1
|
Combination therapy with anti-CD20 mAb and IL-10 gene to reverse type 1 diabetes by attenuating pancreatitis and inhibiting apoptosis in NOD mice. Life Sci 2020; 256:117985. [PMID: 32562692 DOI: 10.1016/j.lfs.2020.117985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 01/12/2023]
Abstract
AIMS To assess the combination therapy of anti-CD20 mabs and adenovirus-mediated interleukin-10 (IL-10) gene delivery on the prevention of type 1 diabetes (T1D) in non-obese diabetes (NOD) mice. MAIN METHODS In present study, we simultaneously blocked the B cell interactions and recovered the Th cell subset proportion by using through anti-CD20 Mab and adenovirus-mediated gene delivery of IL-10, respectively. After 9 consecutive days of combination therapy, various measurements, including hematoxylin-eosin staining (HE), terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling assay (TUNEL), immunohistochemistry, ELISA, PCR and western blot were applied to further assess the efficacy. KEY FINDINGS The results suggested that the combination intervention reduced the T1D-associated morbidity of NOD mice, promote insulin secretion, control blood glucose and ease pancreatitis. Moreover, the combination therapy might play a protective role in pancreatic β cells by suppressing the expression of TNF-α and Fas, blocking the Caspase-8 and Caspase-3 apoptotic pathways and activating the Bcl-2 anti-apoptotic pathway. Finally, the combination intervention may up-regulate the gene expression of CK-19 and PDX-1 and further accelerate the differentiation and proliferation of pancreatic β cells. SIGNIFICANCE Therefore, the combination intervention with anti-CD20 mabs and the IL-10 gene plays a role in the prevention of T1D to some extent in NOD mice.
Collapse
|
2
|
Abstract
Autoreactive B cells can promote autoimmunity through antigen presentation to autoreactive T cells, production of autoantibodies, generation of cytokines promoting T cell activation and differentiation, and inhibition of regulatory T cells and B cells. Here, the authors highlight studies pertaining to B cell mechanisms associated with disease pathogenesis and outcomes in autoimmune hepatitis and the immune-mediated cholangiopathies (primary biliary cholangitis, primary sclerosing cholangitis, and biliary atresia). The vast majority of investigations focus on autoantibodies and future research endeavors should include deciphering the role of the B cell in T cell activation (through antigen presentation, cytokine/chemokine production, and inhibition of regulation). Targeting B cell mechanisms in the treatment of autoimmune liver diseases is also highlighted.
Collapse
Affiliation(s)
- Sarah A. Taylor
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Ann & Robert H. Lurie Children’s Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - David N. Assis
- Section of Digestive Diseases, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Cara L. Mack
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Digestive Health Institute, Children’s Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
3
|
Tang A, Li C, Chen Z, Li T. Anti-CD20 monoclonal antibody combined with adenovirus vector-mediated IL-10 regulates spleen CD4+/CD8+ T cells and T-bet/GATA-3 expression in NOD mice. Mol Med Rep 2017; 16:3974-3982. [PMID: 28765956 PMCID: PMC5646977 DOI: 10.3892/mmr.2017.7111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 05/03/2017] [Indexed: 01/21/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by a selective destruction of insulin-secreting β-cells. Both T cells and B cells serve a crucial role in pathogenesis and development of T1D. CD20 is a specific membrane antigen of B lymphocytes, while interleukin (IL)‑10 is an important cytokine secreted by T helper 2 cells and has a short half‑life in vivo. The combined effect of anti‑CD20 and IL‑10 on immune function of mice with T1D remains unknown. In the present study, 30 non‑obese diabetic (NOD) mice were treated with anti‑CD20 and adenoviral vector‑mediated interleukin‑10 (Ad‑mIL‑10) therapy. Alterations in CD4+, CD8+, CD4+CD25+Foxp3+ T cells, T‑box expressed in T‑cells (T‑bet), GATA‑binding protein‑3 (GATA‑3) interferon‑γ (IFN‑γ) and IL‑4 were detected by flow cytometry, reverse transcription‑quantitative polymerase chain reaction in NOD mice spleen tissue. The present results suggested that anti‑CD20 and IL‑10 treatment in NOD mice can modulate the immune functions by upregulating GATA‑3 and IL‑4 expression as well as downregulating T‑bet and IFN‑γ expression, which are involved in the pathogenesis of T1D. The current findings may provide a potential method for T1D treatment and a novel preventive therapy for T1D. Combination of anti‑CD20 and Ad‑mIL‑10 treatment had not only immune regulatory effects but also protective effects on islet β‑cells in NOD mice with T1DM at the early stages, by regulating T‑bet/GATA‑3 expression and Th1/Th2 cell differentiation, which has the potential for diabetes prevention and therapy.
