTX; understanding the underlying mechanisms is, therefore, crucial for effective cardioprotection, without compromising the efficacy of anti-cancer treatments. Critical Issues: CTX can occur within a few days or many years after treatment. Type I CTX is associated with irreversible cardiac cell injury, and it is typically caused by anthracyclines and traditional chemotherapeutics. Type II CTX is generally caused by novel biologics and more targeted drugs, and it is associated with reversible myocardial dysfunction. Therefore, patients undergoing anti-cancer treatments should be closely monitored, and patients at risk of CTX should be identified before beginning treatment to reduce CTX-related morbidity. Future Directions: Genetic profiling of clinical risk factors and an integrated approach using molecular, imaging, and clinical data may allow the recognition of patients who are at a high risk of developing chemotherapy-related CTX, and it may suggest methodologies to limit damage in a wider range of patients. The involvement of redox mechanisms in cancer biology and anticancer treatments is a very active field of research. Further investigations will be necessary to uncover the hallmarks of cancer from a redox perspective and to develop more efficacious antineoplastic therapies that also spare the cardiovascular system.
Collapse
Affiliation(s)
| | - Christian Cadeddu
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniela Di Lisi
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Saveria Femminò
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Rosalinda Madonna
- 5 Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy.,6 Department of Internal Medicine, The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Donato Mele
- 7 Cardiology Unit, Emergency Department, University Hospital of Ferrara, Ferrara, Italy
| | - Ines Monte
- 8 Department of General Surgery and Medical-Surgery Specialities, University of Catania, Catania, Italy
| | - Giuseppina Novo
- 3 Biomedical Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Claudia Penna
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Alessia Pepe
- 9 U.O.C. Magnetic Resonance Imaging, Fondazione Toscana G. Monasterio C.N.R., Pisa, Italy
| | - Paolo Spallarossa
- 10 Clinic of Cardiovascular Diseases, IRCCS San Martino IST, Genova, Italy
| | - Gilda Varricchi
- 1 Department of Translational Medical Sciences, Federico II University, Naples, Italy.,11 Center for Basic and Clinical Immunology Research (CISI) - Federico II University, Naples, Italy
| | - Concetta Zito
- 12 Division of Cardiology, Clinical and Experimental Department of Medicine and Pharmacology, Policlinico "G. Martino" University of Messina, Messina, Italy
| | - Pasquale Pagliaro
- 4 Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giuseppe Mercuro
- 2 Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
16
|
Verboven M, Cuypers A, Deluyker D, Lambrichts I, Eijnde BO, Hansen D, Bito V. High intensity training improves cardiac function in healthy rats. Sci Rep 2019; 9:5612. [PMID: 30948751 PMCID: PMC6449502 DOI: 10.1038/s41598-019-42023-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/11/2019] [Indexed: 02/08/2023] Open
Abstract
Exercise training is a low cost and safe approach for reducing the risk of cardiovascular disease development. Currently, moderate-intensity training (MIT) is the most preferred exercise type. However, high-intensity interval training (HIIT) is gaining interest especially among athletes and healthy individuals. In this study, we examined cardiac remodeling resulting from MIT and HIIT in healthy rats. Healthy male Sprague-Dawley rats were randomly assigned to MIT or HIIT for 13 weeks. Animals kept sedentary (SED) were used as control. Cardiac function was evaluated with echocardiography and hemodynamic measurements. Heart tissue was stained for capillary density and fibrosis. After 13 weeks of training, only HIIT induced beneficial cardiac hypertrophy. Overall global cardiac parameters (such as ejection fraction, cardiac output and volumes) were improved similarly between both training modalities. At tissue level, collagen content was significantly and similarly reduced in both exercise groups. Finally, only HIIT increased significantly capillary density. Our data indicate that even if very different in design, HIIT and MIT appear to be equally effective in improving cardiac function in healthy rats. Furthermore, HIIT provides additional benefits through improved capillary density and should therefore be considered as a preferred training modality for athletes and for patients.
Collapse
Affiliation(s)
- Maxim Verboven
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Anne Cuypers
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Dorien Deluyker
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Dominique Hansen
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa hospital, Stadsomvaart 11, 3500, Hasselt, Belgium
| | - Virginie Bito
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
17
|
Kivelä R, Hemanthakumar KA, Vaparanta K, Robciuc M, Izumiya Y, Kidoya H, Takakura N, Peng X, Sawyer DB, Elenius K, Walsh K, Alitalo K. Endothelial Cells Regulate Physiological Cardiomyocyte Growth via VEGFR2-Mediated Paracrine Signaling. Circulation 2019; 139:2570-2584. [PMID: 30922063 PMCID: PMC6553980 DOI: 10.1161/circulationaha.118.036099] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Heart failure, which is a major global health problem, is often preceded by pathological cardiac hypertrophy. The expansion of the cardiac vasculature, to maintain adequate supply of oxygen and nutrients, is a key determinant of whether the heart grows in a physiological compensated manner or a pathological decompensated manner. Bidirectional endothelial cell (EC)–cardiomyocyte (CMC) cross talk via cardiokine and angiocrine signaling plays an essential role in the regulation of cardiac growth and homeostasis. Currently, the mechanisms involved in the EC-CMC interaction are not fully understood, and very little is known about the EC-derived signals involved. Understanding how an excess of angiogenesis induces cardiac hypertrophy and how ECs regulate CMC homeostasis could provide novel therapeutic targets for heart failure. Methods: Genetic mouse models were used to delete vascular endothelial growth factor (VEGF) receptors, adeno-associated viral vectors to transduce the myocardium, and pharmacological inhibitors to block VEGF and ErbB signaling in vivo. Cell culture experiments were used for mechanistic studies, and quantitative polymerase chain reaction, microarrays, ELISA, and immunohistochemistry were used to analyze the cardiac phenotypes. Results: Both EC deletion of VEGF receptor (VEGFR)-1 and adeno-associated viral vector–mediated delivery of the VEGFR1-specific ligands VEGF-B or placental growth factor into the myocardium increased the coronary vasculature and induced CMC hypertrophy in adult mice. The resulting cardiac hypertrophy was physiological, as indicated by preserved cardiac function and exercise capacity and lack of pathological gene activation. These changes were mediated by increased VEGF signaling via endothelial VEGFR2, because the effects of VEGF-B and placental growth factor on both angiogenesis and CMC growth were fully inhibited by treatment with antibodies blocking VEGFR2 or by endothelial deletion of VEGFR2. To identify activated pathways downstream of VEGFR2, whole-genome transcriptomics and secretome analyses were performed, and the Notch and ErbB pathways were shown to be involved in transducing signals for EC-CMC cross talk in response to angiogenesis. Pharmacological or genetic blocking of ErbB signaling also inhibited part of the VEGF-B–induced effects in the heart. Conclusions: This study reveals that cross talk between the EC VEGFR2 and CMC ErbB signaling pathways coordinates CMC hypertrophy with angiogenesis, contributing to physiological cardiac growth.
Collapse
Affiliation(s)
- Riikka Kivelä
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., M.R., K.A.)
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., M.R., K.A.)
| | - Katri Vaparanta
- MediCity Research Laboratories and Institute of Biomedicine, Faculty of Medicine, University of Turku, Finland (K.V., K.E.).,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Finland (K.V., K.E.)
| | - Marius Robciuc
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., M.R., K.A.)
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine, Japan (Y.I.)
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Japan (H.K., N.T.)
