1
|
Liu S, Gao Y, Feng X, Xu Y, Hu M, Fei H, Zheng H, Huang J, Li T, Zhao C, Sun L. A novel study on CXXC5: unraveling its regulatory mechanisms in hematopoietic stem cell biology through proteomics and gene editing. Genes Genomics 2024; 46:1133-1147. [PMID: 39150611 DOI: 10.1007/s13258-024-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/05/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND This study investigates the role of CXXC5 in the self-renewal and differentiation of hematopoietic stem cells (HSCs) within the bone marrow microenvironment, utilizing advanced methodologies such as single-cell RNA sequencing (scRNA-seq), CRISPR-Cas9, and proteomic analysis. METHODS We employed flow cytometry to isolate HSCs from bone marrow samples, followed by scRNA-seq analysis using the 10x Genomics platform to examine cell clustering and CXXC5 expression patterns. CRISPR-Cas9 and lentiviral vectors facilitated the knockout and overexpression of CXXC5 in HSCs. The impact on HSCs was assessed through qRT-PCR, Western blot, CCK-8, CFU, and LTC-IC assays, alongside flow cytometry to measure apoptosis and cell proportions. A mouse model was also used to evaluate the effects of CXXC5 manipulation on HSC engraftment and survival rates. RESULTS Our findings highlight the diversity of cell clustering and the significant role of CXXC5 in HSC regulation. Knockout experiments showed reduced proliferation and accelerated differentiation, whereas overexpression led to enhanced proliferation and delayed differentiation. Proteomic analysis identified key biological processes influenced by CXXC5, including cell proliferation, differentiation, and apoptosis. In vivo results demonstrated that CXXC5 silencing impaired HSC engraftment in a bone marrow transplantation model. CONCLUSION CXXC5 is crucial for the regulation of HSC self-renewal and differentiation in the bone marrow microenvironment. Its manipulation presents a novel approach for enhancing HSC function and provides a potential therapeutic target for hematological diseases.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Yan Gao
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Xianqi Feng
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Yujie Xu
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Minghui Hu
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hairong Fei
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Hongying Zheng
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junxia Huang
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Tianlan Li
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China
| | - Chunting Zhao
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China.
| | - Lingjie Sun
- Department of Hematology, The Affiliated Hospital of Qingdao University, No.16, Jiangsu Road, Shinan District, Qingdao, Shandong Province, China.
| |
Collapse
|
2
|
Liu X, Devadiga SA, Stanley RF, Morrow RM, Janssen KA, Quesnel-Vallières M, Pomp O, Moverley AA, Li C, Skuli N, Carroll M, Huang J, Wallace DC, Lynch KW, Abdel-Wahab O, Klein PS. A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies. J Clin Invest 2024; 134:e175619. [PMID: 38713535 PMCID: PMC11178535 DOI: 10.1172/jci175619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/25/2024] [Indexed: 05/09/2024] Open
Abstract
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sudhish A. Devadiga
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert F. Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ryan M. Morrow
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kevin A. Janssen
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam A. Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chenchen Li
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicolas Skuli
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Martin Carroll
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jian Huang
- Coriell Institute for Medical Research, Camden, New Jersey, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Peter S. Klein
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Liu X, Devadiga SA, Stanley RF, Morrow R, Janssen K, Quesnel-Vallières M, Pomp O, Moverley AA, Li C, Skuli N, Carroll MP, Huang J, Wallace DC, Lynch KW, Abdel-Wahab O, Klein PS. A mitochondrial surveillance mechanism activated by SRSF2 mutations in hematologic malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.25.546449. [PMID: 38712254 PMCID: PMC11071312 DOI: 10.1101/2023.06.25.546449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Splicing factor mutations are common in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), but how they alter cellular functions is unclear. We show that the pathogenic SRSF2P95H/+ mutation disrupts the splicing of mitochondrial mRNAs, impairs mitochondrial complex I function, and robustly increases mitophagy. We also identified a mitochondrial surveillance mechanism by which mitochondrial dysfunction modifies splicing of the mitophagy activator PINK1 to remove a poison intron, increasing the stability and abundance of PINK1 mRNA and protein. SRSF2P95H-induced mitochondrial dysfunction increased PINK1 expression through this mechanism, which is essential for survival of SRSF2P95H/+ cells. Inhibition of splicing with a glycogen synthase kinase 3 inhibitor promoted retention of the poison intron, impairing mitophagy and activating apoptosis in SRSF2P95H/+ cells. These data reveal a homeostatic mechanism for sensing mitochondrial stress through PINK1 splicing and identify increased mitophagy as a disease marker and a therapeutic vulnerability in SRSF2P95H mutant MDS and AML.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Sudhish A. Devadiga
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Robert F. Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Ryan Morrow
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Kevin Janssen
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Mathieu Quesnel-Vallières
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Adam A. Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Chenchen Li
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Nicolas Skuli
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Martin P. Carroll
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Jian Huang
- Coriell Institute for Medical Research; Camden, NJ, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine; University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W. Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center; New York, NY, USA
| | - Peter S. Klein
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
4
|
Wężyk M, Berdyński M, Figarski A, Skrzypczak M, Ginalski K, Zboch M, Winkel I, Żekanowski C. Rare A360T Mutation Alters GSK3β(Ser9) Binding in the Cytosolic Loop of Presenilin 1, Influencing β-Catenin Nuclear Localization and Pro-Death Gene Expression in Alzheimer's Disease Case. Int J Mol Sci 2023; 24:16999. [PMID: 38069323 PMCID: PMC10707597 DOI: 10.3390/ijms242316999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Presenilin 1 (PS1) forms, via its large cytosolic loop, a trimeric complex with N-cadherin and β-catenin, which is a key component of Wnt signaling. PS1 undergoes phosphorylation at 353 and 357 serines upon enhanced activity and elevated levels of the GSK3β isoform. PS1 mutations surrounding these serines may alter the stability of the β-catenin complex. Such mutations are found in some cases of familial early-onset Alzheimer's disease (fEOAD), but their functional impact remains obscure. One of such variants of PS1, the A360T substitution, is located close to GSK3β-targeted serine residues. This variant was recently demonstrated in the French population, but more detail is needed to understand its biological effects. To assess the significance of this variant, we employed functional studies using a fibroblast cell line from an Alzheimer's disease case (a female proband) carrying the A360T mutation. Based on functional transcriptomic, cellular, and biochemical assays, we demonstrated atypically impaired β-catenin/GSK3β signaling in the A360T patient's fibroblasts. In detail, this was characterized by a decreased level of active cytosolic β-catenin and bound by PS1, an increased level of nuclear β-catenin, an increased level of inhibited GSK3β phosphorylated on Ser9, and enhanced interaction of GSK3β(Ser9) with PS1. Based on the transcriptomic profile of the A360T fibroblasts, we proposed a dysregulated transcriptional activity of β-catenin, exemplified by increased expression of various cyclin-dependent kinases and cyclins, such as cyclin D1, potentially inducing neurons' cell cycle re-entry followed by apoptosis. The A360T cells did not exhibit significant amyloid pathology. Therefore, cell death in this PS1 cytosolic loop mutation may be attributed to impaired β-catenin/GSK3β signaling rather than amyloid deposition per se. We further estimated the biological and clinical relevance of the A360T variant by whole exome sequencing (WES). WES was performed on DNA from the blood of an A360T female proband, as well as an unrelated male patient carrying the A360T mutation and his mutation-free daughter (both unavailable for the derivation of the fibroblast cell lines). WES confirmed the highest-priority AD causality of the A360T variant in PS1 and also profiled the pathways and processes involved in the A360T case, highlighting the greatest importance of altered Wnt signaling.
Collapse
Affiliation(s)
- Michalina Wężyk
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland (C.Ż.)
| | - Mariusz Berdyński
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland (C.Ż.)
| | - Adam Figarski
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland (C.Ż.)
| | - Magdalena Skrzypczak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 14 Indiry Gandhi Street, 02-776 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 93 Żwirki i Wigury Street, 02-089 Warsaw, Poland
| | - Marzena Zboch
- Research and Education Center for Dementia Diseases in Ścinawa, Alzheimer’s Center, 12 Jana Pawła II Street, 59-330 Ścinawa, Poland
| | - Izabela Winkel
- Research and Education Center for Dementia Diseases in Ścinawa, Alzheimer’s Center, 12 Jana Pawła II Street, 59-330 Ścinawa, Poland
| | - Cezary Żekanowski
- Department of Neurogenetics and Functional Genomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland (C.Ż.)
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, Górskiego 1 Street, 80-336 Gdansk, Poland
| |
Collapse
|
5
|
Ling B, Xu Y, Qian S, Xiang Z, Xuan S, Wu J. Regulation of hematopoietic stem cells differentiation, self-renewal, and quiescence through the mTOR signaling pathway. Front Cell Dev Biol 2023; 11:1186850. [PMID: 37228652 PMCID: PMC10203478 DOI: 10.3389/fcell.2023.1186850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are important for the hematopoietic system because they can self-renew to increase their number and differentiate into all the blood cells. At a steady state, most of the HSCs remain in quiescence to preserve their capacities and protect themselves from damage and exhaustive stress. However, when there are some emergencies, HSCs are activated to start their self-renewal and differentiation. The mTOR signaling pathway has been shown as an important signaling pathway that can regulate the differentiation, self-renewal, and quiescence of HSCs, and many types of molecules can regulate HSCs' these three potentials by influencing the mTOR signaling pathway. Here we review how mTOR signaling pathway regulates HSCs three potentials, and introduce some molecules that can work as the regulator of HSCs' these potentials through the mTOR signaling. Finally, we outline the clinical significance of studying the regulation of HSCs three potentials through the mTOR signaling pathway and make some predictions.