Collapse
Affiliation(s)
- Aiping Tang
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Cheng Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Zhihong Chen
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Tang Li
- Department of Pediatrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
4
|
Preemptive CD20+ B cell Depletion Attenuates Cardiac Allograft Vasculopathy in CD154-Treated Monkeys. Transplantation 2016; 101:63-73. [PMID: 27362307 DOI: 10.1097/tp.0000000000001258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Anti-CD154 monotherapy is associated with antidonor allo-antibody (Ab) elaboration, cardiac allograft vasculopathy (CAV), and allograft failure in preclinical primate cell and organ transplant models. In the context of calcineurin inhibitors (CNI), these pathogenic phenomena are delayed by preemptive "induction" B cell depletion. METHODS αCD154 (IDEC-131)-treated cynomolgus monkey heart allograft recipients were given peritransplant rituximab (αCD20) alone or with rabbit antihuman thymocyte globulin. RESULTS Relative to previously reported reference groups, αCD20 significantly prolonged survival, delayed Ab detection, and attenuated CAV within 3 months in αCD154-treated recipients (αCD154 + αCD20 graft median survival time > 90 days, n = 7, vs 28 days for αCD154 alone (IDEC-131), n = 21; P = 0.05). Addition of rabbit antihuman thymocyte globulin to αCD154 (n = 6) or αCD154 + αCD20 (n = 10) improved graft protection from graft rejection and failure during treatment but was associated with significant morbidity in 8 of 16 recipients (6 infections, 2 drug-related complications). In αCD20-treated animals, detection of antidonor Ab and relatively severe CAV were anticipated by appearance of CD20 cells (>1% of lymphocytes) in peripheral blood and were associated with low αCD154 trough levels (below 100 μg/mL). CONCLUSIONS These observations support the hypothesis that efficient preemptive "induction" CD20 B cell depletion consistently modulates pathogenic alloimmunity and attenuates CAV in this translational model, extending our prior findings with calcineurin inhibitors to the context of CD154 blockade.
Collapse
|
5
|
Vitamin D3 Suppresses Class II Invariant Chain Peptide Expression on Activated B-Lymphocytes: A Plausible Mechanism for Downregulation of Acute Inflammatory Conditions. J Nutr Metab 2016; 2016:4280876. [PMID: 27313879 PMCID: PMC4904097 DOI: 10.1155/2016/4280876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/17/2016] [Accepted: 04/18/2016] [Indexed: 01/24/2023] Open
Abstract
Class II invariant chain peptide (CLIP) expression has been demonstrated to play a pivotal role in the regulation of B cell function after nonspecific polyclonal expansion. Several studies have shown vitamin D3 helps regulate the immune response. We hypothesized that activated vitamin D3 suppresses CLIP expression on activated B-cells after nonspecific activation or priming of C57BL/6 mice with CpG. This study showed activated vitamin D3 actively reduced CLIP expression and decreased the number of CLIP+ B-lymphocytes in a dose and formulation dependent fashion. Flow cytometry was used to analyze changes in mean fluorescent intensity (MFI) based on changes in concentration of CLIP on activated B-lymphocytes after treatment with the various formulations of vitamin D3. The human formulation of activated vitamin D (calcitriol) had the most dramatic reduction in CLIP density at an MFI of 257.3 [baseline of 701.1 (P value = 0.01)]. Cholecalciferol and alfacalcidiol had no significant reduction in MFI at 667.7 and 743.0, respectively. Calcitriol seemed to best reduce CLIP overexpression in this ex vivo model. Bioactive vitamin D3 may be an effective compliment to other B cell suppression therapeutics to augment downregulation of nonspecific inflammation associated with many autoimmune disorders. Further study is necessary to confirm these findings.