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Japan (H.K., N.T.)
| | - Xuyang Peng
- Maine Medical Center, Portland (X.P., D.B.S.)
| | | | - Klaus Elenius
- MediCity Research Laboratories and Institute of Biomedicine, Faculty of Medicine, University of Turku, Finland (K.V., K.E.).,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Finland (K.V., K.E.).,Department of Oncology and Radiotherapy, University of Turku and Turku University Hospital, Finland (K.E.)
| | - Kenneth Walsh
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville (K.W.)
| | - Kari Alitalo
- Wihuri Research Institute, Helsinki, Finland and Translational Cancer Biology Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Finland (R.K., K.A.H., M.R., K.A.)
| |
Collapse
|
18
|
Lighthouse JK, Burke RM, Velasquez LS, Dirkx RA, Aiezza A, Moravec CS, Alexis JD, Rosenberg A, Small EM. Exercise promotes a cardioprotective gene program in resident cardiac fibroblasts. JCI Insight 2019; 4:92098. [PMID: 30626739 DOI: 10.1172/jci.insight.92098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Exercise and heart disease both induce cardiac remodeling, but only disease causes fibrosis and compromises heart function. The cardioprotective benefits of exercise have been attributed to changes in cardiomyocyte physiology, but the impact of exercise on cardiac fibroblasts (CFs) is unknown. Here, RNA-sequencing reveals rapid divergence of CF transcriptional programs during exercise and disease. Among the differentially expressed programs, NRF2-dependent antioxidant genes - including metallothioneins (Mt1 and Mt2) - are induced in CFs during exercise and suppressed by TGF-β/p38 signaling in disease. In vivo, mice lacking Mt1/2 exhibit signs of cardiac dysfunction in exercise, including cardiac fibrosis, vascular rarefaction, and functional decline. Mechanistically, exogenous MTs derived from fibroblasts are taken up by cultured cardiomyocytes, reducing oxidative damage-dependent cell death. Importantly, suppression of MT expression is conserved in human heart failure. Taken together, this study defines the acute transcriptional response of CFs to exercise and disease and reveals a cardioprotective mechanism that is lost in disease.
Collapse
Affiliation(s)
- Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ryan M Burke
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Lissette S Velasquez
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Ronald A Dirkx
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Alessandro Aiezza
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | | | - Alex Rosenberg
- Department of Allergy, Immunology, and Rheumatology Research, and
| | - Eric M Small
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.,Department of Medicine.,Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
19
|
Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues. Nat Commun 2017; 8:1825. [PMID: 29184059 PMCID: PMC5705709 DOI: 10.1038/s41467-017-01946-x] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/27/2017] [Indexed: 12/25/2022] Open
Abstract
Despite increased use of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for drug development and disease modeling studies, methods to generate large, functional heart tissues for human therapy are lacking. Here we present a “Cardiopatch” platform for 3D culture and maturation of hiPSC-CMs that after 5 weeks of differentiation show robust electromechanical coupling, consistent H-zones, I-bands, and evidence for T-tubules and M-bands. Cardiopatch maturation markers and functional output increase during culture, approaching values of adult myocardium. Cardiopatches can be scaled up to clinically relevant dimensions, while preserving spatially uniform properties with high conduction velocities and contractile stresses. Within window chambers in nude mice, cardiopatches undergo vascularization by host vessels and continue to fire Ca2+ transients. When implanted onto rat hearts, cardiopatches robustly engraft, maintain pre-implantation electrical function, and do not increase the incidence of arrhythmias. These studies provide enabling technology for future use of hiPSC-CM tissues in human heart repair. Cardiomyocytes derived from human induced pluripotent stem cells could be used to generate cardiac tissues for regenerative purposes. Here the authors describe a method to obtain large bioengineered heart tissues showing advanced maturation, functional features and engraftment capacity.
Collapse
|
20
|
Suh JH, Lai L, Nam D, Kim J, Jo J, Taffet GE, Kim E, Kaelber JT, Lee HK, Entman ML, Cooke JP, Reineke EL. Steroid receptor coactivator-2 (SRC-2) coordinates cardiomyocyte paracrine signaling to promote pressure overload-induced angiogenesis. J Biol Chem 2017; 292:21643-21652. [PMID: 29127200 DOI: 10.1074/jbc.m117.804740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/09/2017] [Indexed: 12/23/2022] Open
Abstract
Pressure overload-induced cardiac stress induces left ventricular hypertrophy driven by increased cardiomyocyte mass. The increased energetic demand and cardiomyocyte size during hypertrophy necessitate increased fuel and oxygen delivery and stimulate angiogenesis in the left ventricular wall. We have previously shown that the transcriptional regulator steroid receptor coactivator-2 (SRC-2) controls activation of several key cardiac transcription factors and that SRC-2 loss results in extensive cardiac transcriptional remodeling. Pressure overload in mice lacking SRC-2 induces an abrogated hypertrophic response and decreases sustained cardiac function, but the cardiomyocyte-specific effects of SRC-2 in these changes are unknown. Here, we report that cardiomyocyte-specific loss of SRC-2 (SRC-2 CKO) results in a blunted hypertrophy accompanied by a rapid, progressive decrease in cardiac function. We found that SRC-2 CKO mice exhibit markedly decreased left ventricular vasculature in response to transverse aortic constriction, corresponding to decreased expression of the angiogenic factor VEGF. Of note, SRC-2 knockdown in cardiomyocytes decreased VEGF expression and secretion to levels sufficient to blunt in vitro tube formation and proliferation of endothelial cells. During pressure overload, both hypertrophic and hypoxic signals can stimulate angiogenesis, both of which stimulated SRC-2 expression in vitro Furthermore, SRC-2 coactivated the transcription factors GATA-binding protein 4 (GATA-4) and hypoxia-inducible factor (HIF)-1α and -2α in response to angiotensin II and hypoxia, respectively, which drive VEGF expression. These results suggest that SRC-2 coordinates cardiomyocyte secretion of VEGF downstream of the two major angiogenic stimuli occurring during pressure overload bridging both hypertrophic and hypoxia-stimulated paracrine signaling.
Collapse
Affiliation(s)
- Ji Ho Suh
- From the Center for Bioenergetics and
| | - Li Lai
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas 77030
| | | | - Jong Kim
- the University of Houston 77004, Houston, Texas
| | - Juyeon Jo
- the Department of Pediatrics and Neuroscience, Baylor College of Medicine and Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, and
| | - George E Taffet
- the Division of Cardiovascular Sciences, Department of Medicine, and
| | - Eunah Kim
- From the Center for Bioenergetics and
| | - Jason T Kaelber
- the National Center for Macromolecular Imaging and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Hyun-Kyoung Lee
- the Department of Pediatrics and Neuroscience, Baylor College of Medicine and Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, and
| | - Mark L Entman
- the Division of Cardiovascular Sciences, Department of Medicine, and
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas 77030
| | | |
Collapse
|
21
|
Affiliation(s)
- Richard T Lee
- From Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and the Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (R.T.L.); and Whitaker Cardiovascular Institute, Boston University, Boston, MA (K.W.).
| | - Kenneth Walsh
- From Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, and the Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (R.T.L.); and Whitaker Cardiovascular Institute, Boston University, Boston, MA (K.W.).
| |
Collapse
|
22
|
Korkmaz-Icöz S, Lehner A, Li S, Vater A, Radovits T, Brune M, Ruppert M, Sun X, Brlecic P, Zorn M, Karck M, Szabó G. Left ventricular pressure-volume measurements and myocardial gene expression profile in type 2 diabetic Goto-Kakizaki rats. Am J Physiol Heart Circ Physiol 2016; 311:H958-H971. [DOI: 10.1152/ajpheart.00956.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 07/29/2016] [Indexed: 01/07/2023]
Abstract
The Goto-Kakizaki (GK) rat, a non-obese model of type 2 diabetes mellitus (T2DM), was generated by the selective inbreeding of glucose-intolerant Wistar rats. This is a convenient model for studying diabetes-induced cardiomyopathy independently from the effects of the metabolic syndrome. We investigated the myocardial functional and structural changes and underlying molecular pathomechanisms of short-term and mild T2DM. The presence of DM was confirmed by an impaired oral glucose tolerance in the GK rats compared with the age-matched nondiabetic Wistar rats. Data from cardiac catheterization showed that in GK rats, although the systolic indexes were not altered, the diastolic stiffness was increased compared with nondiabetics (end-diastolic-pressure-volume-relationship: 0.12 ± 0.04 vs. 0.05 ± 0.01 mmHg/μl, P < 0.05). Additionally, DM was associated with left-ventricular hypertrophy and histological evidence of increased myocardial fibrosis. The plasma pro-B-type natriuretic peptide, the cardiac troponin-T, glucose, and the urinary glucose concentrations were significantly higher in GK rats. Among the 125 genes surveyed using PCR arrays, DM significantly altered the expression of five genes [upregulation of natriuretic peptide precursor-A and connective tissue growth factor, downregulation of c-reactive protein, interleukin-1β, and tumor necrosis factor (TNF)-α mRNA-level]. Of the altered genes, which were evaluated by Western blot, only TNF-α protein expression was significantly decreased. The ECG recordings revealed no significant differences. In conclusion, while systolic dysfunction, myocardial inflammation, and abnormal electrical conduction remain absent, short-term and mild T2DM induce the alteration of cardiac TNF-α at both the mRNA and protein levels. Further assessments are required to reveal if TNF-α plays a role in the early stage of diabetic cardiomyopathy development.
