1
|
Tanemura M, Furukawa K, Mikamori M, Asaoka T, Yasuoka H, Marukawa D, Urata Y, Yamada D, Kobayashi S, Eguchi H. Clinical impact of high-quality testing for peritoneal lavage cytology in pancreatic cancer. Sci Rep 2024; 14:10199. [PMID: 38702437 PMCID: PMC11068862 DOI: 10.1038/s41598-024-60936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC) patients, the importance of peritoneal lavage cytology, which indicates unresectability, remains controversial. This study sought to determine whether positive peritoneal lavage cytology (CY+) precludes pancreatectomy. Furthermore, we propose a novel liquid biopsy using peritoneal lavage fluid to detect viable peritoneal tumor cells (v-PTCs) with TelomeScan F35, a telomerase-specific replication-selective adenovirus engineered to express green fluorescent protein. Resectable cytologically or histologically proven PDAC patients (n = 53) were enrolled. CY was conducted immediately following laparotomy. The resulting fluid was examined by conventional cytology (conv-CY; Papanicolaou staining and MOC-31 immunostaining) and by the novel technique (Telo-CY; using TelomeScan F35). Of them, 5 and 12 were conv-CY+ and Telo-CY+, respectively. All underwent pancreatectomy. The two double-CY+ (conv-CY+ and Telo-CY+) patients showed early peritoneal recurrence (P-rec) postoperatively, despite adjuvant chemotherapy. None of the three conv-CY+ Telo-CY- patients exhibited P-rec. Six of the 10 Telo-CY+ conv-CY- patients (60%) relapsed with P-rec. Of the remaining 38 double-CY- [conv-CY-, Telo-CY-, conv-CY± (Class III)] patients, 3 (8.3%) exhibited P-rec. Although conv-CY+ status predicted poor prognosis and a higher risk of P-rec, Telo-CY was more sensitive for detecting v-PTC. Staging laparoscopy and performing conv-CY and Telo-CY are needed to confirm the indication for pancreatectomy.
Collapse
Affiliation(s)
- Masahiro Tanemura
- Department of Surgery, Rinku General Medical Center, 2-23 Rinku Orai-kita, Izumisano, Osaka, 598-8577, Japan.
| | - Kenta Furukawa
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayamachyo, Tennouji-ku, Osaka, 543-0035, Japan
| | - Manabu Mikamori
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayamachyo, Tennouji-ku, Osaka, 543-0035, Japan
| | - Tadafumi Asaoka
- Department of Surgery, Osaka Police Hospital, 10-31 Kitayamachyo, Tennouji-ku, Osaka, 543-0035, Japan
| | - Hironao Yasuoka
- Department of Pathology, Osaka Police Hospital, 10-31 Kitayamachyo, Tennouji-ku, Osaka, 543-0035, Japan
| | - Daiki Marukawa
- Department of Surgery, Rinku General Medical Center, 2-23 Rinku Orai-kita, Izumisano, Osaka, 598-8577, Japan
| | - Yasuo Urata
- Oncolys BioPharma Inc., Toranomon Towers 10F, 4-1-28 Toranomon, Minato-ku, Tokyo, 105-0001, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine and Faculty of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine and Faculty of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine and Faculty of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Ikemoto S, Sakurai F, Tokuoka S, Yamashita T, Takayama K, Hoshi K, Okabe T, Sumiyoshi I, Togo S, Takahashi K, Tachibana M, Mizuguchi H. Novel conditionally replicating adenovirus-mediated efficient detection of circulating tumor cells in lung cancer patients. PLoS One 2023; 18:e0286323. [PMID: 37856461 PMCID: PMC10586684 DOI: 10.1371/journal.pone.0286323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/15/2023] [Indexed: 10/21/2023] Open
Abstract
Circulating tumor cells (CTCs) are present in the blood of cancer patients from the early stage of cancer development, and their presence has been correlated with patient prognosis and treatment responses. Accordingly, CTCs have been attracting attention as a novel biomarker for early detection of cancer and monitoring of treatment responses. However, since patients typically have only a few CTCs per milliliter of blood, development of an accurate and highly sensitive CTC detection method is crucial. We previously developed a CTC detection method using a novel conditionally replicating adenovirus (Ad) that expresses green fluorescence protein (GFP) in a tumor cell-specific manner by expressing the E1 gene using a tumor-specific human telomerase reverse transcriptase (hTERT) promoter (rAdF35-142T-GFP). CTCs were efficiently detected using rAdF35-142T-GFP, but GFP expression levels in the CTCs and production efficiencies of rAdF35-142T-GFP were relatively low. In this study, in order to overcome these problems, we developed four types of novel GFP-expressing conditionally replicating Ads and examined their ability to visualize CTCs in the blood samples of lung cancer patients. Among the four types of novel recombinant Ads, the novel conditionally replicating Ad containing the 2A peptide and the GFP gene downstream of the E1A gene and the adenovirus death protein (ADP) gene in the E3 region (rAdF35-E1-2A-GFP-ADP) mediated the highest number of GFP-positive cells in the human cultured tumor cell lines. Titers of rAdF35-E1-2A-GFP-ADP were significantly higher (about 4-fold) than those of rAdF35-142T-GFP. rAdF35-E1-2A-GFP-ADP and rAdF35-142T-GFP efficiently detected CTCs in the blood of lung cancer patients at similar levels. GFP+/CD45- cells (CTCs) were found in 10 of 17 patients (58.8%) for both types of recombinant Ads.
Collapse
Affiliation(s)
- Sena Ikemoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Sora Tokuoka
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Tomoki Yamashita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kosuke Takayama
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuaki Hoshi
- Department of Minimally Invasive Next-generation Cancer Diagnosis by TelomeScan, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University, Tokyo, Japan
| | - Takahiro Okabe
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University, Tokyo, Japan
| | - Issei Sumiyoshi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Shinsaku Togo
- Department of Minimally Invasive Next-generation Cancer Diagnosis by TelomeScan, Tokyo, Japan
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Minimally Invasive Next-generation Cancer Diagnosis by TelomeScan, Tokyo, Japan
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, Tokyo, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
- Laboratory of Functional Organoid for Drug Discovery, Center for Drug Discovery Resources Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Nishida K, Wang G, Kobatake E, Mie M. Sensitive Detection of Tumor Cells Using Protein Nanoparticles with Multiple Displays of DNA Aptamers and Bioluminescent Reporters. ACS Biomater Sci Eng 2023; 9:5260-5269. [PMID: 37642536 DOI: 10.1021/acsbiomaterials.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Simple and effective detection methods for circulating tumor cells are essential for early detection and progression monitoring of tumors. The use of DNA aptamer and bioluminescence is expected to be a key tool for the simple, effective, and sensitive detection of tumor cells. Herein, we designed multifunctional protein nanoparticles for the detection of tumor cells using DNA aptamer and bioluminescence. Fusion proteins (ELP-poly(d)-POIs), composed of elastin-like polypeptide (ELP) fused with protein of interests (POIs) via poly(aspartic acid) (poly(d)), formed the protein nanoparticles based on the temperature responsivity of ELP sequences, leading to multiply displayed POIs on the protein nanoparticles. In the present study, we focused on porcine circovirus type 2 replication initiation protein (Rep), which covalently conjugated with DNA aptamers, and NanoLuc luciferase (Nluc), which emitted a strong bioluminescence, as POIs. ELP-poly(d)-Rep and ELP-poly(d)-Nluc were constructed and formed the protein nanoparticles with multiply displayed Nluc and Rep (DNA aptamer) that amplified the bioluminescence signal and tumor recognition ability. Mucin-1 (MUC1)-overexpressing human breast tumor MCF7 cells and MUC1-recognizing aptamer (MUC1 aptamer) were selected as models. The MUC1 aptamer-conjugated protein nanoparticles exhibited a 13.7-fold higher bioluminescence signal to MCF-7 cells than to human embryonic kidney 293 (HEK293) cells, which express low levels of MUC1. Furthermore, the protein nanoparticles could detect up to 70.7 cells/mL of MCF-7 cells from a cell suspension containing HEK-293. The protein nanoparticles with multiple Rep and Nluc show a great potential as a material for detecting CTCs.
Collapse
Affiliation(s)
- Kei Nishida
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Gaoyang Wang
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Eiry Kobatake
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Masayasu Mie
- Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
4
|
Ju S, Chen C, Zhang J, Xu L, Zhang X, Li Z, Chen Y, Zhou J, Ji F, Wang L. Detection of circulating tumor cells: opportunities and challenges. Biomark Res 2022; 10:58. [PMID: 35962400 PMCID: PMC9375360 DOI: 10.1186/s40364-022-00403-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.
Collapse
Affiliation(s)
- Siwei Ju
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Cong Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jiahang Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Lin Xu
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China
| | - Feiyang Ji
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| | - Linbo Wang
- Department of Surgical Oncology, The Sir Run Run Shaw Hospital Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou, China.
- Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Zhejiang, Hangzhou, China.
| |
Collapse
|
5
|
Tazawa H, Shigeyasu K, Noma K, Kagawa S, Sakurai F, Mizuguchi H, Kobayashi H, Imamura T, Fujiwara T. Tumor‐targeted fluorescence labeling systems for cancer diagnosis and treatment. Cancer Sci 2022; 113:1919-1929. [PMID: 35398956 PMCID: PMC9207361 DOI: 10.1111/cas.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 11/28/2022] Open
Abstract
Conventional imaging techniques are available for clinical identification of tumor sites. However, detecting metastatic tumor cells that are spreading from primary tumor sites using conventional imaging techniques remains difficult. In contrast, fluorescence‐based labeling systems are useful tools for detecting tumor cells at the single‐cell level in cancer research. The ability to detect fluorescent‐labeled tumor cells enables investigations of the biodistribution of tumor cells for the diagnosis and treatment of cancer. For example, the presence of fluorescent tumor cells in the peripheral blood of cancer patients is a predictive biomarker for early diagnosis of distant metastasis. The elimination of fluorescent tumor cells without damaging normal tissues is ideal for minimally invasive treatment of cancer. To capture fluorescent tumor cells within normal tissues, however, tumor‐specific activated target molecules are needed. This review focuses on recent advances in tumor‐targeted fluorescence labeling systems, in which indirect reporter labeling using tumor‐specific promoters is applied to fluorescence labeling of tumor cells for the diagnosis and treatment of cancer. Telomerase promoter‐dependent fluorescence labeling using replication‐competent viral vectors produces fluorescent proteins that can be used to detect and eliminate telomerase‐positive tumor cells. Tissue‐specific promoter‐dependent fluorescence labeling enables identification of specific tumor cells. Vimentin promoter‐dependent fluorescence labeling is a useful tool for identifying tumor cells that undergo epithelial–mesenchymal transition (EMT). The evaluation of tumor cells undergoing EMT is important for accurately assessing metastatic potential. Thus, tumor‐targeted fluorescence labeling systems represent novel platforms that enable the capture of tumor cells for the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Hiroshi Tazawa
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
- Center for Innovative Clinical Medicine Okayama University Hospital Okayama Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
- Minimally Invasive Therapy Center Okayama University Hospital Okayama Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology Graduate School of Pharmaceutical Sciences Osaka University Osaka Japan
| | - Hisataka Kobayashi
- Molecular Imaging Branch Center for Cancer Research National Cancer Institute National Institutes of Health Bethesda MD USA
| | - Takeshi Imamura
- Department of Molecular Medicine for Pathogenesis Ehime University Graduate School of Medicine Ehime Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
6
|
Topa J, Grešner P, Żaczek AJ, Markiewicz A. Breast cancer circulating tumor cells with mesenchymal features-an unreachable target? Cell Mol Life Sci 2022; 79:81. [PMID: 35048186 PMCID: PMC8770434 DOI: 10.1007/s00018-021-04064-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) mediate dissemination of solid tumors and can be an early sign of disease progression. Moreover, they show a great potential in terms of non-invasive, longitudinal monitoring of cancer patients. CTCs have been extensively studied in breast cancer (BC) and were shown to present a significant phenotypic plasticity connected with initiation of epithelial-mesenchymal transition (EMT). Apart from conferring malignant properties, EMT affects CTCs recovery rate, making a significant portion of CTCs from patients’ samples undetected. Wider application of methods and markers designed to isolate and identify mesenchymal CTCs is required to expand our knowledge about the clinical impact of mesenchymal CTCs. Therefore, here we provide a comprehensive review of clinical significance of mesenchymal CTCs in BC together with statistical analysis of previously published data, in which we assessed the suitability of a number of methods/markers used for isolation of CTCs with different EMT phenotypes, both in in vitro spike-in tests with BC cell lines, as well as clinical samples. Results of spiked-in cell lines indicate that, in general, methods not based on epithelial enrichment only, capture mesenchymal CTCs much more efficiently that CellSearch® (golden standard in CTCs detection), but at the same time are not much inferior to Cell Search®, though large variation in recovery rates of added cells among the methods is observed. In clinical samples, where additional CTCs detection markers are needed, positive epithelial-based CTCs enrichment was the most efficient in isolating CTCs with mesenchymal features from non-metastatic BC patients. From the marker side, PI3K and VIM were contributing the most to detection of CTCs with mesenchymal features (in comparison to SNAIL) in non-metastatic and metastatic BC patients, respectively. However, additional data are needed for more robust identification of markers for efficient detection of CTCs with mesenchymal features.