Collapse
|
6
|
Cha Z, Li C, Zang Y, Gu H, Guo H, Li J, Fang Y, Petersen TF, Li J, Karas RO, Hamilton ML, Qian B. Adaptive B cell responses in rituximab-treated diffuse large B cell lymphoma patients during complete remission. Tumour Biol 2015; 37:829-35. [PMID: 26254098 DOI: 10.1007/s13277-015-3872-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/30/2015] [Indexed: 12/22/2022] Open
Abstract
Rituximab is a chimeric monoclonal antibody directed against the CD20 antigen. Treatment using rituximab in combination with chemotherapy has dramatically improved overall survival rate of diffuse large B cell lymphoma (DLBCL). Since rituximab can deplete both lymphoma B cells and normal B cells, how rituximab-treatment affects normal B cell function in DLBCL patients under remission is unclear. Here, we examined peripheral blood B cell composition and antigen-specific B cell responses in DLBCL patients in remission and observed reductions in the frequencies of total B cell as well as several major B cell subsets, including CD19(+)IgD(+) naive B cells, CD19(+)IgD(-)CD27(+) memory B cells, and CD19(lo)CD27(hi) plasmablasts. Moreover, tetanus toxin (TT)-specific B cell proliferation was reduced in DLBCL patients in remission. On the other hand, HA-specific IgG-secreting B cell responses could be stimulated by influenza vaccination in DLBCL patients in remission, demonstrating that the machinery for generating de novo adaptive B cell responses was functional in DLBCL patients in remission. Our results provided insights in normal B cell function in DLBCL patients in remission.
Collapse
Affiliation(s)
- Zhanshan Cha
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Chen Li
- Department of Hepatobiliary Surgery, Linyi People's Hospital, Linyi, 276000, Shandong, China
| | - Yan Zang
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Haihui Gu
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Huijun Guo
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Jinqi Li
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yuan Fang
- BGC Biotechnology Research Center, Jinan, Shandong, China
| | | | - Jing Li
- Department of Hematology, Shandong Affiliated Hospital, Shandong, China
| | - Richard O Karas
- School of Medicine, Wayne State University, Detroit, MI, USA.
| | | | - Baohua Qian
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
7
|
Delmastro-Greenwood MM, Tse HM, Piganelli JD. Effects of metalloporphyrins on reducing inflammation and autoimmunity. Antioxid Redox Signal 2014; 20:2465-77. [PMID: 23472672 DOI: 10.1089/ars.2013.5257] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE High levels of reactive oxygen species can facilitate DNA and protein damage beyond the control of endogenous antioxidants, resulting in oxidative stress. Oxidative stress then triggers inflammation, which can lead to pathological conditions. In genetically susceptible individuals, the conglomeration of oxidative stress and inflammation can enhance autoreactive immune cell activation, causing beta-cell destruction in autoimmune type 1 diabetes. As a means of shielding pancreatic islets, manganese porphyrin (MnP) oxidoreductant treatment has been tested in a number of reported studies. RECENT ADVANCES MnP affects both innate and adaptive immune cell responses, blocking nuclear factor kappa-B activation, proinflammatory cytokine secretion, and T helper 1 T-cell responses. As a result, MnP treatment protects against type 1 diabetes onset in nonobese diabetic mice and stabilizes islets for cellular transplantation. CRITICAL ISSUES MnP displays global immunosuppressive properties, exemplified by decreased cytokine production from all T-helper cell subsets. This quality may impact infection control in the setting of autoimmunity. Nonetheless, because of their cytoprotective and immunomodulatory function, MnPs should be considered as a safer alternative to other clinical immunosuppressive agents (i.e., rapamycin) for transplantation. FUTURE DIRECTIONS Although MnP likely affects only redox-sensitive targets, the mechanism behind global T-cell immunosuppression and the outcome on infection clearance will have to be elucidated. Based on the increased primary engraftment seen with MnP use, protection against primary nonfunction in porcine to human xenotransplants would likely be enhanced. Further, a better understanding of MnP oxidoreductase function may allow for its use in other chronic inflammatory conditions.
Collapse
Affiliation(s)
- Meghan M Delmastro-Greenwood
- 1 Division of Immunogenetics, Department of Pediatrics, Rangos Research Center, Diabetes Institute , Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
8
|
Jaberi-Douraki M, Liu SW(S, Pietropaolo M, Khadra A. Autoimmune responses in T1DM: quantitative methods to understand onset, progression, and prevention of disease. Pediatr Diabetes 2014; 15:162-74. [PMID: 24827702 PMCID: PMC4050373 DOI: 10.1111/pedi.12148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/12/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023] Open
Abstract
Understanding the physiological processes that underlie autoimmune disorders and identifying biomarkers to predict their onset are two pressing issues that need to be thoroughly sorted out by careful thought when analyzing these diseases. Type 1 diabetes (T1D) is a typical example of such diseases. It is mediated by autoreactive cytotoxic CD4⁺ and CD8⁺ T-cells that infiltrate the pancreatic islets of Langerhans and destroy insulin-secreting β-cells, leading to abnormal levels of glucose in affected individuals. The disease is also associated with a series of islet-specific autoantibodies that appear in high-risk subjects (HRS) several years prior to the onset of diabetes-related symptoms. It has been suggested that T1D is relapsing-remitting in nature and that islet-specific autoantibodies released by lymphocytic B-cells are detectable at different stages of the disease, depending on their binding affinity (the higher, the earlier they appear). The multifaceted nature of this disease and its intrinsic complexity make this disease very difficult to analyze experimentally as a whole. The use of quantitative methods, in the form of mathematical models and computational tools, to examine the disease has been a very powerful tool in providing predictions and insights about the underlying mechanism(s) regulating its onset and development. Furthermore, the models developed may have prognostic implications by aiding in the enrollment of HRS into trials for T1D prevention. In this review, we summarize recent advances made in determining T- and B-cell involvement in T1D using these quantitative approaches and delineate areas where mathematical modeling can make further contributions in unraveling certain aspect of this disease.
