1
|
Modarresi Chahardehi A, Afrooghe A, Emtiazi N, Rafiei S, Rezaei NJ, Dahmardeh S, Farz F, Naderi Z, Arefnezhad R, Motedayyen H. MicroRNAs and angiosarcoma: are there promising reports? Front Oncol 2024; 14:1385632. [PMID: 38826780 PMCID: PMC11143796 DOI: 10.3389/fonc.2024.1385632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
In recent years, microRNAs (miRNAs) have garnered increasing attention for their potential implications in cancer pathogenesis, functioning either as oncogenes or tumor suppressors. Notably, angiosarcoma, along with various other cardiovascular tumors such as lipomas, rhabdomyomas, hemangiomas, and myxomas, has shown variations in the expression of specific miRNA subtypes. A substantial body of evidence underscores the pivotal involvement of miRNAs in the genesis of angiosarcoma and certain cardiovascular tumors. This review aims to delve into the current literature on miRNAs and their prospective applications in cardiovascular malignancies, with a specific focus on angiosarcoma. It comprehensively covers diagnostic methods, prognostic evaluations, and potential treatments while providing a recapitulation of angiosarcoma's risk factors and molecular pathogenesis, with an emphasis on the role of miRNAs. These insights can serve as the groundwork for designing randomized control trials, ultimately facilitating the translation of these findings into clinical applications. Moving forward, it is imperative for studies to thoroughly scrutinize the advantages and disadvantages of miRNAs compared to current diagnostic and prognostic approaches in angiosarcoma and other cardiovascular tumors. Closing these knowledge gaps will be crucial for harnessing the full potential of miRNAs in the realm of angiosarcoma and cardiovascular tumor research.
Collapse
Affiliation(s)
| | - Arya Afrooghe
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikoo Emtiazi
- Department of Pathology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Rafiei
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | | | - Sarvin Dahmardeh
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Farz
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Naderi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
2
|
Ibarra J, Hershenhouse T, Almassalha L, Walterhouse D, Backman V, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. Front Cell Dev Biol 2023; 11:1293891. [PMID: 38020905 PMCID: PMC10662331 DOI: 10.3389/fcell.2023.1293891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Tyler Hershenhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL, United States
| | - David Walterhouse
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Kyle L. MacQuarrie
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Tewari AB, Saini A, Sharma D. Extirpating the cancer stem cell hydra: Differentiation therapy and Hyperthermia therapy for targeting the cancer stem cell hierarchy. Clin Exp Med 2023; 23:3125-3145. [PMID: 37093450 DOI: 10.1007/s10238-023-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023]
Abstract
Ever since the discovery of cancer stem cells (CSCs), they have progressively attracted more attention as a therapeutic target. Like the mythical hydra, this subpopulation of cells seems to contribute to cancer immortality, spawning more cells each time that some components of the cancer cell hierarchy are destroyed. Traditional modalities focusing on cancer treatment have emphasized apoptosis as a route to eliminate the tumor burden. A major problem is that cancer cells are often in varying degrees of dedifferentiation contributing to what is known as the CSCs hierarchy and cells which are known to be resistant to conventional therapy. Differentiation therapy is an experimental therapeutic modality aimed at the conversion of malignant phenotype to a more benign one. Hyperthermia therapy (HT) is a modality exploiting the changes induced in cells by the application of heat produced to aid in cancer therapy. While differentiation therapy has been successfully employed in the treatment of acute myeloid leukemia, it has not been hugely successful for other cancer types. Mounting evidence suggests that hyperthermia therapy may greatly augment the effects of differentiation therapy while simultaneously overcoming many of the hard-to-treat facets of recurrent tumors. This review summarizes the progress made so far in integrating hyperthermia therapy with existing modules of differentiation therapy. The focus is on studies related to the successful application of both hyperthermia and differentiation therapy when used alone or in conjunction for hard-to-treat cancer cell niche with emphasis on combined approaches to target the CSCs hierarchy.
Collapse
Affiliation(s)
- Amit B Tewari
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
4
|
La Ferlita A, Sp N, Goryunova M, Nigita G, Pollock RE, Croce CM, Beane JD. Small Non-Coding RNAs in Soft-Tissue Sarcomas: State of the Art and Future Directions. Mol Cancer Res 2023; 21:511-524. [PMID: 37052491 PMCID: PMC10238653 DOI: 10.1158/1541-7786.mcr-22-1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
Soft-tissue sarcomas (STS) are a rare and heterogeneous group of tumors that arise from connective tissue and can occur anywhere in the body. Among the plethora of over 50 different STS types, liposarcoma (LPS) is one of the most common. The subtypes of STS are characterized by distinct differences in tumor biology that drive responses to pharmacologic therapy and disparate oncologic outcomes. Small non-coding RNAs (sncRNA) are a heterogeneous class of regulatory RNAs involved in the regulation of gene expression by targeting mRNAs. Among the several types of sncRNAs, miRNAs and tRNA-derived ncRNAs are the most studied in the context of tumor biology, and we are learning more about the role of these molecules as important regulators of STS tumorigenesis and differentiation. However, challenges remain in translating these findings and no biomarkers or therapeutic approaches targeting sncRNAs have been developed for clinical use. In this review, we summarize the current landscape of sncRNAs in the context of STS with an emphasis on LPS, including the role of sncRNAs in the tumorigenesis and differentiation of these rare malignancies and their potential as novel biomarkers and therapeutic targets. Finally, we provide an appraisal of published studies and outline future directions to study sncRNAs in STS, including tRNA-derived ncRNAs.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Nipin Sp
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Marina Goryunova
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Raphael E. Pollock
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
5
|
Bersani F, Picca F, Morena D, Righi L, Napoli F, Russo M, Oddo D, Rospo G, Negrino C, Castella B, Volante M, Listì A, Zambelli V, Benso F, Tabbò F, Bironzo P, Monteleone E, Poli V, Pietrantonio F, Di Nicolantonio F, Bardelli A, Ponzetto C, Novello S, Scagliotti GV, Taulli R. Exploring circular MET RNA as a potential biomarker in tumors exhibiting high MET activity. J Exp Clin Cancer Res 2023; 42:120. [PMID: 37170152 PMCID: PMC10176894 DOI: 10.1186/s13046-023-02690-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND MET-driven acquired resistance is emerging with unanticipated frequency in patients relapsing upon molecular therapy treatments. However, the determination of MET amplification remains challenging using both standard and next-generation sequencing-based methodologies. Liquid biopsy is an effective, non-invasive approach to define cancer genomic profiles, track tumor evolution over time, monitor treatment response and detect molecular resistance in advance. Circular RNAs (circRNAs), a family of RNA molecules that originate from a process of back-splicing, are attracting growing interest as potential novel biomarkers for their stability in body fluids. METHODS We identified a circRNA encoded by the MET gene (circMET) and exploited blood-derived cell-free RNA (cfRNA) and matched tumor tissues to identify, stratify and monitor advanced cancer patients molecularly characterized by high MET activity, generally associated with genomic amplification. RESULTS Using publicly available bioinformatic tools, we discovered that the MET locus transcribes several circRNA molecules, but only one candidate, circMET, was particularly abundant. Deeper molecular analysis revealed that circMET levels positively correlated with MET expression and activity, especially in MET-amplified cells. We developed a circMET-detection strategy and, in parallel, we performed standard FISH and IHC analyses in the same specimens to assess whether circMET quantification could identify patients displaying high MET activity. Longitudinal monitoring of circMET levels in the plasma of selected patients revealed the early emergence of MET amplification as a mechanism of acquired resistance to molecular therapies. CONCLUSIONS We found that measurement of circMET levels allows identification and tracking of patients characterized by high MET activity. Circulating circMET (ccMET) detection and analysis could be a simple, cost-effective, non-invasive approach to better implement patient stratification based on MET expression, as well as to dynamically monitor over time both therapy response and clonal evolution during treatment.
Collapse
Affiliation(s)
- Francesca Bersani
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesca Picca
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Deborah Morena
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Mariangela Russo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Daniele Oddo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Rospo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Carola Negrino
- Department of Oncology, University of Torino, Orbassano, Italy
| | - Barbara Castella
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), University of Torino, Turin, Italy
| | - Marco Volante
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Angela Listì
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Vanessa Zambelli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Benso
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Fabrizio Tabbò
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Paolo Bironzo
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Emanuele Monteleone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Orbassano, Italy
- IFOM, Istituto Fondazione di Oncologia Molecolare ETS, Milan, Italy
| | - Carola Ponzetto
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio V Scagliotti
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Torino, Orbassano, Italy.
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
6
|
Ibarra J, Hershenhouse T, Almassalha L, MacQuarrie KL. Differentiation-dependent chromosomal organization changes in normal myogenic cells are absent in rhabdomyosarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540394. [PMID: 37214969 PMCID: PMC10197681 DOI: 10.1101/2023.05.11.540394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Myogenesis, the progression of proliferating skeletal myoblasts to terminally differentiated myotubes, regulates thousands of target genes. Uninterrupted linear arrays of such genes are differentially associated with specific chromosomes, suggesting chromosome specific regulatory roles in myogenesis. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle, shares common features with normal muscle cells. We hypothesized that RMS and myogenic cells possess differences in chromosomal organization related to myogenic gene arrangement. We compared the organizational characteristics of chromosomes 2 and 18, chosen for their difference in myogenic gene arrangement, in cultured RMS cell lines and normal myoblasts and myotubes. We found chromosome-specific differences in organization during normal myogenesis, with increased area occupied and a shift in peripheral localization specifically for chromosome 2. Most strikingly, we found a differentiation-dependent difference in positioning of chromosome 2 relative to the nuclear axis, with preferential positioning along the major nuclear axis present only in myotubes. RMS cells demonstrated no preference for such axial positioning, but induced differentiation through transfection of the pro-myogenic miRNA miR-206 resulted in an increase of major axial positioning of chromosome 2. Our findings identify both a differentiation-dependent, chromosome-specific change in organization in normal myogenesis, and highlight the role of chromosomal spatial organization in myogenic differentiation.
Collapse
Affiliation(s)
- Joe Ibarra
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Tyler Hershenhouse
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| | - Luay Almassalha
- Department of Gastroenterology and Hepatology, Northwestern Memorial Hospital, Northwestern University, Chicago, IL
| | - Kyle L MacQuarrie
- Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Ann & Robert H. Lurie Children's Hospital of Chicago, IL
| |
Collapse
|
7
|
Effect of heme oxygenase-1 on the differentiation of human myoblasts and the regeneration of murine skeletal muscles after acute and chronic injury. Pharmacol Rep 2023; 75:397-410. [PMID: 36918494 DOI: 10.1007/s43440-023-00475-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Impaired muscle regeneration is a hallmark of Duchenne muscular dystrophy (DMD), a neuromuscular disorder caused by mutations in the DMD gene encoding dystrophin. The lack of heme oxygenase-1 (HO-1, Hmox1), a known anti-inflammatory and cytoprotective enzyme, was shown to aggravate DMD pathology. METHODS We evaluated the role of HO-1 overexpression in human induced pluripotent stem cell (hiPSC)-derived skeletal muscle cells (hiPSC-SkM) in vitro and in the regeneration process in vivo in wild-type mice. Furthermore, the effect of cobalt protoporphyrin IX (CoPP), a pharmacological inducer of HO-1 expression, on regeneration markers during myogenic hiPSC differentiation and progression of the dystrophic phenotype was analysed in the mdx mouse DMD model. RESULTS HO-1 has an impact on hiPSC-SkM generation by decreasing cell fusion capacity and the expression of myogenic regulatory factors and muscle-specific microRNAs (myomiRs). Also, strong induction of HO-1 by CoPP totally abolished hiPSC-SkM differentiation. Injection of HO-1-overexpressing hiPSC-SkM into the cardiotoxin (CTX)-injured muscle of immunodeficient wild-type mice was associated with decreased expression of miR-206 and Myh3 and lower number of regenerating fibers, suggesting some advanced regeneration. However, the very potent induction of HO-1 by CoPP did not exert any protective effect on necrosis, leukocyte infiltration, fibrosis, myofiber regeneration biomarkers, and exercise capacity of mdx mice. CONCLUSIONS In summary, HO-1 inhibits the expression of differentiation markers in human iPSC-derived myoblasts. Although moderate overexpression of HO-1 in the injected myoblast was associated with partially advanced muscle regeneration, the high systemic induction of HO-1 did not improve muscle regeneration. The appropriate threshold of HO-1 expression must be established for the therapeutic effect of HO-1 on muscle regeneration.