Collapse
Affiliation(s)
- Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Peter Grešner
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Anna J Żaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Debinki 1, 80-211, Gdansk, Poland.
| |
Collapse
|
7
|
De Luca A, Gallo M, Esposito C, Morabito A, Normanno N. Promising Role of Circulating Tumor Cells in the Management of SCLC. Cancers (Basel) 2021; 13:2029. [PMID: 33922300 PMCID: PMC8122820 DOI: 10.3390/cancers13092029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022] Open
Abstract
Small cell lung cancer is an aggressive disease for which few therapeutic options are currently available. Although patients initially respond to therapy, they rapidly relapse. Up to today, no biomarkers for guiding treatment of SCLC patients have been identified. SCLC patients rarely undergo surgery and often the available tissue samples are inadequate for biomarker analysis. Circulating tumor cells (CTCs) are rare cells in the peripheral blood that might be used as surrogates of tissue samples. Different methodological approaches have been developed for studies of CTCs in SCLC. In addition to CTC count, which might provide prognostic and predictive information, genomic and transcriptomic analyses allow the characterization of molecular profiles of CTCs and permit the study of tumor heterogeneity. The employment of CTC-derived xenografts offers complementary information to genomic analyses and CTC enumeration about the mechanisms involved in the sensitivity/resistance to treatments. Using these approaches, CTC analysis is providing relevant information on SCLC biology that might aid in the development of personalized therapeutic strategies for SCLC patients.
Collapse
Affiliation(s)
- Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (M.G.); (C.E.)
| | - Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (M.G.); (C.E.)
| | - Claudia Esposito
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (M.G.); (C.E.)
| | - Alessandro Morabito
- Thoracic Medical Oncology Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy; (A.D.L.); (M.G.); (C.E.)
| |
Collapse
|
8
|
Zhang H, Yuan F, Qi Y, Liu B, Chen Q. Circulating Tumor Cells for Glioma. Front Oncol 2021; 11:607150. [PMID: 33777749 PMCID: PMC7987781 DOI: 10.3389/fonc.2021.607150] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
Liquid biopsy has entered clinical applications for several cancers, including metastatic breast, prostate, and colorectal cancer for CTC enumeration and NSCLC for EGFR mutations in ctDNA, and has improved the individualized treatment of many cancers, but relatively little progress has been made in validating circulating biomarkers for brain malignancies. So far, data on circulating tumor cells about glioma are limited, the application of circulating tumor cells as biomarker for glioma patients has only just begun. This article reviews the research status and application prospects of circulating tumor cells in gliomas. Several detection methods and research results of circulating tumor cells about clinical research in gliomas are briefly discussed. The wide application prospect of circulating tumor cells in glioma deserves further exploration, and the research on more sensitive and convenient detection methods is necessary.
Collapse
Affiliation(s)
- Huikai Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yangzhi Qi
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Ito A, Kagawa S, Sakamoto S, Kuwada K, Kajioka H, Yoshimoto M, Kikuchi S, Kuroda S, Yoshida R, Tazawa H, Fujiwara T. Extracellular vesicles shed from gastric cancer mediate protumor macrophage differentiation. BMC Cancer 2021; 21:102. [PMID: 33509150 PMCID: PMC7845052 DOI: 10.1186/s12885-021-07816-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/18/2021] [Indexed: 12/20/2022] Open
Abstract
Background Peritoneal dissemination often develops in gastric cancer. Tumor-associated macrophages (TAMs) are present in the peritoneal cavity of gastric cancer patients with peritoneal dissemination, facilitating tumor progression. However, the mechanism by which macrophages differentiate into tumor-associated macrophages in the peritoneal cavity is not well understood. In this study, the interplay between gastric cancer-derived extracellular vesicles (EVs) and macrophages was investigated. Methods The association between macrophages and EVs in peritoneal ascitic fluid of gastric cancer patients, or from gastric cancer cell lines was examined, and their roles in differentiation of macrophages and potentiation of the malignancy of gastric cancer were further explored. Results Immunofluorescent assays of the ascitic fluid showed that M2 macrophages were predominant along with the cancer cells in the peritoneal cavity. EVs purified from gastric cancer cells, as well as malignant ascitic fluid, differentiated peripheral blood mononuclear cell-derived macrophages into the M2-like phenotype, which was demonstrated by their morphology and expression of CD163/206. The macrophages differentiated by gastric cancer-derived EVs promoted the migration ability of gastric cancer cells, and the EVs carried STAT3 protein. Conclusion EVs derived from gastric cancer play a role by affecting macrophage phenotypes, suggesting that this may be a part of the underlying mechanism that forms the intraperitoneal cancer microenvironment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07816-6.
Collapse
Affiliation(s)
- Atene Ito
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan.
| | - Shuichi Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuya Kuwada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroki Kajioka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masashi Yoshimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
10
|
Takakura M, Takata E, Sasagawa T. A Novel Liquid Biopsy Strategy to Detect Small Amounts of Cancer Cells Using Cancer-Specific Replication Adenoviruses. J Clin Med 2020; 9:jcm9124044. [PMID: 33327605 PMCID: PMC7765046 DOI: 10.3390/jcm9124044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022] Open
Abstract
Circulating tumor cells (CTCs) are a promising source of clinical and biological cancer information and can be a material for liquid biopsy. However, detecting and capturing these cells remains a challenge. Various biological factors (e.g., cell surface proteins, cell size, deformability, or dielectrophoresis) have been applied to detect CTCs. Cancer cells dramatically change their characteristics during tumorigenesis and metastasis. Hence, defining a cell as malignant using such a parameter is difficult. Moreover, immortality is an essential characteristic of cancer cells. Telomerase elongates telomeres and plays a critical role in cellular immortality and is specifically activated in cancer cells. Thus, the activation of telomerase can be a good fingerprint for cancer cells. Telomerase cannot be recognized by antibodies in living cells because it is a nuclear enzyme. Therefore, telomerase-specific replication adenovirus, which expresses the green fluorescent protein, has been applied to detect CTCs. This review explores the overview of this novel technology and its application in gynecological cancers.
Collapse
|
11
|
Ishikawa W, Kikuchi S, Ogawa T, Tabuchi M, Tazawa H, Kuroda S, Noma K, Nishizaki M, Kagawa S, Urata Y, Fujiwara T. Boosting Replication and Penetration of Oncolytic Adenovirus by Paclitaxel Eradicate Peritoneal Metastasis of Gastric Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:262-271. [PMID: 32728614 PMCID: PMC7378855 DOI: 10.1016/j.omto.2020.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Peritoneal metastasis is the most frequent form of distant metastasis and recurrence in gastric cancer, and the prognosis is extremely poor due to the resistance of systemic chemotherapy. Here, we demonstrate that intraperitoneal (i.p.) administration of a green fluorescence protein (GFP)-expressing attenuated adenovirus with oncolytic potency (OBP-401) synergistically suppressed the peritoneal metastasis of gastric cancer in combination with paclitaxel (PTX). OBP-401 synergistically suppressed the viability of human gastric cancer cells in combination with PTX. PTX enhanced the antitumor effect of OBP-401 due to enhanced viral replication in cancer cells. The combination therapy increased induction of mitotic catastrophe, resulting in accelerated autophagy and apoptosis. Peritoneally disseminated nodules were selectively visualized as GFP-positive spots by i.p. administration of OBP-401 in an orthotopic human gastric cancer peritoneal dissemination model. PTX enhanced the deep penetration of OBP-401 into the disseminated nodules. Moreover, a non-invasive in vivo imaging system demonstrated that the combination therapy of i.p. OBP-401 administration with PTX significantly inhibited growth of peritoneal metastatic tumors and the amount of malignant ascites. i.p. virotherapy with PTX may be a promising treatment strategy for the peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Wataru Ishikawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Corresponding author: Satoru Kikuchi, Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Toshihiro Ogawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Motoyasu Tabuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiko Nishizaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo 106-0032, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
12
|
Frick MA, Feigenberg SJ, Jean-Baptiste S, Aguarin L, Mendes A, Chinniah C, Swisher-McClure S, Berman AT, Levin WP, Cengel KA, Hahn SM, Dorsey JF, Simone CB, Kao GD. Circulating Tumor Cells Are Associated with Recurrent Disease in Patients with Early-Stage Non-Small Cell Lung Cancer Treated with Stereotactic Body Radiotherapy. Clin Cancer Res 2020; 26:2372-2380. [PMID: 31969332 PMCID: PMC9940939 DOI: 10.1158/1078-0432.ccr-19-2158] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/18/2019] [Accepted: 01/16/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Although stereotactic body radiotherapy (SBRT) is effective in early-stage non-small cell lung cancer (NSCLC), approximately 10%-15% of patients will fail regionally and 20%-25% distantly. We evaluate a novel circulating tumor cell (CTC) assay as a prognostic marker for increased risk of recurrence following SBRT. EXPERIMENTAL DESIGN Ninety-two subjects (median age, 71 years) with T1a (64%), T1b (23%), or T2a (13%) stage I NSCLC treated with SBRT were prospectively enrolled. CTCs were enumerated by utilizing a GFP-expressing adenoviral probe that detects elevated telomerase activity in cancer cells. Samples were obtained before, during, and serially up to 24 months after treatment. SBRT was delivered to a median dose of 50 Gy (range, 40-60 Gy), mostly commonly in four to five fractions (92%). RESULTS Thirty-eight of 92 subjects (41%) had a positive CTC test prior to SBRT. A cutoff of ≥5 CTCs/mL before treatment defined favorable (n = 78) and unfavorable (n = 14) prognostic groups. Increased risk of nodal (P = 0.04) and distant (P = 0.03) failure was observed in the unfavorable group. Within 3 months following SBRT, CTCs continued to be detected in 10 of 35 (29%) subjects. Persistent detection of CTCs was associated with increased risk of distant failure (P = 0.04) and trended toward increased regional (P = 0.08) and local failure (P = 0.16). CONCLUSIONS Higher pretreatment CTCs and persistence of CTCs posttreatment is significantly associated with increased risk of recurrence outside the targeted treatment site. This suggests that CTC analysis may potentially identify patients at higher risk for regional or distant recurrences and who may benefit from either systemic therapy and/or timely locoregional salvage treatment.