Collapse
Affiliation(s)
- Majid Jaberi-Douraki
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Shang Wan (Shalon) Liu
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | - Massimo Pietropaolo
- Laboratory of Immunogenetics, University of Michigan, Ann Arbor, MI, USA 48105-5714
| | - Anmar Khadra
- Department of Physiology, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| |
Collapse
|
9
|
Liu CL, Ye P, Lin J, Butts CL, Miao CH. Anti-CD20 as the B-Cell Targeting Agent in a Combined Therapy to Modulate Anti-Factor VIII Immune Responses in Hemophilia a Inhibitor Mice. Front Immunol 2014; 4:502. [PMID: 24432019 PMCID: PMC3881000 DOI: 10.3389/fimmu.2013.00502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/19/2013] [Indexed: 01/19/2023] Open
Abstract
Neutralizing antibody formation against transgene products can represent a major complication following gene therapy with treatment of genetic diseases, such as hemophilia A. Although successful approaches have been developed to prevent the formation of anti-factor VIII (FVIII) antibodies, innovative strategies to overcome pre-existing anti-FVIII immune responses in FVIII-primed subjects are still lacking. Anti-FVIII neutralizing antibodies circulate for long periods in part due to persistence of memory B-cells. Anti-CD20 targets a variety of B-cells (pre-B-cells to mature/memory cells); therefore, we investigated the impact of B-cell depletion on anti-FVIII immune responses in hemophilia A mice using anti-CD20 combined with regulatory T (Treg) cell expansion using IL-2/IL-2mAb complexes plus rapamycin. We found that anti-CD20 alone can partially modulate anti-FVIII immune responses in both unprimed and FVIII-primed hemophilia A mice. Moreover, in mice treated with anti-CD20+IL-2/IL-2mAb complexes+rapamycin+FVIII, anti-FVIII antibody titers were significantly reduced in comparison to mice treated with regimens targeting only B or T cells. In addition, titers remained low after a second challenge with FVIII plasmid. Treg cells and activation markers were transiently and significantly increased in the groups treated with IL-2/IL-2mAb complexes; however, significant B-cell depletion was obtained in anti-CD20-treated groups. Importantly, both FVIII-specific antibody-secreting cells and memory B-cells were significantly reduced in mice treated with combination therapy. This study demonstrates that a combination regimen is highly promising as a treatment option for modulating anti-FVIII antibodies and facilitating induction of long-term tolerance to FVIII in hemophilia A mice.
Collapse
Affiliation(s)
- Chao Lien Liu
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Peiqing Ye
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | - Jacqueline Lin
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
| | | | - Carol H. Miao
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Quantifying the importance of pMHC valency, total pMHC dose and frequency on nanoparticle therapeutic efficacy. Immunol Cell Biol 2013; 91:350-9. [PMID: 23528729 DOI: 10.1038/icb.2013.9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticles (NPs) coated with β-cell-specific peptide major histocompatibility complex (pMHC) class I molecules can effectively restore normoglycemia in spontaneously diabetic nonobese diabetic mice. They do so by expanding pools of cognate memory autoreactive regulatory CD8+ T cells that arise from naive low-avidity T-cell precursors to therapeutic levels. Here we develop our previously constructed mathematical model to explore the effects of compound design parameters (NP dose and pMHC valency) on therapeutic efficacy with the underlying hypothesis that the functional correlates of the therapeutic response (expansion of autoregulatory T cells and deletion of autoantigen-loaded antigen-presenting cells by these T cells) are biphasic. We show, using bifurcation analysis, that the model exhibits a 'resonance'-like behavior for a given range of NP dose in which bistability between the healthy state (possessing zero level of effector T-cell population) and autoimmune state (possessing elevated level of the same population) disappears. A heterogeneous population of model mice subjected to several treatment protocols under these new conditions is conducted to quantify both the average percentage of autoregulatory T cells in responsive and nonresponsive model mice, and the average valency-dependent minimal optimal dose needed for effective therapy. Our results reveal that a moderate increase (≥1.6-fold) in the NP-dependent expansion rate of autoregulatory T-cell population leads to a significant increase in the efficacy and the area corresponding to the effective treatment regimen, provided that NP dose ≥8 μg. We expect the model developed here to generalize to other autoimmune diseases and serve as a computational tool to understand and optimize pMHC-NP-based therapies.