Collapse
Affiliation(s)
- Bai Ling
- Department of Pharmacy, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Yunyang Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Siyuan Qian
- The Second School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shihai Xuan
- Department of Laboratory Medicine, The People’s Hospital of Dongtai City, Dongtai, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
6
|
He L, Bhat K, Ioannidis A, Pajonk F. Effects of Dopamine Receptor Antagonists and Radiation on Mouse Neural Stem/Progenitor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524632. [PMID: 36712018 PMCID: PMC9882258 DOI: 10.1101/2023.01.18.524632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Dopamine receptor antagonists are psychotropic drugs that have been originally developed against psychiatric disorders. We recently identified dopamine receptor antagonists as potential anti-cancer agents and some have entered clinical trials against glioblastoma. Radiotherapy is known to cause cognitive impairment in patients receiving cranial irradiation through the elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Methods Using transgenic mice that report the presence of neural stem/progenitor cells through Nestin promoter-driven expression of enhanced green fluorescent protein, the effects of dopamine receptor antagonists alone or in combination with radiation on murine neural stem/progenitor cells were assessed in sphere-formation assays, flow cytometry and immunofluorescence in vitro and in vivo . Results We report that several dopamine receptor antagonists show sex-dependent effects on neural stem/progenitor cells both in vitro and in vivo . Hydroxyzine, trifluoperazine, amisulpride, nemonapride or quetiapine alone or in combination with radiation significantly increased the number of neural stem/progenitor cells in female neurospheres but not in male mice. Dopamine receptor antagonists either protected neural stem/progenitor cells from radiation or expanded the stem cell pool, thus indicating that this combination therapy against glioblastoma will not increase radiation-induced cognitive decline through increasing elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Conclusions We conclude that a therapeutic window for dopamine receptor antagonists in combination with radiation potentially exist, making it a novel combination therapy against glioblastoma. Normal tissue toxicity of this combination potentially differs depending on age and sex and should be taken into consideration when designing clinical trials. Key Points - Neural stem/progenitor cells show sex-dependent sensitivity to dopamine receptor antagonists- Dopamine receptor antagonists active against GBM increase Neural stem/progenitor cells counts. Importance of the Study Combination therapy of dopamine receptor antagonists with radiation have entered clinical trials against glioblastoma but the normal tissue toxicity of this combination has not been fully explored yet. Here we present evidence that some dopamine receptor antagonists show sex-dependent effects on neural stem/progenitor cells either by protecting neural stem/progenitor cells from radiation or inducing an expansion of the stem cell pool, suggesting that this combination therapy against glioblastoma will not increase radiation-induced cognitive decline through increasing elimination of neural stem/progenitor cells and subsequent loss of neurogenesis. Normal tissue toxicity of this combination potentially differs depending on age and sex and should be further explored in clinical trials.
Collapse
|
7
|
Mehta PM, Gimenez G, Walker RJ, Slatter TL. Reduction of lithium induced interstitial fibrosis on co-administration with amiloride. Sci Rep 2022; 12:14598. [PMID: 36028651 PMCID: PMC9418221 DOI: 10.1038/s41598-022-18825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Long-term administration of lithium is associated with chronic interstitial fibrosis that is partially reduced with exposure to amiloride. We examined potential pathways of how amiloride may reduce interstitial fibrosis. Amiloride was administered to a rat model of lithium induced interstitial fibrosis over a long term (6 months), as well as for short terms of 14 and 28 days. Kidney cortical tissue was subjected to RNA sequencing and microRNA expression analysis. Gene expression changes of interest were confirmed using immunohistochemistry on kidney tissue. Pathways identified by RNA sequencing of kidney tissue were related to 'promoting inflammation' for lithium and 'reducing inflammation' for amiloride. Validation of candidate genes found amiloride reduced inflammatory components induced by lithium including NF-κB/p65Ser536 and activated pAKTSer473, and increased p53 mediated regulatory function through increased p21 in damaged tubular epithelial cells. Amiloride also reduced the amount of Notch1 positive PDGFrβ pericytes and infiltrating CD3 cells in the interstitium. Thus, amiloride attenuates a multitude of pro-inflammatory components induced by lithium. This suggests amiloride could be repurposed as a possible anti-inflammatory, anti-fibrotic agent to prevent or reduce the development of chronic interstitial fibrosis.
Collapse
Affiliation(s)
- Paulomi M Mehta
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Robert J Walker
- Department of Medicine, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
8
|
Arciniegas Ruiz S, Rippin I, Eldar-Finkelman H. Prospects in GSK-3 Signaling: From Cellular Regulation to Disease Therapy. Cells 2022; 11:cells11101618. [PMID: 35626655 PMCID: PMC9139866 DOI: 10.3390/cells11101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
|
9
|
Ali M, Ribeiro MM, Del Sol A. Computational Methods to Identify Cell-Fate Determinants, Identity Transcription Factors, and Niche-Induced Signaling Pathways for Stem Cell Research. Methods Mol Biol 2022; 2471:83-109. [PMID: 35175592 DOI: 10.1007/978-1-0716-2193-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The large-scale development of high-throughput sequencing technologies has not only allowed the generation of reliable omics data related to various regulatory layers but also the development of novel computational models in the field of stem cell research. These computational approaches have enabled the disentangling of a complex interplay between these interrelated layers of regulation by interpreting large quantities of biomedical data in a systematic way. In the context of stem cell research, network modeling of complex gene-gene interactions has been successfully used for understanding the mechanisms underlying stem cell differentiation and cellular conversion. Notably, it has proven helpful for predicting cell-fate determinants and signaling molecules controlling such processes. This chapter will provide an overview of various computational approaches that rely on single-cell and/or bulk RNA sequencing data for elucidating the molecular underpinnings of cell subpopulation identities, lineage specification, and the process of cell-fate decisions. Furthermore, we discuss how these computational methods provide the right framework for computational modeling of biological systems in order to address long-standing challenges in the stem cell field by guiding experimental efforts in stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Mariana Messias Ribeiro
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg.
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
10
|
Zhang Q, Wan XX, Hu XM, Zhao WJ, Ban XX, Huang YX, Yan WT, Xiong K. Targeting Programmed Cell Death to Improve Stem Cell Therapy: Implications for Treating Diabetes and Diabetes-Related Diseases. Front Cell Dev Biol 2021; 9:809656. [PMID: 34977045 PMCID: PMC8717932 DOI: 10.3389/fcell.2021.809656] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue and promoting functional repair in a wide range of human diseases. Generations of insulin-producing cells and pancreatic progenitors from stem cells are potential therapeutic methods for treating diabetes and diabetes-related diseases. However, accumulated evidence has demonstrated that multiple types of programmed cell death (PCD) existed in stem cells post-transplantation and compromise their therapeutic efficiency, including apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the molecular mechanisms in PCD during stem cell transplantation and targeting cell death signaling pathways are vital to successful stem cell therapies. In this review, we highlight the research advances in PCD mechanisms that guide the development of multiple strategies to prevent the loss of stem cells and discuss promising implications for improving stem cell therapy in diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xin-xing Wan
- Department of Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wen-juan Zhao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xiao-xia Ban
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
11
|
Saba JA, Liakath-Ali K, Green R, Watt FM. Translational control of stem cell function. Nat Rev Mol Cell Biol 2021; 22:671-690. [PMID: 34272502 DOI: 10.1038/s41580-021-00386-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2021] [Indexed: 12/22/2022]
Abstract
Stem cells are characterized by their ability to self-renew and differentiate into many different cell types. Research has focused primarily on how these processes are regulated at a transcriptional level. However, recent studies have indicated that stem cell behaviour is strongly coupled to the regulation of protein synthesis by the ribosome. In this Review, we discuss how different translation mechanisms control the function of adult and embryonic stem cells. Stem cells are characterized by low global translation rates despite high levels of ribosome biogenesis. The maintenance of pluripotency, the commitment to a specific cell fate and the switch to cell differentiation depend on the tight regulation of protein synthesis and ribosome biogenesis. Translation regulatory mechanisms that impact on stem cell function include mTOR signalling, ribosome levels, and mRNA and tRNA features and amounts. Understanding these mechanisms important for stem cell self-renewal and differentiation may also guide our understanding of cancer grade and metastasis.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kifayathullah Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, London, UK.
| |
Collapse
|
12
|
Tian Y, Meng L, Wang Y, Li B, Yu H, Zhou Y, Bui T, Abraham C, Li A, Zhang Y, Wang J, Zhao C, Mineishi S, Gallucci S, Porter D, Hexner E, Zheng H, Zhang Y, Hu S, Zhang Y. Graft-versus-host disease depletes plasmacytoid dendritic cell progenitors to impair tolerance induction. J Clin Invest 2021; 131:136774. [PMID: 33090973 DOI: 10.1172/jci136774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Graft-versus-host disease (GVHD) causes failed reconstitution of donor plasmacytoid dendritic cells (pDCs) that are critical for immune protection and tolerance. We used both murine and human systems to uncover the mechanisms whereby GVHD induces donor pDC defects. GVHD depleted Flt3-expressing donor multipotent progenitors (MPPs) that sustained pDCs, leading to impaired generation of pDCs. MPP loss was associated with decreased amounts of MPP-producing hematopoietic stem cells (HSCs) and oxidative stress-induced death of proliferating MPPs. Additionally, alloreactive T cells produced GM-CSF to inhibit MPP expression of Tcf4, the transcription factor essential for pDC development, subverting MPP production of pDCs. GM-CSF did not affect the maturation of pDC precursors. Notably, enhanced recovery of donor pDCs upon adoptive transfer early after allogeneic HSC transplantation repressed GVHD and restored the de novo generation of donor pDCs in recipient mice. pDCs suppressed the proliferation and expansion of activated autologous T cells via a type I IFN signaling-dependent mechanism. They also produced PD-L1 and LILRB4 to inhibit T cell production of IFN-γ. We thus demonstrate that GVHD impairs the reconstitution of tolerogenic donor pDCs by depleting DC progenitors rather than by preventing pDC maturation. MPPs are an important target to effectively bolster pDC reconstitution for controlling GVHD.