Collapse
Affiliation(s)
- Melissa A. Frick
- Department of Radiation Oncology, Stanford University School of Medicine; Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | | | | | - Louise Aguarin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Amberly Mendes
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Chimbu Chinniah
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Sam Swisher-McClure
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Abigail T. Berman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - William P. Levin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Stephen M. Hahn
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jay F. Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Charles B. Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - Gary D. Kao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Nagai M, Sho M, Akahori T, Nakagawa K, Nakamura K. Application of liquid biopsy for surgical management of pancreatic cancer. Ann Gastroenterol Surg 2020; 4:216-223. [PMID: 32490335 PMCID: PMC7240145 DOI: 10.1002/ags3.12317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/19/2019] [Accepted: 01/17/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest forms of cancer. Although drug development over the past decade has gradually improved the prognosis of PDAC, the prognosis remains extremely poor. The predominant determinant of a poor prognosis is that patients are already at the advanced stage when they are diagnosed. Therefore, it is essential to detect early-stage PDAC to ensure a good prognosis. However, in general, being asymptomatic at the early stage makes the detection of early-stage PDAC very difficult. Recently, much attention has been focused on the utility of a liquid biopsy as a biomarker. Theoretically, early-stage tumors can be detected even under asymptomatic conditions. A number of studies on liquid biopsies have been reported so far. Several biomarkers, including circulating tumor DNA (ctDNA), circulating tumor cells (CTCS), and exosomes, are used in liquid biopsies, with the potential to be applied to the clinical setting. Each biomarker is reported to have different utilities, such as the detection of early-stage disease, the differential diagnosis of PDAC from other types of pancreatic tumors, the prediction of the prognosis or risk of recurrence, and monitoring the treatment response. In this review, we focus on ctDNA, CTCS, and exosomes as representative liquid biopsy biomarkers and describe the specific functions of each biomarker in the treatment of PDAC. Furthermore, we discuss the application of liquid biopsies, especially for the surgical management of PDAC.
Collapse
Affiliation(s)
- Minako Nagai
- Department of Surgery Nara Medical University Kashihara Japan
| | - Masayuki Sho
- Department of Surgery Nara Medical University Kashihara Japan
| | | | - Kenji Nakagawa
- Department of Surgery Nara Medical University Kashihara Japan
| | - Kota Nakamura
- Department of Surgery Nara Medical University Kashihara Japan
| |
Collapse
|
14
|
Tazawa H, Hasei J, Yano S, Kagawa S, Ozaki T, Fujiwara T. Bone and Soft-Tissue Sarcoma: A New Target for Telomerase-Specific Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12020478. [PMID: 32085583 PMCID: PMC7072448 DOI: 10.3390/cancers12020478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/17/2022] Open
Abstract
Adenovirus serotype 5 (Ad5) is widely and frequently used as a virus vector in cancer gene therapy and oncolytic virotherapy. Oncolytic virotherapy is a novel antitumor treatment for inducing lytic cell death in tumor cells without affecting normal cells. Based on the Ad5 genome, we have generated three types of telomerase-specific replication-competent oncolytic adenoviruses: OBP-301 (Telomelysin), green fluorescent protein (GFP)-expressing OBP-401 (TelomeScan), and tumor suppressor p53-armed OBP-702. These viruses drive the expression of the adenoviral E1A and E1B genes under the control of the hTERT (human telomerase reverse transcriptase-encoding gene) promoter, providing tumor-specific virus replication. This review focuses on the therapeutic potential of three hTERT promoter-driven oncolytic adenoviruses against bone and soft-tissue sarcoma cells with telomerase activity. OBP-301 induces the antitumor effect in monotherapy or combination therapy with chemotherapeutic drugs via induction of autophagy and apoptosis. OBP-401 enables visualization of sarcoma cells within normal tissues by serving as a tumor-specific labeling reagent for fluorescence-guided surgery via induction of GFP expression. OBP-702 exhibits a profound antitumor effect in OBP-301-resistant sarcoma cells via activation of the p53 signaling pathway. Taken together, telomerase-specific oncolytic adenoviruses are promising antitumor reagents that are expected to provide novel therapeutic options for the treatment of bone and soft-tissue sarcomas.
Collapse
Affiliation(s)
- Hiroshi Tazawa
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
- Correspondence: ; Tel.: +81-86-235-7491; Fax: +81-86-235-7492
| | - Joe Hasei
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (J.H.); (T.O.)
| | - Shuya Yano
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (J.H.); (T.O.)
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (S.Y.); (S.K.); (T.F.)
| |
Collapse
|
15
|
Telomerase-specific attenuated viruses, a definitive strategy or just one more in circulating tumor cells detection anthology? Cancer Lett 2020; 469:490-497. [PMID: 31738959 DOI: 10.1016/j.canlet.2019.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 11/20/2022]
Abstract
The quantification and isolation of Circulating Tumor Cells (CTC) is being the battleground during last years. There are many groups that are investing economic resources in trying to solve this jigsaw. Technological platforms based on different proofs of concept have been developed achieving in some cases excellent results despite not having been able to detect the total compute of the patient's CTC population. The handicap of this matter has been the lack of universal markers. Several years have gone so that in detection of CTC is take into account a basic characteristic that possesses the most of tumor cells, the loss of inactivation of the enzyme telomerase. Gene therapy has been combined with telomerase activity concept for develop a molecular tool that makes it possible to identify CTC: Telomerase-specific replication-selective viruses. This review includes for the first time all the scientific studies that have been published to date with this advanced technology. Furthermore, it describes the role in the diagnosis and prognosis that Telomerase-specific attenuated viruses have been playing in cancer patients study during this last decade.
Collapse
|
16
|
Sakamoto S, Kagawa S, Kuwada K, Ito A, Kajioka H, Kakiuchi Y, Watanabe M, Kagawa T, Yoshida R, Kikuchi S, Kuroda S, Tazawa H, Fujiwara T. Intraperitoneal cancer-immune microenvironment promotes peritoneal dissemination of gastric cancer. Oncoimmunology 2019; 8:e1671760. [PMID: 31741772 PMCID: PMC6844331 DOI: 10.1080/2162402x.2019.1671760] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
A solid tumor consists of cancer and stromal cells, which comprise the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are usually abundant in the TME, contributing to tumor progression. In cases of peritoneal dissemination of gastric cancer (GC), the contribution of intraperitoneal TAMs remains unclear. Macrophages from peritoneal washings of GC patients were analyzed, and the link between intraperitoneal TAMs and GC cells was investigated to clarify the interaction between them in peritoneal dissemination. Macrophages were predominant among leukocytes constituting the microenvironment of the peritoneal cavity. The proportion of CD163-positive TAMs was significantly higher in stage IV than in stage I GC. Co-culture with TAMs potentiated migration and invasion of GC. IL-6 was the most increased in the medium of in vitro co-culture of macrophages and GC, and IL-6 elevation was also observed in the peritoneal washes with peritoneal dissemination. An elevated concentration of intraperitoneal IL-6 was correlated with a poor prognosis in clinical cases. In conclusion, intraperitoneal TAMs are involved in promoting peritoneal dissemination of GC via secreted IL-6. TAM-derived IL-6 could be a potential therapeutic target for peritoneal dissemination of GC.
Collapse
Affiliation(s)
- Shuichi Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Kazuya Kuwada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atene Ito
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Kajioka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Megumi Watanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
17
|
Gallo M, De Luca A, Frezzetti D, Passaro V, Maiello MR, Normanno N. The potential of monitoring treatment response in non-small cell lung cancer using circulating tumour cells. Expert Rev Mol Diagn 2019; 19:683-694. [PMID: 31305173 DOI: 10.1080/14737159.2019.1640606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Circulating tumor cell (CTC) counts represent an attractive strategy for monitoring response to therapy in patients with advanced non-small cell lung cancer (NSCLC). Changes in the CTCs number during the treatment have been proposed as a predictive biomarker of response to both chemotherapy and targeted therapies. Profiling of CTCs might also allow the assessment of the dynamics of predictive biomarkers such as EGFR, ALK, ROS1, and PD-L1, and provide relevant information in patients progressing on treatment with targeted agents including immunotherapeutics. Areas covered: A search of peer-reviewed literature in bibliographic databases was undertaken to discuss studies on CTCs and their predictive role in NSCLC. Expert opinion: To date, some challenges limit the clinical utility of CTCs in monitoring the response to treatment in NSCLC. The standardization of techniques for CTCs isolation and characterization and their validation on larger cohorts of patients might help to translate CTCs analysis in the clinic. However, studies on CTCs can provide information on molecular mechanisms involved in NSCLC progression and in the acquired resistance to treatments.
Collapse
Affiliation(s)
- Marianna Gallo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale" , Naples , Italy
| | - Antonella De Luca
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale" , Naples , Italy
| | - Daniela Frezzetti
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale" , Naples , Italy
| | - Valeria Passaro
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale" , Naples , Italy
| | - Monica R Maiello
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale" , Naples , Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-"Fondazione G. Pascale" , Naples , Italy
| |
Collapse
|
18
|
Kuwada K, Kagawa S, Yoshida R, Sakamoto S, Ito A, Watanabe M, Ieda T, Kuroda S, Kikuchi S, Tazawa H, Fujiwara T. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:307. [PMID: 30537992 PMCID: PMC6288926 DOI: 10.1186/s13046-018-0981-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/26/2018] [Indexed: 12/21/2022]
Abstract
Background The peritoneum is one of the most frequent metastatic sites in pancreatic cancer patients, and peritoneal dissemination makes this disease refractory due to aggressive progression and chemoresistance. Although the role of the tumor microenvironment in cancer development is recognized, the correlation between the peritoneal environment and refractoriness of peritoneal dissemination remains unclear. The intraperitoneal tumor-microenvironment and its potential role in the progression of peritoneal dissemination and chemo-refractoriness, focusing especially on macrophages, were investigated. Materials and methods Peritoneal washes were obtained from pancreatic cancer patients, and cellular components were subjected to immunofluorescence assays. The effects of macrophages induced from monocytic THP-1 cells on pancreatic cancer cells were examined in co-culture conditions. The in vivo effects of macrophages on tumor growth and chemo-sensitivity were investigated by subcutaneously or intraperitoneally co-injecting cancer cells with macrophages into mice. Results CD204-positive macrophages were present along with cancer cells in the peritoneal washes. In in vitro co-culture, tumor-associated macrophages affected pancreatic cancer cells, induced the epithelial-to-mesenchymal transition (EMT), and made them more resistant to chemotherapeutic agents. M2 macrophages promoted growth of both subcutaneous tumors and peritoneal dissemination in mice. Furthermore, co-inoculation of M2 macrophages conferred chemoresistance in the peritoneal dissemination mouse model, which significantly shortened their survival. Conclusion Intraperitoneal tumor-associated macrophages potentially play an important role in promotion of peritoneal dissemination and chemoresistance of pancreatic cancer via EMT induction. Electronic supplementary material The online version of this article (10.1186/s13046-018-0981-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kazuya Kuwada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan. .,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan.