Collapse
|
11
|
Abstract
Type 1 diabetes is an autoimmune disease that gradually destructs insulin-producing beta cells. Over the years, clinicians' knowledge regarding the immunopathogenesis of this disease has greatly increased. Immunotherapies that can change the course of immune-mediated destruction and preserve and possibly regenerate the pancreatic beta cells seem to be promising in preclinical trials but so far have been unsuccessful in human studies. This article reviews the important immune interventions for type 1 diabetes that have been tried so far targeting the different stages of disease development and provides an insight into what the future might hold.
Collapse
Affiliation(s)
- Smita Gupta
- Diabetes and Endocrinology Consultants, 8435 Clearvista Place, Suite 101 Indianapolis, IN 46256, USA.
| |
Collapse
|
12
|
Schneider DA, Sarikonda G, von Herrath MG. Combination therapy with InsB9-23 peptide immunization and CTLA4-IgG does not reverse diabetes in NOD mice. Clin Immunol 2012; 142:402-3. [DOI: 10.1016/j.clim.2011.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 11/16/2022]
|
13
|
Newell MK, Tobin RP, Cabrera JH, Sorensen MB, Huckstep A, Villalobos-Menuey EM, Burnett M, McCrea E, Harvey CP, Buddiga A, Bar-Or A, Freedman MS, Nalbantoglu J, Arbour N, Zamvil SS, Antel JP. TLR-mediated B cell activation results in ectopic CLIP expression that promotes B cell-dependent inflammation. J Leukoc Biol 2010; 88:779-89. [PMID: 20631258 DOI: 10.1189/jlb.0410237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infectious pathogens produce compounds called Toll ligands that activate TLRs on lymphocytes. Acute activation triggered by certain TLRs appears to "jump start" the innate immune response, characterized by the release of inflammatory cytokines and cellular expansion. In some individuals, there is a failure to control acute inflammation, resulting in postinfectious, chronic inflammation. Susceptibility to chronic inflammation is strongly associated with an individual's MHC genes. Recent clinical trials for several autoimmune diseases characterized by chronic inflammation suggest that B lymphocyte depletion therapies dampen chronic immune activation. However, currently, there is no known mechanism that accounts for the correlation among TLR activation, MHC genetics, and a pathological role for B-lymphocytes. Our hypothesis is that TLR-activated B cells (B cells that have been polyclonally activated in the absence of antigen-specific signals) are not controlled properly by T cell-dependent B cell death, thereby causing B cell-dependent chronic inflammation. Here, we show that treatment with Toll ligands results in polyclonal B cell activation accompanied by ectopic expression of CLIP. Furthermore, by adoptively transferring purified CLIP+ B cells in syngeneic animals, we find that CLIP+ B cells induce production of TNF-α by host T cells. Finally, we demonstrate that CLIP-targeted peptide competition results in the death of polyclonally activated CLIP+ B cells.
Collapse
Affiliation(s)
- M K Newell
- CU Institute for Bioenergetics and Immunology, University of Colorado at Colorado Springs, Colorado, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mizoguchi A, Mizoguchi E. Animal models of IBD: linkage to human disease. Curr Opin Pharmacol 2010; 10:578-87. [PMID: 20860919 DOI: 10.1016/j.coph.2010.05.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 05/11/2010] [Accepted: 05/16/2010] [Indexed: 12/19/2022]
Abstract
Spontaneous development of intestinal inflammation in many different kinds of genetically engineered mice as well as the presence of numerous susceptibility genes in humans suggests that inflammatory bowel disease (IBD) is mediated by more complicated mechanisms than previously predicted. The human genetic studies implicate some major pathways in the pathogenesis of IBD, including epithelial defense against commensal microbiota, the IL-23/Th17 axis, and immune regulation. Murine IBD models, which are genetically engineered to lack some susceptibility genes, have been generated, and have provided useful insights into the therapeutic potential of targeting the susceptibility genes directly or their downstream pathways indirectly for IBD. This review summarizes current information related to the function of IBD-associated genes as derived from genetically engineered mouse models.