Collapse
|
8
|
Casanova M, Pontis F, Ghidotti P, Petraroia I, Venturini LV, Bergamaschi L, Chiaravalli S, De Cecco L, Massimino M, Sozzi G, Ferrari A, Fortunato O, Gasparini P. MiR-223 Exclusively Impairs In Vitro Tumor Growth through IGF1R Modulation in Rhabdomyosarcoma of Adolescents and Young Adults. Int J Mol Sci 2022; 23:13989. [PMID: 36430468 PMCID: PMC9695828 DOI: 10.3390/ijms232213989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/19/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Adolescents and young adults (AYA) with rhabdomyosarcoma (RMS) form a subgroup of patients whose optimal clinical management and best possible access to care remain a challenge and whose survival rates lag behind that of children diagnosed with histologically similar tumors. A better understanding of tumor biology that differentiates children (PEDS-) from AYA-RMS could provide critical information and drive new initiatives to improve their final outcome. We investigated the functional role of miRNAs implicated in AYA-RMS development, as they have the potential to lead to discovery of new targets pathways for a more tailored treatment in these age groups of young RMS patients. MiR-223 and miR-486 were observed de-regulated in nine RMS tissues compared to their normal counterparts, yet only miR-223 replacement impaired proliferation and aggressiveness of AYA-RMS cell lines, while inducing apoptosis and determining cell cycle arrest. Interestingly, IGF1R resulted in the direct target of miR-223 in AYA-RMS cells, as demonstrated by IGF1R silencing. Our results highlight an exclusive functional role of miR-223 in AYA-RMS development and aggressiveness.
Collapse
Affiliation(s)
- Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Francesca Pontis
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Patrizia Ghidotti
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Ilaria Petraroia
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Lara Veronica Venturini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via Venezian 1, 20133 Milan, Italy
| |
Collapse
|
9
|
Ramadan F, Saab R, Hussein N, Clézardin P, Cohen PA, Ghayad SE. Non-coding RNA in rhabdomyosarcoma progression and metastasis. Front Oncol 2022; 12:971174. [PMID: 36033507 PMCID: PMC9403786 DOI: 10.3389/fonc.2022.971174] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma of skeletal muscle differentiation, with a predominant occurrence in children and adolescents. One of the major challenges facing treatment success is the presence of metastatic disease at the time of diagnosis, commonly associated with the more aggressive fusion-positive subtype. Non-coding RNA (ncRNA) can regulate gene transcription and translation, and their dysregulation has been associated with cancer development and progression. MicroRNA (miRNA) are short non-coding nucleic acid sequences involved in the regulation of gene expression that act by targeting messenger RNA (mRNA), and their aberrant expression has been associated with both RMS initiation and progression. Other ncRNA including long non-coding RNA (lncRNA), circular RNA (circRNA) and ribosomal RNA (rRNA) have also been associated with RMS revealing important mechanistic roles in RMS biology, but these studies are still limited and require further investigation. In this review, we discuss the established roles of ncRNA in RMS differentiation, growth and progression, highlighting their potential use in RMS prognosis, as therapeutic agents or as targets of treatment.
Collapse
Affiliation(s)
- Farah Ramadan
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Raya Saab
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Pediatric and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nader Hussein
- Department of Chemistry and Biochemistry, Laboratory of Cancer Biology and Molecular Immunology, Faculty of Science I, Lebanese University, Hadat, Lebanon
| | - Philippe Clézardin
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Pascale A. Cohen
- Université Claude Bernard Lyon 1, Lyon, France
- INSERM, Unit 1033, LYOS, Lyon, France
| | - Sandra E. Ghayad
- Department of Biology, Faculty of Science II, Lebanese University, Beirut, Lebanon
- Aix-Marseille University, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| |
Collapse
|
10
|
Zhang P, Li X, Huang L, Hu F, Niu X, Sun Y, Yao W. Association between microRNA 671 polymorphisms and the susceptibility to soft tissue sarcomas in a Chinese population. Front Oncol 2022; 12:960269. [PMID: 36016604 PMCID: PMC9396023 DOI: 10.3389/fonc.2022.960269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the association between the microRNA (miRNA) gene polymorphisms and the susceptibility to soft tissue sarcomas (STSs). In this case–control study, DNA was extracted from leukocytes in peripheral blood, which was collected from 169 STSs patients and 170 healthy controls. Three SNPs for miR-210, five SNPs for miR-206, two SNPs for miR-485, two SNPs for miR-34b, two SNPs for miR-671, and three SNPs for miR-381 were investigated and genotyped using a Sequenom Mass ARRAY matrix-assisted laser desorption/ionization-time of flight mass spectrometry platform. Unconditional logistic regression analysis was used to analyze the association between miRNA gene polymorphisms and the susceptibility to STSs. The results showed that miR-671 rs1870238 GC + CC (OR = 1.963, 95% CI = 1.258–3.064, P = 0.003) and miR-671 rs2446065 CG + GG (OR =1.838, 95% CI = 1.178–2.868, P = 0.007) may be genetic risk factors for STSs after adjustment for age and smoking. Therefore, this study suggests that individuals carrying the GC + CC genotype for miR-671 rs1870238 or the CG + GG genotype for miR-671 rs2446065 are susceptible to STSs.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Peng Zhang,
| | - Xinling Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lingling Huang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yang Sun
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Weitao Yao
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
11
|
Geng F, Yang F, Liu F, Zhao J, Zhang R, Hu S, Zhang J, Zhang X. A miR-137-XIAP axis contributes to the sensitivity of TRAIL-induced cell death in glioblastoma. Front Oncol 2022; 12:870034. [PMID: 35965517 PMCID: PMC9366219 DOI: 10.3389/fonc.2022.870034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor in the central nervous system with limited therapeutic strategies to prolong the survival rate in clinic. TNF-related apoptosis-inducing ligand (TRAIL)-based strategy has been demonstrated to induce cell death in an extensive spectrum of tumor cells, including GBM, while a considerable proportion of malignant cells are resistant to TRAIL-induced apoptosis. MiR-137 is highly expressed in the brain, but significantly decreases with advanced progression of GBM. However, the functional link between miR-137 and TRAIL-induced apoptosis in GBM cells has not been established. Here, GBM cells were transfected with miR-137, and gene expression levels were examined by qRT-PCR and western blot. Apoptotic cells were measured by Annexin-V staining and TUNEL assay. Our data showed that miR-137 sensitizes GBM cells to the TRAIL-mediated apoptosis. Mechanistically, we identified that XIAP is a bona fide target of miR-137, which is essential for miR-137-regulated sensitivity of TRAIL-induced cell death in GBM cells. Finally, in a xenograft model, combined utilization of miR-137 and TRAIL potently suppresses tumor growth in vivo. Collectively, we demonstrate that a miR-137-XIAP axis is required for the sensitivity of TRAIL-induced cell death and shed a light on the avenue for the treatment of GBM.
Collapse
Affiliation(s)
- Fenghao Geng
- Department of Radiation Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Fen Yang
- Department of Neurology, Air Force Medical Center, Fourth Military Medical University, Beijing, China
| | - Fang Liu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jianhui Zhao
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Shijie Hu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xiao Zhang, ; Jie Zhang, ; Shijie Hu,
| | - Jie Zhang
- Department of Radiation Medicine, Ministry of Education Key Laboratory of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an, China
- *Correspondence: Xiao Zhang, ; Jie Zhang, ; Shijie Hu,
| | - Xiao Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Research Office of the Institute of Tropical Medicine, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, Sanya, China
- *Correspondence: Xiao Zhang, ; Jie Zhang, ; Shijie Hu,
| |
Collapse
|
12
|
A Signature of Three microRNAs Is a Potential Diagnostic Biomarker for Glioblastoma. IRANIAN BIOMEDICAL JOURNAL 2022; 26:301-12. [PMID: 35490305 PMCID: PMC9432466 DOI: 10.52547/ibj.3671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Background: Glioblastoma is the most common primary malignant neoplasm of the central nervous system. Despite progress in diagnosis and treatment, glioblastoma still has a poor prognosis. This study aimed to examine whether a signature of three candidate miRNAs (i.e. hsa-let-7c-5p, hsa-miR-206-5p, and hsa-miR-1909-5p) can be used as a diagnostic biomarker for distinguishing glioblastoma from healthy brain tissues. Methods: In this study, 50 FFPE glioblastoma tissue samples and 50 healthy tissue samples adjacent to tumor were included. The expression of each candidate miRNA (i.e. hsa-let-7c-5p, hsa-miR-206-5p, and hsa-miR-1909-5p) was measured using RT-qPCR. To show the roles of each miRNA and their biological effects on glioblastoma development and clinicopathological characteristics, in silico tools were used. ROC curves were performed to assess the diagnostic accuracy of each miRNA. Results: Based on the results, hsa-let-7c-5p and hsa-miR-206-5p were downregulated, while hsa-miR-1909-5p was upregulated in glioblastoma tumors compared to healthy samples. No association was detected between the expression of each candidate miRNA and sex. Except for hsa-let-7c-5p, other miRNAs did not correlate with age status. ROC curve analysis indicated that the signature of candidate miRNAs is a potential biomarker distinguishing between glioblastoma and healthy samples. Only hsa-miR-206-5p suggested the association with poor prognosis in glioblastoma patients. Conclusion: Our findings revealed that the signature of three miRNAs is capable of distinguishing glioblastoma tumor and healthy tissues. These results are beneficial for the clinical management of glioblastoma patients.
Collapse
|
13
|
Perrone C, Pomella S, Cassandri M, Pezzella M, Milano GM, Colletti M, Cossetti C, Pericoli G, Di Giannatale A, de Billy E, Vinci M, Petrini S, Marampon F, Quintarelli C, Taulli R, Roma J, Gallego S, Camero S, Mariottini P, Cervelli M, Maestro R, Miele L, De Angelis B, Locatelli F, Rota R. MET Inhibition Sensitizes Rhabdomyosarcoma Cells to NOTCH Signaling Suppression. Front Oncol 2022; 12:835642. [PMID: 35574376 PMCID: PMC9092259 DOI: 10.3389/fonc.2022.835642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma. The Fusion-Positive (FP) subtype expresses the chimeric protein PAX3-FOXO1 (P3F) while the Fusion-Negative (FN) is devoid of any gene translocation. FP-RMS and metastatic FN-RMS are often unresponsive to conventional therapy. Therefore, novel therapeutic approaches are needed to halt tumor progression. NOTCH signaling has oncogenic functions in RMS and its pharmacologic inhibition through γ-secretase inhibitors blocks tumor growth in vitro and in vivo. Here, we show that NOTCH signaling blockade resulted in the up-regulation and phosphorylation of the MET oncogene in both RH30 (FP-RMS) and RD (FN-RMS) cell lines. Pharmacologic inhibition of either NOTCH or MET signaling slowed proliferation and restrained cell survival compared to control cells partly by increasing Annexin V and CASP3/7 activation. Co-treatment with NOTCH and MET inhibitors significantly amplified these effects and enhanced PARP1 cleavage in both cell lines. Moreover, it severely hampered cell migration, colony formation, and anchorage-independent growth compared to single-agent treatments in both cell lines and significantly prevented the growth of FN-RMS cells grown as spheroids. Collectively, our results unveil the overexpression of the MET oncogene by NOTCH signaling targeting in RMS cells and show that MET pathway blockade sensitizes them to NOTCH inhibition.