Collapse
Affiliation(s)
- Yuanyuan Tian
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Lijun Meng
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Ying Wang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| | - Bohan Li
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Hongshuang Yu
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tien Bui
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Ciril Abraham
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Alicia Li
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Yongping Zhang
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Jian Wang
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Chenchen Zhao
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Shin Mineishi
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Stefania Gallucci
- Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| | - David Porter
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth Hexner
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hong Zheng
- Penn State Cancer Institute, Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Yanyun Zhang
- Shanghai Institute of Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyan Hu
- Department of Hematology, Children Hospital, Soochow University, Suzhou, China
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular Biology, Temple University, Philadelphia, Pennsylvania, USA.,Department of Microbiology and Immunology, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
13
|
Dietary carbohydrate, particularly glucose, drives B cell lymphopoiesis and function. iScience 2021; 24:102835. [PMID: 34381967 PMCID: PMC8333167 DOI: 10.1016/j.isci.2021.102835] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 01/14/2023] Open
Abstract
While diet modulates immunity, its impact on B cell ontogeny remains unclear. Using mixture modeling, a large-scale isocaloric dietary cohort mouse study identified carbohydrate as a major driver of B cell development and function. Increasing dietary carbohydrate increased B cell proportions in spleen, mesenteric lymph node and Peyer's patches, and increased antigen-specific immunoglobulin G production after immunization. This was linked to increased B lymphopoiesis in the bone marrow. Glucose promoted early B lymphopoiesis and higher total B lymphocyte numbers than fructose. It drove B cell development through glycolysis and oxidative phosphorylation, independently of fatty acid oxidation in vitro and reduced B cell apoptosis in early development via mTOR activation, independently of interleukin-7. Ours is the first comprehensive study showing the impact of macronutrients on B cell development and function. It shows the quantitative and qualitative interplay between dietary carbohydrate and B cells and argues for dietary modulation in B cell-targeting strategies.
Collapse
|
14
|
Martelli AM, Evangelisti C, Paganelli F, Chiarini F, McCubrey JA. GSK-3: a multifaceted player in acute leukemias. Leukemia 2021; 35:1829-1842. [PMID: 33811246 DOI: 10.1038/s41375-021-01243-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) consists of two isoforms (α and β) that were originally linked to glucose metabolism regulation. However, GSK-3 is also involved in several signaling pathways controlling many different key functions in healthy cells. GSK-3 is a unique kinase in that its isoforms are constitutively active, while they are inactivated mainly through phosphorylation at Ser residues by a variety of upstream kinases. In the early 1990s, GSK-3 emerged as a key player in cancer cell pathophysiology. Since active GSK-3 promotes destruction of multiple oncogenic proteins (e.g., β-catenin, c-Myc, Mcl-1) it was considered to be a tumor suppressor. Accordingly, GSK-3 is frequently inactivated in human cancer via aberrant regulation of upstream signaling pathways. More recently, however, it has emerged that GSK-3 isoforms display also oncogenic properties, as they up-regulate pathways critical for neoplastic cell proliferation, survival, and drug-resistance. The regulatory roles of GSK-3 isoforms in cell cycle, apoptosis, DNA repair, tumor metabolism, invasion, and metastasis reflect the therapeutic relevance of these kinases and provide the rationale for combining GSK-3 inhibitors with other targeted drugs. Here, we discuss the multiple and often conflicting roles of GSK-3 isoforms in acute leukemias. We also review the current status of GSK-3 inhibitor development for innovative leukemia therapy.
Collapse
Affiliation(s)
- Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Francesca Paganelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesca Chiarini
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza" Unit of Bologna, Bologna, Italy.,IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
15
|
Snitow ME, Bhansali RS, Klein PS. Lithium and Therapeutic Targeting of GSK-3. Cells 2021; 10:255. [PMID: 33525562 PMCID: PMC7910927 DOI: 10.3390/cells10020255] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
Lithium salts have been in the therapeutic toolbox for better or worse since the 19th century, with purported benefit in gout, hangover, insomnia, and early suggestions that lithium improved psychiatric disorders. However, the remarkable effects of lithium reported by John Cade and subsequently by Mogens Schou revolutionized the treatment of bipolar disorder. The known molecular targets of lithium are surprisingly few and include the signaling kinase glycogen synthase kinase-3 (GSK-3), a group of structurally related phosphomonoesterases that includes inositol monophosphatases, and phosphoglucomutase. Here we present a brief history of the therapeutic uses of lithium and then focus on GSK-3 as a therapeutic target in diverse diseases, including bipolar disorder, cancer, and coronavirus infections.
Collapse
Affiliation(s)
| | | | - Peter S. Klein
- Department of Medicine, Perelman School of Medicine,
University of Pennsylvania, 3400 Spruce St., Philadelphia, PA 19104, USA; (M.E.S.); (R.S.B.)
| |
Collapse
|
16
|
Racaud-Sultan C, Vergnolle N. GSK3β, a Master Kinase in the Regulation of Adult Stem Cell Behavior. Cells 2021; 10:cells10020225. [PMID: 33498808 PMCID: PMC7911451 DOI: 10.3390/cells10020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 12/30/2022] Open
Abstract
In adult stem cells, Glycogen Synthase Kinase 3β (GSK3β) is at the crossroad of signaling pathways controlling survival, proliferation, adhesion and differentiation. The microenvironment plays a key role in the regulation of these cell functions and we have demonstrated that the GSK3β activity is strongly dependent on the engagement of integrins and protease-activated receptors (PARs). Downstream of the integrin α5β1 or PAR2 activation, a molecular complex is organized around the scaffolding proteins RACK1 and β-arrestin-2 respectively, containing the phosphatase PP2A responsible for GSK3β activation. As a consequence, a quiescent stem cell phenotype is established with high capacities to face apoptotic and metabolic stresses. A protective role of GSK3β has been found for hematopoietic and intestinal stem cells. Latters survived to de-adhesion through PAR2 activation, whereas formers were protected from cytotoxicity through α5β1 engagement. However, a prolonged activation of GSK3β promoted a defect in epithelial regeneration and a resistance to chemotherapy of leukemic cells, paving the way to chronic inflammatory diseases and to cancer resurgence, respectively. In both cases, a sexual dimorphism was measured in GSK3β-dependent cellular functions. GSK3β activity is a key marker for inflammatory and cancer diseases allowing adjusted therapy to sex, age and metabolic status of patients.
Collapse
|
17
|
Jiang Y, Xu Z, Ma N, Yin L, Hao C, Li J. Effects of signaling pathway inhibitors on hematopoietic stem cells. Mol Med Rep 2020; 23:9. [PMID: 33179097 PMCID: PMC7687261 DOI: 10.3892/mmr.2020.11647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/17/2020] [Indexed: 12/23/2022] Open
Abstract
While there are numerous small molecule inhibitory drugs available for a wide range of signalling pathways, at present, they are generally not used in combination in clinical settings. Previous reports have reported that the effects of glycogen synthase kinase (GSK)3β, p38MAPK, mTOR and histone deacetylase signaling combined together to suppress the stem-like nature of hematopoietic stem cells (HSCs), driving these cells to differentiate, cease proliferating and thereby impairing normal hematopoietic functionality. The present study aimed to determine the effect of HDACs, mTOR, GSK-3β and p38MAPK inhibitor combinations on the efficient expansion of HSCs using flow cytometry. Moreover, it specifically aimed to determine how inhibitors of the GSK3β signaling pathway, in combination with inhibitors of P38MAPK and mTOR signaling or histone deacetylase (HDAC) inhibitors, could affect HSC expansion, with the goal of identifying novel combination strategies useful for the expansion of HSCs. The results indicated that p38MAPK and/or GSK3β inhibitors increased Lin− cell and Lin−Sca-1+c-kit+ (LSK) cell numbers in vitro. Taken together, these results suggested that a combination of p38MAPK and GSK3β signaling may regulate HSC differentiation in vitro. These findings further indicated that the suppression of p38MAPK and/or GSK3β signalling may modulate HSC differentiation and self-renewal to enhance HSC expansion.
Collapse
Affiliation(s)
- Yuyu Jiang
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Zhaofeng Xu
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Na Ma
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Lizhi Yin
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Caiqin Hao
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Jing Li
- Stem Cell Laboratory, Department of Biology, College of Life Sciences, Shanghai Normal University, Shanghai 200234, P.R. China
| |
Collapse
|
18
|
Wang Y, Cui H, Tao S, Zeng T, Wu J, Tao Z, Zhang L, Zou B, Chen Z, Garside GB, Tang D. High Canonical Wnt/β-Catenin Activity Sensitizes Murine Hematopoietic Stem and Progenitor Cells to DNA Damage. Stem Cell Rev Rep 2020; 16:212-221. [PMID: 31797147 PMCID: PMC6987068 DOI: 10.1007/s12015-019-09930-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aging is characterized by the accumulation of DNA damage and a decrease in stem cell functionality, yet molecular mechanisms that limit the maintenance of stem cells in response to DNA damage remain to be delineated. Here we show in mouse models that DNA damage leads to a transient over-activation of Wnt signaling in hematopoietic stem cells (HSCs), and that high activity of canonical Wnt/β-catenin signaling sensitizes HSCs to DNA damage induced by X-irradiation which results in preferential maintenance of HSCs with low levels of Wnt signaling. The study shows that genetic or chemical activation of canonical Wnt signaling enhances radiosensitivity of HSCs while inhibition of Wnt signaling decreases it. Together, these results indicate that levels of Wnt signaling activity mediate heterogeneity in the sensitivity of HSCs to DNA damage induced depletion. These findings could be relevant for molecular alterations and selection of stem cells in the context of DNA damage accumulation during aging and cancer formation.
Collapse
Affiliation(s)
- Yiting Wang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China
| | - Hui Cui
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ting Zeng
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianying Wu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Peking University People's Hospital, Beijing, China
| | - Bing Zou
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - George B Garside
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Duozhuang Tang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Min-De Road. 1, Nanchang City, 330006, Jiangxi Province, China.
| |
Collapse
|
19
|
Cho HJ, Lee J, Yoon SR, Lee HG, Jung H. Regulation of Hematopoietic Stem Cell Fate and Malignancy. Int J Mol Sci 2020; 21:ijms21134780. [PMID: 32640596 PMCID: PMC7369689 DOI: 10.3390/ijms21134780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The regulation of hematopoietic stem cell (HSC) fate decision, whether they keep quiescence, self-renew, or differentiate into blood lineage cells, is critical for maintaining the immune system throughout one’s lifetime. As HSCs are exposed to age-related stress, they gradually lose their self-renewal and regenerative capacity. Recently, many reports have implicated signaling pathways in the regulation of HSC fate determination and malignancies under aging stress or pathophysiological conditions. In this review, we focus on the current understanding of signaling pathways that regulate HSC fate including quiescence, self-renewal, and differentiation during aging, and additionally introduce pharmacological approaches to rescue defects of HSC fate determination or hematopoietic malignancies by kinase signaling pathways.