Collapse
Affiliation(s)
- Atsushi Mizoguchi
- Molecular Pathology Unit, Massachusetts General Hospital, Boston, MA, USA.
| | | |
Collapse
|
15
|
Abstract
The autoimmune polyglandular syndromes-a group of syndromes comprising a combination of endocrine and nonendocrine autoimmune diseases-differ in their component diseases and in the immunologic features of their pathogenesis. One of the three main syndromes, type 1 autoimmune polyglandular syndrome (APS-1), has a unique pathogenic mechanism owing to mutations in the autoimmune regulator (AIRE) gene, which results in the loss of central tolerance-a process by which developing T cells with potential reactivity for self-antigens are eliminated during early differentiation in the thymus. Patients with IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked) syndrome harbor mutations in the forkhead box P3 (FOXP3) gene in regulatory T cells, which leads to severe autoimmunity and immune deficiency. Although both of these disorders are rare, their well-defined mechanisms of disease provide a basis for the understanding of the more common condition, APS-2. In this syndrome, alleles of human leukocyte antigens (HLAs) determine the targeting of specific tissues by autoreactive T cells, which leads to organ-specific autoimmunity as a result of this loss of tolerance. Non-HLA genes also contribute to autoimmunity in APS-2 and, depending on the polymorphism, potentially predispose to a loss of tolerance or influence which organ is specifically targeted. This Review discusses the genetic basis of APS-1, APS-2 and IPEX syndrome, with an emphasis on the mechanisms of autoimmunity and presents currently available therapies to treat their underlying autoimmune disorders.
Collapse
Affiliation(s)
- Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, 1775 Aurora Court, MS B140, PO Box 6511, Aurora, CO 80045, USA
| | | |
Collapse
|
16
|
B cell lymphoproliferation and organ-directed self-recognition to explain autoimmunity: back to the past. Med Hypotheses 2010; 75:328-33. [PMID: 20403669 DOI: 10.1016/j.mehy.2010.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 03/17/2010] [Indexed: 11/23/2022]
Abstract
Autoimmune diseases are characterised by lymphoproliferation in target tissues with B and T lymphocytes often arranged in pseudofollicles, mimicking the structure of peripheral lymph nodes. Target organ tissue damage produces the clinical phenotype which may be diverse ranging from autoimmune endocrinopathies to malabsorption (coeliac disease) to structural damage within bones and joints (rheumatoid arthritis). Recently, B cell depletion has been shown to be effective in many autoimmune conditions suggesting a common pathological origin for these conditions which might be triggered by an autoimmune B cell that has escaped deletion. We postulate that a mutation in a transcription factor early in B cell development might allow persistence and foster proliferation of a clone of autoimmune B cells, capable of producing autoantibodies. A similar common mutation within the JAK2 tyrosine kinase gene has recently been described associated with the myeloproliferative disorders which are also characterised by diverse clinical disease phenotypes. There is considerable evidence that autoimmune diseases could be indolent lymphoproliferative disorders of B-cell origin, extending the forbidden clone hypothesis first proposed in the 1950s.
Collapse
|
17
|
Kelishadi SS, Azimzadeh AM, Zhang T, Stoddard T, Welty E, Avon C, Higuchi M, Laaris A, Cheng XF, McMahon C, Pierson RN. Preemptive CD20+ B cell depletion attenuates cardiac allograft vasculopathy in cyclosporine-treated monkeys. J Clin Invest 2010; 120:1275-84. [PMID: 20335656 DOI: 10.1172/jci41861] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/20/2010] [Indexed: 01/10/2023] Open
Abstract
Chronic rejection currently limits the long-term efficacy of clinical transplantation. Although B cells have recently been shown to play a pivotal role in the induction of alloimmunity and are being targeted in other transplant contexts, the efficacy of preemptive B cell depletion to modulate alloimmunity or attenuate cardiac allograft vasculopathy (CAV) (classic chronic rejection lesions found in transplanted hearts) in a translational model has not previously been described. We report here that the CD20-specific antibody (alphaCD20) rituximab depleted CD20+ B cells in peripheral blood, secondary lymphoid organs, and the graft in cynomolgus monkey recipients of heterotopic cardiac allografts. Furthermore, CD20+ B cell depletion therapy combined with the calcineurin inhibitor cyclosporine A (CsA) prolonged median primary graft survival relative to treatment with alphaCD20 or CsA alone. In animals treated with both alphaCD20 and CsA that achieved efficient B cell depletion, alloantibody production was substantially inhibited and the CAV severity score was markedly reduced. We conclude therefore that efficient preemptive depletion of CD20+ B cells is effective in a preclinical model to modulate pathogenic alloimmunity and to attenuate chronic rejection when used in conjunction with a conventional clinical immunosuppressant. This study suggests that use of this treatment combination may improve the efficacy of transplantation in the clinic.