Collapse
Affiliation(s)
- Clara Perrone
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Silvia Pomella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Matteo Cassandri
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Radiotherapy, Sapienza University, Rome, Italy
| | - Michele Pezzella
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giuseppe Maria Milano
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marta Colletti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cristina Cossetti
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giulia Pericoli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Emmanuel de Billy
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Concetta Quintarelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Josep Roma
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Insti-tute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Soledad Gallego
- Group of Translational Research in Child and Adolescent Cancer, Vall d'Hebron Research Insti-tute-Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Mariottini
- Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Manuela Cervelli
- Department of Science, "Department of Excellence 2018-2022", University of Rome "Roma Tre", Rome, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, Centro di Riferimento Oncologico di Aviano (CRO Aviano) IRCCS, National Cancer Institute, Aviano, Italy
| | - Lucio Miele
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Biagio De Angelis
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatrics, Sapienza University, Rome, Italy
| | - Rossella Rota
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
14
|
Ali S, Hamam D, Liu X, Lebrun JJ. Terminal differentiation and anti-tumorigenic effects of prolactin in breast cancer. Front Endocrinol (Lausanne) 2022; 13:993570. [PMID: 36157462 PMCID: PMC9499354 DOI: 10.3389/fendo.2022.993570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a major disease affecting women worldwide. A woman has 1 in 8 lifetime risk of developing breast cancer, and morbidity and mortality due to this disease are expected to continue to rise globally. Breast cancer remains a challenging disease due to its heterogeneity, propensity for recurrence and metastasis to distant vital organs including bones, lungs, liver and brain ultimately leading to patient death. Despite the development of various therapeutic strategies to treat breast cancer, still there are no effective treatments once metastasis has occurred. Loss of differentiation and increased cellular plasticity and stemness are being recognized molecularly and clinically as major derivers of heterogeneity, tumor evolution, relapse, metastasis, and therapeutic failure. In solid tumors, breast cancer is one of the leading cancer types in which tumor differentiation state has long been known to influence cancer behavior. Reprograming and/or restoring differentiation of cancer cells has been proposed to provide a viable approach to reverse the cancer through differentiation and terminal maturation. The hormone prolactin (PRL) is known to play a critical role in mammary gland lobuloalveolar development/remodeling and the terminal differentiation of the mammary epithelial cells promoting milk proteins gene expression and lactation. Here, we will highlight recent discoveries supporting an anti-tumorigenic role for PRL in breast cancer as a "pro/forward-differentiation" pathway restricting plasticity, stemness and tumorigenesis.
Collapse
|
15
|
Grundy M, Narendran A. The hepatocyte growth factor/mesenchymal epithelial transition factor axis in high-risk pediatric solid tumors and the anti-tumor activity of targeted therapeutic agents. Front Pediatr 2022; 10:910268. [PMID: 36034555 PMCID: PMC9399617 DOI: 10.3389/fped.2022.910268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
Clinical trials completed in the last two decades have contributed significantly to the improved overall survival of children with cancer. In spite of these advancements, disease relapse still remains a significant cause of death in this patient population. Often, increasing the intensity of current protocols is not feasible because of cumulative toxicity and development of drug resistance. Therefore, the identification and clinical validation of novel targets in high-risk and refractory childhood malignancies are essential to develop effective new generation treatment protocols. A number of recent studies have shown that the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial transition factor (c-MET) influence the growth, survival, angiogenesis, and metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase and HGF have been identified as potential targets for cancer therapeutics and recent years have seen a race to synthesize molecules to block their expression and function. In this review we aim to summarize the literature that explores the potential and biological rationale for targeting the HGF/c-MET pathway in common and high-risk pediatric solid tumors. We also discuss selected recent and ongoing clinical trials with these agents in relapsed pediatric tumors that may provide applicable future treatments for these patients.
Collapse
Affiliation(s)
- Megan Grundy
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Aru Narendran
- POETIC Laboratory for Preclinical and Drug Discovery Studies, Division of Pediatric Oncology, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Chen T, Chen J, Zhao X, Zhou J, Sheng Q, Zhu L, Lv Z. βKlotho, a direct target of miR-206, contributes to the growth of hepatoblastoma through augmenting PI3K/Akt/mTOR signaling. Am J Cancer Res 2021; 11:1982-2004. [PMID: 34094665 PMCID: PMC8167675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023] Open
Abstract
Hepatoblastoma (HB) is the most frequent pediatric liver malignancy. However, the treatment outcome for patients with advanced-stage HB remains unsatisfactory. Accumulating evidence indicates that βKlotho (KLB) acts as an oncogene or a tumor-suppressor gene in a context-dependent manner. Despite this, the expression profile and effects of KLB on the growth of HB are still elusive. This study aimed to explore the effect of miR-206/KLB axis on HB growth. The expression of KLB was explored in HB cells (HepG2 and HuH6) and tissues using quantitative polymerase chain reaction (qPCR), Western blot analysis, and immunohistochemistry. Besides, miR-206 expression was determined in HB cells and tissues using qPCR and fluorescence in situ hybridization. The prognostic value of KLB or miR-206 in our patients with HB was investigated using the Kaplan-Meier method. The biological effects of KLB or miR-206 on HB cells were identified in vitro. The proliferative effects of KLB on HuH6 cells were also investigated in vivo. Moreover, the mechanical signaling of KLB in HB was determined through bioinformatics analysis followed by experimental validation. The results showed a significant upregulation of KLB in HB tissues and cells. Elevated level of KLB was found to be significantly correlated with the aggressive phenotype and poor overall survival for children with HB. The in vitro function assay demonstrated that KLB knockdown promoted apoptosis and suppressed the proliferation, migration, and invasion of HB cells. Besides, KLB knockdown inhibited the proliferation of HuH6 cells in vivo, while KLB overexpression had the opposite effect. Furthermore, KLB was proved to be the direct target of miR-206. Low level of miR-206 served as an independent risk factor for poor prognosis in children with HB. The overexpression of miR-206 negatively regulated the aggressive biological behaviors of HB cells, which was partially rescued by KLB overexpression. Mechanically, the miR-206/KLB axis played a vital role in HB growth through augmenting the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling. In conclusion, the data demonstrated that the miR-206/KLB axis might serve as an important biomarker/therapeutic target for HB.
Collapse
Affiliation(s)
- Tong Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Jianglong Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Xiuhao Zhao
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Jing Zhou
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Linlin Zhu
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University Shanghai 200040, P. R. China
| |
Collapse
|
17
|
Enhancement of myogenic differentiation and inhibition of rhabdomyosarcoma progression by miR-28-3p and miR-193a-5p regulated by SNAIL. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:888-904. [PMID: 34094709 PMCID: PMC8141673 DOI: 10.1016/j.omtn.2021.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue mesenchymal tumor that affects mostly children and adolescents. It originates from the impaired myogenic differentiation of stem cells or early progenitors. SNAIL, a transcription factor that regulates epithelial-to-mesenchymal transition in tumors of epithelial origin, is also a key regulator of RMS growth, progression, and myogenic differentiation. Here, we demonstrate that the SNAIL-dependent microRNAs (miRNAs) miR-28-3p and miR-193a-5p are crucial regulators of RMS growth, differentiation, and progression. miR-28-3p and miR-193a-5p diminished proliferation and arrested RMS cells in G0/G1 phase in vitro. They induced the myogenic differentiation of both RMS cells and human myoblasts by upregulating myogenic factors. Furthermore, miR-28-3p and miR-193a-5p inhibited migration in a scratch assay, adhesion to endothelial cells, chemotaxis, and invasion toward SDF-1 and HGF and regulated angiogenic capabilities of the cells. Overexpression of miR-28-3p and miR-193a-5p induced formation of fibrotic structures and abnormal blood vessels in RMS xenografts in immunodeficient mice in vivo. Simultaneous overexpression of both miRNAs diminished tumor growth after subcutaneous implantation and inhibited the engraftment of RMS cells into bone marrow after intravenous injection in vivo. To conclude, we discovered novel SNAIL-dependent miRNAs that may become new therapeutic targets in RMS in the future.
Collapse
|
18
|
FAK Signaling in Rhabdomyosarcoma. Int J Mol Sci 2020; 21:ijms21228422. [PMID: 33182556 PMCID: PMC7697003 DOI: 10.3390/ijms21228422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of children and adolescents. The fusion-positive (FP)-RMS variant expressing chimeric oncoproteins such as PAX3-FOXO1 and PAX7-FOXO1 is at high risk. The fusion negative subgroup, FN-RMS, has a good prognosis when non-metastatic. Despite a multimodal therapeutic approach, FP-RMS and metastatic FN-RMS often show a dismal prognosis with 5-year survival of less than 30%. Therefore, novel targets need to be discovered to develop therapies that halt tumor progression, reducing long-term side effects in young patients. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates focal contacts at the cellular edges. It plays a role in cell motility, survival, and proliferation in response to integrin and growth factor receptors’ activation. FAK is often dysregulated in cancer, being upregulated and/or overactivated in several adult and pediatric tumor types. In RMS, both in vitro and preclinical studies point to a role of FAK in tumor cell motility/invasion and proliferation, which is inhibited by FAK inhibitors. In this review, we summarize the data on FAK expression and modulation in RMS. Moreover, we give an overview of the approaches to inhibit FAK in both preclinical and clinical cancer settings.
Collapse
|
19
|
Sugito N, Heishima K, Ito Y, Akao Y. Synthetic MIR143-3p Suppresses Cell Growth in Rhabdomyosarcoma Cells by Interrupting RAS Pathways Including PAX3-FOXO1. Cancers (Basel) 2020; 12:cancers12113312. [PMID: 33182548 PMCID: PMC7696565 DOI: 10.3390/cancers12113312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/06/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Rhabdomyosarcoma (RMS) is a soft tissue sarcoma with embryonal (ERMS) and alveoral (ARMS) features, most frequently found in children. ARMS has the worse prognosis due to the formation of the chimeric PAX3–FOXO1 gene. New therapies are needed for the treatment of ARMS. The aim of this study is to evaluate the anticancer effect of chemically-modified MIR143-3p#12 (CM-MIR143#12) on RMS. The ectopic expression of CM-MIR143#12 induced a cell growth suppression by silencing not only KRAS, AKT, and ERK but also the PAX3–FOXO1 chimeric gene, and KRAS networks could control the expression of chimeric PAX3–FOXO1 in ARMS cells. Moreover, CM-MIR143#12 also silenced NRAS mutant in ERMS RD cells. CM-MIR143#12 can be a new nucleic acid medicine for the treatment of RMS by impairing the RAS networks including PAX3–FOXO1. Abstract Rhabdomyosarcoma (RMS) is a soft tissue sarcoma most frequently found in children. In RMS, there are two major subtypes, embryonal RMS (ERMS) and alveolar RMS (ARMS). ARMS has the worse prognosis of the two owing to the formation of the chimeric PAX3–FOXO1 gene. A novel therapeutic method is required for treating ARMS. In our previous study, we found that the ectopic expression of chemically modified MIR143-3p#12 (CM-MIR143#12), which is RNase-resistant and shows the highest anti-proliferation activity among the synthesized MIR143 derivatives that were tested, induces significant cell growth suppression by targeting KRAS, AKT, and ERK in colorectal cancer cells. The expression of MIR143-3p in RMS was dramatically downregulated compared with that of normal tissue. Ectopic expression of CM-MIR143#12 in RMS cells resulted in a significant growth inhibitory effect through the induction of apoptosis and autophagy. Interestingly, we found that CM-MIR143#12 also silenced the expression of chimeric PAX3–FOXO1 directly and, using siR-KRAS or siR-AKT, that KRAS networks regulated the expression of PAX3–FOXO1 in ARMS cells. In ERMS harboring NRAS mutation, CM-MIR143#12 silenced mutated NRAS. These findings indicate that CM-MIR143#12 efficiently perturbed the RAS signaling pathway, including the ARMS-specific KRAS/PAX3–FOXO1 networks.