Collapse
Affiliation(s)
- Sevil Korkmaz-Icöz
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alice Lehner
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Shiliang Li
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Adrian Vater
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary; and
| | - Maik Brune
- Department of Internal Medicine I, University of Heidelberg, Heidelberg, Germany
| | - Mihály Ruppert
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary; and
| | - Xiaoxin Sun
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Paige Brlecic
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus Zorn
- Department of Internal Medicine I, University of Heidelberg, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
23
|
Ragot H, Monfort A, Baudet M, Azibani F, Fazal L, Merval R, Polidano E, Cohen-Solal A, Delcayre C, Vodovar N, Chatziantoniou C, Samuel JL. Loss of Notch3 Signaling in Vascular Smooth Muscle Cells Promotes Severe Heart Failure Upon Hypertension. Hypertension 2016; 68:392-400. [PMID: 27296994 DOI: 10.1161/hypertensionaha.116.07694] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
Hypertension, which is a risk factor of heart failure, provokes adaptive changes at the vasculature and cardiac levels. Notch3 signaling plays an important role in resistance arteries by controlling the maturation of vascular smooth muscle cells. Notch3 deletion is protective in pulmonary hypertension while deleterious in arterial hypertension. Although this latter phenotype was attributed to renal and cardiac alterations, the underlying mechanisms remained unknown. To investigate the role of Notch3 signaling in the cardiac adaptation to hypertension, we used mice with either constitutive Notch3 or smooth muscle cell-specific conditional RBPJκ knockout. At baseline, both genotypes exhibited a cardiac arteriolar rarefaction associated with oxidative stress. In response to angiotensin II-induced hypertension, the heart of Notch3 knockout and SM-RBPJκ knockout mice did not adapt to pressure overload and developed heart failure, which could lead to an early and fatal acute decompensation of heart failure. This cardiac maladaptation was characterized by an absence of media hypertrophy of the media arteries, the transition of smooth muscle cells toward a synthetic phenotype, and an alteration of angiogenic pathways. A subset of mice exhibited an early fatal acute decompensated heart failure, in which the same alterations were observed, although in a more rapid timeframe. Altogether, these observations indicate that Notch3 plays a major role in coronary adaptation to pressure overload. These data also show that the hypertrophy of coronary arterial media on pressure overload is mandatory to initially maintain a normal cardiac function and is regulated by the Notch3/RBPJκ pathway.
Collapse
Affiliation(s)
- Hélène Ragot
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Astrid Monfort
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Mathilde Baudet
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Fériel Azibani
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Loubina Fazal
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Régine Merval
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Evelyne Polidano
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Alain Cohen-Solal
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Claude Delcayre
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Nicolas Vodovar
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Christos Chatziantoniou
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.)
| | - Jane-Lise Samuel
- From the Inserm UMR-S 942 and Paris Diderot University, Paris, France (H.R., A.M., M.B., F.A., L.F., R.M., E.P., A.C.-S., C.D., N.V., J.-L.S.); Department of Cardiology, Lariboisière Hospital, Paris, France (A.C.-S.); and Inserm UMR-S 1155 and Pierre and Marie Curie University, Paris, France (C.C.).
| |
Collapse
|
24
|
Mercurio V, Pirozzi F, Lazzarini E, Marone G, Rizzo P, Agnetti G, Tocchetti CG, Ghigo A, Ameri P. Models of Heart Failure Based on the Cardiotoxicity of Anticancer Drugs. J Card Fail 2016; 22:449-58. [PMID: 27103426 DOI: 10.1016/j.cardfail.2016.04.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a complication of oncological treatments that may have dramatic clinical impact. It may acutely worsen a patient's condition or it may present with delayed onset, even years after treatment, when cancer has been cured or is in stable remission. Several studies have addressed the mechanisms of cancer therapy-related HF and some have led to the definition of disease models that hold valid for other and more common types of HF. Here, we review these models of HF based on the cardiotoxicity of antineoplastic drugs and classify them in cardiomyocyte-intrinsic, paracrine, or potentially secondary to effects on cardiac progenitor cells. The first group includes HF resulting from the combination of oxidative stress, mitochondrial dysfunction, and activation of the DNA damage response, which is typically caused by anthracyclines, and HF resulting from deranged myocardial energetics, such as that triggered by anthracyclines and sunitinib. Blockade of the neuregulin-1/ErbB4/ErbB2, vascular endothelial growth factor/vascular endothelial growth factor receptor and platelet-derived growth factor /platelet-derived growth factor receptor pathways by trastuzumab, sorafenib and sunitinib is proposed as paradigm of cancer therapy-related HF associated with alterations of myocardial paracrine pathways. Finally, anthracyclines and trastuzumab are also presented as examples of antitumor agents that induce HF by affecting the cardiac progenitor cell population.
Collapse
Affiliation(s)
- Valentina Mercurio
- Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Flora Pirozzi
- Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Edoardo Lazzarini
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Giancarlo Marone
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Paola Rizzo
- Department of Morphology, Surgery and Experimental Medicine and Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Giulio Agnetti
- Johns Hopkins University, Cardiology, Baltimore, Maryland; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Carlo G Tocchetti
- Division of Internal Medicine, Department of Translational Medical Sciences, Federico II University, Naples, Italy.
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| |
Collapse
|
25
|
Novel molecular mechanisms and regeneration therapy for heart failure. J Mol Cell Cardiol 2016; 92:46-51. [DOI: 10.1016/j.yjmcc.2016.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/08/2016] [Accepted: 01/28/2016] [Indexed: 01/08/2023]
|
26
|
miR-182 Modulates Myocardial Hypertrophic Response Induced by Angiogenesis in Heart. Sci Rep 2016; 6:21228. [PMID: 26888314 PMCID: PMC4758045 DOI: 10.1038/srep21228] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/20/2016] [Indexed: 12/23/2022] Open
Abstract
Myocardial hypertrophy is an adaptive response to hemodynamic demands. Although angiogenesis is critical to support the increase in heart mass with matching blood supply, it may also promote a hypertrophic response. Previously, we showed that cardiac angiogenesis induced by placental growth factor (PlGF), promotes myocardial hypertrophy through the paracrine action of endothelium-derived NO, which triggers the degradation of regulator of G protein signaling 4 (RGS4) to activate the Akt/mTORC1 pathways in cardiomyocytes. Here, we investigated whether miRNAs contribute to the development of hypertrophic response associated with myocardial angiogenesis. We show that miR-182 is upregulated concurrently with the development of hypertrophy in PlGF mice, but not when hypertrophy was blocked by concomitant expression of PlGF and RGS4, or by PlGF expression in eNOS−/− mice. Anti-miR-182 treatment inhibits the hypertrophic response and prevents the Akt/mTORC1 activation in PlGF mice and NO-treated cardiomyocytes. miR-182 reduces the expression of Bcat2, Foxo3 and Adcy6 to regulate the hypertrophic response in PlGF mice. Particularly, depletion of Bcat2, identified as a new miR-182 target, promotes AktSer473/p70-S6KThr389 phosphorylation and cardiomyocyte hypertrophy. LV pressure overload did not upregulate miR-182. Thus, miR-182 is a novel target of endothelial-cardiomyocyte crosstalk and plays an important role in the angiogenesis induced-hypertrophic response.