Collapse
Affiliation(s)
- Shahrooz S Kelishadi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rituximab specifically depletes short-lived autoreactive plasma cells in a mouse model of inflammatory arthritis. Proc Natl Acad Sci U S A 2010; 107:4658-63. [PMID: 20176942 DOI: 10.1073/pnas.1001074107] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is increasing appreciation of the important role of B cells in many autoimmune diseases and consequently, increasing interest in treating these disorders through B cell-depletion therapy with rituximab, an anti-CD20 monoclonal antibody. Yet, precisely how this and related drugs exert their therapeutic effects remains controversial. In particular, it is unclear how, in a number of contexts, rituximab can greatly reduce the titer of serum autoantibodies without substantially altering the overall antibody titer. We have studied the action of this drug in the K/BxN mouse model of inflammatory arthritis after first crossing in a human CD20 transgene. Rituximab treatment of these mice led to a decrease in the titer of serum antibodies targeting glucose-6-phosphate isomerase, the relevant autoantigen, but not in the total antibody titer. Glucose-6-phosphate isomerase-specific plasma cells did not reside primarily in the bone marrow as expected but rather in the spleen and lymph nodes, where they had short lives, expressed CD20, and were rapidly depleted by rituximab. These data support a model whereby autoreactive plasma cells (at least certain specificities thereof) are intrinsically different from protective antimicrobial plasma cells in their differentiation, migration, and survival properties. Rituximab targets the former and spares the latter.
Collapse
|
19
|
Ratanatharathorn V, Pavletic S, Uberti JP. Clinical applications of rituximab in allogeneic stem cell transplantation: Anti-tumor and immunomodulatory effects. Cancer Treat Rev 2009; 35:653-61. [DOI: 10.1016/j.ctrv.2009.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 07/15/2009] [Accepted: 07/18/2009] [Indexed: 11/24/2022]
|
20
|
O’Neill SK, Liu E, Cambier JC. Change you can B(cell)eive in: recent progress confirms a critical role for B cells in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2009; 16:293-8. [PMID: 19502979 PMCID: PMC2968699 DOI: 10.1097/med.0b013e32832e06a7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Here we review extant recent findings regarding the multiple roles of B cells in type 1 diabetes (T1D) and discuss how autoreactive B cells may become activated by a breach in B cell tolerance, and thereby initiate disease. Finally, we discuss the use of B cell-targeted therapies for treatment of autoimmunity. RECENT FINDINGS Anti-CD20-specific depletion of B cells prevents and reverses diabetes in human CD20/non-obese diabetic (NOD) mice. Correspondingly, in nontransgenic NOD mice, B cells are effectively depleted with high dose antimouse CD20 mAbs of varying isotypes, and this also prevents diabetes in more than 60% of the mice when administered early, and significantly delays disease in 15-week-old animals. A separate study revealed that targeting B cells with anti-CD22/cal monoclonal antibody therapy delays diabetes onset in prediabetic NOD mice and restores normoglycemia in new-onset hyperglycemic NOD mice. In humans, a clinical trial of rituximab in new onset type 1 diabetics has yielded promising preliminary findings. SUMMARY B cells are major players in T1D in humans, and clearly essential for disease development in the NOD mouse model of T1D. In this review, we discuss the silencing of autoreactive B cells and how failure of this process may contribute to autoimmunity. Further, we describe the most recent advances in studies of therapeutic effects of B cell depletion in T1D, and provide recent data indicating the diverse functions by which B cells may mediate disease.