Collapse
Affiliation(s)
- Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.S.); (K.H.)
| | - Kazuki Heishima
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.S.); (K.H.)
| | - Yuko Ito
- Department of Anatomy and Cell Biology, Division of Life Sciences, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan;
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan; (N.S.); (K.H.)
- Correspondence:
| |
Collapse
|
20
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
21
|
Cassandri M, Fioravanti R, Pomella S, Valente S, Rotili D, Del Baldo G, De Angelis B, Rota R, Mai A. CDK9 as a Valuable Target in Cancer: From Natural Compounds Inhibitors to Current Treatment in Pediatric Soft Tissue Sarcomas. Front Pharmacol 2020; 11:1230. [PMID: 32903585 PMCID: PMC7438590 DOI: 10.3389/fphar.2020.01230] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Cyclin-Dependent Kinases (CDKs) are well-known reliable targets for cancer treatment being often deregulated. Among them, since the transcription-associated CDK9 represents the sentry of cell transcriptional homeostasis, it can be a valuable target for managing cancers in which the transcriptional machinery is dysregulated by tumor-driver oncogenes. Here we give an overview of some natural compounds identified as CDK inhibitors with reported activity also against CDK9, that were taken as a model for the development of highly active synthetic anti-CDK9 agents. After, we summarize the data on CDK9 inhibition in a group of rare pediatric solid tumors such as rhabdomyosarcoma, Ewing’s sarcoma, synovial sarcoma and malignant rhabdoid tumors (soft tissue sarcomas), highlighting the more recent results in this field. Finally, we discuss the perspective and challenge of CDK9 modulation in cancer.
Collapse
Affiliation(s)
- Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Giada Del Baldo
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Biagio De Angelis
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Pan Q, Guo CJ, Xu QY, Wang JZ, Li H, Fang CH. miR-16 integrates signal pathways in myofibroblasts: determinant of cell fate necessary for fibrosis resolution. Cell Death Dis 2020; 11:639. [PMID: 32801294 PMCID: PMC7429878 DOI: 10.1038/s41419-020-02832-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/14/2022]
Abstract
Liver fibrosis is characterized by the transdifferentiation of hepatic stellate cells (HSCs) to myofibroblasts and poor response to treatment. This can be attributed to the myofibroblast-specific resistance to phenotype reversal. In this study, we complemented miR-16 into miR-16-deficient myofibroblasts and analyzed the global role of miR-16 using transcriptome profiling and generating a pathway-based action model underlying transcriptomic regulation. Phenotypic analysis of myofibroblasts and fibrogenic characterization were used to understand the effect of miR-16 on phenotypic remodeling of myofibroblasts. miR-16 expression altered the transcriptome of myofibroblasts to resemble that of HSCs. Simultaneous targeting of Smad2 and Wnt3a, etc. by miR-16 integrated signaling pathways of TGF-β and Wnt, etc., which underlay the comprehensive regulation of transcriptome. The synergistic effect of miR-16 on the signaling pathways abolished the phenotypic characteristics of myofibroblasts, including collagen production and inhibition of adipogenesis. In vivo, myofibroblast-specific expression of miR-16 not only eliminated mesenchymal cells with myofibroblast characteristics but also restored the phenotype of HSCs in perisinusoidal space. This phenotypic remodeling resolved liver fibrosis induced by chronic wound healing. Therefore, miR-16 may integrate signaling pathways crucial for the fate determination of myofibroblasts. Its global effect induces the reversal of HSC-to-myofibroblast transdifferentiation and, subsequently, the resolution of fibrogenesis. Taken together, these findings highlight the potential of miR-16 as a promising therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Qin Pan
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China.
| | - Can-Jie Guo
- Department of Gastroenterology, Ren-Ji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200001, China
| | - Qing-Yang Xu
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China
| | - Jin-Zhi Wang
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China
| | - Han Li
- Department of Gastroenterology, Xin-Hua Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, 200092, China
| | - Chun-Hua Fang
- School of Electronics and Information Engineering, Tong-Ji University, Shanghai, 201804, China
| |
Collapse
|
23
|
He J, He Y, Yu B, Wang X, Chen D. Transcriptome Characterization of Repressed Embryonic Myogenesis Due to Maternal Calorie Restriction. Front Cell Dev Biol 2020; 8:527. [PMID: 32671071 PMCID: PMC7332729 DOI: 10.3389/fcell.2020.00527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/04/2020] [Indexed: 11/13/2022] Open
Abstract
Fetal malnutrition decreases skeletal myofiber number and muscle mass in neonatal mammals, which increases the risk of developing obesity and diabetes in adult life. However, the associated molecular mechanisms remain unclear. Here, we investigated how the nutrient (calorie) availability affects embryonic myogenesis using a porcine model. Sows were given a normal or calorie restricted diet, following which skeletal muscle was harvested from the fetuses at 35, 55, and 90 days of gestation (dg) and used for histochemical analysis and high-throughput sequencing. We observed abrupt repression of primary myofiber formation following maternal calorie restriction (MCR). Transcriptome profiling of prenatal muscles revealed that critical genes and muscle-specific miRNAs associated with increased proliferation and myoblast differentiation were downregulated during MCR-induced repression of myogenesis. Moreover, we identified several novel miRNA-mRNA interactions through an integrative analysis of their expression profiles, devising a putative molecular network involved in the regulation of myogenesis. Interestingly, NC_010454.3_1179 was identified as a novel myogenic miRNA that can base-pair with sequences in the 3'-UTR of myogenic differentiation protein 1 (MyoD1). And we found that this UTR inhibited the expression of a linked reporter gene encoding a key myogenic regulatory factor, resulting in suppression of myogenesis. Our results greatly increase our understanding of the mechanisms underlying the nutrient-modulated myogenesis, and may also serve as a valuable resource for further investigation of fundamental developmental processes or assist in rational target selection ameliorating repressed myogenesis under fetal malnutrition.
Collapse
Affiliation(s)
- Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Ying He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| | | | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, China
| |
Collapse
|
24
|
Dawson LE, D'Agostino L, Hakim AA, Lackman RD, Brown SA, Sensenig RB, Antonello ZA, Kuzin II. Induction of Myogenic Differentiation Improves Chemosensitivity of Chemoresistant Cells in Soft-Tissue Sarcoma Cell Lines. Sarcoma 2020; 2020:8647981. [PMID: 32300280 PMCID: PMC7136814 DOI: 10.1155/2020/8647981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Rhabdomyosarcoma (RMS) and rhabdoid tumors (RT) are rare soft-tissue malignancies with the highest incidence in infants, children, and adolescents. Advanced, recurrent, and/or metastatic RMS and RT exhibit poor response to treatment. One of the main mechanisms behind resistance to treatment is believed to be intratumoral heterogeneity. In this study, we investigated the myogenic determination factor 1 (MYOD1) and Noggin (NOG) markers in an embryonal RMS (ERMS) cell line and an RT cell line and the differential response of the MYOD1 and NOG expressing subpopulations to chemotherapy. Importantly, we found that these markers together identify a subpopulation of cells (MYOD1+ NOG+ cells) with primary resistance to Vincristine and Doxorubicin, two commonly used chemotherapies for ERMS and RT. The chemoresistant MYOD1+ NOG+ cells express markers of undifferentiated cells such as myogenin and ID1. Combination of Vincristine with TPA/GSK126, a drug combination shown to induce differentiation of RMS cell lines, is able to partially overcome MYOD1/NOG cells chemoresistance.
Collapse
Affiliation(s)
| | | | | | - Richard D. Lackman
- Cooper University Hospital, Camden, NJ, USA
- MD Anderson Cancer Center at Cooper, Camden, NJ, USA
| | | | | | - Zeus A. Antonello
- Cooper University Hospital, Camden, NJ, USA
- Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Igor I. Kuzin
- Cooper University Hospital, Camden, NJ, USA
- Cooper Medical School of Rowan University, Camden, NJ, USA
| |
Collapse
|
25
|
Wang Y, Zhang L, Pang Y, Song L, Shang H, Li Z, Liu Q, Zhang Y, Wang X, Li Q, Zhang Q, Liu C, Li F. MicroRNA-29 family inhibits rhabdomyosarcoma formation and progression by regulating GEFT function. Am J Transl Res 2020; 12:1136-1154. [PMID: 32269740 PMCID: PMC7137044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/13/2020] [Indexed: 06/11/2023]
Abstract
The microRNA-29 family, which contains mir-29a, mir-29b, and mir-29c, can promote or resist the development of several types of tumors. However, its role in rhabdomyosarcoma (RMS) has not been determined. In this work, we detected the expression of mir-29a/b/c in RMS. Results showed that the tissues and cell lines in RMS were significantly lower than those in muscle and human skeletal muscle cells, and that these cell lines could also inhibit the proliferation, migration, and invasion and induce apoptosis of RMS cells. Dual-luciferase reporter assay and RNA immunoprecipitation verified the direct binding site between mir-29a/b/c and GEFT. Under the combined actions of mir-29a/b/c and GEFT, the former weakened the promoting effect of GEFT on RMS cells. Finally, mir-29a inhibited the tumorigenesis of subcutaneous xenografts in nude mice and inhibited the mRNA and protein expression levels of GEFT in transplanted tumors. These findings proved that mir-29 inhibits the occurrence of RMS and may be a potential molecular target.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Liang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Anesthesiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100730, China
| | - Yuweng Pang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Lingxie Song
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| | - Hao Shang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Zhenzhen Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianqian Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Yangyang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Xiaomeng Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qianru Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Qiaochu Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of MedicineShihezi 832002, China
- Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical UniversityBeijing 100020, China
| |
Collapse
|
26
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
27
|
Gasparini P, Ferrari A, Casanova M, Limido F, Massimino M, Sozzi G, Fortunato O. MiRNAs as Players in Rhabdomyosarcoma Development. Int J Mol Sci 2019; 20:ijms20225818. [PMID: 31752446 PMCID: PMC6888285 DOI: 10.3390/ijms20225818] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma of childhood and adolescence, is a rare but aggressive malignancy that originates from immature mesenchymal cells committed to skeletal muscle differentiation. Although RMS is, generally, responsive to the modern multimodal therapeutic approaches, the prognosis of RMS depends on multiple variables and for some patients the outcome remains dismal. Further comprehension of the molecular and cellular biology of RMS would lead to identification of novel therapeutic targets. MicroRNAs (miRNAs) are small non-coding RNAs proved to function as key regulators of skeletal muscle cell fate determination and to play important roles in RMS pathogenesis. The purpose of this review is to better delineate the role of miRNAs as a biomarkers or functional leaders in RMS development, so to possibly elucidate some of RMS molecular mechanisms and potentially therapeutically target them to improve clinical management of pediatric RMS.