Collapse
Affiliation(s)
- Hee Jun Cho
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Jungwoon Lee
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea;
| | - Suk Ran Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Department of Biomolecular Science, Korea University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (H.G.L.); (H.J.)
| | - Haiyoung Jung
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (H.J.C.); (S.R.Y.)
- Correspondence: (H.G.L.); (H.J.)
| |
Collapse
|
20
|
Han X, Ma Y, Zhang K, Zhang P, Shao N, Qin L. Microfluidic Cell Trap Arrays for Single Hematopoietic Stem/Progenitor Cell Behavior Analysis. Proteomics 2020; 20:e1900223. [PMID: 31709756 PMCID: PMC7211552 DOI: 10.1002/pmic.201900223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Indexed: 11/09/2022]
Abstract
Hematopoietic stem/progenitor cell (HSPC) mobilization from the bone marrow to the bloodstream is a required step for blood cell renewal, and HSPC motility is a clinically relevant standard for peripheral blood stem cell transplantation. Individual HSPCs exhibit considerable heterogeneity in motility behaviors, which are subject to complex intrinsic and extrinsic regulatory mechanisms. Motility-based cell sorting is then demanded to fulfill the study of such mechanism complexity. However, due to the HSPC heterogeneity and difficulty in monitoring cell motility, such a platform is still not available. With the recent development of microfluidics technology, motility-based monitoring, sorting, collecting, and analysis of HSPC behaviors are highly possible and achievable if fluid channels and structures are correctly engineered. Here, a new design of microfluidic arrays for single-cell trapping is presented, enabling high-throughput analysis of individual HSPC motility and behavior. Using these arrays, it is observed that HSPC motility is positively correlated with CD34 asymmetric inheritance and cell differentiation. Transcriptomic analysis of HSPCs sorted according to motility reveals changes in expression of genes associated with the regulation of stem-cell maintenance. Ultimately, this novel, physical cell-sorting system can facilitate the screening of HSPC mobilization compounds and the analysis of signals driving HSPC fate decisions.
Collapse
Affiliation(s)
- Xin Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Cell Biology and Medical Genetics, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Yuan Ma
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Kai Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Pengchao Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Ning Shao
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Lidong Qin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
21
|
Perry JM, Tao F, Roy A, Lin T, He XC, Chen S, Lu X, Nemechek J, Ruan L, Yu X, Dukes D, Moran A, Pace J, Schroeder K, Zhao M, Venkatraman A, Qian P, Li Z, Hembree M, Paulson A, He Z, Xu D, Tran TH, Deshmukh P, Nguyen CT, Kasi RM, Ryan R, Broward M, Ding S, Guest E, August K, Gamis AS, Godwin A, Sittampalam GS, Weir SJ, Li L. Overcoming Wnt-β-catenin dependent anticancer therapy resistance in leukaemia stem cells. Nat Cell Biol 2020; 22:689-700. [PMID: 32313104 PMCID: PMC8010717 DOI: 10.1038/s41556-020-0507-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
Leukaemia stem cells (LSCs) underlie cancer therapy resistance but targeting these cells remains difficult. The Wnt-β-catenin and PI3K-Akt pathways cooperate to promote tumorigenesis and resistance to therapy. In a mouse model in which both pathways are activated in stem and progenitor cells, LSCs expanded under chemotherapy-induced stress. Since Akt can activate β-catenin, inhibiting this interaction might target therapy-resistant LSCs. High-throughput screening identified doxorubicin (DXR) as an inhibitor of the Akt-β-catenin interaction at low doses. Here we repurposed DXR as a targeted inhibitor rather than a broadly cytotoxic chemotherapy. Targeted DXR reduced Akt-activated β-catenin levels in chemoresistant LSCs and reduced LSC tumorigenic activity. Mechanistically, β-catenin binds multiple immune-checkpoint gene loci, and targeted DXR treatment inhibited expression of multiple immune checkpoints specifically in LSCs, including PD-L1, TIM3 and CD24. Overall, LSCs exhibit distinct properties of immune resistance that are reduced by inhibiting Akt-activated β-catenin. These findings suggest a strategy for overcoming cancer therapy resistance and immune escape.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Cell Proliferation
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm
- Female
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mice
- Mice, Knockout
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- PTEN Phosphohydrolase/physiology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Tumor Cells, Cultured
- Wnt Proteins/physiology
- Xenograft Model Antitumor Assays
- beta Catenin/physiology
Collapse
Affiliation(s)
- John M Perry
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Children's Mercy Kansas City, Kansas City, MO, USA
- University of Kansas Medical Center, Kansas City, KS, USA
- University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | - Fang Tao
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Children's Mercy Kansas City, Kansas City, MO, USA
| | - Anuradha Roy
- High Throughput Screening Laboratory, University of Kansas, Lawrence, KS, USA
| | - Tara Lin
- University of Kansas Medical Center, Kansas City, KS, USA
| | - Xi C He
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Shiyuan Chen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | | | - Linhao Ruan
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Center for Cell Dynamics, Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xiazhen Yu
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Debra Dukes
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Andrea Moran
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Meng Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Pengxu Qian
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Center of Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Zhenrui Li
- Stowers Institute for Medical Research, Kansas City, MO, USA
- St. Jude, Memphis, TN, USA
| | - Mark Hembree
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Zhiquan He
- Department of Electrical Engineering and Computer Science and C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Dong Xu
- Department of Electrical Engineering and Computer Science and C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Thanh-Huyen Tran
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, US
| | - Prashant Deshmukh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, USA
| | - Chi Thanh Nguyen
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Rajeswari M Kasi
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT, USA
- Department of Chemistry, University of Connecticut, Storrs, CT, USA
| | - Robin Ryan
- Children's Mercy Kansas City, Kansas City, MO, USA
| | | | - Sheng Ding
- School of Pharmaceutical Science, Tsinghua University, Beijing, China
| | - Erin Guest
- Children's Mercy Kansas City, Kansas City, MO, USA
| | - Keith August
- Children's Mercy Kansas City, Kansas City, MO, USA
| | - Alan S Gamis
- Children's Mercy Kansas City, Kansas City, MO, USA
| | - Andrew Godwin
- University of Kansas Medical Center, Kansas City, KS, USA
| | - G Sitta Sittampalam
- University of Kansas Medical Center, Kansas City, KS, USA
- Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Scott J Weir
- Department of Cancer Biology, The Institute for Advancing Medical Innovation and University of Kansas Cancer Center, Kansas City, Kansas, USA
| | - Linheng Li
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Pathology and Laboratory Medicine and Division of Medical Oncology, Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
22
|
Prossomariti A, Piazzi G, Alquati C, Ricciardiello L. Are Wnt/β-Catenin and PI3K/AKT/mTORC1 Distinct Pathways in Colorectal Cancer? Cell Mol Gastroenterol Hepatol 2020; 10:491-506. [PMID: 32334125 PMCID: PMC7369353 DOI: 10.1016/j.jcmgh.2020.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023]
Abstract
Wnt/β-catenin and phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin complex 1 (PI3K/AKT/mTORC1) pathways both are critically involved in colorectal cancer (CRC) development, although they are implicated in the modulation of distinct oncogenic mechanisms. In homeostatic and pathologic conditions, these pathways show a fine regulation based mainly on feedback mechanisms, and are connected at multiple levels involving both upstream and downstream common effectors. The ability of the Wnt/β-catenin and PI3K/AKT/mTORC1 pathways to reciprocally control themselves represents one of the main resistance mechanisms to selective inhibitors in CRC, leading to the hypothesis that in specific settings, particularly in cancer driven by genetic alterations in Wnt/β-catenin signaling, the relationship between Wnt/β-catenin and PI3K/AKT/mTORC1 pathways could be so close that they should be considered as a unique therapeutic target. This review provides an update on the Wnt/β-catenin and PI3K/AKT/mTORC1 pathway interconnections in CRC, describing the main molecular players and the potential implications of combined inhibitors as an approach for CRC chemoprevention and treatment.
Collapse
Affiliation(s)
- Anna Prossomariti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Center for Applied Biomedical Research, S. Orsola Hospital, University of Bologna, Bologna, Italy,Anna Prossomariti, PhD, Center for Applied Biomedical Research, S. Orsola Hospital, Via Massarenti 9, 40138, Bologna, Italy. fax: (39) 051-2143902.
| | - Giulia Piazzi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Center for Applied Biomedical Research, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Chiara Alquati
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Center for Applied Biomedical Research, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy,Center for Applied Biomedical Research, S. Orsola Hospital, University of Bologna, Bologna, Italy,Correspondence Address correspondence to: Luigi Ricciardiello, MD, Department of Medical and Surgical Sciences, Via Massarenti 9, 40138, Bologna, Italy. fax: (39) 051-2143381
| |
Collapse
|
23
|
Wang Y, Liu Y, Bailey C, Zhang H, He M, Sun D, Zhang P, Parkin B, Baer MR, Zheng P, Malek SN, Liu Y. Therapeutic targeting of TP53-mutated acute myeloid leukemia by inhibiting HIF-1α with echinomycin. Oncogene 2020; 39:3015-3027. [PMID: 32060420 PMCID: PMC7291851 DOI: 10.1038/s41388-020-1201-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 01/02/2023]
Abstract
TP53 mutation in acute myeloid leukemia (AML) is associated with poor prognosis. Since no targeted therapy is available to restore p53 function, it is of great interest to test whether other pathways activated by TP53 mutations can be therapeutically targeted. Here we showed HIF-1α target genes are enriched in TP53-mutated vs TP53-wild type AML. To determine the role of this activation, we tested efficacy of HIF-1α inhibitor echinomycin in TP53-mutated AML samples in vitro and in vivo. Echinomycin was broadly effective against a panel of primary AML blast cells, with low nanomolar IC50s and, based on colony-forming unit assay, was 10-fold more effective in eliminating AML stem cells. Echinomycin selectively eliminated CD34+CD38- AML cells. To test the therapeutic efficacy of echinomycin, we established a xenograft model of TP53-mutated AML. Echinomycin was broadly effective against xenografts from multiple AML samples in vivo, and more effective than cytarabine + daunorubicin chemotherapy. Importantly, while cytarabine + daunorubicin enriched for AML stem cells, echinomycin nearly eliminated this population. Using TP53-mutated AML cell line THP1 and patient-derived AML cells, we tested a new echinomycin formulation with longer half-life and significantly improved therapeutic effect. Our data suggest a novel approach to treat AML with TP53 mutations.