Collapse
|
27
|
Molinaro M, Ameri P, Marone G, Petretta M, Abete P, Di Lisa F, De Placido S, Bonaduce D, Tocchetti CG. Recent Advances on Pathophysiology, Diagnostic and Therapeutic Insights in Cardiac Dysfunction Induced by Antineoplastic Drugs. BIOMED RESEARCH INTERNATIONAL 2015; 2015:138148. [PMID: 26583088 PMCID: PMC4637019 DOI: 10.1155/2015/138148] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/01/2015] [Indexed: 12/28/2022]
Abstract
Along with the improvement of survival after cancer, cardiotoxicity due to antineoplastic treatments has emerged as a clinically relevant problem. Potential cardiovascular toxicities due to anticancer agents include QT prolongation and arrhythmias, myocardial ischemia and infarction, hypertension and/or thromboembolism, left ventricular (LV) dysfunction, and heart failure (HF). The latter is variable in severity, may be reversible or irreversible, and can occur soon after or as a delayed consequence of anticancer treatments. In the last decade recent advances have emerged in clinical and pathophysiological aspects of LV dysfunction induced by the most widely used anticancer drugs. In particular, early, sensitive markers of cardiac dysfunction that can predict this form of cardiomyopathy before ejection fraction (EF) is reduced are becoming increasingly important, along with novel therapeutic and cardioprotective strategies, in the attempt of protecting cardiooncologic patients from the development of congestive heart failure.
Collapse
Affiliation(s)
- Marilisa Molinaro
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Giancarlo Marone
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | - Mario Petretta
- Department of Translational Medical Sciences, Division of Internal Medicine, Federico II University, 80131 Naples, Italy
| | - Pasquale Abete
- Department of Translational Medical Sciences, Division of Internal Medicine, Federico II University, 80131 Naples, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
- National Researches Council, Neuroscience Institute, University of Padova, 35121 Padova, Italy
| | - Sabino De Placido
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, Division of Internal Medicine, Federico II University, 80131 Naples, Italy
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Division of Internal Medicine, Federico II University, 80131 Naples, Italy
| |
Collapse
|
28
|
Tham YK, Bernardo BC, Ooi JYY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 2015; 89:1401-38. [DOI: 10.1007/s00204-015-1477-x] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 12/18/2022]
|
29
|
Li F, Yuan Y, Guo Y, Liu N, Jing D, Wang H, Guo W. Pulsed magnetic field accelerate proliferation and migration of cardiac microvascular endothelial cells. Bioelectromagnetics 2014; 36:1-9. [PMID: 25338938 DOI: 10.1002/bem.21875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 07/17/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Li
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Yuan Yuan
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Ying Guo
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Nan Liu
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Da Jing
- Faculty of Biomedical Engineering; Fourth Military Medical University; Xi'an China
| | - Haichang Wang
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| | - Wenyi Guo
- Department of Cardiology; Xijing Hospital; Fourth Military Medical University; Xi'an China
| |
Collapse
|
30
|
Campbell DJ, Somaratne JB, Prior DL, Yii M, Kenny JF, Newcomb AE, Kelly DJ, Black MJ. Obesity is associated with lower coronary microvascular density. PLoS One 2013; 8:e81798. [PMID: 24312359 PMCID: PMC3843695 DOI: 10.1371/journal.pone.0081798] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/24/2013] [Indexed: 12/14/2022] Open
Abstract
Background Obesity is associated with diastolic dysfunction, lower maximal myocardial blood flow, impaired myocardial metabolism and increased risk of heart failure. We examined the association between obesity, left ventricular filling pressure and myocardial structure. Methods We performed histological analysis of non-ischemic myocardium from 57 patients (46 men and 11 women) undergoing coronary artery bypass graft surgery who did not have previous cardiac surgery, myocardial infarction, heart failure, atrial fibrillation or loop diuretic therapy. Results Non-obese (body mass index, BMI, ≤30 kg/m2, n=33) and obese patients (BMI >30 kg/m2, n=24) did not differ with respect to myocardial total, interstitial or perivascular fibrosis, arteriolar dimensions, or cardiomyocyte width. Obese patients had lower capillary length density (1145±239, mean±SD, vs. 1371±333 mm/mm3, P=0.007) and higher diffusion radius (16.9±1.5 vs. 15.6±2.0 μm, P=0.012), in comparison with non-obese patients. However, the diffusion radius/cardiomyocyte width ratio of obese patients (0.73±0.11 μm/μm) was not significantly different from that of non-obese patients (0.71±0.11 μm/μm), suggesting that differences in cardiomyocyte width explained in part the differences in capillary length density and diffusion radius between non-obese and obese patients. Increased BMI was associated with increased pulmonary capillary wedge pressure (PCWP, P<0.0001), and lower capillary length density was associated with both increased BMI (P=0.043) and increased PCWP (P=0.016). Conclusions Obesity and its accompanying increase in left ventricular filling pressure were associated with lower coronary microvascular density, which may contribute to the lower maximal myocardial blood flow, impaired myocardial metabolism, diastolic dysfunction and higher risk of heart failure in obese individuals.
Collapse
Affiliation(s)
- Duncan J. Campbell
- St. Vincent’s Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Health, Fitzroy, Australia
- * E-mail:
| | | | - David L. Prior
- Department of Medicine, The University of Melbourne, St. Vincent's Health, Fitzroy, Australia
- Department of Cardiology, St. Vincent's Health, Fitzroy, Australia
| | - Michael Yii
- Department of Surgery, University of Melbourne, St. Vincent's Health, Fitzroy, Australia
- Department of Cardiothoracic Surgery, St. Vincent's Health, Fitzroy, Australia
| | - James F. Kenny
- Department of Cardiothoracic Surgery, St. Vincent's Health, Fitzroy, Australia
| | - Andrew E. Newcomb
- Department of Surgery, University of Melbourne, St. Vincent's Health, Fitzroy, Australia
- Department of Cardiothoracic Surgery, St. Vincent's Health, Fitzroy, Australia
| | - Darren J. Kelly
- Department of Medicine, The University of Melbourne, St. Vincent's Health, Fitzroy, Australia
| | - Mary Jane Black
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| |
Collapse
|
31
|
Kameda R, Yamaoka-Tojo M, Makino A, Wakaume K, Nemoto S, Kitasato L, Shimohama T, Tojo T, Machida Y, Izumi T. Soluble Fms-like tyrosine kinase 1 is a novel predictor of brain natriuretic peptide elevation. Int Heart J 2013; 54:133-9. [PMID: 23774235 DOI: 10.1536/ihj.54.133] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Soluble fms-like tyrosine kinase 1 (sFlt-1) is an endogenous inhibitor of vascular endothelial growth factor, which is involved in cardiovascular remodeling and atherosclerosis development. To examine the predictive role of sFlt-1 levels in patients with asymptomatic heart failure, we measured circulating sFlt-1 in patients with or without coronary artery disease (CAD). We analyzed 88 Japanese patients with CAD or patients at high risk for atherosclerosis and who were undergoing total risk management for cardiovascular disease prevention. Circulating sFlt-1 levels correlated with the increase in plasma brain natriuretic peptide levels (ΔBNP) from baseline to the observed levels 5 years later in CAD patients, patients with previous myocardial infarction, and men. ΔBNP levels correlated with sFlt-1 levels in the high-sFlt-1 patients with CAD (r = 0.511, P < 0.01). In all patients, end-systolic volume index (ΔESVI) increased in correlation with a decrease in left ventricular ejection fraction (ΔEF) in the long-term observation, independent of their history of myocardial infarction (ΔESVI = 2.5 mL/m(2) increase/year). Baseline level of sFlt-1 was independent of ΔESVI or ΔEF. The present 5-year observational study demonstrated that high sFlt-1 levels predicted moderate increases in BNP levels in CAD patients. Moreover, ΔBNP was correlated with ΔESVI/year in CAD patients with high-sFlt-1 levels. These data suggest that high sFlt-1 levels may be an effective biomarker to predict the progression of heart failure in patients with CAD.