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shuichi Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Atene Ito
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Megumi Watanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Takeshi Ieda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
19
|
Liu T, Xu H, Huang M, Ma W, Saxena D, Lustig RA, Alonso-Basanta M, Zhang Z, O'Rourke DM, Zhang L, Gong Y, Kao GD, Dorsey JF, Fan Y. Circulating Glioma Cells Exhibit Stem Cell-like Properties. Cancer Res 2018; 78:6632-6642. [PMID: 30322863 DOI: 10.1158/0008-5472.can-18-0650] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/29/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023]
Abstract
: Circulating tumor cells (CTC) are known to be present in the blood of patients with glioblastoma (GBM). Here we report that GBM-derived CTC possess a cancer stem cell (CSC)-like phenotype and contribute to local tumorigenesis and recurrence by the process of self-seeding. Genetic probes showed that mouse GBM-derived CTC exhibited Sox2/ETn transcriptional activation and expressed glioma CSC markers, consistent with robust expression of stemness-associated genes including SOX2, OCT4, and NANOG in human GBM patient-derived samples containing CTC. A transgenic mouse model demonstrated that CTC returned to the primary tumor and generated new tumors with enhanced tumorigenic capacity. These CTCs were resistant to radiotherapy and chemotherapy and to circulation stress-induced cell apoptosis. Single-cell RNA-seq analysis revealed that Wnt activation induced stemness and chemoresistance in CTC. Collectively, these findings identify GBM-derived CTC as CSC-like cells and suggest that targeting Wnt may offer therapeutic opportunities for eliminating these treatment-refractory cells in GBM. SIGNIFICANCE: These findings identify CTCs as an alternative source for in situ tumor invasion and recurrence through local micrometastasis, warranting eradication of systemic "out-of-tumor" CTCs as a promising new therapeutic opportunity for GBM.
Collapse
Affiliation(s)
- Tianrun Liu
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Division of Head and Neck Surgery, Department of Otorhinolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haineng Xu
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Menggui Huang
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Wenjuan Ma
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.,Department of Medical Oncology, State Key Laboratory of Oncology in South China & Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Deeksha Saxena
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert A Lustig
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Michelle Alonso-Basanta
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Zhenfeng Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yanqing Gong
- Division of Human Genetics and Translational Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gary D Kao
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania. .,Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Watanabe M, Kagawa S, Kuwada K, Hashimoto Y, Shigeyasu K, Ishida M, Sakamoto S, Ito A, Kikuchi S, Kuroda S, Kishimoto H, Tomida S, Yoshida R, Tazawa H, Urata Y, Fujiwara T. Integrated fluorescent cytology with nano-biologics in peritoneally disseminated gastric cancer. Cancer Sci 2018; 109:3263-3271. [PMID: 30076658 PMCID: PMC6172043 DOI: 10.1111/cas.13760] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer patients positive for peritoneal cytology are at increased risk of tumor recurrence, but although a certain proportion of cytology‐positive patients relapse rapidly with aggressive progression, others survive longer with conventional chemotherapies. This heterogeneity makes it difficult to stratify patients for more intensive therapy and poses a substantial challenge for the implementation of precision medicine. We developed a new approach to identify biologically malignant subpopulations in cytology‐positive gastric cancer patients, using a green fluorescent protein (GFP)‐expressing attenuated adenovirus in which the telomerase promoter regulates viral replication (TelomeScan, OBP‐401). The fluorescence emitted from TelomeScan‐positive cells was successfully quantified using a multi‐mode microplate reader. We then analyzed clinical peritoneal washes obtained from 68 gastric cancer patients and found that patients positive for TelomeScan had a significantly worse prognosis. In 21 cytology‐positive patients, the median survival time of those who were TelomeScan positive (235 days) was significantly shorter than that for those who were TelomeScan negative (671 days; P = 0.0062). This fluorescent virus‐guided cytology detects biologically malignant cancer cells from the peritoneal washes of gastric cancer patients and may thus be useful for both therapy stratification and precision medicine approaches based on genetic profiling of disseminated cells.
Collapse
Affiliation(s)
- Megumi Watanabe
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Kuwada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuuri Hashimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Michihiro Ishida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuichi Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Atene Ito
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Translational Research Network Project, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Circulating Tumor Cell Assessment in Presumed Early Stage Non-Small Cell Lung Cancer Patients Treated with Stereotactic Body Radiation Therapy: A Prospective Pilot Study. Int J Radiat Oncol Biol Phys 2018; 102:536-542. [PMID: 30244877 DOI: 10.1016/j.ijrobp.2018.06.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE In patients treated with stereotactic body radiation therapy (SBRT) for presumed early stage non-small cell lung cancer (NSCLC), detection and monitoring of circulating tumor cells (CTCs) may be useful for assessing treatment response safely and noninvasively. No published reports of CTC trends in this patient population exist to date. METHODS AND MATERIALS Patients with clinically diagnosed stage I NSCLC treated with SBRT were eligible for this institutional review board-approved prospective clinical trial. Peripheral blood samples were assayed for CTCs via a green fluorescent protein-expressing adenoviral probe. CTC positivity was defined as 1.3 green fluorescent protein-positive cells/mL of collected blood. Samples were obtained before (pre-radiation therapy [RT]), during, and after SBRT (post-RT; months 1, 3, 6, 12, 18, and 24). SBRT was delivered in ≤5 fractions (median dose of 50 Gy in 12.5 Gy fractions) to a biological equivalent dose of ≥100 Gy in all cases. RESULTS Forty-eight consecutive patients (T1a [73%], T1b [21%], and T2a [6%]) were enrolled. Median follow-up was 14.2 months. Twenty patients (42%) had a positive CTC level pre-RT, with a median CTC count of 4.2 CTCs per mL (interquartile range [IQR], 2.2-18.7). Of these 20 patients, 17 had evaluable post-RT CTC evaluations showing reduced CTC counts at 1 month (median, 0.2; IQR, 0.1-0.8) and 3 months (median, 0.6; IQR, 0-1.1). Three of these 17 patients experienced disease progression at a median of 19.9 months; all 3 experienced ≥1 positive post-RT CTC test predating clinical progression by a median of 16 months (range, 2-17 months). In contrast, among patients presenting with CTC-detectable disease and for whom all post-RT CTC tests were negative, none experienced recurrence or progression. CONCLUSIONS CTC monitoring after SBRT for presumed early stage NSCLC may give lead-time notice of disease recurrence or progression. Conversely, negative CTC counts after treatment may provide reassurance of disease control. CTC analysis is thus potentially useful in enhancing clinical diagnosis and follow-up in this population.
Collapse
|
22
|
Nevel KS, Wilcox JA, Robell LJ, Umemura Y. The Utility of Liquid Biopsy in Central Nervous System Malignancies. Curr Oncol Rep 2018; 20:60. [PMID: 29876874 DOI: 10.1007/s11912-018-0706-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Liquid biopsy is a sampling of tumor cells or tumor nucleotides from biofluids. This review explores the roles of liquid biopsy for evaluation and management of patients with primary and metastatic CNS malignancies. RECENT FINDINGS Circulating tumor cell (CTC) detection has emerged as a relatively sensitive and specific tool for diagnosing leptomeningeal metastases. Circulating tumor DNA (ctDNA) detection can effectively demonstrate genetic markup of CNS tumors in the cerebrospinal fluid, though its role in managing CNS malignancies is less well-defined. The value of micro RNA (miRNA) detection in CNS malignancies is unclear at this time. Current standard clinical tools for the diagnosis and monitoring of CNS malignancies have limitations, and liquid biopsy may help address clinical practice and knowledge gaps. Liquid biopsy offers exciting potential for the diagnosis, prognosis, and treatment of CNS malignancies, but each modality needs to be studied in large prospective trials to better define their use.
Collapse
Affiliation(s)
- Kathryn S Nevel
- Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jessica A Wilcox
- Department of Neurology, NewYork-Presbyterian Hospital, Weill Cornell Medical Center, 520 E 70th St, Starr Pavilion 607, New York, NY, 10021, USA
| | - Lindsay J Robell
- Department of Neurology, University of Michigan, 1914 Taubman Center, 1500 E. Medical Center Dr., SPC 5316, Ann Arbor, MI, 48109-5316, USA
| | - Yoshie Umemura
- Department of Neurology, University of Michigan, 1914 Taubman Center, 1500 E. Medical Center Dr., SPC 5316, Ann Arbor, MI, 48109-5316, USA.
| |
Collapse
|
23
|
Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, Asghar W. Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 2018; 36:1063-1078. [PMID: 29559380 DOI: 10.1016/j.biotechadv.2018.03.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Circulating tumor cells (CTCs) are a major contributor of cancer metastases and hold a promising prognostic significance in cancer detection. Performing functional and molecular characterization of CTCs provides an in-depth knowledge about this lethal disease. Researchers are making efforts to design devices and develop assays for enumeration of CTCs with a high capture and detection efficiency from whole blood of cancer patients. The existing and on-going research on CTC isolation methods has revealed cell characteristics which are helpful in cancer monitoring and designing of targeted cancer treatments. In this review paper, a brief summary of existing CTC isolation methods is presented. We also discuss methods of detaching CTC from functionalized surfaces (functional assays/devices) and their further use for ex-vivo culturing that aid in studies regarding molecular properties that encourage metastatic seeding. In the clinical applications section, we discuss a number of cases that CTCs can play a key role for monitoring metastases, drug treatment response, and heterogeneity profiling regarding biomarkers and gene expression studies that bring treatment design further towards personalized medicine.
Collapse
Affiliation(s)
- Sandhya Sharma
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Rachel Zhuang
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Marisa Long
- Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA
| | - Mirjana Pavlovic
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yunqing Kang
- Department of Ocean & Mechanical Engineering, College of Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Azhar Ilyas
- Department of Electrical & Computer Engineering, New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Waseem Asghar
- Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431, USA; Asghar-Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, FL 33431, USA; Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
24
|
Sensitive detection of viable circulating tumor cells using a novel conditionally telomerase-selective replicating adenovirus in non-small cell lung cancer patients. Oncotarget 2018; 8:34884-34895. [PMID: 28432274 PMCID: PMC5471019 DOI: 10.18632/oncotarget.16818] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Circulating tumor cells (CTCs) have a crucial role in the clinical outcome of cancer patients. Detection of non-small cell lung cancer (NSCLC) using an antibody against epithelial cell adhesion molecule (EpCAM) in captured CTCs has low sensitivity; the loss of epithelial markers leads to underestimation of CTCs with mesenchymal phenotype. We propose a new approach for detection of viable CTCs, including those with epithelial-mesenchymal transition status (EMT-CTCs), using the new telomerase-specific replication-selective adenovirus (OBP-1101), TelomeScan F35. Peripheral venous blood samples and clinicopathological data were collected from 123 NSCLC patients. The sensitivity of CTC detection was 69.1%, and for patients with stage I, II, III and IV, it was 59.6%, 40.0%, 85.7%, and 75.0%, respectively. Among the EMT-CTC samples, 46% were vimentin positive and 39.0% of non-EMT-CTC samples were EpCAM positive. Patients testing positive for EMT-CTCs at baseline had poor response to chemotherapy (P = 0.025) and decreased progression-free survival (EMT-CTC positive vs. negative: 193 ± 47 days vs. 388 ± 47. days, P = 0.040) in comparison to those testing negative. TelomeScan F35 is a highly sensitive CTC detection system and will be a useful screening tool for early diagnosis of NSCLC patients. Mesenchymal-phenotype CTCs are crucial indicators of chemotherapeutic efficacy in NSCLC patients.