Collapse
Affiliation(s)
- Patrizia Gasparini
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- Correspondence: (O.F.); (P.G.); Tel.: +39-02-2390-3775 (O.F. & P.G.); Fax: +39-02-2390-2928 (O.F. & P.G.)
| | - Andrea Ferrari
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Michela Casanova
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Francesca Limido
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Maura Massimino
- Pediatric Oncology Unit; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; (A.F.); (M.C.); (F.L.); (M.M.)
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research; Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy;
- Correspondence: (O.F.); (P.G.); Tel.: +39-02-2390-3775 (O.F. & P.G.); Fax: +39-02-2390-2928 (O.F. & P.G.)
| |
Collapse
|
28
|
Gasparini P, Fortunato O, De Cecco L, Casanova M, Iannó MF, Carenzo A, Centonze G, Milione M, Collini P, Boeri M, Dugo M, Gargiuli C, Mensah M, Segale M, Bergamaschi L, Chiaravalli S, Sensi ML, Massimino M, Sozzi G, Ferrari A. Age-Related Alterations in Immune Contexture Are Associated with Aggressiveness in Rhabdomyosarcoma. Cancers (Basel) 2019; 11:cancers11091380. [PMID: 31533233 PMCID: PMC6770032 DOI: 10.3390/cancers11091380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/16/2022] Open
Abstract
Adolescents and young adults (AYA) with rhabdomyosarcoma (RMS) form a subgroup of patients whose optimal clinical management and access to care remain a challenge and whose survival lacks behind that of children diagnosed with histologically similar tumors. Understanding the tumor biology that differentiates children from AYA-RMS could provide critical information and drive new initiatives to improve the final outcome. MicroRNA (miRNA) and gene expression profiling (GEP) was evaluated in a RMS cohort of 49 tumor and 15 non-neoplastic tissues. miRNAs analysis identified miR-223 over-expression and miR-431 down-regulation in AYA, validated by Real-Time PCR and miRNA in situ hybridization (ISH). GEP analysis detected 793 age-correlated genes in tumors, of which 194 were anti-correlated. NOTCH2, FGFR1/2 were significantly down-modulated in AYA-RMS. miR-223 was associated with up-regulation of epithelial mesenchymal translation (EMT) and inflammatory pathways, whereas miR-431 was correlated to myogenic differentiation and muscle metabolism. GEP showed an increase in genes associated with CD4 memory resting cells and a decrease in genes associated with γδ T-cells in AYA-RMS. Immunohistochemistry (IHC) analysis demonstrated an increase of infiltrated CD4, CD8, and neutrophils in AYA-RMS tumors. Our results show that aggressiveness of AYA-RMS could be explained by differences in microenvironmental signal modulation mediated by tumor cells, suggesting a fundamental role of immune contexture in AYA-RMS development.
Collapse
Affiliation(s)
- Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Orazio Fortunato
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Loris De Cecco
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Maria Federica Iannó
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Andrea Carenzo
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Giovanni Centonze
- Department of Diagnostic Pathology and from the Laboratory of Medicine of our Institute, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Massimo Milione
- Department of Diagnostic Pathology and from the Laboratory of Medicine of our Institute, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Paola Collini
- Department of Diagnostic Pathology and from the Laboratory of Medicine of our Institute, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Mattia Boeri
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Matteo Dugo
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Chiara Gargiuli
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Mavis Mensah
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Miriam Segale
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Maria Luisa Sensi
- Integrated Biology Platform, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy.
| |
Collapse
|
29
|
Sutaria DS, Jiang J, Azevedo-Pouly AC, Wright L, Bray JA, Fredenburg K, Liu X, Lu J, Torres C, Mancinelli G, Grippo PJ, Coppola V, Schmittgen TD. Knockout of Acinar Enriched microRNAs in Mice Promote Duct Formation But Not Pancreatic Cancer. Sci Rep 2019; 9:11147. [PMID: 31367007 PMCID: PMC6668398 DOI: 10.1038/s41598-019-47566-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 12/11/2022] Open
Abstract
The pancreatic acinar-enriched miR-216a, miR-216b and miR-217 are encoded within the miR217HG. These miRNAs have been purported to play a tumor suppressive role as their expression is reduced in both human and mouse pancreatic ductal adenocarcinoma (PDAC). To examine this possibility, we generated individual, germline knockout (KO) mice of miR-216a, miR-216b or miR-217. Unlike our previous study showing germline deletion of the miR217HG was embryonic lethal, CRISPR-Cas9 deleted portions of the 5' seed region of the miRNAs produced live births. To investigate possible phenotypes during pancreatic acinar ductal metaplasia (ADM), pancreatic acini from wild type and KO mice were plated on collagen and allowed to transdifferentiate over 4 days. Acini from each of the three miRNA KO mice produced greater numbers of ducts compared to controls. Evaluation of the gene expression during in vitro ADM demonstrated an increase in Krt19 and a reduction in acinar genes (Carboxypeptidase A1, Amylase2a) on day 4 of the transdifferentiation. Recovery was delayed for the miR-216a and miR-216b KOs following caerulein-induced acute pancreatitis. Also predominate in the caerulein treated miR-216a and miR-216b KO mice was the presence of pancreatic duct glands (PDGs). To further establish a phenotype, miRNA KO mice were crossed with EL-KRASG12D (EK) mice and followed up to 13 months of age. While all mice developed severe dysplasia and cystic papillary neoplasms, there existed no apparent phenotypic difference in the miRNA KO/EK mice compared to EK mice. Our data does not support a tumor suppressor role for miR-216a, miR-216b or miR-217 in PDAC and emphasizes the need for phenotypic evaluation of miRNAs in complex in vivo models beyond that performed using cell culture.
Collapse
Affiliation(s)
- Dhruvitkumar S Sutaria
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jinmai Jiang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Ana Clara Azevedo-Pouly
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA
| | - Lais Wright
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Julie A Bray
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | | | - Xiuli Liu
- Department of Pathology, University of Florida, Gainesville, Florida, USA
| | - Jun Lu
- Department of Pathology, Beijing Chaoyang Hospital, Capital University, Beijing, China
| | - Carolina Torres
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | | | - Paul J Grippo
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, USA
| | - Thomas D Schmittgen
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
30
|
Wang J, Aydoğdu E, Mukhopadhyay S, Helguero LA, Williams C. A miR-206 regulated gene landscape enhances mammary epithelial differentiation. J Cell Physiol 2019; 234:22220-22233. [PMID: 31069797 PMCID: PMC6767383 DOI: 10.1002/jcp.28789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
miR‐206 is known to suppress breast cancer. However, while it is expressed in mammary stem cells, its function in such nontumor cells is not well understood. Here, we explore the role of miR‐206 in undifferentiated, stem‐like mammary cells using the murine mammary differentiation model HC11, genome‐wide gene expression analysis, and functional assays. We describe the miR‐206‐regulated gene landscape and propose a network whereby miR‐206 suppresses tumor development. We functionally demonstrate that miR‐206 in nontumor stem‐like cells induces a G1–S cell cycle arrest, and reduces colony formation and epithelial‐to‐mesenchymal transition markers. Finally, we show that addition of miR‐206 accelerates the mammary differentiation process along with related accumulation of lipids. We conclude that miR‐206 impacts a network of signaling pathways, and acts as a regulator of proliferation, stemness, and mammary cell differentiation in nontumor stem‐like mammary cells. Our study provides a broad insight into the breast cancer suppressive functions of miR‐206.
Collapse
Affiliation(s)
- Jun Wang
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas.,Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratories, Stockholm, Sweden
| | - Eylem Aydoğdu
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Texas
| | - Luisa A Helguero
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Cecilia Williams
- Department of Protein Science, KTH Royal Institute of Technology, Science for Life Laboratories, Stockholm, Sweden
| |
Collapse
|
31
|
Kohama I, Kosaka N, Chikuda H, Ochiya T. An Insight into the Roles of MicroRNAs and Exosomes in Sarcoma. Cancers (Basel) 2019; 11:E428. [PMID: 30917542 PMCID: PMC6468388 DOI: 10.3390/cancers11030428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are rare solid tumors, but at least one-third of patients with sarcoma die from tumor-related disease. MicroRNA (miRNA) is a noncoding RNA that regulates gene expression in all cells and plays a key role in the progression of cancers. Recently, it was identified that miRNAs are transferred between cells by enclosure in extracellular vesicles, especially exosomes. The exosome is a 100 nm-sized membraned vesicle that is secreted by many kinds of cells and contains miRNA, mRNA, DNA, and proteins. Cancer uses exosomes to influence not only the tumor microenvironment but also the distant organ to create a premetastatic niche. The progression of sarcoma is also regulated by miRNAs and exosomes. These miRNAs and exosomes can be targeted as biomarkers and treatments. In this review, we summarize the studies of miRNA and exosomes in sarcoma.
Collapse
Affiliation(s)
- Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
- Department of Translational Research for Extracellular Vesicles, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
32
|
Inflammation-associated miR-155 activates differentiation of muscular satellite cells. PLoS One 2018; 13:e0204860. [PMID: 30273359 PMCID: PMC6166968 DOI: 10.1371/journal.pone.0204860] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/14/2018] [Indexed: 11/25/2022] Open
Abstract
Tissue renewal and muscle regeneration largely rely on the proliferation and differentiation of muscle stem cells called muscular satellite cells (MuSCs). MuSCs are normally quiescent, but they are activated in response to various stimuli, such as inflammation. Activated MuSCs proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Meanwhile, inappropriate cues for MuSC activation induce premature differentiation and bring about stem cell loss. Recent studies revealed that stem cell regulation is disrupted in various aged tissues. We found that the expression of microRNA (miR)-155, which is an inflammation-associated miR, is upregulated in MuSCs of aged muscles, and this upregulation activates the differentiation process through suppression of C/ebpβ, which is an important molecule for maintaining MuSC self-renewal. We also found that Notch1 considerably repressed miR-155 expression, and loss of Notch1 induced miR-155 overexpression. Our findings suggest that miR-155 can act as an activator of muscular differentiation and might be responsible for accelerating aging-associated premature differentiation of MuSCs.