Collapse
Affiliation(s)
- Ryo Kameda
- Kitasato University Graduate School of Medical Sciences, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids-dependent relaxation. Pflugers Arch 2013; 466:237-51. [PMID: 23873354 DOI: 10.1007/s00424-013-1325-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 12/21/2022]
Abstract
The water channels, aquaporins (AQPs) are key mediators of transcellular fluid transport. However, their expression and role in cardiac tissue is poorly characterized. Particularly, AQP1 was suggested to transport other molecules (nitric oxide (NO), hydrogen peroxide (H2O2)) with potential major bearing on cardiovascular physiology. We therefore examined the expression of all AQPs and the phenotype of AQP1 knockout mice (vs. wild-type littermates) under implanted telemetry in vivo, as well as endothelium-dependent relaxation in isolated aortas and resistance vessels ex vivo. Four aquaporins were expressed in wild-type heart tissue (AQP1, AQP7, AQP4, AQP8) and two aquaporins in aortic and mesenteric vessels (AQP1-AQP7). AQP1 was expressed in endothelial as well as cardiac and vascular muscle cells and co-segregated with caveolin-1. AQP1 knockout (KO) mice exhibited a prominent microcardia and decreased myocyte transverse dimensions despite no change in capillary density. Both male and female AQP1 KO mice had lower mean BP, which was not attributable to altered water balance or autonomic dysfunction (from baroreflex and frequency analysis of BP and HR variability). NO-dependent BP variability was unperturbed. Accordingly, endothelium-derived hyperpolarizing factor (EDH(F)) or NO-dependent relaxation were unchanged in aorta or resistance vessels ex vivo. However, AQP1 KO mesenteric vessels exhibited an increase in endothelial prostanoids-dependent relaxation, together with increased expression of COX-2. This enhanced relaxation was abrogated by COX inhibition. We conclude that AQP1 does not regulate the endothelial EDH or NO-dependent relaxation ex vivo or in vivo, but its deletion decreases baseline BP together with increased prostanoids-dependent relaxation in resistance vessels. Strikingly, this was associated with microcardia, unrelated to perturbed angiogenesis. This may raise interest for new inhibitors of AQP1 and their use to treat hypertrophic cardiac remodeling.
Collapse
|
33
|
|
34
|
Wang W, McKinnie SMK, Patel VB, Haddad G, Wang Z, Zhabyeyev P, Das SK, Basu R, McLean B, Kandalam V, Penninger JM, Kassiri Z, Vederas JC, Murray AG, Oudit GY. Loss of Apelin exacerbates myocardial infarction adverse remodeling and ischemia-reperfusion injury: therapeutic potential of synthetic Apelin analogues. J Am Heart Assoc 2013; 2:e000249. [PMID: 23817469 PMCID: PMC3828798 DOI: 10.1161/jaha.113.000249] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Coronary artery disease leading to myocardial ischemia is the most common cause of heart failure. Apelin (APLN), the endogenous peptide ligand of the APJ receptor, has emerged as a novel regulator of the cardiovascular system. METHODS AND RESULTS Here we show a critical role of APLN in myocardial infarction (MI) and ischemia-reperfusion (IR) injury in patients and animal models. Myocardial APLN levels were reduced in patients with ischemic heart failure. Loss of APLN increased MI-related mortality, infarct size, and inflammation with drastic reductions in prosurvival pathways resulting in greater systolic dysfunction and heart failure. APLN deficiency decreased vascular sprouting, impaired sprouting of human endothelial progenitor cells, and compromised in vivo myocardial angiogenesis. Lack of APLN enhanced susceptibility to ischemic injury and compromised functional recovery following ex vivo and in vivo IR injury. We designed and synthesized two novel APLN analogues resistant to angiotensin converting enzyme 2 cleavage and identified one analogue, which mimicked the function of APLN, to be markedly protective against ex vivo and in vivo myocardial IR injury linked to greater activation of survival pathways and promotion of angiogenesis. CONCLUSIONS APLN is a critical regulator of the myocardial response to infarction and ischemia and pharmacologically targeting this pathway is feasible and represents a new class of potential therapeutic agents.
Collapse
Affiliation(s)
- Wang Wang
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jaba IM, Zhuang ZW, Li N, Jiang Y, Martin KA, Sinusas AJ, Papademetris X, Simons M, Sessa WC, Young LH, Tirziu D. NO triggers RGS4 degradation to coordinate angiogenesis and cardiomyocyte growth. J Clin Invest 2013; 123:1718-31. [PMID: 23454748 DOI: 10.1172/jci65112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
Myocardial hypertrophy is an adaptation to increased hemodynamic demands. An increase in heart tissue must be matched by a corresponding expansion of the coronary vasculature to maintain and adequate supply of oxygen and nutrients for the heart. The physiological mechanisms that underlie the coordination of angiogenesis and cardiomyocyte growth are unknown. We report that induction of myocardial angiogenesis promotes cardiomyocyte growth and cardiac hypertrophy through a novel NO-dependent mechanism. We used transgenic, conditional overexpression of placental growth factor (PlGF) in murine cardiac tissues to stimulate myocardial angiogenesis and increase endothelial-derived NO release. NO production, in turn, induced myocardial hypertrophy by promoting proteasomal degradation of regulator of G protein signaling type 4 (RGS4), thus relieving the repression of the Gβγ/PI3Kγ/AKT/mTORC1 pathway that stimulates cardiomyocyte growth. This hypertrophic response was prevented by concomitant transgenic expression of RGS4 in cardiomyocytes. NOS inhibitor L-NAME also significantly attenuated RGS4 degradation, and reduced activation of AKT/mTORC1 signaling and induction of myocardial hypertrophy in PlGF transgenic mice, while conditional cardiac-specific PlGF expression in eNOS knockout mice did not induce myocardial hypertrophy. These findings describe a novel NO/RGS4/Gβγ/PI3Kγ/AKT mechanism that couples cardiac vessel growth with myocyte growth and heart size.
Collapse
Affiliation(s)
- Irina M Jaba
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
McLean BA, Zhabyeyev P, Pituskin E, Paterson I, Haykowsky MJ, Oudit GY. PI3K Inhibitors as Novel Cancer Therapies: Implications for Cardiovascular Medicine. J Card Fail 2013; 19:268-82. [DOI: 10.1016/j.cardfail.2013.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/07/2013] [Accepted: 02/27/2013] [Indexed: 01/09/2023]
|
37
|
Affiliation(s)
- Masayuki Shimano
- Molecular Cardiology/Whitaker Cardiovascular Institute, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | |
Collapse
|
38
|
Accornero F, Molkentin JD. Placental growth factor as a protective paracrine effector in the heart. Trends Cardiovasc Med 2013; 21:220-4. [PMID: 22902069 DOI: 10.1016/j.tcm.2012.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In response to injury, the myocardium hypertrophies in an attempt to maintain or augment function, which is associated with ventricular remodeling and changes in capillary density. During the compensatory phase of the hypertrophic response, the myocardium maintains output and is characterized by a coordinated neo-angiogenic and fibrotic response that supports cardiomyocyte health and survival. Emerging evidence shows that paracrine-mediated cross talk between cardiac myocytes and nonmyocytes within the heart is critical for cardiac adaptation to stress, including the extent of hypertrophy and angiogenesis. This review discusses recent results indicating that placental growth factor (PGF; also called PlGF), a secreted factor within the vascular endothelial growth factor superfamily, is a pivotal mediator of adaptive cardiac hypertrophy and beneficial angiogenesis through its ability to coordinate the intercellular communication between different cell types in the heart.