Collapse
Affiliation(s)
- Yin Wang
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Yan Liu
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christopher Bailey
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Graduate Program of Integrated Biomedical Research, George Washington University School of Medicine, Washington, DC, 20052, USA
| | - Huixia Zhang
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Miao He
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian Parkin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Maria R Baer
- Department of Medicine, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Pan Zheng
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,OncoImmune, Inc., Rockville, MD, 20853, USA
| | - Sami N Malek
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yang Liu
- Division of Immunotherapy, Institute of Human Virology, Department of Surgery and Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,OncoImmune, Inc., Rockville, MD, 20853, USA.
| |
Collapse
|
24
|
Mudgapalli N, Nallasamy P, Chava H, Chava S, Pathania AS, Gunda V, Gorantla S, Pandey MK, Gupta SC, Challagundla KB. The role of exosomes and MYC in therapy resistance of acute myeloid leukemia: Challenges and opportunities. Mol Aspects Med 2019; 70:21-32. [PMID: 31623866 PMCID: PMC7775410 DOI: 10.1016/j.mam.2019.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/27/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Acute myeloid leukemia (AML) is caused by abnormal production of white blood cells, red blood cells or platelets. The leukemia cells communicate with their microenvironment through nano-vesicle exosomes that are 30-100 nm in diameter. These nano-vesicles are released from body fluids upon fusion of an endocytic compartment with the cell membrane. Exosomes function as cargo to deliver signaling molecules to distant cells. This allows cross-talk between hematopoietic cells and other distant target cell environments. Exosomes support leukemia growth by acting as messengers between tumor cells and the microenvironment as well as inducing oncogenic factors such as c-Myc. Exosomes have also been used as biomarkers in the clinical diagnosis of leukemia. Glycogen synthase kinase-3 (GSK-3) and protein phosphatase 2A (PP2A) are two crucial signaling molecules involved in the AML pathogenesis and MYC stability. GSK-3 is a serine/threonine protein kinase that coordinates with over 40 different proteins during physiological/pathological conditions in blood cells. The dysregulation in GSK-3 has been reported during hematological malignancies. GSK-3 acts as a tumor suppressor by targeting c-MYC, MCL-1 and β-catenin. Conversely, GSK-3 can also act as tumor promoter in some instances. The pharmacological modulators of GSK-3 such as ABT-869, 6-Bromoindirubin-3'-oxime (BIO), GS-87 and LY2090314 have shown promise in the treatment of hematological malignancy. PP2A is a heterotrimeric serine/threonine phosphatase involved in the regulation of hematological malignancy. PP2A-activating drugs (PADs) can effectively antagonize leukemogenesis. The discovery of exosomes, kinase inhibitors and phosphatase activators have provided new hope to the leukemia patients. This review discusses the role of exosomes, GSK-3 and PP2A in the pathogenesis of leukemia. We provide evidence from both preclinical and clinical studies.
Collapse
Affiliation(s)
- Nithya Mudgapalli
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
; UNMC Summer Undergraduate Research Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Palanisamy Nallasamy
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Haritha Chava
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Srinivas Chava
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anup S Pathania
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Venugopal Gunda
- Pediatric Oncology Laboratory, Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Subash C Gupta
- Laboratory for Translational Cancer Research, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology, The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
.
| |
Collapse
|
25
|
Yokoyama N, Kim YJ, Hirabayashi Y, Tabe Y, Takamori K, Ogawa H, Iwabuchi K. Kras promotes myeloid differentiation through Wnt/β-catenin signaling. FASEB Bioadv 2019; 1:435-449. [PMID: 32123842 PMCID: PMC6996383 DOI: 10.1096/fba.2019-00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Wild-type Kras, a small GTPase, inactivates Ras growth-promoting signaling. However, the role of Kras in differentiation of myeloid cells remains unclear. This study showed the involvement of Kras in a novel regulatory mechanism underlying the dimethyl sulfoxide (DMSO)-induced differentiation of human acute myeloid leukemia HL-60 cells. Kras was found to positively regulate DMSO-induced differentiation, with the activity of Kras increasing upon DMSO. Inhibition of Kras attenuated CD11b expression in differentiated HL-60 cells. GSK3β, an important component of Wnt signaling, was found to be a downstream signal of Kras. Phosphorylation of GSK3β was markedly enhanced by DMSO treatment. Moreover, inhibition of GSK3β enhanced CD11b expression and triggered the accumulation in the nucleus of β-catenin and Tcf in response to DMSO. Inhibitors of β-catenin-mediated pathways blocked CD11b expression, further indicating that β-catenin is involved in the differentiation of HL-60 cells. Elevated expression of C/EBPα and C/EBPɛ accompanied by the expression of granulocyte colony-stimulating factor (G-CSF) receptor was observed during differentiation. Taken together, these findings suggest that Kras engages in cross talk with the Wnt/β-catenin pathway upon DMSO treatment of HL-60 cells, thereby regulating the granulocytic differentiation of HL-60 cells. These results indicate that Kras acts as a tumor suppressor during the differentiation of myeloid cells.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Yeon-Jeong Kim
- Laboratory for Neuronal Growth Mechanisms Riken Brain Science Institutes Saitama Japan
| | - Yoshio Hirabayashi
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
- Cellular Informatics Laboratory RIKEN Wako Saitama Japan
| | - Yoko Tabe
- Department of Laboratory Medicine Juntendo University School of Medicine Hospital Hongo Tokyo Japan
| | - Kenji Takamori
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Hideoki Ogawa
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender Specific Medicine Juntendo University Graduate School of Medicine Urayasu Chiba Japan
- Infection Control Nursing Juntendo University Graduate School of Health Care and Nursing Urayasu Chiba Japan
- Laboratory of Biochemistry Juntendo University Faculty of Health Care and Nursing Urayasu Chiba Japan
| |
Collapse
|
26
|
Valzania L, Mattee MT, Strand MR, Brown MR. Blood feeding activates the vitellogenic stage of oogenesis in the mosquito Aedes aegypti through inhibition of glycogen synthase kinase 3 by the insulin and TOR pathways. Dev Biol 2019; 454:85-95. [PMID: 31153832 DOI: 10.1016/j.ydbio.2019.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022]
Abstract
Most mosquitoes, including Aedes aegypti, only produce eggs after blood feeding on a vertebrate host. Oogenesis in A. aegypti consists of a pre-vitellogenic stage before blood feeding and a vitellogenic stage after blood feeding. Primary egg chambers remain developmentally arrested during the pre-vitellogenic stage but complete oogenesis to form mature eggs during the vitellogenic stage. In contrast, the signaling factors that maintain primary egg chambers in pre-vitellogenic arrest or that activate vitellogenic growth are largely unclear. Prior studies showed that A. aegypti females release insulin-like peptide 3 (ILP3) and ovary ecdysteroidogenic hormone (OEH) from brain neurosecretory cells after blood feeding. Here, we report that primary egg chambers exit pre-vitellogenic arrest by 8 h post-blood meal as evidenced by proliferation of follicle cells, endoreplication of nurse cells, and formation of cytoophidia. Ex vivo assays showed that ILP3 and OEH stimulate primary egg chambers to exit pre-vitellogenic arrest in the presence of nutrients but not in their absence. Characterization of associated pathways indicated that activation of insulin/insulin growth factor signaling (IIS) by ILP3 or OEH inactivated glycogen synthase kinase 3 (GSK3) via phosphorylation by phosphorylated Akt. GSK3 inactivation correlated with accumulation of the basic helix-loop-helix transcription factor Max and primary egg chambers exiting pre-vitellogenic arrest. Direct inhibition of GSK3 by CHIR-99021 also stimulated Myc/Max accumulation and primary egg chambers exiting pre-vitellogenic arrest. Collectively, our results identify GSK3 as a key factor in regulating the pre- and vitellogenic stages of oogenesis in A. aegypti.
Collapse
Affiliation(s)
- Luca Valzania
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Melissa T Mattee
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
27
|
Benajiba L, Alexe G, Su A, Raffoux E, Soulier J, Hemann MT, Hermine O, Itzykson R, Stegmaier K, Puissant A. Creatine kinase pathway inhibition alters GSK3 and WNT signaling in EVI1-positive AML. Leukemia 2018; 33:800-804. [PMID: 30390009 DOI: 10.1038/s41375-018-0291-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Lina Benajiba
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.,INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, Paris, France
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.,Bioinformatics Graduate Program, Boston University, Boston, MA, USA
| | - Angela Su
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
| | - Emmanuel Raffoux
- Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Jean Soulier
- Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Michael T Hemann
- Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivier Hermine
- INSERM U1163 and CNRS 8254, Imagine Institute, Université Paris Saclay, Paris, France
| | - Raphael Itzykson
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France.,Département d'Hématologie, Hôpital Saint-Louis, Assistance Publique - Hopitaux de Paris, Paris, France
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Alexandre Puissant
- INSERM UMR 944, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France.
| |
Collapse
|
28
|
Malik N, Sansom OJ, Michie AM. The role of mTOR-mediated signals during haemopoiesis and lineage commitment. Biochem Soc Trans 2018; 46:1313-1324. [PMID: 30154096 PMCID: PMC6195642 DOI: 10.1042/bst20180141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022]
Abstract
The serine/threonine protein kinase mechanistic target of rapamycin (mTOR) has been implicated in the regulation of an array of cellular functions including protein and lipid synthesis, proliferation, cell size and survival. Here, we describe the role of mTOR during haemopoiesis within the context of mTORC1 and mTORC2, the distinct complexes in which it functions. The use of conditional transgenic mouse models specifically targeting individual mTOR signalling components, together with selective inhibitors, have generated a significant body of research emphasising the critical roles played by mTOR, and individual mTOR complexes, in haemopoietic lineage commitment and development. This review will describe the profound role of mTOR in embryogenesis and haemopoiesis, underscoring the importance of mTORC1 at the early stages of haemopoietic cell development, through modulation of stem cell potentiation and self-renewal, and erythroid and B cell lineage commitment. Furthermore, the relatively discrete role of mTORC2 in haemopoiesis will be explored during T cell development and B cell maturation. Collectively, this review aims to highlight the functional diversity of mTOR signalling and underline the importance of this pathway in haemopoiesis.