Collapse
|
33
|
MiRNA-206 suppresses PGE2-induced colorectal cancer cell proliferation, migration, and invasion by targetting TM4SF1. Biosci Rep 2018; 38:BSR20180664. [PMID: 30135139 PMCID: PMC6146292 DOI: 10.1042/bsr20180664] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/21/2022] Open
Abstract
MiRNA (miR)-206 plays a tumor suppressor role in various cancer types. Here, we investigated whether miR-206 is involved in prostaglandin E2 (PGE2)-induced epithelial–mesenchymal transition (EMT) in colorectal cancer (CRC) cells through the targetting of transmembrane 4 L six family member 1 (TM4SF1). The effect of PGE2 on growth and apoptosis of CRC cells was evaluated using the MTT assay and flow cytometry analysis, respectively. TM4SF1 and miR-206 expression levels were determined with quantitative polymerase chain reaction (qRT-PCR) in CRC tissues and cell lines. The concentration of PGE2 in the serum of CRC patients and healthy controls was measured with an ELISA kit. A miR-206 or TM4SF1 construct was transfected into cells with PGE2. Transwell migration and invasion assays were used to examine cell migration and invasion properties. Additionally, a luciferase assay was performed to determine whether TM4SF1 was directly targetted by miR-206. We found that miR-206 was down-regulated and TM4SF1 was up-regulated in human CRC tissues and cell lines. Moreover, miR-206 was negatively correlated with TM4SF1 expression. Bioinformatics analysis and a luciferase reporter assay revealed that miR-206 directly targetted the 3′-untranslated region (UTR) of TM4SF1, and TM4SF1 expression was reduced by miR-206 overexpression at both the mRNA and protein levels. Additionally, PGE2 significantly suppressed the expression of miR-206 and increased the expression of TM4SF1 in CRC cells. PGE2 induction led to enhanced CRC cell proliferation, migration, and invasion. Moreover, the overexpression of miR-206 decreased CRC cell proliferation, migration, and invasion compared with control group in PGE2-induced cells, and these effects could be recovered by the overexpression of TM4SF1. Overexpression of miR-206 also suppressed the expression of β-catenin, VEGF, MMP-9, Snail, and Vimentin and enhanced E-cadherin expression in PGE2-induced cells. These results could be reversed by the overexpression of TM4SF1. At last, up-regulation of miR-206 suppressed expression of p-AKT and p-ERK by targetting TM4SF1 in PGE2-induced cells. Our results provide further evidence that miR-206 has a protective effect on PGE2-induced colon carcinogenesis.
Collapse
|
34
|
Mihály D, Papp G, Mervai Z, Reszegi A, Tátrai P, Szalóki G, Sápi J, Sápi Z. The oncomir face of microRNA-206: A permanent miR-206 transfection study. Exp Biol Med (Maywood) 2018; 243:1014-1023. [PMID: 30111166 DOI: 10.1177/1535370218795406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MiR-206 is a remarkable miRNA because it functions as a suppressor miRNA in rhabdomyosarcoma while at the same time, as previously showed, it can act as an oncomiRNA in SMARCB1 immunonegative soft tissue sarcomas. The aim of this study was to investigate the effect of miR-206 on its several target genes in various human tumorous and normal cell lines. In the current work, we created miR-206-overexpressing cell lines (HT-1080, Caco2, iASC, and SS-iASC) using permanent transfection. mRNA expression of the target genes of miR-206 (SMARCB1, ACTL6A, CCND1, POLA1, NOTCH3, MET, and G6PD) and SMARCB1 protein expression were examined with quantitative real-time polymerase chain reaction, immunoblotting, immunocytochemistry, and flow cytometry. MiRNA inhibition was used to validate our results. We found a diverse silencing effect of miR-206 on its target genes. While an overall tendency of downregulation was noted, expression profiles of individual cell lines showed large variability. Only CCND1 and MET were consistently downregulated. MiR-206 had an antiproliferative effect on a normal human fibroblast cell line. A strong silencing effect of SMARCB1 in miR-206 transfected SS-iASC was most likely caused by the synergic influence of the SS18-SSX1 fusion protein and miR-206. In the same cell line, a moderate decrease of SMARCB1 protein expression could be observed with immunocytochemistry and flow cytometry. In the most comprehensive analysis of miR-206 effects so far, a modest but significant downregulation of miR-206 targets on the mRNA level was confirmed across all cell lines. However, the variability of the effect shows that the action of this miRNA is largely cell context-dependent. Our results also support the conception that the oncomiR effect of miR-206 on SMARCB1 plays an important but not exclusive role in SMARCB1 immunonegative soft tissue sarcomas so it can be considered important in planning the targeted therapy of these tumors in the future. Impact statement Mir-206 is a very unique microRNA because it can act as a suppressor miRNA or as an oncomiRNA depending on the tumor tissue. In SMARCB1 negative soft tissue sarcomas miR-206 is overexpressed, so thus in epithelioid and synovial sarcomas it functions as an oncomiRNA. MiR-206 has diverse silencing effects on its target genes. We found that the action of miR-206 is largely cell context dependent. The oncomiR role of miR-206 is crucial but not exclusive in SMARCB1 negative soft tissue sarcomas and miR-206 has an antiproliferative effect on a normal human fibroblast cell line. Expressions of miR-206 targets observed in tumors can only be reproduced in the corresponding tumorous cell lines. This is the first study which examined the permanent effect of miR-206 on its target genes in normal, tumor, and genetically engineered cell lines.
Collapse
Affiliation(s)
- Dóra Mihály
- 1 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest H-1085, Hungary
| | - Gergő Papp
- 1 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest H-1085, Hungary
| | - Zsolt Mervai
- 1 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest H-1085, Hungary
| | - Andrea Reszegi
- 1 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest H-1085, Hungary
| | | | - Gábor Szalóki
- 1 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest H-1085, Hungary
| | - Johanna Sápi
- 3 Óbuda University, University Research, Innovation and Service Center, Physiological Controls Research Center, Budapest H-1034, Hungary
| | - Zoltán Sápi
- 1 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest H-1085, Hungary
| |
Collapse
|
35
|
Induction of morphological and functional differentiation of human neuroblastoma cells by miR-124. J Biosci 2018; 42:555-563. [PMID: 29229874 DOI: 10.1007/s12038-017-9714-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is the most common extracranial solid tumour in children, and differentiation is considered its most appropriate therapy. In this work, we studied effects of miR-124 overexpression on differentiation in M17 cell line as a model of neuroblastoma cancer. Influence of miR-124 overexpression on differentiation in M17 cells was studied. M17 cells were infected with lentivirus that contained miR-124 precursor sequence and followed for 2 weeks to differentiate. Ectopic expression of miR-124 in M17 cells changed the shape of spherical undifferentiated cells to cells with extended neurites that formed neuronal networks. Overexpression of MiR-124 respectively increased the expression level of markers of β-Tubulin III, MAP2, SYN, NF-M and Nestin by 16-, 5-, 4-, 2.3- and 2-folds at the messenger RNA level. MiR-124 overexpression also increased the protein levels of β-Tubulin III and MAP2. Moreover, exogenous expression of miR-124 significantly increased the intracellular calcium in differentiated M17 cells. Since miR-124 is naturally expressed in neuronal cells and is downregulated in neuroblastoma cancer cells, differentiation with this type of microRNA can be a novel treatment for neuroblastoma cancer.
Collapse
|
36
|
Hepatocyte Growth Factor Regulates the miR-206-HDAC4 Cascade to Control Neurogenic Muscle Atrophy following Surgical Denervation in Mice. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:568-577. [PMID: 30195792 PMCID: PMC6077135 DOI: 10.1016/j.omtn.2018.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 12/29/2022]
Abstract
Hepatocyte growth factor (HGF) has been well characterized for its roles in the migration of muscle progenitors during embryogenesis and the differentiation of muscle stem cells, but its function in adult neurogenic muscle atrophic conditions is poorly understood. Here we investigated whether HGF/c-met signaling has any effects on muscle-atrophic conditions. It was found that HGF expression was upregulated in skeletal muscle tissue following surgical denervation and in hSOD1-G93A transgenic mice showing severe muscle loss. Pharmacological inhibition of the c-met receptor decreased the expression level of pri-miR-206, enhanced that of HDAC4 and atrogenes, and resulted in increased muscle atrophy. In C2C12 cells, HGF inhibited phosphorylation of Smad3 and relieved TGF-β-mediated suppression of miR-206 expression via JNK. When extra HGF was exogenously provided through intramuscular injection of plasmid DNA expressing HGF, the extent of muscle atrophy was reduced, and the levels of all affected biochemical markers were changed accordingly, including those of primary and mature miR-206, HDAC4, and various atrogenes. Taken together, our finding suggested that HGF might play an important role in regard to neurogenic muscle atrophy and that HGF might be used as a platform to develop therapeutic agents for neuromuscular disorders.
Collapse
|
37
|
Carrà G, Panuzzo C, Torti D, Parvis G, Crivellaro S, Familiari U, Volante M, Morena D, Lingua MF, Brancaccio M, Guerrasio A, Pandolfi PP, Saglio G, Taulli R, Morotti A. Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones. Oncotarget 2018; 8:35508-35522. [PMID: 28418900 PMCID: PMC5482594 DOI: 10.18632/oncotarget.16348] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disorder with either indolent or aggressive clinical course. Current treatment regiments have significantly improved the overall outcomes even if higher risk subgroups - those harboring TP53 mutations or deletions of the short arm of chromosome 17 (del17p) - remain highly challenging. In the present work, we identified USP7, a known de-ubiquitinase with multiple roles in cellular homeostasis, as a potential therapeutic target in CLL. We demonstrated that in primary CLL samples and in CLL cell lines USP7 is: i) over-expressed through a mechanism involving miR-338-3p and miR-181b deregulation; ii) functionally activated by Casein Kinase 2 (CK2), an upstream interactor known to be deregulated in CLL; iii) effectively targeted by the USP7 inhibitor P5091. Treatment of primary CLL samples and cell lines with P5091 induces cell growth arrest and apoptosis, through the restoration of PTEN nuclear pool, both in TP53-wild type and -null environment. Importantly, PTEN acts as the main tumor suppressive mediator along the USP7-PTEN axis in a p53 dispensable manner. In conclusion, we propose USP7 as a new druggable target in CLL.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Guido Parvis
- Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Hematology, Azienda Ospedaliera, Mauriziano, Turin, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Marco Volante
- Division of Pathology, San Luigi Hospital, Orbassano, Italy.,Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Deborah Morena
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Hematology, Azienda Ospedaliera, Mauriziano, Turin, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| |
Collapse
|
38
|
Dräger J, Simon-Keller K, Pukrop T, Klemm F, Wilting J, Sticht C, Dittmann K, Schulz M, Leuschner I, Marx A, Hahn H. LEF1 reduces tumor progression and induces myodifferentiation in a subset of rhabdomyosarcoma. Oncotarget 2018; 8:3259-3273. [PMID: 27965462 PMCID: PMC5356880 DOI: 10.18632/oncotarget.13887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/30/2016] [Indexed: 01/07/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and show characteristics of skeletal muscle differentiation. The two major RMS subtypes in children are alveolar (ARMS) and embryonal RMS (ERMS). We demonstrate that approximately 50% of ARMS and ERMS overexpress the LEF1/TCF transcription factor LEF1 when compared to normal skeletal muscle and that LEF1 can restrain aggressiveness especially of ARMS cells. LEF1 knockdown experiments in cell lines reveal that depending on the cellular context, LEF1 can induce pro-apoptotic signals. LEF1 can also suppress proliferation, migration and invasiveness of RMS cells both in vitro and in vivo. Furthermore, LEF1 can induce myodifferentiation of the tumor cells. This may involve regulation of other LEF1/TCF factors i.e. TCF1, whereas β-catenin activity plays a subordinate role. Together these data suggest that LEF1 rather has tumor suppressive functions and attenuates aggressiveness in a subset of RMS.