Collapse
Affiliation(s)
- Shannon K. O’Neill
- University of Colorado Denver and National Jewish Health, 1400 Jackson Street, Denver, Colorado
| | - Edwin Liu
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado, USA
| | - John C. Cambier
- University of Colorado Denver and National Jewish Health, 1400 Jackson Street, Denver, Colorado
| |
Collapse
|
21
|
Waldron-Lynch F, Herold KC. Advances in Type 1 diabetes therapeutics: immunomodulation and beta-cell salvage. Endocrinol Metab Clin North Am 2009; 38:303-17, viii. [PMID: 19328413 DOI: 10.1016/j.ecl.2009.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Refinements in our understanding of the pathogenic mechanisms of Type 1 diabetes from studies of animal models and clinical observation have led to new clinical trials to prevent disease progression and restore the loss of beta-cells that defines the disease. Antigen-specific agents have shown initial promise and non-antigen-specific agents now have improved safety compared with older agents. In addition, preclinical studies with other agents have shown efficacy. Ultimately, a combination of immunologic and cellular therapies may be needed to restore metabolic control. Agents that augment recovery of dysfunctional beta-cells, and other compounds that may be able to induce beta-cell replication, are logical additions once immune tolerance is achieved.
Collapse
|
22
|
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which the insulin producing beta cells are destroyed. Antigen-based immunotherapy provides an approach to selectively tolerize pathogenic beta cell-specific T cells, while leaving the remainder of the immune system intact. In this article, we discuss our group's experience in defining the parameters that impact the efficacy of beta cell antigen "vaccination" for the prevention and treatment of T1D.
Collapse
|
23
|
Harvey BP, Quan TE, Rudenga BJ, Roman RM, Craft J, Mamula MJ. Editing antigen presentation: antigen transfer between human B lymphocytes and macrophages mediated by class A scavenger receptors. THE JOURNAL OF IMMUNOLOGY 2008; 181:4043-51. [PMID: 18768860 DOI: 10.4049/jimmunol.181.6.4043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes can function independently as efficient APCs. However, our previous studies demonstrate that both dendritic cells and macrophages are necessary to propagate immune responses initiated by B cell APCs. This finding led us to identify a process in mice whereby Ag-specific B cells transfer Ag to other APCs. In this study, we report the ability and mechanism by which human B lymphocytes can transfer BCR-captured Ag to macrophages. The transfer of Ag involves direct contact between the two cells followed by the capture of B cell-derived membrane and/or intracellular components by the macrophage. These events are abrogated by blocking scavenger receptor A, a receptor involved in the exchange of membrane between APCs. Macrophages acquire greater amounts of Ag in the presence of specific B cells than in their absence. This mechanism allows B cells to amplify or edit the immune response to specific Ag by transferring BCR-captured Ag to other professional APCs, thereby increasing the frequency of its presentation. Ag transfer may perpetuate chronic autoimmune responses to specific self-proteins and help explain the efficacy of B cell-directed therapies in human disease.
Collapse
Affiliation(s)
- Bohdan P Harvey
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
24
|
Datta S, Sarvetnick NE. IL-21 limits peripheral lymphocyte numbers through T cell homeostatic mechanisms. PLoS One 2008; 3:e3118. [PMID: 18773086 PMCID: PMC2527999 DOI: 10.1371/journal.pone.0003118] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/18/2008] [Indexed: 11/23/2022] Open
Abstract
Background IL-21, a member of the common γ-chain utilizing family of cytokines, participates in immune and inflammatory processes. In addition, the cytokine has been linked to autoimmunity in humans and rodents. Methodology/Principal Findings To investigate the mechanism whereby IL-21 affects the immune system, we investigated its role in T cell homeostasis and autoimmunity in both non-autoimmune C57BL/6 and autoimmune NOD mice. Our data indicate that IL-21R knockout C57BL/6 and NOD mice show increased size of their lymphocyte population and decreased homeostatic proliferation. In addition, our experimental results demonstrate that IL-21 inhibits T cell survival. These data suggest that IL-21 acts to limit the size of the T cell pool. Furthermore, our data suggest IL-21 may contribute to the development of autoimmunity. Conclusions/Significance Taken together, our results suggest that IL-21 plays a global role in regulating T cell homeostasis, promoting the continuous adaptation of the T cell lymphoid space.
Collapse
Affiliation(s)
- Shrimati Datta
- Department of Immunology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nora E. Sarvetnick
- Department of Immunology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ferraccioli G, Gremese E, De Santis M. B cell depletion and a T cell-targeted therapy allows to control the sudden onset of diabetes and lupus, without steroids. Acta Diabetol 2008; 45:195-6. [PMID: 18500428 DOI: 10.1007/s00592-008-0036-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/27/2008] [Indexed: 11/27/2022]
|
26
|
Wang B, Tisch R. Parameters influencing antigen-specific immunotherapy for type 1 diabetes. Immunol Res 2008; 41:175-87. [DOI: 10.1007/s12026-008-8020-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|