Collapse
Affiliation(s)
- Federica Accornero
- Department of Pediatrics, Division of Molecular Cardiovascular Biology and the Howard Hughes Medical Institute, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | |
Collapse
|
39
|
Huusko J, Lottonen L, Merentie M, Gurzeler E, Anisimov A, Miyanohara A, Alitalo K, Tavi P, Ylä-Herttuala S. AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Mol Ther 2012; 20:2212-21. [PMID: 23089731 DOI: 10.1038/mt.2012.145] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mechanisms of the transition from compensatory hypertrophy to heart failure are poorly understood and the roles of vascular endothelial growth factors (VEGFs) in this process have not been fully clarified. We determined the expression profile of VEGFs and relevant receptors during the progression of left ventricular hypertrophy (LVH). C57BL mice were exposed to transversal aortic constriction (TAC) and the outcome was studied at different time points (1 day, 2, 4, and 10 weeks). A clear compensatory phase (2 weeks after TAC) was seen with following heart failure (4 weeks after TAC). Interestingly, VEGF-C and VEGF-D as well as VEGF receptor-3 (VEGFR-3) were upregulated in the compensatory hypertrophy and VEGF-B was downregulated in the heart failure. After treatment with adeno-associated virus serotype 9 (AAV9)-VEGF-B(186) gene therapy in the compensatory phase for 4 weeks the function of the heart was preserved due to angiogenesis, inhibition of apoptosis, and promotion of cardiomyocyte proliferation. Also, the genetic programming towards fetal gene expression, a known phenomenon in heart failure, was partly reversed in AAV9-VEGF-B(186)-treated mice. We conclude that VEGF-C and VEGF-D are associated with the compensatory LVH and that AAV9-VEGF-B(186) gene transfer can rescue the function of the failing heart and postpone the transition towards heart failure.
Collapse
Affiliation(s)
- Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Placental growth factor (PlGF) belongs to the vascular endothelial growth factor family and is one of the most interesting candidates as an "angiogenic cytokine," capable of not only controlling angiogenic functions but also finely regulating the inflammatory response. Because inflammatory response and, in particular, recruitment of monocyte/macrophage lineage cells are processes strictly connected to the cardiovascular system in health and disease, PlGF appears to be an intriguing player in the interplay of these phenomena. This review discusses recent findings unraveling novel functions of PlGF in ruling the inflammatory response during cardiac remodeling to pressure overload and the ensuing therapeutic implications and future directions for research.
Collapse
|
41
|
Moilanen AM, Rysä J, Serpi R, Mustonen E, Szabò Z, Aro J, Näpänkangas J, Tenhunen O, Sutinen M, Salo T, Ruskoaho H. (Pro)renin receptor triggers distinct angiotensin II-independent extracellular matrix remodeling and deterioration of cardiac function. PLoS One 2012; 7:e41404. [PMID: 22911790 PMCID: PMC3402428 DOI: 10.1371/journal.pone.0041404] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 06/22/2012] [Indexed: 12/12/2022] Open
Abstract
Background Activation of the renin-angiotensin-system (RAS) plays a key pathophysiological role in heart failure in patients with hypertension and myocardial infarction. However, the function of (pro)renin receptor ((P)RR) is not yet solved. We determined here the direct functional and structural effects of (P)RR in the heart. Methodology/Principal Findings (P)RR was overexpressed by using adenovirus-mediated gene delivery in normal adult rat hearts up to 2 weeks. (P)RR gene delivery into the anterior wall of the left ventricle decreased ejection fraction (P<0.01), fractional shortening (P<0.01), and intraventricular septum diastolic and systolic thickness, associated with approximately 2–fold increase in left ventricular (P)RR protein levels at 2 weeks. To test whether the worsening of cardiac function and structure by (P)RR gene overexpression was mediated by angiotensin II (Ang II), we infused an AT1 receptor blocker losartan via osmotic minipumps. Remarkably, cardiac function deteriorated in losartan-treated (P)RR overexpressing animals as well. Intramyocardial (P)RR gene delivery also resulted in Ang II-independent activation of extracellular-signal-regulated kinase1/2 phosphorylation and myocardial fibrosis, and the expression of transforming growth factor-β1 and connective tissue growth factor genes. In contrast, activation of heat shock protein 27 phosphorylation and apoptotic cell death by (P)RR gene delivery was Ang II-dependent. Finally, (P)RR overexpression significantly increased direct protein–protein interaction between (P)RR and promyelocytic zinc-finger protein. Conclusions/Significance These results indicate for the first time that (P)RR triggers distinct Ang II-independent myocardial fibrosis and deterioration of cardiac function in normal adult heart and identify (P)RR as a novel therapeutic target to optimize RAS blockade in failing hearts.
Collapse
Affiliation(s)
- Anne-Mari Moilanen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Jaana Rysä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Raisa Serpi
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Erja Mustonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Zoltán Szabò
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Jani Aro
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Juha Näpänkangas
- Department of Pathology, The Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Olli Tenhunen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Meeri Sutinen
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, Oulu University Hospital University of Oulu, Oulu, Finland
| | - Tuula Salo
- Department of Diagnostics and Oral Medicine, Institute of Dentistry, Oulu University Hospital University of Oulu, Oulu, Finland
- Institute of Dentistry, University of Helsinki, Finland
| | - Heikki Ruskoaho
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
42
|
Greineder CF, Kohnstamm S, Ky B. Heart failure associated with sunitinib: lessons learned from animal models. Curr Hypertens Rep 2012; 13:436-41. [PMID: 21826469 DOI: 10.1007/s11906-011-0225-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sunitinib is a highly potent, multitargeted anticancer agent. However, there is growing clinical evidence that sunitinib induces cardiac dysfunction. Disruption of multiple signaling pathways, which are important in the maintenance of adult cardiac function, is likely to result in cardiovascular toxicity. Basic and translational evidence implicates a potential role for specific growth factor signaling pathways. This review discusses the relevant translational data from animal models of heart failure, focusing on three key pathways that are inhibited by sunitinib: AMP-activated protein kinase (AMPK), platelet-derived growth factor receptors (PDGFRs), and the vascular endothelial growth factor receptors (VEGFRs) 1, 2, and 3. We hypothesize that disruption of these pathways by sunitinib results in cardiotoxicity, and present direct and indirect evidence to support the notion that sunitinib-induced cardiac dysfunction likely involves a variety of molecular mechanisms that are critical for cardiac homeostasis.
Collapse
Affiliation(s)
- Colin F Greineder
- Department of Pharmacology, Institute for Translational Medicine and Therapeutics, Department of Emergency Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
43
|
Fichtlscherer S, Zeiher AM, Dimmeler S. Circulating microRNAs: biomarkers or mediators of cardiovascular diseases? Arterioscler Thromb Vasc Biol 2012; 31:2383-90. [PMID: 22011751 DOI: 10.1161/atvbaha.111.226696] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRs) are small, noncoding RNAs that posttranscriptionally control gene expression by inhibiting protein translation or inducing target mRNA destabilization. Besides their intracellular function, recent studies demonstrate that miRs can be exported or released by cells and circulate with the blood in a remarkably stable form. The discovery of circulating miRs opens up intriguing possibilities to use the circulating miR patterns as biomarker for cardiovascular diseases. Cardiac injury as it occurs after acute myocardial infarction increases the circulating levels of several myocardial-derived miRs (eg, miR-1, miR-133, miR-499, miR-208), whereas patients with coronary artery disease or diabetes showed reduced levels of endothelial-enriched miRs, such as miR-126. This review article summarizes the current clinical and experimental studies addressing the role of circulating miRs as a diagnostic or prognostic biomarker in cardiovascular disease. In addition, the mechanisms by which miRs are released and their putative function as long-distance communicators are discussed.