Collapse
Affiliation(s)
- Julia Dräger
- Department of Human Genetics, University Medical Center, Göttingen 37073, Germany
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Tobias Pukrop
- Clinic for Internal Medicine III, Hematology and Medical Oncology, University Regensburg, Regensburg 93053, Germany.,Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Florian Klemm
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical Center Göttingen, Göttingen 37075, Germany
| | - Carsten Sticht
- Center of Medical Research, Bioinformatic and Statistic, Medical Faculty Mannheim, Mannheim 68167, Germany
| | - Kai Dittmann
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Matthias Schulz
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, Göttingen 37099, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University Hospital Schleswig-Holstein, Kiel 24105, Germany
| | - Alexander Marx
- Institute of Pathology, University Medical Center Mannheim, Mannheim 68167, Germany
| | - Heidi Hahn
- Department of Human Genetics, University Medical Center, Göttingen 37073, Germany
| |
Collapse
|
39
|
Activation of AMPK inhibits TGF-β1-induced airway smooth muscle cells proliferation and its potential mechanisms. Sci Rep 2018; 8:3624. [PMID: 29483552 PMCID: PMC5827654 DOI: 10.1038/s41598-018-21812-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 02/09/2018] [Indexed: 02/08/2023] Open
Abstract
The aims of the present study were to examine signaling mechanisms underlying transforming growth factor β1 (TGF-β1)-induced airway smooth muscle cells (ASMCs) proliferation and to determine the effect of adenosine monophosphate-activated protein kinase (AMPK) activation on TGF-β1-induced ASMCs proliferation and its potential mechanisms. TGF-β1 reduced microRNA-206 (miR-206) level by activating Smad2/3, and this in turn up-regulated histone deacetylase 4 (HDAC4) and consequently increased cyclin D1 protein leading to ASMCs proliferation. Prior incubation of ASMCs with metformin induced AMPK activation and blocked TGF-β1-induced cell proliferation. Activation of AMPK slightly attenuated TGF-β1-induced miR-206 suppression, but dramatically suppressed TGF-β1-caused HDAC4 up-expression and significantly increased HDAC4 phosphorylation finally leading to reduction of up-regulated cyclin D1 protein expression. Our study suggests that activation of AMPK modulates miR-206/HDAC4/cyclin D1 signaling pathway, particularly targeting on HDAC4, to suppress ASMCs proliferation and therefore has a potential value in the prevention and treatment of asthma by alleviating airway remodeling.
Collapse
|
40
|
Regulation of Skeletal Muscle Myoblast Differentiation and Proliferation by Pannexins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 925:57-73. [PMID: 27518505 DOI: 10.1007/5584_2016_53] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Pannexins are newly discovered channels that are now recognized as mediators of adenosine triphosphate release from several cell types allowing communication with the extracellular environment. Pannexins have been associated with various physiological and pathological processes including apoptosis, inflammation, and cancer. However, it is only recently that our work has unveiled a role for Pannexin 1 and Pannexin 3 as novel regulators of skeletal muscle myoblast proliferation and differentiation. Myoblast differentiation is an ordered multistep process that includes withdrawal from the cell cycle and the expression of key myogenic factors leading to myoblast differentiation and fusion into multinucleated myotubes. Eventually, myotubes will give rise to the diverse muscle fiber types that build the complex skeletal muscle architecture essential for body movement, postural behavior, and breathing. Skeletal muscle cell proliferation and differentiation are crucial processes required for proper skeletal muscle development during embryogenesis, as well as for the postnatal skeletal muscle regeneration that is necessary for muscle repair after injury or exercise. However, defects in skeletal muscle cell differentiation and/or deregulation of cell proliferation are involved in various skeletal muscle pathologies. In this review, we will discuss the expression of pannexins and their post-translational modifications in skeletal muscle, their known functions in various steps of myogenesis, including myoblast proliferation and differentiation, as well as their possible roles in skeletal muscle development, regeneration, and diseases such as Duchenne muscular dystrophy.
Collapse
|
41
|
Chen AH, Qin YE, Tang WF, Tao J, Song HM, Zuo M. MiR-34a and miR-206 act as novel prognostic and therapy biomarkers in cervical cancer. Cancer Cell Int 2017; 17:63. [PMID: 28615991 PMCID: PMC5466768 DOI: 10.1186/s12935-017-0431-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Background Recent evidence indicated that the aberrant expression of microRNA plays a crucial role in the development of cervical cancer. The overall shorter survival was strongly related to the abnormal expression of microRNA-34a (miR-34a) and microRNA-206 (miR-206), which target B cell lymphoma-2(Bcl2) and c-Met. Hepatocyte growth factor (HGF)/c-Met pathway is related to the occurrence, development and prognosis of cervical cancer, and c-Met is significantly overexpressed in cervical squamous cell carcinoma. Bcl2 is also considered to be a promising target for developing novel anticancer treatments. Methods In this study, we detect the expression of miR-34a and miR-206 in the cervical cancer tissue through quantificational real-time polymerase chain reaction (qRT-PCR) assay, and the expression of Bcl2 and c-Met from cervical cancer tissue were detected by immunohistochemistry. Results The expression of miR-34a and miR-206 were down-regulated in the cervical cancer tissue through qRT-PCR assay. As target genes of miR-34a and miR-206, Bcl2 and c-Met were up-regulated in cervical cancer tissues through qRT-PCR assay and immunohistochemistry. Kaplan–Meier and log-rank analysis revealed that down-regulated expression of miR-34a and miR-206 were strongly related to shorter overall survival. Multivariate Cox proportional hazards model for all variables that were statistically significant in the univariate analysis demonstrated that miR-34a (P = 0.038) and miR-206 (P = 0.008) might be independent prognostic factors for overall survival of patients suffering from cervical cancer. Conclusions The up-regulation of Bcl2 and c-Met promotes the cervical cancer’s progress, and the expression of miR-34a and miR-206 significantly correlated with the progression and prognosis in cervical cancer. All of these suggested that miR-34a and miR-206 might be the novel prognostic and therapy tools in cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0431-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ai-Hua Chen
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Yu-E Qin
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Wen-Fan Tang
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Jing Tao
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Hua-Mei Song
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Manzhen Zuo
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| |
Collapse
|
42
|
An Examination of the Role of Transcriptional and Posttranscriptional Regulation in Rhabdomyosarcoma. Stem Cells Int 2017. [PMID: 28638414 PMCID: PMC5468592 DOI: 10.1155/2017/2480375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive family of soft tissue tumors that most commonly manifests in children. RMS variants express several skeletal muscle markers, suggesting myogenic stem or progenitor cell origin of RMS. In this review, the roles of both recently identified and well-established microRNAs in RMS are discussed and summarized in a succinct, tabulated format. Additionally, the subtypes of RMS are reviewed along with the involvement of basic helix-loop-helix (bHLH) proteins, Pax proteins, and microRNAs in normal and pathologic myogenesis. Finally, the current and potential future treatment options for RMS are outlined.
Collapse
|
43
|
Zhai L, Wu R, Han W, Zhang Y, Zhu D. miR-127 enhances myogenic cell differentiation by targeting S1PR3. Cell Death Dis 2017; 8:e2707. [PMID: 28358363 PMCID: PMC5386531 DOI: 10.1038/cddis.2017.128] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/22/2017] [Accepted: 02/22/2017] [Indexed: 12/25/2022]
Abstract
MicroRNAs (miRNAs) have recently been implicated in muscle stem cell function. miR-127 is known to be predominantly expressed in skeletal muscle, but its roles in myogenic differentiation and muscle regeneration are unknown. Here, we show that miR-127 is upregulated during C2C12 and satellite cell (SC) differentiation and, by establishing C2C12 cells stably expressing miR-127, demonstrate that overexpression of miR-127 in C2C12 cells enhances myogenic cell differentiation. To investigate the function of miR-127 during muscle development and regeneration in vivo, we generated miR-127 transgenic mice. These mice exhibited remarkably accelerated muscle regeneration compared with wild-type mice by promoting SC differentiation. Mechanistically, we demonstrated that the gene encoding sphingosine-1-phosphate receptor 3 (S1PR3), a G-protein-coupled receptor for sphingosine-1-phosphate, is a target of miR-127 required for its function in promoting myogenic cell differentiation. Importantly, overexpression of miR-127 in muscular dystrophy model mdx mice considerably ameliorated the disease phenotype. Thus, our findings suggest that miR-127 may serve as a potential therapeutic target for the treatment of skeletal muscle disease in humans.
Collapse
Affiliation(s)
- Lili Zhai
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, PR China
| | - Rimao Wu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, PR China
| | - Wanhong Han
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, PR China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, PR China
| | - Dahai Zhu
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, PR China
| |
Collapse
|
44
|
Missiaglia E, Shepherd CJ, Aladowicz E, Olmos D, Selfe J, Pierron G, Delattre O, Walters Z, Shipley J. MicroRNA and gene co-expression networks characterize biological and clinical behavior of rhabdomyosarcomas. Cancer Lett 2016; 385:251-260. [PMID: 27984116 PMCID: PMC5157784 DOI: 10.1016/j.canlet.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022]
Abstract
Rhabdomyosarcomas (RMS) in children and adolescents are heterogeneous sarcomas broadly defined by skeletal muscle features and the presence/absence of PAX3/7-FOXO1 fusion genes. MicroRNAs are small non-coding RNAs that regulate gene expression in a cell context specific manner. Sequencing analyses of microRNAs in 64 RMS revealed expression patterns separating skeletal muscle, fusion gene positive and negative RMS. Integration with parallel gene expression data assigned biological functions to 12 co-expression networks/modules that reassuringly included myogenic roles strongly correlated with microRNAs known in myogenesis and RMS development. Modules also correlated with clinical outcome and fusion status. Regulation of microRNAs by the fusion protein was demonstrated after PAX3-FOXO1 reduction, exemplified by miR-9-5p. MiR-9-5p levels correlated with poor outcome, even within fusion gene positive RMS, and were higher in metastatic versus non-metastatic disease. MiR-9-5p reduction inhibited RMS cell migration. Our findings reveal microRNAs in a regulatory framework of biological and clinical significance in RMS. RNAseq profiled miRNA expression in 64 rhabdomyosarcomas (RMS). MiRNA expression distinguished muscle and RMS on the basis of fusion gene status. Co-expression networks linked to function, clinical data and fusion gene status. Identified miRNAs, including miR-9-5p, altered by the PAX3-FOXO1 fusion protein. Demonstrated clinical and functional role for miR-9-5p in RMS.
Collapse
Affiliation(s)
- Edoardo Missiaglia
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Chris J Shepherd
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Ewa Aladowicz
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - David Olmos
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Institut Curie, 26 Rue d'Ulm, 75248, Paris Cedex 05, France
| | - Olivier Delattre
- Unité de Génétique Somatique, Institut Curie, 26 Rue d'Ulm, 75248, Paris Cedex 05, France
| | - Zoe Walters
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK.
| |
Collapse
|
45
|
Zhang Y, Yu B, He J, Chen D. From Nutrient to MicroRNA: a Novel Insight into Cell Signaling Involved in Skeletal Muscle Development and Disease. Int J Biol Sci 2016; 12:1247-1261. [PMID: 27766039 PMCID: PMC5069446 DOI: 10.7150/ijbs.16463] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is a remarkably complicated organ comprising many different cell types, and it plays an important role in lifelong metabolic health. Nutrients, as an external regulator, potently regulate skeletal muscle development through various internal regulatory factors, such as mammalian target of rapamycin (mTOR) and microRNAs (miRNAs). As a nutrient sensor, mTOR, integrates nutrient availability to regulate myogenesis and directly or indirectly influences microRNA expression. MiRNAs, a class of small non-coding RNAs mediating gene silencing, are implicated in myogenesis and muscle-related diseases. Meanwhile, growing evidence has emerged supporting the notion that the expression of myogenic miRNAs could be regulated by nutrients in an epigenetic mechanism. Therefore, this review presents a novel insight into the cell signaling network underlying nutrient-mTOR-miRNA pathway regulation of skeletal myogenesis and summarizes the epigenetic modifications in myogenic differentiation, which will provide valuable information for potential therapeutic intervention.