Collapse
Affiliation(s)
- Natasha Malik
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Owen J Sansom
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, U.K
| | - Alison M Michie
- Institute of Cancer Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, U.K.
| |
Collapse
|
29
|
Liu X, Klein PS. Glycogen synthase kinase-3 and alternative splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1501. [PMID: 30118183 DOI: 10.1002/wrna.1501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved negative regulator of receptor tyrosine kinase, cytokine, and Wnt signaling pathways. Stimulation of these pathways inhibits GSK-3 to modulate diverse downstream effectors that include transcription factors, nutrient sensors, glycogen synthesis, mitochondrial function, circadian rhythm, and cell fate. GSK-3 also regulates alternative splicing in response to T-cell receptor activation, and recent phosphoproteomic studies have revealed that multiple splicing factors and regulators of RNA biosynthesis are phosphorylated in a GSK-3-dependent manner. Furthermore, inhibition of GSK-3 alters the splicing of hundreds of mRNAs, indicating a broad role for GSK-3 in the regulation of RNA processing. GSK-3-regulated phosphoproteins include SF3B1, SRSF2, PSF, RBM8A, nucleophosmin 1 (NPM1), and PHF6, many of which are mutated in leukemia and myelodysplasia. As GSK-3 is inhibited by pathways that are pathologically activated in leukemia and loss of Gsk3 in hematopoietic cells causes a severe myelodysplastic neoplasm in mice, these findings strongly implicate GSK-3 as a critical regulator of mRNA processing in normal and malignant hematopoiesis. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Wang Y, Tian H, Cai W, Lian Z, Bhavanasi D, Wu C, Sato T, Kurokawa M, Wu D, Fu L, Wang H, Shen H, Liang D, Huang J. Tracking hematopoietic precursor division ex vivo in real time. Stem Cell Res Ther 2018; 9:16. [PMID: 29361987 PMCID: PMC5781326 DOI: 10.1186/s13287-017-0767-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Deciphering molecular mechanisms underlying the division of hematopoietic stem cells (HSCs) and malignant precursors would improve our understanding of the basis of stem cell-fate decisions and oncogenic transformation. METHODS Using a novel reporter of hematopoietic precursor, Evi1-GFP, we tracked the division of hematopoietic precursors in culture in real time. RESULTS First, we confirmed that Evi1-GFP is a faithful reporter of HSC activity and identified three dividing patterns of HSCs: symmetric renewal, symmetric differentiation, and asymmetric division. Moreover, we found that the cytokine and growth factor combination (STIF) promotes symmetric renewal, whereas OP9 stromal cells balance symmetric renewal and differentiation of HSCs ex vivo. Interestingly, we found that Tet2 knockout HSCs underwent more symmetric differentiation in culture compared with the wild-type control. Intriguingly, OP9 stromal cells reverse the phenotype of Tet2 knockout HSCs ex vivo. Furthermore, we demonstrated that Tet2 -/- ;Flt3ITD acute myeloid leukemia (AML) precursors primarily underwent symmetric renewal divisions in culture. Mechanistically, we demonstrated that inhibiting DNA methylation can reverse the aberrant division phenotypes of Tet2 -/- and Tet2 -/- ;FLT3ITD precursors, suggesting that abnormal DNA methylation plays an important role in controlling (pre-)leukemic precursor fate decision ex vivo. CONCLUSIONS Our study exploited a new system to explore the molecular mechanisms of the regulation of benign and malignant hematopoietic precursor division ex vivo. The knowledge learned from these studies will provide new insights into the molecular mechanisms of HSC fate decision and leukemogenesis.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Physiology & Pathophysiology, School of Basic Medical Science, Peking University, Beijing, People's Republic of China.,Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hong Tian
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Wenzhi Cai
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.,Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhaorui Lian
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Dheeraj Bhavanasi
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Chao Wu
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.,Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Tomohiko Sato
- Department of Hematology and Oncology, University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Depei Wu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Li Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Hao Shen
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Dong Liang
- Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
31
|
Abstract
The mammalian target of rapamycin (mTOR) senses nutrients and growth factors to coordinate cell growth, metabolism and autophagy. Extensive research has mapped the signaling pathways regulated by mTOR that are involved in human diseases, such as cancer, and in diabetes and ageing. Recently, however, new studies have demonstrated important roles for mTOR in promoting the differentiation of adult stem cells, driving the growth and proliferation of stem and progenitor cells, and dictating the differentiation program of multipotent stem cell populations. Here, we review these advances, providing an overview of mTOR signaling and its role in murine and human stem and progenitor cells.
Collapse
Affiliation(s)
- Delong Meng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
32
|
Bhavanasi D, Wen KW, Liu X, Vergez F, Danet-Desnoyers G, Carroll M, Huang J, Klein PS. Signaling mechanisms that regulate ex vivo survival of human acute myeloid leukemia initiating cells. Blood Cancer J 2017; 7:636. [PMID: 29187738 PMCID: PMC5802493 DOI: 10.1038/s41408-017-0003-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/22/2017] [Indexed: 12/16/2022] Open
Affiliation(s)
- Dheeraj Bhavanasi
- Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kwun Wah Wen
- Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Xiaolei Liu
- Institute of Hematology and Blood Diseases, Chinese Academy of Medical Sciences, Tianjin, China
| | - Francois Vergez
- Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gwenn Danet-Desnoyers
- Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Martin Carroll
- Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jian Huang
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| | - Peter S Klein
- Department of Medicine (Hematology-Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Famili F, Brugman MH, Taskesen E, Naber BEA, Fodde R, Staal FJT. High Levels of Canonical Wnt Signaling Lead to Loss of Stemness and Increased Differentiation in Hematopoietic Stem Cells. Stem Cell Reports 2017; 6:652-659. [PMID: 27167156 PMCID: PMC4939829 DOI: 10.1016/j.stemcr.2016.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022] Open
Abstract
Canonical Wnt signaling regulates the self-renewal of most if not all stem cell systems. In the blood system, the role of Wnt signaling has been the subject of much debate but there is consensus that high Wnt signals lead to loss of reconstituting capacity. To better understand this phenomenon, we have taken advantage of a series of hypomorphic mutant Apc alleles resulting in a broad range of Wnt dosages in hematopoietic stem cells (HSCs) and performed whole-genome gene expression analyses. Gene expression profiling and functional studies show that HSCs with APC mutations lead to high Wnt levels, enhanced differentiation, and diminished proliferation but have no effect on apoptosis, collectively leading to loss of stemness. Thus, we provide mechanistic insight into the role of APC mutations and Wnt signaling in HSC biology. As Wnt signals are explored in various in vivo and ex vivo expansion protocols for HSCs, our findings also have clinical ramifications.
Collapse
Affiliation(s)
- Farbod Famili
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Erdogan Taskesen
- Department of Clinical Genetics, VU University, 1081 Amsterdam, the Netherlands
| | - Brigitta E A Naber
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Riccardo Fodde
- Department of Pathology, Erasmus Medical Center, 3000 Rotterdam, the Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 Leiden, the Netherlands.
| |
Collapse
|
34
|
Nguyen-McCarty M, Klein PS. Autophagy is a signature of a signaling network that maintains hematopoietic stem cells. PLoS One 2017; 12:e0177054. [PMID: 28486555 PMCID: PMC5423627 DOI: 10.1371/journal.pone.0177054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/23/2017] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are able to self-renew and to differentiate into all blood cells. HSCs reside in a low-perfusion niche and depend on local signals to survive and to maintain the capacity for self-renewal. HSCs removed from the niche are unable to survive without addition of hematopoietic cytokines and rapidly lose their ability to self-renew. We reported previously that inhibition of both GSK-3 and mTORC1 is essential to maintain long-term HSCs ex vivo. Although Wnt/β-catenin signaling downstream of GSK-3 is required for this response, the downstream effectors of mTORC1 remain undefined. We now report that HSCs express a pro-autophagic gene signature and accumulate LC3 puncta only when both mTORC1 and GSK-3 are inhibited, identifying autophagy as a signature for a signaling network that maintains HSCs ex vivo. In addition, these conditions sustain HSC repopulating function despite an increased rate of global translation. Together, these findings provide new insight into the relative contributions of various mTORC1 outputs toward the maintenance of HSC function and build upon the growing body of literature implicating autophagy and tightly controlled protein synthesis as important modulators of diverse stem cell populations.