Collapse
Affiliation(s)
- Stephan Fichtlscherer
- Division of Cardiology, Department of Medicine III, Goethe University, Frankfurt, Germany
| | | | | |
Collapse
|
44
|
Cellular FLICE-inhibitory protein protects against cardiac remodelling after myocardial infarction. Basic Res Cardiol 2011; 107:239. [PMID: 22202974 DOI: 10.1007/s00395-011-0239-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/28/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Cellular FLICE-inhibitory protein (cFLIP) is a member of the tumour necrosis factor signalling pathway and a regulator of apoptosis, and it has a role in cardiac remodelling following myocardial infarction (MI) that remains largely uncharacterised. This study aimed to determine the function of cFLIP as a potential mediator of post-infarction cardiac remodelling. Our results show diminished cFLIP expression in failing human and murine post-infarction hearts. Genetically engineered cFLIP heterozygous (cFLIP+/-, HET) mice, cardiac-specific cFLIP-overexpressing transgenic (TG) mice and their respective wild-type (WT) and non-transgenic controls were subjected to MI by permanent ligation of their left anterior descending artery. Cardiac structure and function were assessed by echocardiography and pressure-volume loop analysis. Apoptosis, inflammation, angiogenesis, and fibrosis were evaluated in the myocardium. The HET mice showed exacerbated left ventricular (LV) contractile dysfunction, dilatation, and remodelling compared with WT mice 28 days after MI. Impaired LV function in the HET mice was associated with increases in infarct size, hypertrophy, apoptosis, inflammation, and interstitial fibrosis, and reduced capillary density. The TG mice displayed the opposite phenotype after MI. Moreover, adenovirus-mediated overexpression of cFLIP decreased LV dilatation and improved LV function and remodelling in both HET and WT mice. Further analysis of signalling events suggests that cFLIP promotes cardioprotection by interrupting JNK1/2 signalling and augmenting Akt signalling. In conclusion, our results indicate that cFLIP protects against the development of post-infarction cardiac remodelling. Thus, cFLIP gene delivery shows promise as a clinically powerful and novel therapeutic strategy for the treatment of heart failure after MI.
Collapse
|
45
|
Zou Y, Liang Y, Gong H, Zhou N, Ma H, Guan A, Sun A, Wang P, Niu Y, Jiang H, Takano H, Toko H, Yao A, Takeshima H, Akazawa H, Shiojima I, Wang Y, Komuro I, Ge J. Ryanodine Receptor Type 2 Is Required for the Development of Pressure Overload-Induced Cardiac Hypertrophy. Hypertension 2011; 58:1099-110. [PMID: 21986507 DOI: 10.1161/hypertensionaha.111.173500] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ryanodine receptor type 2 (RyR-2) mediates Ca
2+
release from sarcoplasmic reticulum and contributes to myocardial contractile function. However, the role of RyR-2 in the development of cardiac hypertrophy is not completely understood. Here, mice with or without reduction of
RyR-2
gene (
RyR-2
+/−
and wild-type, respectively) were analyzed. At baseline, there was no difference in morphology of cardiomyocyte and heart and cardiac contractility between
RyR-2
+/−
and wild-type mice, although Ca
2+
release from sarcoplasmic reticulum was impaired in isolated
RyR-2
+/−
cardiomyocytes. During a 3-week period of pressure overload, which was induced by constriction of transverse aorta, isolated
RyR-2
+/−
cardiomyocytes displayed more reduction of Ca
2+
transient amplitude, rate of an increase in intracellular Ca
2+
concentration during systole, and percentile of fractional shortening, and hearts of
RyR-2
+/−
mice displayed less compensated hypertrophy, fibrosis, and contractility; more apoptosis with less autophagy of cardiomyocytes; and similar decrease of angiogenesis as compared with wild-type ones. Moreover, constriction of transverse aorta-induced increases in the activation of calcineurin, extracellular signal-regulated protein kinases, and protein kinase B/Akt but not that of Ca
2+
/calmodulin-dependent protein kinase II, and its downstream targets in the heart of wild-type mice were abolished in the
RyR-2
+/−
one, suggesting that RyR-2 is a regulator of calcineurin, extracellular signal-regulated protein kinases, and Akt but not of calmodulin-dependent protein kinase II activation during pressure overload. Taken together, our data indicate that RyR-2 contributes to the development of cardiac hypertrophy and adaptation of cardiac function during pressure overload through regulation of the sarcoplasmic reticulum Ca
2+
release; activation of calcineurin, extracellular signal-regulated protein kinases, and Akt; and cardiomyocyte survival.
Collapse
Affiliation(s)
- Yunzeng Zou
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Yanyan Liang
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Hui Gong
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Ning Zhou
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Hong Ma
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Aili Guan
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Aijun Sun
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Ping Wang
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Yuhong Niu
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Hong Jiang
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Hiroyuki Takano
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Haruhiro Toko
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Atsushi Yao
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Hiroshi Takeshima
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Hiroshi Akazawa
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Ichiro Shiojima
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Yuqi Wang
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Issei Komuro
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| | - Junbo Ge
- From the Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital (Y.Z., Y.L., N.Z., A.G., A.S., Y.N., H.J., J.G.) and Institutes of Biomedical Sciences (H.G.), Fudan University, Shanghai, China; Department of Vascular Surgery (Y.W.), Zhongshan Hospital, Fudan University, Shanghai, China; Department of Cardiology (H.M.), Second Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China; Department of Cardiovascular Science and Medicine (P.W., H.Taka., H.To.), Chiba
| |
Collapse
|
46
|
Ky B, French B, Ruparel K, Sweitzer NK, Fang JC, Levy WC, Sawyer DB, Cappola TP. The vascular marker soluble fms-like tyrosine kinase 1 is associated with disease severity and adverse outcomes in chronic heart failure. J Am Coll Cardiol 2011; 58:386-94. [PMID: 21757116 DOI: 10.1016/j.jacc.2011.03.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 02/16/2011] [Accepted: 03/07/2011] [Indexed: 12/19/2022]
Abstract
OBJECTIVES We sought to evaluate placental growth factor (PlGF) and soluble Fms-like tyrosine kinase 1 (sFlt-1) as clinical biomarkers in chronic heart failure (HF). BACKGROUND Vascular remodeling is a crucial compensatory mechanism in chronic HF. The angiogenic ligand PlGF and its target receptor fms-like tyrosine kinase 1 modulate vascular growth and function, but their relevance in human HF is undefined. METHODS We measured plasma PlGF and sFlt-1 in 1,403 patients from the Penn Heart Failure Study, a multicenter cohort of chronic systolic HF. Subjects were followed for death, cardiac transplantation, or ventricular assist device placement over a median follow-up of 2 years. RESULTS The sFlt-1 was independently associated with measures of HF severity, including New York Heart Association functional class (p < 0.01) and B-type natriuretic peptide (p < 0.01). Patients in the 4th quartile of sFlt-1 (>379 pg/ml) had a 6.17-fold increased risk of adverse outcomes (p < 0.01). This association was robust, even after adjustment for the Seattle Failure Model (hazard ratio: 2.54, 95% confidence interval [CI]: 1.76 to 2.27, p < 0.01) and clinical confounders including HF etiology (hazard ratio: 1.67, 95% CI: 1.06 to 2.63, p = 0.03). Combined assessment of sFlt-1 and B-type natriuretic peptide exhibited high predictive accuracy at 1 year (area under the receiver-operator characteristic curve: 0.791, 95% CI: 0.752 to 0.831) that was greater than either marker alone (p < 0.01 and p = 0.03, respectively). In contrast, PlGF was not an independent marker of disease severity or outcomes. CONCLUSIONS Our findings support a role for sFlt-1 in the biology of human HF. With additional study, circulating sFlt-1 might emerge as a clinically useful biomarker to assess the influence of vascular remodeling on clinical outcomes.