Collapse
Affiliation(s)
- Yong Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Ya'an, Sichuan 625014, P. R. China.; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, China
| |
Collapse
|
46
|
Bersani F, Lingua MF, Morena D, Foglizzo V, Miretti S, Lanzetti L, Carrà G, Morotti A, Ala U, Provero P, Chiarle R, Singer S, Ladanyi M, Tuschl T, Ponzetto C, Taulli R. Deep Sequencing Reveals a Novel miR-22 Regulatory Network with Therapeutic Potential in Rhabdomyosarcoma. Cancer Res 2016; 76:6095-6106. [PMID: 27569217 DOI: 10.1158/0008-5472.can-16-0709] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
Abstract
Current therapeutic options for the pediatric cancer rhabdomyosarcoma have not improved significantly, especially for metastatic rhabdomyosarcoma. In the current work, we performed a deep miRNA profiling of the three major human rhabdomyosarcoma subtypes, along with cell lines and normal muscle, to identify novel molecular circuits with therapeutic potential. The signature we determined could discriminate rhabdomyosarcoma from muscle, revealing a subset of muscle-enriched miRNA (myomiR), including miR-22, which was strongly underexpressed in tumors. miR-22 was physiologically induced during normal myogenic differentiation and was transcriptionally regulated by MyoD, confirming its identity as a myomiR. Once introduced into rhabdomyosarcoma cells, miR-22 decreased cell proliferation, anchorage-independent growth, invasiveness, and promoted apoptosis. Moreover, restoring miR-22 expression blocked tumor growth and prevented tumor dissemination in vivo Gene expression profiling analysis of miR-22-expressing cells suggested TACC1 and RAB5B as possible direct miR-22 targets. Accordingly, loss- and gain-of-function experiments defined the biological relevance of these genes in rhabdomyosarcoma pathogenesis. Finally, we demonstrated the ability of miR-22 to intercept and overcome the intrinsic resistance to MEK inhibition based on ERBB3 upregulation. Overall, our results identified a novel miR-22 regulatory network with critical therapeutic implications in rhabdomyosarcoma. Cancer Res; 76(20); 6095-106. ©2016 AACR.
Collapse
Affiliation(s)
- Francesca Bersani
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Marcello Francesco Lingua
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Deborah Morena
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Valentina Foglizzo
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Silvia Miretti
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. Candiolo Cancer Institute, Candiolo, Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberto Chiarle
- CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy. Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy. Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Tuschl
- Department of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| | - Carola Ponzetto
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy.
| |
Collapse
|
47
|
Hao W, Luo W, Bai M, Li J, Bai X, Guo J, Wu J, Wang M. MicroRNA-206 Inhibited the Progression of Glioblastoma Through BCL-2. J Mol Neurosci 2016; 60:531-538. [PMID: 27558109 DOI: 10.1007/s12031-016-0824-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
Gliomas are the most common type of brain tumor and have a poor prognosis. MicroRNAs (miRNAs) are a class of small, endogenous, and non-coding RNAs that play crucial roles in cell proliferation, survival, and invasion. Deregulated expression of miR-206 has been investigated in many cancers. However, the role of miR-206 in glioblastoma is still unclear. In the present study, we found that the expression of miR-206 was decreased in cancer tissues compared with normal tissues. However, the expression level of BCL-2 was higher in cancer tissues than that in normal tissues (all p < 0.001). Statistically, the expression level of BCL-2 was inversely correlated with the miR-206. In addition, the overall survival of glioblastoma patients with lower miR-206 expression was significantly shorter than those with high miR-206 expression (p < 0.001). Besides, the expression of miR-206 was also decreased in U87 and U251 cells. In vitro assays showed that ectopic miR-206 expression affected the proliferation, cell cycle, and invasion in U87 and U251 cells. Importantly, we identified BCL-2 as a direct target of miR-206 in U87 and U251 cells using luciferase assay. Overexpression of BCL-2 partially attenuated the miR-206-mediated cell proliferation. In vivo, overexpression of miR-206 suppressed the progression of glioblastoma cells using mice xenograft model. In conclusion, this study suggested that miR-206 could act as a tumor suppressor gene through inhibiting BCL-2 in the development of glioblastoma.
Collapse
Affiliation(s)
- Wenjiong Hao
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,Department of Neurosurgery, Affiliated Hospital, Medical College of Yan'an University, Yan'an City, Shaanxi, 716000, People's Republic of China
| | - Wei Luo
- Department of Neurosurgery, The Affiliated Hospital of Shaanxi Traditional Chinese Medicine University, Xianyang, 712000, People's Republic of China
| | - Mangmang Bai
- Department of Neurosurgery, Affiliated Hospital, Medical College of Yan'an University, Yan'an City, Shaanxi, 716000, People's Republic of China
| | - Jian Li
- Department of Neurosurgery, Affiliated Hospital, Medical College of Yan'an University, Yan'an City, Shaanxi, 716000, People's Republic of China
| | - Xiaobin Bai
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jie Guo
- Department of Neurosurgery, Affiliated Hospital, Medical College of Yan'an University, Yan'an City, Shaanxi, 716000, People's Republic of China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
48
|
Skrzypek K, Kusienicka A, Szewczyk B, Adamus T, Lukasiewicz E, Miekus K, Majka M. Constitutive activation of MET signaling impairs myogenic differentiation of rhabdomyosarcoma and promotes its development and progression. Oncotarget 2016; 6:31378-98. [PMID: 26384300 PMCID: PMC4741613 DOI: 10.18632/oncotarget.5145] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a soft tissue sarcoma, which may originate from impaired differentiation of mesenchymal stem cells (MSC). Expression of MET receptor is elevated in alveolar RMS subtype (ARMS) which is associated with worse prognosis, compared to embryonal RMS (ERMS). Forced differentiation of ARMS cells diminishes MET level and, as shown previously, MET silencing induces differentiation of ARMS. In ERMS cells introduction of TPR-MET oncogene leads to an uncontrolled overstimulation of the MET receptor downstream signaling pathways. In vivo, tumors formed by those cells in NOD-SCID mice display inhibited differentiation, enhanced proliferation, diminished apoptosis and increased infiltration of neutrophils. Consequently, tumors grow significantly faster and they display enhanced ability to metastasize to lungs and to vascularize due to elevated VEGF, MMP9 and miR-378 expression. In vitro, TPR-MET ERMS cells display enhanced migration, chemotaxis and invasion toward HGF and SDF-1. Introduction of TPR-MET into MSC increases survival and may induce expression of early myogenic factors depending on the genetic background, and it blocks terminal differentiation of skeletal myoblasts. To conclude, our results suggest that activation of MET signaling may cause defects in myogenic differentiation leading to rhabdomyosarcoma development and progression.
Collapse
Affiliation(s)
- Klaudia Skrzypek
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Anna Kusienicka
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Barbara Szewczyk
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Tomasz Adamus
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Ewa Lukasiewicz
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| | - Katarzyna Miekus
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Polish-American Institute of Pediatrics, Jagiellonian University Medical College, 30-663 Krakow, Poland
| |
Collapse
|
49
|
Samaeekia R, Adorno-Cruz V, Bockhorn J, Chang YF, Huang S, Prat A, Ha N, Kibria G, Huo D, Zheng H, Dalton R, Wang Y, Moskalenko GY, Liu H. miR-206 Inhibits Stemness and Metastasis of Breast Cancer by Targeting MKL1/IL11 Pathway. Clin Cancer Res 2016; 23:1091-1103. [PMID: 27435395 DOI: 10.1158/1078-0432.ccr-16-0943] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/12/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Purpose: Effective targeting of cancer stem cells is necessary and important for eradicating cancer and reducing metastasis-related mortality. Understanding of cancer stemness-related signaling pathways at the molecular level will help control cancer and stop metastasis in the clinic.Experimental Design: By analyzing miRNA profiles and functions in cancer development, we aimed to identify regulators of breast tumor stemness and metastasis in human xenograft models in vivo and examined their effects on self-renewal and invasion of breast cancer cells in vitro To discover the direct targets and essential signaling pathways responsible for miRNA functions in breast cancer progression, we performed microarray analysis and target gene prediction in combination with functional studies on candidate genes (overexpression rescues and pheno-copying knockdowns).Results: In this study, we report that hsa-miR-206 suppresses breast tumor stemness and metastasis by inhibiting both self-renewal and invasion. We identified that among the candidate targets, twinfilin (TWF1) rescues the miR-206 phenotype in invasion by enhancing the actin cytoskeleton dynamics and the activity of the mesenchymal lineage transcription factors, megakaryoblastic leukemia (translocation) 1 (MKL1), and serum response factor (SRF). MKL1 and SRF were further demonstrated to promote the expression of IL11, which is essential for miR-206's function in inhibiting both invasion and stemness of breast cancer.Conclusions: The identification of the miR-206/TWF1/MKL1-SRF/IL11 signaling pathway sheds lights on the understanding of breast cancer initiation and progression, unveils new therapeutic targets, and facilitates innovative drug development to control cancer and block metastasis. Clin Cancer Res; 23(4); 1091-103. ©2016 AACR.
Collapse
Affiliation(s)
- Ravand Samaeekia
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Valery Adorno-Cruz
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Deparment of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jessica Bockhorn
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois.,Stanford Cancer Institute, Stanford University, Stanford, California
| | - Ya-Fang Chang
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Simo Huang
- Deparment of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Aleix Prat
- Translational Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.,Department of Medical Oncology, Hospital Clínic, Universitat de Barcelona, Spain
| | - Nahun Ha
- Deparment of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Golam Kibria
- Deparment of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Dezheng Huo
- Department of Health Studies, The University of Chicago, Chicago, Illinois
| | - Hui Zheng
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, Illinois
| | - Rachel Dalton
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Yuhao Wang
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Grigoriy Y Moskalenko
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Huiping Liu
- Deparment of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio. .,The Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio.,The National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
50
|
Chen X, Tong ZK, Zhou JY, Yao YK, Zhang SM, Zhou JY. MicroRNA-206 inhibits the viability and migration of human lung adenocarcinoma cells partly by targeting MET. Oncol Lett 2016; 12:1171-1177. [PMID: 27446414 DOI: 10.3892/ol.2016.4735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/13/2016] [Indexed: 01/21/2023] Open
Abstract
MicroRNA (miRNA)-based targeting in cancer has emerged as a potential therapeutic strategy. miR-206 has recently been implicated in cancer. However, the role and molecular mechanism of miR-206 in lung adenocarcinoma are still unclear. The present study revealed that miR-206 was downregulated in human lung adenocarcinoma tissues. Overexpression of miR-206 in human lung adenocarcinoma-derived cells significantly inhibited cell viability and migration. Further experiments indicated that the overexpression of miR-206 decreased the expression of MET at the messenger RNA and protein levels via direct targeting of MET in a 3'-untranslated region-dependent manner. The knockdown of MET by small interfering RNA partly led to a phenocopy effect of miR-206. In conclusion, the present study identified miR-206 as a potential tumor suppressor of lung adenocarcinoma that exerts its functions, in part, by negative regulation of MET.
Collapse
Affiliation(s)
- Xi Chen
- Department of Respiratory Diseases, Thoracic Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhong-Kai Tong
- Department of Respiratory Diseases, Thoracic Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian-Ya Zhou
- Department of Respiratory Diseases, Thoracic Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Ya-Ke Yao
- Department of Respiratory Diseases, Thoracic Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Shu-Meng Zhang
- Department of Respiratory Diseases, Thoracic Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jian-Ying Zhou
- Department of Respiratory Diseases, Thoracic Disease Diagnosis and Treatment Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|