Collapse
Affiliation(s)
- Michelle Nguyen-McCarty
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine (Hematology/Oncology), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
35
|
Dickkopf-1 promotes hematopoietic regeneration via direct and niche-mediated mechanisms. Nat Med 2016; 23:91-99. [PMID: 27918563 DOI: 10.1038/nm.4251] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022]
Abstract
The role of osteolineage cells in regulating hematopoietic stem cell (HSC) regeneration following myelosuppression is not well understood. Here we show that deletion of the pro-apoptotic genes Bak and Bax in osterix (Osx, also known as Sp7 transcription factor 7)-expressing cells in mice promotes HSC regeneration and hematopoietic radioprotection following total body irradiation. These mice showed increased bone marrow (BM) levels of the protein dickkopf-1 (Dkk1), which was produced in Osx-expressing BM cells. Treatment of irradiated HSCs with Dkk1 in vitro increased the recovery of both long-term repopulating HSCs and progenitor cells, and systemic administration of Dkk1 to irradiated mice increased hematopoietic recovery and improved survival. Conversely, inducible deletion of one allele of Dkk1 in Osx-expressing cells in adult mice inhibited the recovery of BM stem and progenitor cells and of complete blood counts following irradiation. Dkk1 promoted hematopoietic regeneration via both direct effects on HSCs, in which treatment with Dkk1 decreased the levels of mitochondrial reactive oxygen species and suppressed senescence, and indirect effects on BM endothelial cells, in which treatment with Dkk1 induced epidermal growth factor (EGF) secretion. Accordingly, blockade of the EGF receptor partially abrogated Dkk1-mediated hematopoietic recovery. These data identify Dkk1 as a regulator of hematopoietic regeneration and demonstrate paracrine cross-talk between BM osteolineage cells and endothelial cells in regulating hematopoietic reconstitution following injury.
Collapse
|
36
|
Barroca V, Lewandowski D, Jaracz-Ros A, Hardouin SN. Paternal Insulin-like Growth Factor 2 (Igf2) Regulates Stem Cell Activity During Adulthood. EBioMedicine 2016; 15:150-162. [PMID: 28007480 PMCID: PMC5233811 DOI: 10.1016/j.ebiom.2016.11.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 11/13/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022] Open
Abstract
Insulin-like Growth Factor 2 (IGF2) belongs to the IGF/Insulin pathway, a highly conserved evolutionarily network that regulates growth, aging and lifespan. Igf2 is highly expressed in the embryo and in cancer cells. During mouse development, Igf2 is expressed in all sites where hematopoietic stem cells (HSC) successively expand, then its expression drops at weaning and becomes undetectable when adult HSC have reached their niches in bones and start to self-renew. In the present study, we aim to discover the role of IGF2 during adulthood. We show that Igf2 is specifically expressed in adult HSC and we analyze HSC from adult mice deficient in Igf2 transcripts. We demonstrate that Igf2 deficiency avoids the age-related attrition of the HSC pool and that Igf2 is necessary for tissue homeostasis and regeneration. Our study reveals that the expression level of Igf2 is critical to maintain the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSC and their niche. Our data have major clinical interest for transplantation: understanding the changes in adult stem cells and their environments will improve the efficacy of regenerative medicine and impact health- and life-span. The imprinted gene Igf2 is expressed in adult tissue stem cells. Igf2 deficiency increases HSC (hematopoietic stem cells) self-renewal and avoids age-related attrition of the HSC pool. Igf2 deficiency decreases HSC differentiation and mobilization. Igf2 deficiency modifies the interaction between HSC and their environment.
IGF2 belongs to the IGF/Insulin family that regulates growth, aging and lifespan. This role is evolutionarily conserved from worms to mammals. IGF2 favors cell proliferation during embryonic development but its role in adulthood is unknown. To decipher its function we undertook a lifelong analysis of the consequences of Igf2 deficiency on hematopoiesis, in steady-state conditions and during bone marrow transplantation. We demonstrate that lowering Igf2 levels increases the pool of stem cells, without uncontrolled proliferation and migration of immature cells that would lead to cancer. This is a promising way to enhance the stem cells pool during aging that has major interest for transplantation.
Collapse
Affiliation(s)
- Vilma Barroca
- INSERM UMR 967, 92265 Fontenay-aux-roses cedex, France; CEA/DSV/iRCM, 92265 Fontenay-aux-roses cedex, France; Université Paris-Diderot, Paris 7, 92265 Fontenay-aux-roses cedex, France; Université Paris-Sud, Paris 11, 92265 Fontenay-aux-roses cedex, France
| | - Daniel Lewandowski
- INSERM UMR 967, 92265 Fontenay-aux-roses cedex, France; CEA/DSV/iRCM, 92265 Fontenay-aux-roses cedex, France; Université Paris-Diderot, Paris 7, 92265 Fontenay-aux-roses cedex, France; Université Paris-Sud, Paris 11, 92265 Fontenay-aux-roses cedex, France
| | - Agnieszka Jaracz-Ros
- INSERM UMR 967, 92265 Fontenay-aux-roses cedex, France; CEA/DSV/iRCM, 92265 Fontenay-aux-roses cedex, France; Université Paris-Diderot, Paris 7, 92265 Fontenay-aux-roses cedex, France; Université Paris-Sud, Paris 11, 92265 Fontenay-aux-roses cedex, France
| | - Sylvie-Nathalie Hardouin
- INSERM UMR 967, 92265 Fontenay-aux-roses cedex, France; CEA/DSV/iRCM, 92265 Fontenay-aux-roses cedex, France; Université Paris-Diderot, Paris 7, 92265 Fontenay-aux-roses cedex, France; Université Paris-Sud, Paris 11, 92265 Fontenay-aux-roses cedex, France.
| |
Collapse
|
37
|
Bhavanasi D, Klein PS. Wnt Signaling in Normal and Malignant Stem Cells. CURRENT STEM CELL REPORTS 2016; 2:379-387. [PMID: 28503404 DOI: 10.1007/s40778-016-0068-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wnt signaling plays important roles in stem cell self-renewal and differentiation in adults as well as in embryonic development. Mutations that activate canonical Wnt/β-catenin signaling also initiate and maintain several cancer states, including colorectal cancer and leukemia, and hence Wnt inhibitors are currently being explored as therapeutic options. In this review, we summarize previous studies and update recent findings on canonical Wnt signaling and its components, as well as their roles in somatic stem cell homeostasis and maintenance of cancer initiating cells.
Collapse
Affiliation(s)
- Dheeraj Bhavanasi
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter S Klein
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
38
|
Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep 2016; 36:BSR20160174. [PMID: 27534430 PMCID: PMC5025810 DOI: 10.1042/bsr20160174] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/14/2016] [Indexed: 12/28/2022] Open
Abstract
Suppression of the enzyme glycogen synthase kinase 3β (GSK3β) increases both the turnover of damaged cellular material and the activity of the enzyme AMP-activated protein kinase (AMPK) to potentially attenuate the damage inflicted by excess sugar and fat on blood vessels. High concentrations of glucose and palmitate increase endothelial cell inflammation and apoptosis, events that often precede atherogenesis. They may do so by decreasing basal autophagy and AMP-activated protein kinase (AMPK) activity, although the mechanisms by which this occurs are not clear. Decreased function of the lysosome, an organelle required for autophagy and AMPK, have been associated with hyperactivity of glycogen synthase kinase 3β (GSK3β). To determine whether GSK3β affects nutrient-induced changes in autophagy and AMPK activity, we used a primary human aortic endothelial cell (HAEC) model of type 2 diabetes that we had previously characterized with impaired AMPK activity and autophagy [Weikel et al. (2015) Am. J. Phys. Cell Physiol. 308, C249–C263]. Presently, we found that incubation of HAECs with excess nutrients (25 mM glucose and 0.4 mM palmitate) increased GSK3β activity and impaired lysosome acidification. Suppression of GSK3β in these cells by treatment with a chemical inhibitor or overexpression of kinase-dead GSK3β attenuated these lysosomal changes. Under control and excess nutrient conditions, knockdown of GSK3β increased autophagosome formation, forkhead box protein O1 (FOXO1) activity and AMPK signalling and decreased Akt signalling. Similar changes in autophagy, AMPK and Akt signalling were observed in aortas from mice treated with the GSK3β inhibitor CHIR 99021. Thus, increasing basal autophagy and AMPK activity by inhibiting GSK3β may be an effective strategy in the setting of hyperglycaemia and dyslipidaemia for restoring endothelial cell health and reducing atherogenesis.
Collapse
|
39
|
Samitas K, Malmhäll C, Rådinger M, Ramos-Ramirez P, Lu Y, Deák T, Semitekolou M, Gaga M, Sjöstrand M, Lötvall J, Bossios A. Precursor B Cells Increase in the Lung during Airway Allergic Inflammation: A Role for B Cell-Activating Factor. PLoS One 2016; 11:e0161161. [PMID: 27513955 PMCID: PMC4981371 DOI: 10.1371/journal.pone.0161161] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 08/01/2016] [Indexed: 11/18/2022] Open
Abstract
Background B cells, key cells in allergic inflammation, differentiate in the bone marrow and their precursors include pro-B, pre-B and immature B cells. Eosinophil progenitor cells increase in the lung after allergen exposure. However, the existence and possible role of B cell precursors in the lung during allergic inflammation remains elusive. Methods A BALB/c mouse model of allergic airway inflammation was utilized to perform phenotypic and quantification analyses of pro-B and pre-B cells in the lung by flow cytometry. B cell maturation factors IL-7 and B cell-activating factor (BAFF) and their receptors (CD127 and BAFFR, BCMA, TACI, respectively) were also evaluated in the lung and serum. The effect of anti-BAFF treatment was investigated both in vivo (i.p. administration of BAFF-R-Ig fusion protein) and in vitro (colony forming cell assay). Finally, BAFF levels were examined in the bronchoalveolar lavage (BAL) of asthmatic patients and healthy controls. Results Precursor pro and pre-B cells increase in the lung after allergen exposure, proliferate in the lung tissue in vivo, express markers of chemotaxis (CCR10 and CXCR4) and co-stimulation (CD40, CD86) and are resistant to apoptosis (Bax). Precursor B cells express receptors for BAFF at baseline, while after allergen challenge both their ligand BAFF and the BCMA receptor expression increases in B cell precursors. Blocking BAFFR in the lung in vivo decreases eosinophils and proliferating precursor B cells. Blocking BAFFR in bone marrow cultures in vitro reduces pre-B colony formation units. BAFF is increased in the BAL of severe asthmatics. Conclusion Our data support the concept of a BAFF-mediated role for B cell precursors in allergic airway inflammation.