Collapse
Affiliation(s)
- Bonnie Ky
- Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang J, Chintalgattu V, Shih T, Ai D, Xia Y, Khakoo AY. MicroRNA-9 is an activation-induced regulator of PDGFR-beta expression in cardiomyocytes. J Mol Cell Cardiol 2011; 51:337-46. [PMID: 21684288 DOI: 10.1016/j.yjmcc.2011.05.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/10/2011] [Accepted: 05/25/2011] [Indexed: 11/18/2022]
Abstract
The platelet derived growth factor receptor (PDGFR) is an important target for novel anti-cancer therapeutics, but agents targeting PDGFR have been associated with cardiotoxicity. Cardiomyocyte PDGFR-β signaling in pressure-overloaded hearts induces compensatory angiogenesis via a paracrine-signaling cascade. Tight regulation of receptor tyrosine kinases in response to ligand stimulation is a critical part of any such cascade. The objective of the present study was to characterize the early and late regulation of PDGFR-β following ligand stimulation and define a potential role for microRNAs (miRNAs) predicted to interact with the 3'UTR of PDGFR-β in feedback regulation. Using two in-vitro model systems (U87 glioblastoma cells and neonatal cardiomyocytes), we observed that in response to stimulation with PDGF-BB, levels of PDGFR-β declined beginning at one hour, persisting for 48 h. PDGFR-β mRNA levels declined beginning at 6h after receptor activation. Early, but not late activation-induced receptor downregulation was proteasome dependent. Levels of miRNA-9 (miR-9) were significantly increased in U87 cells and cardiomyocytes beginning 6h after addition of ligand. In response to pressure overload, miR-9 levels were significantly reduced in the hearts of cardiac-specific PDGFR-β knockout mice. Luciferase reporter assays demonstrate that miR-9 directly interacts with its predicted seed in the 3'UTR of PDGFR-β. Increasing miR-9 levels reduces levels of PDGFR-β, resulting in a reduction in the paracrine angiogenic capacity of cardiomyocytes, consistent with the established function of cardiomyocyte PDGFR-β. Importantly, increase of anti-miR-9 in cardiomyocytes attenuates ligand-induced PDGFR-β downregulation. In conclusion, we have identified miR-9 as an activation-induced regulator of PDGFR-β expression in cardiomyocytes that is part of a negative feedback loop which serves to modulate PDGFR-β expression upon ligand-stimulation through direct interaction with the 3'UTR of PDFGR-β. This article is part of a Special Issue entitled 'Possible Editorial'.
Collapse
Affiliation(s)
- Jianhu Zhang
- Department of Cardiology, UT M.D. Anderson Cancer Center, USA
| | | | | | | | | | | |
Collapse
|
48
|
Accornero F, van Berlo JH, Benard MJ, Lorenz JN, Carmeliet P, Molkentin JD. Placental growth factor regulates cardiac adaptation and hypertrophy through a paracrine mechanism. Circ Res 2011; 109:272-80. [PMID: 21636802 DOI: 10.1161/circresaha.111.240820] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
RATIONALE Paracrine growth factor-mediated crosstalk between cardiac myocytes and nonmyocytes in the heart is critical for programming adaptive cardiac hypertrophy in which myocyte size, capillary density, and the extracellular matrix function coordinately. OBJECTIVE To examine the role that placental growth factor (PGF) plays in the heart as a paracrine regulator of cardiac adaptation to stress stimulation. METHODS AND RESULTS PGF is induced in the heart after pressure-overload stimulation, where it is expressed in both myocytes and nonmyocytes. We generated cardiac-specific and adult inducible PGF-overexpressing transgenic mice and analyzed Pgf(-/-) mice to examine the role that this factor plays in cardiac disease and paracrine signaling. Although PGF transgenic mice did not have a baseline phenotype or a change in capillary density, they did exhibit a greater cardiac hypertrophic response, a greater increase in capillary density, and increased fibroblast content in the heart in response to pressure-overload stimulation. PGF transgenic mice showed a more adaptive type of cardiac growth that was protective against signs of failure with pressure overload and neuroendocrine stimulation. Antithetically, Pgf(-/-) mice rapidly died of heart failure within 1 week of pressure overload, they showed an inability to upregulate angiogenesis, and they showed significantly less fibroblast activity in the heart. Mechanistically, we show that PGF does not have a direct effect on cardiomyocytes but works through endothelial cells and fibroblasts by inducing capillary growth and fibroblast proliferation, which secondarily support greater cardiac hypertrophy through intermediate paracrine growth factors such as interleukin-6. CONCLUSIONS PGF is a secreted factor that supports hypertrophy and cardiac function during pressure overload by affecting endothelial cells and fibroblasts that in turn stimulate and support the myocytes through additional paracrine factors.
Collapse
Affiliation(s)
- Federica Accornero
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, 240 Albert Sabin Way, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
49
|
Moilanen AM, Rysä J, Mustonen E, Serpi R, Aro J, Tokola H, Leskinen H, Manninen A, Levijoki J, Vuolteenaho O, Ruskoaho H. Intramyocardial BNP gene delivery improves cardiac function through distinct context-dependent mechanisms. Circ Heart Fail 2011; 4:483-95. [PMID: 21558448 DOI: 10.1161/circheartfailure.110.958033] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND B-type natriuretic peptide (BNP) is an endogenous peptide produced under physiological and pathological conditions mainly by ventricular myocytes. It has natriuretic, diuretic, blood pressure-lowering, and antifibrotic actions that could mediate cardiorenal protection in cardiovascular diseases. In the present study, we used BNP gene transfer to examine functional and structural effects of BNP on left ventricular (LV) remodeling. METHODS AND RESULTS Human BNP was overexpressed by using adenovirus-mediated gene delivery in normal rat hearts and in hearts during the remodeling process after infarction and in an experimental model of angiotensin II-mediated hypertension. In healthy hearts, BNP gene delivery into the anterior wall of the LV decreased myocardial fibrosis (P<0.01, n=7 to 8) and increased capillary density (P<0.05, n=7 to 8) associated with a 7.3-fold increase in LV BNP peptide levels. Overexpression of BNP improved LV fractional shortening by 22% (P<0.05, n=6 to 7) and ejection fraction by 19% (P<0.05, n=6 to 7) after infarction. The favorable effect of BNP gene delivery on cardiac function after infarction was associated with normalization of cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression and phospholamban Thr17-phosphorylation. BNP gene delivery also improved fractional shortening and ejection fraction in angiotensin II-mediated hypertension as well as decreased myocardial fibrosis and LV collagen III mRNA levels but had no effect on angiogenesis or Ca(2+)-ATPase expression and phospholamban phosphorylation. CONCLUSIONS Local intramyocardial BNP gene delivery improves cardiac function and attenuates adverse postinfarction and angiotensin II-induced remodeling. These results also indicate that myocardial BNP has pleiotropic, context-dependent, favorable actions on cardiac function and suggest that BNP acts locally as a key mechanical load-activated regulator of angiogenesis and fibrosis.
Collapse
Affiliation(s)
- Anne-Mari Moilanen
- Institute of Biomedicine, Department of Pharmacology and Toxicology, Biocenter Oulu, Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Cytostatic drugs were developed to target specific molecular pathways shown to drive tumor growth. Although this approach has been very successful in treating cancers, its use is often hindered by off-target toxic effects. An example of this is trastuzumab, which targets the erbB2 kinase receptor. This drug successfully decreases tumor growth but adversely affects cardiac function. This observation led to important studies elucidating the importance of the erbB pathway in cardioprotection and angiogenesis. This review addresses the problem of off-target effects of cytostatic drugs (specifically trastuzumab) and their effect on cardiac function, summarizes the neuregulin-1 (NRG)/erbB signaling pathway, and discusses its importance in cardiac myocytes. It also highlights important findings showing the role of NRG/erbB signaling in microvascular preservation and angiogenesis, with a brief discussion of preclinical and clinical data regarding treatment of cardiovascular disease with NRG.
Collapse
|