Collapse
|
25
|
Takakura M, Matsumoto T, Nakamura M, Mizumoto Y, Myojyo S, Yamazaki R, Iwadare J, Bono Y, Orisaka S, Obata T, Iizuka T, Kagami K, Nakayama K, Hayakawa H, Sakurai F, Mizuguchi H, Urata Y, Fujiwara T, Kyo S, Sasagawa T, Fujiwara H. Detection of circulating tumor cells in cervical cancer using a conditionally replicative adenovirus targeting telomerase-positive cells. Cancer Sci 2017; 109:231-240. [PMID: 29151279 PMCID: PMC5765291 DOI: 10.1111/cas.13449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022] Open
Abstract
Circulating tumor cells (CTC) are newly discovered biomarkers of cancers. Although many systems detect CTC, a gold standard has not yet been established. We analyzed CTC in uterine cervical cancer patients using an advanced version of conditionally replicative adenovirus targeting telomerase-positive cells, which was enabled to infect coxsackievirus-adenovirus receptor-negative cells and to reduce false-positive signals in myeloid cells. Blood samples from cervical cancer patients were hemolyzed and infected with the virus and then labeled with fluorescent anti-CD45 and anti-pan cytokeratin antibodies. GFP (+)/CD45 (-) cells were isolated and subjected to whole-genome amplification followed by polymerase chain reaction analysis of human papillomavirus (HPV) DNA. CTC were detected in 6 of 23 patients with cervical cancers (26.0%). Expression of CTC did not correlate with the stage of cancer or other clinicopathological factors. In 5 of the 6 CTC-positive cases, the same subtype of HPV DNA as that of the corresponding primary lesion was detected, indicating that the CTC originated from HPV-infected cancer cells. These CTC were all negative for cytokeratins. The CTC detected by our system were genetically confirmed. CTC derived from uterine cervical cancers had lost epithelial characteristics, indicating that epithelial marker-dependent systems do not have the capacity to detect these cells in cervical cancer patients.
Collapse
Affiliation(s)
- Masahiro Takakura
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Takeo Matsumoto
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Mitsuhiro Nakamura
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yasunari Mizumoto
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Subaru Myojyo
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Rena Yamazaki
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Jyunpei Iwadare
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Yukiko Bono
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shunsuke Orisaka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takeshi Obata
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Shimane University Graduate School of Medicine, Izumo, Japan
| | | | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University Graduate School of Medicine, Izumo, Japan
| | - Toshiyuki Sasagawa
- Department of Obstetrics and Gynecology, Kanazawa Medical University, Uchinada, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| |
Collapse
|
26
|
Yamashita S, Tanemura M, Sawada G, Moon J, Shimizu Y, Yamaguchi T, Kuwai T, Urata Y, Kuraoka K, Hatanaka N, Yamashita Y, Taniyama K. Impact of endoscopic stent insertion on detection of viable circulating tumor cells from obstructive colorectal cancer. Oncol Lett 2017; 15:400-406. [PMID: 29391884 DOI: 10.3892/ol.2017.7339] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/17/2017] [Indexed: 12/11/2022] Open
Abstract
The placement of a self-expanding metallic stent (SEMS) in obstructive colorectal cancer (OCRC) is acknowledged to be a safe and effective procedure for the relief of obstruction. However, there is concern that shear forces acting on the tumor during stent expansion may release cancer cells into the circulation, resulting in a poor prognosis. The aim of the present study was to determine whether colonic stent insertion increases viable circulating tumor cells (v-CTCs). A telomerase-specific replication-selective adenovirus-expressing GFP (TelomeScanF35) detection system was used to detect v-CTCs in 8 OCRC patients with a SEMS before and after stent insertion and after surgical resection. In 7 patients, a SEMS was inserted as a bridge to surgery (BTS), and in one patient, a SEMS was inserted for palliation. Surgical resection (R0) was performed in 7 patients. Four patients had no v-CTCs before SEMS placement, two of four measurable patients had an increased number of v-CTCs after SEMS placement (1-3 v-CTCs), and one of two patients with increased v-CTCs developed distant lymphatic metastasis despite curative resection. Four patients had v-CTCs (1-19 cells) before SEMS placement, and two of these four patients had an increase in the number of v-CTCs (20-21 cells) after SEMS placement, while one of the four patients died early with distant metastasis. The present study demonstrated that endoscopic stent insertion for OCRC may result in tumor cell dissemination into the peripheral circulation and may induce distant metastases.
Collapse
Affiliation(s)
| | - Masahiro Tanemura
- Department of Gastroenterological Surgery, Osaka Police Hospital, Osaka 543-0035, Japan
| | - Genta Sawada
- Department of Surgery, Sakai Medical Center, Osaka 593-8304, Japan
| | - Jeongho Moon
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka 537-8511, Japan
| | - Yosuke Shimizu
- Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima 737-0023, Japan
| | - Toshiki Yamaguchi
- Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima 737-0023, Japan
| | - Toshio Kuwai
- Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima 737-0023, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo 106-0032, Japan
| | - Kazuya Kuraoka
- Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima 737-0023, Japan
| | - Nobutaka Hatanaka
- Department of Surgery, Japan Community Health Care Organization Osaka Hospital, Osaka 553-0003, Japan
| | - Yoshinori Yamashita
- Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima 737-0023, Japan
| | - Kiyomi Taniyama
- Institute for Clinical Research, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima 737-0023, Japan
| |
Collapse
|
27
|
Sakaguchi M, Sadahira T, Ueki H, Kinoshita R, Murata H, Yamamoto KI, Futami J, Nasu Y, Ochiai K, Kumon H, Huh NH, Watanabe M. Robust cancer-specific gene expression by a novel cassette with hTERT and CMV promoter elements. Oncol Rep 2017. [PMID: 28627633 DOI: 10.3892/or.2017.5710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We developed and validated a novel hTERT/CMV promoter element-driven gene expression cassette that can robustly enhance cancer-specific gene expression. The following gene expressional elements were located in tandem within the plasmid construct: [hTERT core promoter, cytomegalovirus (CMV) minimized promoter, RU5' sequence, an inserted gene, BGH polyA, hTERT enhancer]; this is hereafter referred to as the hT/Cm-R-hT construct. Using various human cancer cell lines and normal cells, the cancer-specific transcription of the green fluorescent protein (GFP) gene was examined by western blotting and fluorescence microscopy. Cancer-specific gene expression was robustly achieved in the hT/Cm-R-hT plasmid in comparison to the other control hT/Cm-driven construct. Notably, the expression level of GFP observed in the hT/Cm-R-hT-driven construct was superior to that of the control plasmid with the conventional CMV promoter in HEK293 cells, which are known to possess higher hTERT activity than normal cells. We next examined the availability of hT/Cm-R-hT in detecting the target GFP expressing cancer cells from human peripheral blood mononuclear cells (PBMCs). The hT/Cm-R-hT plasmid successfully induced cancer-specific gene expression; the robust expression of GFP was observed in target HeLa cancer cells, whereas GFP was not visibly expressed in normal PBMCs. The plasmid allowed for the selective visualization of viable HeLa cancer cells in mixed cell cultures containing up to 10000-fold more PBMCs. These findings indicate that the hT/Cm-R-hT expressional system is a valuable tool for detecting viable cancer cells mixed with normal cells. The current system can therefore be applied to the in vitro detection of cancer cells that are disseminated in the blood and other types of body fluid in vivo. Since the current system can also be applied to other types of vectors, including virus vectors, this approach using the hTERT promoter-based construct is expected to become a valuable tool for enhancing cancer-specific gene expression.
Collapse
Affiliation(s)
| | - Takuya Sadahira
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Hideo Ueki
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University, Okayama 700-8558, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University, Okayama 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University, Okayama 700-8558, Japan
| | - Junichiro Futami
- Department of Medical and Bioengineering Science, Okayama University, Okayama 700-8558, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| | - Kazuhiko Ochiai
- Department of Veterinary Nursing and Technology, School of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Hiromi Kumon
- Innovation Center Okayama for Nanobio-targeted Therapy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nam-Ho Huh
- Department of Cell Biology, Okayama University, Okayama 700-8558, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
28
|
Technical Insights into Highly Sensitive Isolation and Molecular Characterization of Fixed and Live Circulating Tumor Cells for Early Detection of Tumor Invasion. PLoS One 2017; 12:e0169427. [PMID: 28060956 PMCID: PMC5218415 DOI: 10.1371/journal.pone.0169427] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/16/2016] [Indexed: 12/26/2022] Open
Abstract
Circulating Tumor Cells (CTC) and Circulating Tumor Microemboli (CTM) are Circulating Rare Cells (CRC) which herald tumor invasion and are expected to provide an opportunity to improve the management of cancer patients. An unsolved technical issue in the CTC field is how to obtain highly sensitive and unbiased collection of these fragile and heterogeneous cells, in both live and fixed form, for their molecular study when they are extremely rare, particularly at the beginning of the invasion process. We report on a new protocol to enrich from blood live CTC using ISET® (Isolation by SizE of Tumor/Trophoblastic Cells), an open system originally developed for marker-independent isolation of fixed tumor cells. We have assessed the impact of our new enrichment method on live tumor cells antigen expression, cytoskeleton structure, cell viability and ability to expand in culture. We have also explored the ISET®in vitro performance to collect intact fixed and live cancer cells by using spiking analyses with extremely low number of fluorescent cultured cells. We describe results consistently showing the feasibility of isolating fixed and live tumor cells with a Lower Limit of Detection (LLOD) of one cancer cell per 10 mL of blood and a sensitivity at LLOD ranging from 83 to 100%. This very high sensitivity threshold can be maintained when plasma is collected before tumor cells isolation. Finally, we have performed a comparative next generation sequencing (NGS) analysis of tumor cells before and after isolation from blood and culture. We established the feasibility of NGS analysis of single live and fixed tumor cells enriched from blood by our system. This study provides new protocols for detection and characterization of CTC collected from blood at the very early steps of tumor invasion.
Collapse
|
29
|
Machitani M, Sakurai F, Wakabayashi K, Tachibana M, Fujiwara T, Mizuguchi H. Enhanced Oncolytic Activities of the Telomerase-Specific Replication-Competent Adenovirus Expressing Short-Hairpin RNA against Dicer. Mol Cancer Ther 2016; 16:251-259. [PMID: 27760834 DOI: 10.1158/1535-7163.mct-16-0383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/21/2016] [Accepted: 10/13/2016] [Indexed: 11/16/2022]
Abstract
Oncolytic viruses have been receiving much attention as potential agents for cancer treatment. Among the various types of oncolytic viruses, the telomerase-specific replication-competent adenovirus (TRAD), which carries the tumor-specific promoter-driven E1 gene expression cassette, exhibits efficient antitumor effects. The development of a novel TRAD that shows higher replication efficiency and antitumor activity would be highly beneficial for safer and more efficient cancer therapy. We recently demonstrated that the endoribonuclease Dicer significantly inhibits the replication of wild-type adenovirus (Ad) via the processing of viral-associated (VA)-RNAs, which are Ad-encoded small noncoding RNAs, and that the knockdown of Dicer leads to enhanced VA-RNA expression and Ad replication after infection with wild-type Ad. Based on these findings, we herein developed a novel TRAD expressing short-hairpin RNA against Dicer (shDicer; TRAD-shDicer). After infection, TRAD-shDicer efficiently induced the knockdown of Dicer. TRAD-shDicer showed significantly higher replication efficiency and tumor cell lysis activity compared with the conventional TRAD in tumor cells. The Dicer expression levels and viabilities of normal cells were not altered by infection with TRAD-shDicer. These results indicate that TRAD-shDicer is a potent antitumor reagent by virtue of its enhanced oncolytic activity. Mol Cancer Ther; 16(1); 251-9. ©2016 AACR.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan. .,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Keisaku Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan. .,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.,Global Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan.,Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
30
|
Oka T, Kurozumi K, Shimazu Y, Ichikawa T, Ishida J, Otani Y, Shimizu T, Tomita Y, Sakaguchi M, Watanabe M, Nasu Y, Kumon H, Date I. A super gene expression system enhances the anti-glioma effects of adenovirus-mediated REIC/Dkk-3 gene therapy. Sci Rep 2016; 6:33319. [PMID: 27625116 PMCID: PMC5022040 DOI: 10.1038/srep33319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/24/2016] [Indexed: 12/26/2022] Open
Abstract
Reduced expression in immortalized cells/Dickkopf-3 (REIC/Dkk-3) is a tumor suppressor and therapeutic gene in many human cancers. Recently, an adenovirus REIC vector with the super gene expression system (Ad-SGE-REIC) was developed to increase REIC/Dkk-3 expression and enhance therapeutic effects compared with the conventional adenoviral vector (Ad-CAG-REIC). In this study, we investigated the in vitro and in vivo effects of Ad-SGE-REIC on malignant glioma. In U87ΔEGFR and GL261 glioma cells, western blotting confirmed that robust upregulation of REIC/Dkk-3 expression occurred in Ad-SGE-REIC-transduced cells, most notably after transduction at a multiplicity of infection of 10. Cytotoxicity assays showed that Ad-SGE-REIC resulted in a time-dependent and significant reduction in the number of malignant glioma cells attaching to the bottom of culture wells. Xenograft and syngeneic mouse intracranial glioma models treated with Ad-SGE-REIC had significantly longer survival than those treated with the control vector Ad-LacZ or with Ad-CAG-REIC. This study demonstrated the anti-glioma effect of Ad-SGE-REIC, which may represent a promising strategy for the treatment of malignant glioma.
Collapse
Affiliation(s)
- Tetsuo Oka
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Kurozumi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yosuke Shimazu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomotsugu Ichikawa
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Joji Ishida
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshihiko Shimizu
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Tomita
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masami Watanabe
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromi Kumon
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
31
|
Tumor-selective replication herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells. Oncotarget 2016; 7:39768-39783. [PMID: 27206795 PMCID: PMC5129969 DOI: 10.18632/oncotarget.9465] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/24/2016] [Indexed: 02/05/2023] Open
Abstract
Detection of circulating tumor cells remains a significant challenge due to their vast physical and biological heterogeneity. We developed a cell-surface-marker-independent technology based on telomerase-specific, replication-selective oncolytic herpes-simplex-virus-1 that targets telomerase-reverse-transcriptase-positive cancer cells and expresses green-fluorescent-protein that identifies viable CTCs from a broad spectrum of malignancies. Our method recovered 75.5–87.2% of tumor cells spiked into healthy donor blood, as validated by different methods, including single cell sequencing. CTCs were detected in 59–100% of 326 blood samples from patients with 6 different solid organ carcinomas and lymphomas. Significantly, CTC-positive rates increased remarkably with tumor progression from N0M0, N+M0 to M1 in each of 5 tested cancers (lung, colon, liver, gastric and pancreatic cancer, and glioma). Among 21 non-small cell lung cancer cases in which CTC values were consecutively monitored, 81% showed treatment-related decreases, which was also found after treatments in the other solid tumors. Moreover, monitoring CTC values provided an efficient treatment response indicator in hematological malignancies. Compared to CellSearch, our method detected significantly higher positive rates in 40 NSCLC in all stages, including N0M0, N+M0 and M1, and was less affected by chemotherapy. This simple, robust and clinically-applicable technology detects viable CTCs from solid and hematopoietic malignancies in early to late stages, and significantly improves clinical detection and treatment prognostication.
Collapse
|
32
|
Forte VA, Barrak DK, Elhodaky M, Tung L, Snow A, Lang JE. The potential for liquid biopsies in the precision medical treatment of breast cancer. Cancer Biol Med 2016; 13:19-40. [PMID: 27144060 PMCID: PMC4850125 DOI: 10.28092/j.issn.2095-3941.2016.0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Currently the clinical management of breast cancer relies on relatively few prognostic/predictive clinical markers (estrogen receptor, progesterone receptor, HER2), based on primary tumor biology. Circulating biomarkers, such as circulating tumor DNA (ctDNA) or circulating tumor cells (CTCs) may enhance our treatment options by focusing on the very cells that are the direct precursors of distant metastatic disease, and probably inherently different than the primary tumor's biology. To shift the current clinical paradigm, assessing tumor biology in real time by molecularly profiling CTCs or ctDNA may serve to discover therapeutic targets, detect minimal residual disease and predict response to treatment. This review serves to elucidate the detection, characterization, and clinical application of CTCs and ctDNA with the goal of precision treatment of breast cancer.
Collapse
Affiliation(s)
- Victoria A Forte
- Department of Medicine, Division of Medical Oncology, University of Southern California (USC), Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Dany K Barrak
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| | - Mostafa Elhodaky
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Stem Cell and Regenerative Medicine, USC, Los Angeles, CA 90033, USA
| | - Lily Tung
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| | - Anson Snow
- Department of Medicine, Division of Medical Oncology, University of Southern California (USC), Los Angeles, CA 90033, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Julie E Lang
- USC Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA; Department of Surgery, Division of Breast, Endocrine and Soft Tissue Surgery, USC, Los Angeles, CA 90033, USA
| |
Collapse
|
33
|
Abstract
Isolation and analysis of cancer cells from body fluids have significant implications in diagnosis and therapeutic treatment of cancers. Circulating tumor cells (CTCs) are cancer cells circulating in the peripheral blood or spreading iatrogenically into blood vessels, which is an early step in the cascade of events leading to cancer metastasis. Therefore, CTCs can be used for diagnosing for therapeutic treatment, prognosing a given anticancer intervention, and estimating the risk of metastatic relapse. However, isolation of CTCs is a significant technological challenge due to their rarity and low recovery rate using traditional purification techniques. Recently microfluidic devices represent a promising platform for isolating cancer cells with high efficiency in processing complex cellular fluids, with simplicity, sensitivity, and throughput. This review summarizes recent methods of CTC isolation and analysis, as well as their applications in clinical studies.
Collapse
Affiliation(s)
- J Zhang
- University of Florida, Gainesville, FL, United States
| | - K Chen
- University of Florida, Gainesville, FL, United States
| | - Z H Fan
- University of Florida, Gainesville, FL, United States.
| |
Collapse
|
34
|
Sakurai F, Narii N, Tomita K, Togo S, Takahashi K, Machitani M, Tachibana M, Ouchi M, Katagiri N, Urata Y, Fujiwara T, Mizuguchi H. Efficient detection of human circulating tumor cells without significant production of false-positive cells by a novel conditionally replicating adenovirus. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16001. [PMID: 26966699 PMCID: PMC4774621 DOI: 10.1038/mtm.2016.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Circulating tumor cells (CTCs) are promising biomarkers in several cancers, and thus methods and apparatuses for their detection and quantification in the blood have been actively pursued. A novel CTC detection system using a green fluorescence protein (GFP)-expressing conditionally replicating adenovirus (Ad) (rAd-GFP) was recently developed; however, there is concern about the production of false-positive cells (GFP-positive normal blood cells) when using rAd-GFP, particularly at high titers. In addition, CTCs lacking or expressing low levels of coxsackievirus-adenovirus receptor (CAR) cannot be detected by rAd-GFP, because rAd-GFP is constructed based on Ad serotype 5, which recognizes CAR. In order to suppress the production of false-positive cells, sequences perfectly complementary to blood cell-specific microRNA, miR-142-3p, were incorporated into the 3'-untranslated region of the E1B and GFP genes. In addition, the fiber protein was replaced with that of Ad serotype 35, which recognizes human CD46, creating rAdF35-142T-GFP. rAdF35-142T-GFP efficiently labeled not only CAR-positive tumor cells but also CAR-negative tumor cells with GFP. The numbers of false-positive cells were dramatically lower for rAdF35-142T-GFP than for rAd-GFP. CTCs in the blood of cancer patients were detected by rAdF35-142T-GFP with a large reduction in false-positive cells.
Collapse
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobuhiro Narii
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Kyoko Tomita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine , Tokyo, Japan
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine , Tokyo, Japan
| | - Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University , Osaka, Japan
| | | | | | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan; Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation, Osaka, Japan; iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
35
|
Choi JW, Kim JK, Yang YJ, Kim P, Yoon KH, Yun SH. Urokinase exerts antimetastatic effects by dissociating clusters of circulating tumor cells. Cancer Res 2016; 75:4474-82. [PMID: 26527605 DOI: 10.1158/0008-5472.can-15-0684] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clusters of circulating tumor cells (CTC) exhibit more robust metastatic properties than single CTC. Thus, understanding the distinct behaviors of CTC clusters and how CTC clustering is regulated may offer new insights into how to limit metastasis. In this study, we utilized an in vivo confocal system to observe the clustering behavior of CTC in real time, finding that the number of clusters increased proportionally with the growth of the primary tumor. Our experiments also indicated that the flow rate of the CTC clusters in blood vessels was relatively slower than single CTC due to increased vessel wall adhesion. Depending on disease stage, 5% to 10% of total CTC in circulation were in clusters, with this proportion increasing to >24% within lung metastases examined. Notably, in the 4T1 mouse model of breast cancer metastasis, we found that injecting host animals with urokinase-type plasminogen activator, a clinical thrombolytic agent, was effective at preventing the assembly of CTC clusters and prolonging overall host survival by approximately 20% relative to control animals. Our results suggest a tractable approach to limit metastasis by suppressing the formation or stability of CTC clusters circulating in the blood of cancer patients.
Collapse
Affiliation(s)
- Jin Woo Choi
- Wonkwang Institute of Integrative Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Korea. Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Cheonbuk, Korea. Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyenggi-do, Korea.
| | - Jun Ki Kim
- Biomedical Engineering Center, Asan Institute for Life Sciences, Asan Medical Center and University of Ulsan, College of Medicine, Seoul, Korea
| | - Yun Jung Yang
- Wonkwang Institute of Integrative Biomedical Science and Dental Research Institute, School of Dentistry, Wonkwang University, Iksan, Chonbuk, Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Kwon-Ha Yoon
- Imaging Science-Based Lung and Bone Diseases Research Center, Wonkwang University, Iksan, Cheonbuk, Korea. Department of Radiology, Wonkwang University School of Medicine, Iksan, Jeonbuk, Korea.
| | - Seok Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
36
|
Hwang JE, Joung JY, Shin SP, Choi MK, Kim JE, Kim YH, Park WS, Lee SJ, Lee KH. Ad5/35E1aPSESE4: A novel approach to marking circulating prostate tumor cells with a replication competent adenovirus controlled by PSA/PSMA transcription regulatory elements. Cancer Lett 2015; 372:57-64. [PMID: 26723876 DOI: 10.1016/j.canlet.2015.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 10/22/2022]
Abstract
Circulating tumor cells serve as useful biomarkers with which to identify disease status associated with survival, metastasis and drug sensitivity. Here, we established a novel application for detecting PSA/PSMA-positive prostate cancer cells circulating in peripheral blood employing an adenovirus called Ad5/35E1aPSESE4. Ad5/35E1aPSESE4 utilized PSES, a chimeric enhancer derived from PSA/PSMA promoters that is highly active with and without androgen. A fluorescence signal mediated by GFP expression upon Ad5/35E1aPSESE4 infection was selectively amplified in PSA/PSMA-positive prostate cancer cells in vitro and ex vivo. Furthermore, for the in vivo model, blood drawn from TRAMP was tested for CTCs with Ad5/35E1aPSESE4 infection and was positive for CTCs at week 16. Validation was performed on patient blood at various clinical stages and found out 1-100 CTCs expressing GFP upon Ad5/35E1aPSESE4 infection. Interestingly, CTC from one patient was confirmed to be sensitive to docetaxel chemotherapeutic reagent and to abundantly express metastasis-related genes like MMP9, Cofilin1, and FCER1G through RNA-seq. Our study established that the usage of Ad5/35E1aPSESE4 is effective in marking PSA/PSMA-positive prostate cancer cells in patient blood to improve the efficacy of utilizing CTCs as a biomarker.
Collapse
Affiliation(s)
- Ji-Eun Hwang
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Jae Young Joung
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Seung-Phil Shin
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Moon-Kyung Choi
- Hematologic Malignancy Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Jeong Eun Kim
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Yon Hui Kim
- New Experimental Therapeutics Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Weon Seo Park
- Hematologic Malignancy Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea
| | - Sang-Jin Lee
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea.
| | - Kang Hyun Lee
- Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 410-769, South Korea.
| |
Collapse
|
37
|
Takehara K, Tazawa H, Okada N, Hashimoto Y, Kikuchi S, Kuroda S, Kishimoto H, Shirakawa Y, Narii N, Mizuguchi H, Urata Y, Kagawa S, Fujiwara T. Targeted Photodynamic Virotherapy Armed with a Genetically Encoded Photosensitizer. Mol Cancer Ther 2015; 15:199-208. [PMID: 26625896 DOI: 10.1158/1535-7163.mct-15-0344] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive antitumor therapy that eradicates tumor cells through a photosensitizer-mediated cytotoxic effect upon light irradiation. However, systemic administration of photosensitizer often makes it difficult to avoid a photosensitive adverse effect. The red fluorescent protein KillerRed generates reactive oxygen species (ROS) upon green light irradiation. Here, we show the therapeutic potential of a novel tumor-specific replicating photodynamic viral agent (TelomeKiller) constructed using the human telomerase reverse transcriptase (hTERT) promoter. We investigated the light-induced antitumor effect of TelomeKiller in several types of human cancer cell lines. Relative cell viability was investigated using an XTT assay. The in vivo antitumor effect was assessed using subcutaneous xenografted tumor and lymph node metastasis models. KillerRed accumulation resulted in ROS generation and apoptosis in light-irradiated cancer cells. Intratumoral injection of TelomeKiller efficiently delivered the KillerRed protein throughout the tumors and exhibited a long-lasting antitumor effect with repeated administration and light irradiation in mice. Moreover, intratumorally injected TelomeKiller could spread into the regional lymph node area and eliminate micrometastasis with limited-field laser irradiation. Our results suggest that KillerRed has great potential as a novel photosensitizer if delivered with a tumor-specific virus-mediated delivery system. TelomeKiller-based PDT is a promising antitumor strategy to efficiently eradicate tumor cells.
Collapse
Affiliation(s)
- Kiyoto Takehara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan. Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Naohiro Okada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuuri Hashimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhiro Shirakawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Nobuhiro Narii
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| |
Collapse
|
38
|
Leong SM, Tan KML, Chua HW, Tan D, Fareda D, Osmany S, Li MH, Tucker S, Koay ESC. Sampling circulating tumor cells for clinical benefits: how frequent? J Hematol Oncol 2015; 8:75. [PMID: 26108208 PMCID: PMC4488127 DOI: 10.1186/s13045-015-0174-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/15/2015] [Indexed: 11/21/2022] Open
Abstract
Circulating tumor cells (CTCs) are cells shed from tumors or metastatic sites and are a potential biomarker for cancer diagnosis, management, and prognostication. The majority of current studies use single or infrequent CTC sampling points. This strategy assumes that changes in CTC number, as well as phenotypic and molecular characteristics, are gradual with time. In reality, little is known today about the actual kinetics of CTC dissemination and phenotypic and molecular changes in the blood of cancer patients. Herein, we show, using clinical case studies and hypothetical simulation models, how sub-optimal CTC sampling may result in misleading observations with clinical consequences, by missing out on significant CTC spikes that occur in between sampling times. Initial studies using highly frequent CTC sampling are necessary to understand the dynamics of CTC dissemination and phenotypic and molecular changes in the blood of cancer patients. Such an improved understanding will enable an optimal, study-specific sampling frequency to be assigned to individual research studies and clinical trials and better inform practical clinical decisions on cancer management strategies for patient benefits.
Collapse
Affiliation(s)
- Sai Mun Leong
- Department of Laboratory Medicine, National University Hospital, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Karen M L Tan
- Department of Laboratory Medicine, National University Hospital, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
| | - Hui Wen Chua
- Department of Laboratory Medicine, National University Hospital, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Doreen Tan
- Tucker Medical, Novena Specialist Center, 8 Sinaran Drive #04-03, Singapore, 307470, Singapore
| | - Delly Fareda
- Tucker Medical, Novena Specialist Center, 8 Sinaran Drive #04-03, Singapore, 307470, Singapore
| | - Saabry Osmany
- Radlink PET and Cardiac Imaging Center, 290 Orchard Road, #08-06 Paragon Medical, Singapore, 238859, Singapore
| | - Mo-Huang Li
- CellSievo Private Limited Singapore, Block 289A, Bukit Batok St. 25, #15-218, Singapore, 650289, Singapore
| | - Steven Tucker
- Tucker Medical, Novena Specialist Center, 8 Sinaran Drive #04-03, Singapore, 307470, Singapore
| | - Evelyn S C Koay
- Department of Laboratory Medicine, National University Hospital, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.,Department of Pathology, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| |
Collapse
|
39
|
Experimental Curative Fluorescence-guided Surgery of Highly Invasive Glioblastoma Multiforme Selectively Labeled With a Killer-reporter Adenovirus. Mol Ther 2015; 23:1182-1188. [PMID: 25896244 DOI: 10.1038/mt.2015.63] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023] Open
Abstract
Fluorescence-guided surgery (FGS) of cancer is an area of intense current interest. However, although benefits have been demonstrated with FGS, curative strategies need to be developed. Glioblastoma multiforme (GBM) is one of the most invasive of cancers and is not totally resectable using standard bright-light surgery (BLS) or current FGS strategies. We report here a curative strategy for FGS of GBM. In this study, telomerase-dependent adenovirus OBP-401 infection brightly and selectively labeled GBM with green fluorescent protein (GFP) for FGS in orthotopic nude mouse models. OBP-401-based FGS enabled curative resection of GBM without recurrence for at least 150 days, compared to less than 30 days with BLS.
Collapse
|
40
|
Shigeyasu K, Tazawa H, Hashimoto Y, Mori Y, Nishizaki M, Kishimoto H, Nagasaka T, Kuroda S, Urata Y, Goel A, Kagawa S, Fujiwara T. Fluorescence virus-guided capturing system of human colorectal circulating tumour cells for non-invasive companion diagnostics. Gut 2015; 64:627-35. [PMID: 24870621 DOI: 10.1136/gutjnl-2014-306957] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Molecular-based companion diagnostic tests are being used with increasing frequency to predict their clinical response to various drugs, particularly for molecularly targeted drugs. However, invasive procedures are typically required to obtain tissues for this analysis. Circulating tumour cells (CTCs) are novel biomarkers that can be used for the prediction of disease progression and are also important surrogate sources of cancer cells. Because current CTC detection strategies mainly depend on epithelial cell-surface markers, the presence of heterogeneous populations of CTCs with epithelial and/or mesenchymal characteristics may pose obstacles to the detection of CTCs. METHODS We developed a new approach to capture live CTCs among millions of peripheral blood leukocytes using a green fluorescent protein (GFP)-expressing attenuated adenovirus, in which the telomerase promoter regulates viral replication (OBP-401, TelomeScan). RESULTS Our biological capturing system can image epithelial and mesenchymal tumour cells with telomerase activities as GFP-positive cells. After sorting, direct sequencing or mutation-specific PCR can precisely detect different mutations in KRAS, BRAF and KIT genes in epithelial, mesenchymal or epithelial-mesenchymal transition-induced CTCs, and in clinical blood samples from patients with colorectal cancer. CONCLUSIONS This fluorescence virus-guided viable CTC capturing method provides a non-invasive alternative to tissue biopsy or surgical resection of primary tumours for companion diagnostics.
Collapse
Affiliation(s)
- Kunitoshi Shigeyasu
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Yuuri Hashimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiko Mori
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiko Nishizaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroyuki Kishimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Nagasaka
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Ajay Goel
- Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
41
|
Abstract
Multicolored proteins have allowed the color-coding of cancer cells growing in vivo and enabled the distinction of host from tumor with single-cell resolution. Non-invasive imaging with fluorescent proteins enabled the dynamics of metastatic cancer to be followed in real time in individual animals. Non-invasive imaging of cancer cells expressing fluorescent proteins has allowed the real-time determination of efficacy of candidate antitumor and antimetastatic agents in mouse models. The use of fluorescent proteins to differentially label cancer cells in the nucleus and cytoplasm can visualize the nuclear-cytoplasmic dynamics of cancer cells in vivo including: mitosis, apoptosis, cell-cycle position, and differential behavior of nucleus and cytoplasm that occurs during cancer-cell deformation and extravasation. Recent applications of the technology described here include linking fluorescent proteins with cell-cycle-specific proteins such that the cells change color from red to green as they transit from G1 to S phases. With the macro- and micro-imaging technologies described here, essentially any in vivo process can be imaged, giving rise to the new field of in vivo cell biology using fluorescent proteins.
Collapse
Affiliation(s)
- Robert M. Hoffman
- AntiCancer, Inc., Dept. of Surgery, University of California San Diego
| |
Collapse
|
42
|
A novel approach for the detection and genetic analysis of live melanoma circulating tumor cells. PLoS One 2015; 10:e0123376. [PMID: 25807549 PMCID: PMC4373770 DOI: 10.1371/journal.pone.0123376] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/18/2015] [Indexed: 11/19/2022] Open
Abstract
Background Circulating tumor cell (CTC) detection and genetic analysis may complement currently available disease assessments in patients with melanoma to improve risk stratification and monitoring. We therefore sought to establish the feasibility of a telomerase-based assay for detecting and isolating live melanoma CTCs. Methods The telomerase-based CTC assay utilizes an adenoviral vector that, in the presence of elevated human telomerase activity, drives the amplification of green fluorescent protein. Tumor cells are then identified via an image processing system. The protocol was tested on melanoma cells in culture or spiked into control blood, and on samples from patients with metastatic melanoma. Genetic analysis of the isolated melanoma CTCs was then performed for BRAF mutation status. Results The adenoviral vector was effective for all melanoma cell lines tested with sensitivity of 88.7% (95%CI 85.6-90.4%) and specificity of 99.9% (95%CI 99.8-99.9%). In a pilot trial of patients with metastatic disease, CTCs were identified in 9 of 10 patients, with a mean of 6.0 CTCs/mL. At a cutoff of 1.1 CTCs/mL, the telomerase-based assay exhibits test performance of 90.0% sensitivity and 91.7% specificity. BRAF mutation analysis of melanoma cells isolated from culture or spiked control blood, or from pilot patient samples was found to match the known BRAF mutation status of the cell lines and primary tumors. Conclusions To our knowledge, this is the first report of a telomerase-based assay effective for detecting and isolating live melanoma CTCs. These promising findings support further studies, including towards integrating into the management of patients with melanoma receiving multimodality therapy.
Collapse
|
43
|
Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res 2015; 20:2553-68. [PMID: 24831278 DOI: 10.1158/1078-0432.ccr-13-2664] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the most promising developments in translational cancer medicine has been the emergence of circulating tumor cells (CTC) as a minimally invasive multifunctional biomarker. CTCs in peripheral blood originate from solid tumors and are involved in the process of hematogenous metastatic spread to distant sites for the establishment of secondary foci of disease. The emergence of modern CTC technologies has enabled serial assessments to be undertaken at multiple time points along a patient's cancer journey for pharmacodynamic (PD), prognostic, predictive, and intermediate endpoint biomarker studies. Despite the promise of CTCs as multifunctional biomarkers, there are still numerous challenges that hinder their incorporation into standard clinical practice. This review discusses the key technical aspects of CTC technologies, including the importance of assay validation and clinical qualification, and compares existing and novel CTC enrichment platforms. This article discusses the utility of CTCs as a multifunctional biomarker and focuses on the potential of CTCs as PD endpoints either directly via the molecular characterization of specific markers or indirectly through CTC enumeration. We propose strategies for incorporating CTCs as PD biomarkers in translational clinical trials, such as the Pharmacological Audit Trail. We also discuss issues relating to intrapatient heterogeneity and the challenges associated with isolating CTCs undergoing epithelial-mesenchymal transition, as well as apoptotic and small CTCs. Finally, we envision the future promise of CTCs for the selection and monitoring of antitumor precision therapies, including applications in single CTC phenotypic and genomic profiling and CTC-derived xenografts, and discuss the promises and limitations of such approaches. See ALL articles in this CCR focus section, "Progress in pharmacodynamic endpoints."
Collapse
Affiliation(s)
- Timothy A Yap
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - David Lorente
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - Aurelius Omlin
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - David Olmos
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - Johann S de Bono
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| |
Collapse
|
44
|
Ma Y, Hao S, Wang S, Zhao Y, Lim B, Lei M, Spector DJ, El-Deiry WS, Zheng SY, Zhu J. A Combinatory Strategy for Detection of Live CTCs Using Microfiltration and a New Telomerase-Selective Adenovirus. Mol Cancer Ther 2015; 14:835-43. [PMID: 25589497 DOI: 10.1158/1535-7163.mct-14-0693] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/29/2014] [Indexed: 01/12/2023]
Abstract
Circulating tumor cells (CTC) have become an important biomarker for early cancer diagnosis, prognosis, and treatment monitoring. Recently, a replication-competent recombinant adenovirus driven by a human telomerase gene (hTERT) promoter was shown to detect live CTCs in blood samples of patients with cancer. Here, we report a new class of adenoviruses containing regulatory elements that repress the hTERT gene in normal cells. Compared with the virus with only the hTERT core promoter, the new viruses showed better selectivity for replication in cancer cells than in normal cells. In particular, Ad5GTSe, containing three extra copies of a repressor element, displayed a superior tropism for cancer cells among leukocytes and was thus selected for CTC detection in blood samples. To further improve the efficiency and specificity of CTC identification, we tested a combinatory strategy of microfiltration enrichment using flexible micro spring arrays and Ad5GTSe imaging. Our experiments showed that this method efficiently detected both cancer cells spiked into healthy blood and potential CTCs in blood samples of patients with breast and pancreatic cancer, demonstrating its potential as a highly sensitive and reliable system for detection and capture of CTCs of different tumor types.
Collapse
Affiliation(s)
- Yanchun Ma
- College of Life Science, Northwest A&F University, Taicheng Road, Yangling, Shaanxi, China. Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sijie Hao
- Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Shuwen Wang
- Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania. Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Yuanjun Zhao
- Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Bora Lim
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington
| | - Ming Lei
- College of Life Science, Northwest A&F University, Taicheng Road, Yangling, Shaanxi, China
| | - David J Spector
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Wafik S El-Deiry
- Division of Hematology-Oncology, Penn State Hershey Cancer Institute, Hershey, Pennsylvania
| | - Si-Yang Zheng
- Micro & Nano Integrated Biosystem Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania
| | - Jiyue Zhu
- Department of C&M Physiology, Penn State College of Medicine, Hershey, Pennsylvania. Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington.
| |
Collapse
|
45
|
Kagawa S, Shigeyasu K, Ishida M, Watanabe M, Tazawa H, Nagasaka T, Shirakawa Y, Fujiwara T. Molecular diagnosis and therapy for occult peritoneal metastasis in gastric cancer patients. World J Gastroenterol 2014; 20:17796-17803. [PMID: 25548478 PMCID: PMC4273130 DOI: 10.3748/wjg.v20.i47.17796] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/07/2014] [Accepted: 06/26/2014] [Indexed: 02/06/2023] Open
Abstract
To apply an individualized oncological approach to gastric cancer patients, the accurate diagnosis of disease entities is required. Peritoneal metastasis is the most frequent mode of metastasis in gastric cancer, and the tumor-node-metastasis classification includes cytological detection of intraperitoneal cancer cells as part of the staging process, denoting metastatic disease. The accuracy of cytological diagnosis leaves room for improvement; therefore, highly sensitive molecular diagnostics, such as an enzyme immunoassay, reverse transcription polymerase chain reaction, and virus-guided imaging, have been developed to detect minute cancer cells in the peritoneal cavity. Molecular targeting therapy has also been spun off from basic research in the past decade. Although conventional cytology is still the mainstay, novel approaches could serve as practical complementary diagnostics to cytology in near future.
Collapse
|
46
|
Biological ablation of sentinel lymph node metastasis in submucosally invaded early gastrointestinal cancer. Mol Ther 2014; 23:501-9. [PMID: 25523761 DOI: 10.1038/mt.2014.244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/14/2014] [Indexed: 12/16/2022] Open
Abstract
Currently, early gastrointestinal cancers are treated endoscopically, as long as there are no lymph node metastases. However, once a gastrointestinal cancer invades the submucosal layer, the lymph node metastatic rate rises to higher than 10%. Therefore, surgery is still the gold standard to remove regional lymph nodes containing possible metastases. Here, to avoid prophylactic surgery, we propose a less-invasive biological ablation of lymph node metastasis in submucosally invaded gastrointestinal cancer patients. We have established an orthotopic early rectal cancer xenograft model with spontaneous lymph node metastasis by implantation of green fluorescent protein (GFP)-labeled human colon cancer cells into the submucosal layer of the murine rectum. A solution containing telomerase-specific oncolytic adenovirus was injected into the peritumoral submucosal space, followed by excision of the primary rectal tumors mimicking the endoscopic submucosal dissection (ESD) technique. Seven days after treatment, GFP signals had completely disappeared indicating that sentinel lymph node metastasis was selectively eradicated. Moreover, biologically treated mice were confirmed to be relapse-free even 4 weeks after treatment. These results indicate that virus-mediated biological ablation selectively targets lymph node metastasis and provides a potential alternative to surgery for submucosal invasive gastrointestinal cancer patients.
Collapse
|
47
|
Zhou MD, Hao S, Williams AJ, Harouaka RA, Schrand B, Rawal S, Ao Z, Brennaman R, Gilboa E, Lu B, Wang S, Zhu J, Datar R, Cote R, Tai YC, Zheng SY. Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells. Sci Rep 2014; 4:7392. [PMID: 25487434 PMCID: PMC4260227 DOI: 10.1038/srep07392] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/20/2014] [Indexed: 01/18/2023] Open
Abstract
The analysis of circulating tumour cells (CTCs) in cancer patients could provide important information for therapeutic management. Enrichment of viable CTCs could permit performance of functional analyses on CTCs to broaden understanding of metastatic disease. However, this has not been widely accomplished. Addressing this challenge, we present a separable bilayer (SB) microfilter for viable size-based CTC capture. Unlike other single-layer CTC microfilters, the precise gap between the two layers and the architecture of pore alignment result in drastic reduction in mechanical stress on CTCs, capturing them viably. Using multiple cancer cell lines spiked in healthy donor blood, the SB microfilter demonstrated high capture efficiency (78-83%), high retention of cell viability (71-74%), high tumour cell enrichment against leukocytes (1.7-2 × 10(3)), and widespread ability to establish cultures post-capture (100% of cell lines tested). In a metastatic mouse model, SB microfilters successfully enriched viable mouse CTCs from 0.4-0.6 mL whole mouse blood samples and established in vitro cultures for further genetic and functional analysis. Our preliminary studies reflect the efficacy of the SB microfilter device to efficiently and reliably enrich viable CTCs in animal model studies, constituting an exciting technology for new insights in cancer research.
Collapse
Affiliation(s)
- Ming-Da Zhou
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
| | - Sijie Hao
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
| | - Anthony J. Williams
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Ramdane A. Harouaka
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
| | - Brett Schrand
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Department of Microbiology and Immunology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Siddarth Rawal
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Zheng Ao
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Randall Brennaman
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Department of Microbiology and Immunology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Eli Gilboa
- Department of Microbiology and Immunology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Bo Lu
- Caltech Micromachining Laboratory, California Institute of Technology, MC 136-93, Pasadena, CA 91125, U.S.A.
| | - Shuwen Wang
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99210, U.S.A
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, WA 99210, U.S.A
| | - Ram Datar
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Richard Cote
- Department of Pathology, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
- Dr John T Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami – Miller School of Medicine, Miami, FL 33136, U.S.A.
| | - Yu-Chong Tai
- Caltech Micromachining Laboratory, California Institute of Technology, MC 136-93, Pasadena, CA 91125, U.S.A.
| | - Si-Yang Zheng
- Micro & Nano Integrated Biosystem (MINIBio) Laboratory, Department of Biomedical Engineering and Materials Research Institute, Pennsylvania State University, University Park, PA 16802, U.S.A.
| |
Collapse
|
48
|
A novel detection strategy for living circulating tumor cells using 5-aminolevulinic acid. Cancer Lett 2014; 355:113-20. [DOI: 10.1016/j.canlet.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/15/2014] [Accepted: 09/05/2014] [Indexed: 12/25/2022]
|
49
|
Hoffman RM. Orthotopic mouse models of tumor metastasis expressing fluorescent reporters produce imageable circulating tumor cells. CANCER MICROENVIRONMENT 2014; 7:133-8. [PMID: 25417145 DOI: 10.1007/s12307-014-0154-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 09/15/2014] [Indexed: 02/05/2023]
Abstract
Circulating tumor cells (CTC) are of high importance, since they are potential metastatic precursors and are readily available for prognostic analysis and treatment testing. In this review, we demonstrate the great power that green fluorescent protein (GFP) labeling and orthotopic mouse models of cancer confer to the study of CTCs for isolation and characterization, including metastatic testing in mice and the chick embryo as well as drug response testing in vitro. We also describe a facile method to label patient CTCs ex vivo using a telomerase-expressing GFP-containing adenovirus that will allow the CTC studies described in this review to be translated clinically.
Collapse
Affiliation(s)
- Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA,
| |
Collapse
|
50
|
Dorsey JF, Kao GD, MacArthur KM, Ju M, Steinmetz D, Wileyto EP, Simone CB, Hahn SM. Tracking viable circulating tumor cells (CTCs) in the peripheral blood of non-small cell lung cancer (NSCLC) patients undergoing definitive radiation therapy: pilot study results. Cancer 2014; 121:139-49. [PMID: 25241991 DOI: 10.1002/cncr.28975] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Assays identifying circulating tumor cells (CTCs) allow noninvasive and sequential monitoring of the status of primary or metastatic tumors, potentially yielding clinically useful information. However, to the authors' knowledge, the effect of radiation therapy (RT) on CTCs in patients with non-small cell lung cancer (NSCLC) has not been previously explored. METHODS This report describes results from a pilot study of 30 patients with NSCLC who received RT. Peripheral blood samples obtained from these patients were assayed for CTCs using an assay that identified live cells using an adenoviral probe that detected the elevated telomerase activity present in almost all cancer cells, but not in normal cells, and the validity of the assay was confirmed with secondary tumor-specific markers. Patients were assayed before initiation of RT (pre-RT), during the RT course, and/or after the completion of RT (post-RT). RESULTS The assay successfully detected CTCs in the majority of patients, including 65% of patients before the start of RT, and in patients with both epidermal growth factor receptor wild-type and mutation-positive tumors. The median CTC counts in patients before RT was 9.1 CTCs per mL (range, undetectable to 571 CTCs per mL) and was significantly higher than the average post-RT count of 0.6 CTCs per mL (range, undetectable to 1.8 CTCs per mL; P<.001). Sequential CTC counts were available in a subset of patients and demonstrated decreases after RT, except for 1 patient who subsequently developed distant failure. CONCLUSIONS The current pilot data suggest that CTC counts appear to reflect response to RT in patients with localized NSCLC. On the basis of these promising results, the authors have launched a more comprehensive and detailed clinical trial.
Collapse
Affiliation(s)
- Jay F Dorsey
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|