Collapse
Affiliation(s)
- Konstantinos Samitas
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- 7th Respiratory Medicine Dept. and Asthma Center, Athens Chest Hospital “Sotiria”, Athens, Greece
| | - Carina Malmhäll
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patricia Ramos-Ramirez
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - You Lu
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tünde Deák
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Semitekolou
- Cellular Immunology Laboratory, Division of Cell Biology, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mina Gaga
- 7th Respiratory Medicine Dept. and Asthma Center, Athens Chest Hospital “Sotiria”, Athens, Greece
| | - Margareta Sjöstrand
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Apostolos Bossios
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
40
|
Hu S, Ueda M, Stetson L, Ignatz-Hoover J, Moreton S, Chakrabarti A, Xia Z, Karan G, de Lima M, Agrawal MK, Wald DN. A Novel Glycogen Synthase Kinase-3 Inhibitor Optimized for Acute Myeloid Leukemia Differentiation Activity. Mol Cancer Ther 2016; 15:1485-1494. [PMID: 27196775 DOI: 10.1158/1535-7163.mct-15-0566] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/06/2016] [Indexed: 11/16/2022]
Abstract
Standard therapies used for the treatment of acute myeloid leukemia (AML) are cytotoxic agents that target rapidly proliferating cells. Unfortunately, this therapeutic approach has limited efficacy and significant toxicity and the majority of AML patients still die of their disease. In contrast to the poor prognosis of most AML patients, most individuals with a rare subtype of AML, acute promyelocytic leukemia, can be cured by differentiation therapy using regimens containing all-trans retinoic acid. GSK3 has been previously identified as a therapeutic target in AML where its inhibition can lead to the differentiation and growth arrest of leukemic cells. Unfortunately, existing GSK3 inhibitors lead to suboptimal differentiation activity making them less useful as clinical AML differentiation agents. Here, we describe the discovery of a novel GSK3 inhibitor, GS87. GS87 was discovered in efforts to optimize GSK3 inhibition for AML differentiation activity. Despite GS87's dramatic ability to induce AML differentiation, kinase profiling reveals its high specificity in targeting GSK3 as compared with other kinases. GS87 demonstrates high efficacy in a mouse AML model system and unlike current AML therapeutics, exhibits little effect on normal bone marrow cells. GS87 induces potent differentiation by more effectively activating GSK3-dependent signaling components including MAPK signaling as compared with other GSK3 inhibitors. GS87 is a novel GSK3 inhibitor with therapeutic potential as a differentiation agent for non-promyelocytic AML. Mol Cancer Ther; 15(7); 1485-94. ©2016 AACR.
Collapse
Affiliation(s)
- Sophia Hu
- Department of Pathology Case Western Reserve University
| | | | | | | | | | - Amit Chakrabarti
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio
| | - Zhiqiang Xia
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio
| | - Goutam Karan
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio
| | | | - Mukesh K Agrawal
- University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio.,MirX Pharmaceuticals Cleveland, Ohio
| | - David N Wald
- Department of Pathology Case Western Reserve University.,University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, Ohio; Invenio Therapeutics Inc. Cleveland, Ohio.,University Hospitals Case Medical Center, Cleveland, Ohio
| |
Collapse
|
41
|
mTORC signaling in hematopoiesis. Int J Hematol 2016; 103:510-8. [PMID: 26791377 DOI: 10.1007/s12185-016-1944-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 01/08/2023]
Abstract
mTOR is a serine/threonine (Ser/Thr) protein kinase that responds to multiple signals, including growth factors, amino acids, energy status, stress, and oxygen, regulates cell survival, cell growth, the cell cycle, and cell metabolism, and maintains homeostasis [1]. Increased or decreased mTORC1 activity can alter HSC function and cause hematological disorders [2, 3]. Therefore, a comprehensive knowledge of mTOR is critical to understanding how HSCs function and maintain homeostasis in the hematopoietic system. In this review, we summarize recent advances in the understanding of the mTOR signaling pathway and its roles in hematopoiesis and leukemia. We also discuss pharmacological approaches to manipulate mTOR activity.
Collapse
|
42
|
Tosello V, Bordin F, Yu J, Agnusdei V, Indraccolo S, Basso G, Amadori A, Piovan E. Calcineurin and GSK-3 inhibition sensitizes T-cell acute lymphoblastic leukemia cells to apoptosis through X-linked inhibitor of apoptosis protein degradation. Leukemia 2015; 30:812-22. [PMID: 26648536 DOI: 10.1038/leu.2015.335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 12/26/2022]
Abstract
The calcineurin (Cn)-nuclear factor of activated T cells signaling pathway is critically involved in many aspects of normal T-cell physiology; however, its direct implication in leukemogenesis is still ill-defined. Glycogen synthase kinase-3β (GSK-3β) has recently been reported to interact with Cn in neuronal cells and is implicated in MLL leukemia. Our biochemical studies clearly demonstrated that Cn was able to interact with GSK-3β in T-cell acute lymphoblastic leukemia (T-ALL) cells, and that this interaction was direct, leading to an increased catalytic activity of GSK-3β, possibly through autophosphorylation of Y216. Sensitivity to GSK-3 inhibitor treatment correlated with altered GSK-3β phosphorylation and was more prominent in T-ALL with Pre/Pro immunophenotype. In addition, dual Cn and GSK-3 inhibitor treatment in T-ALL cells promoted sensitization to apoptosis through proteasomal degradation of X-linked inhibitor of apoptosis protein (XIAP). Consistently, resistance to drug treatments in primary samples was strongly associated with higher XIAP protein levels. Finally, we showed that dual Cn and GSK-3 inhibitor treatment in vitro and in vivo is effective against available models of T-ALL, indicating an insofar untapped therapeutic opportunity.
Collapse
Affiliation(s)
- V Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - F Bordin
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova, Italy
| | - J Yu
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA
| | - V Agnusdei
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - S Indraccolo
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - G Basso
- Dipartimento di Salute della Donna e del Bambino, Università di Padova, Padova, Italy
| | - A Amadori
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova, Italy
| | - E Piovan
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova, Italy
| |
Collapse
|
43
|
Jung EM, Ka M, Kim WY. Loss of GSK-3 Causes Abnormal Astrogenesis and Behavior in Mice. Mol Neurobiol 2015; 53:3954-3966. [PMID: 26179612 DOI: 10.1007/s12035-015-9326-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Altered activity of glycogen synthase kinase-3 (GSK-3) is associated with psychiatric diseases and neurodegenerative diseases. GSK-3 is a key regulator in multiple aspects of neuronal differentiation in the brain. However, little is known about the role of GSK-3 in astrocyte development. To examine the role of GSK-3 in astrocytes, we generated a conditional knockout mouse using a glial fibrillary acidic protein (GFAP)-cre driver, in which the GSK-3 alpha and beta genes are deleted in astrocytes. We found that GFAP-cre-mediated GSK-3 deletion led to a larger brain. The number and size of astrocytes were increased in GSK-3 mutant brains. The levels of GFAP and phospho-STAT3, indicators of astrogenesis, were elevated in GSK-3 mutants. Furthermore, we found upregulation of astrocyte regulatory molecules such as phospho-AKT, phospho-S6, and cyclin D in GSK-3 mutant brains. Finally, GSK-3 mutant mice exhibited aberrant anxiety and social behavior. Our results suggest that GSK-3 plays a significant role in astrocyte development and behavioral control in mice.
Collapse
Affiliation(s)
- Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
44
|
Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK dependent. Leukemia 2015; 29:2277-84. [PMID: 26108692 DOI: 10.1038/leu.2015.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/08/2022]
Abstract
We recently identified that the MEK/ERK1/2 pathway synergized with retinoic acid (RA) to restore both transcriptional activity and RA-induced differentiation in RA-resistant acute promyelocytic leukemia (APL) cells. To target the MEK/ERK pathway, we identified glycogen synthase kinase-3β (GSK-3β) inhibitors including lithium chloride (LiCl) as activators of this pathway in APL cells. Using NB4 (RA-sensitive) and UF-1 (RA-resistant) APL cell lines, we observed that LiCl as well as synthetic GSK-3β inhibitors decreased proliferation, induced apoptosis and restored, in RA-resistant cells, the expression of RA target genes and the RA-induced differentiation. Inhibition of the MEK/ERK1/2 pathway abolished these effects. These results were corroborated in primary APL patient cells and translated in vivo using an APL preclinical mouse model in which LiCl given alone was as efficient as RA in increasing survival of leukemic mice compared with untreated mice. When LiCl was combined with RA, we observed a significant survival advantage compared with mice treated by RA alone. In this work, we demonstrate that LiCl, a well-tolerated agent in humans, has antileukemic activity in APL and that it has the potential to restore RA-induced transcriptional activation and differentiation in RA-resistant APL cells in an MEK/ERK-dependent manner.
Collapse
|
45
|
Venè R, Cardinali B, Arena G, Ferrari N, Benelli R, Minghelli S, Poggi A, Noonan DM, Albini A, Tosetti F. Glycogen synthase kinase 3 regulates cell death and survival signaling in tumor cells under redox stress. Neoplasia 2015; 16:710-22. [PMID: 25246272 PMCID: PMC4234881 DOI: 10.1016/j.neo.2014.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 01/11/2023] Open
Abstract
Targeting tumor-specific metabolic adaptations is a promising anticancer strategy when tumor defense mechanisms are restrained. Here, we show that redox-modulating drugs including the retinoid N-(4-hydroxyphenyl)retinamide (4HPR), the synthetic triterpenoid bardoxolone (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester), arsenic trioxide (As2O3), and phenylethyl isothiocyanate (PEITC), while affecting tumor cell viability, induce sustained Ser9 phosphorylation of the multifunctional kinase glycogen synthase kinase 3β (GSK3β). The antioxidant N-acetylcysteine decreased GSK3β phosphorylation and poly(ADP-ribose) polymerase cleavage induced by 4HPR, As2O3, and PEITC, implicating oxidative stress in these effects. GSK3β phosphorylation was associated with up-regulation of antioxidant enzymes, in particular heme oxygenase-1 (HO-1), and transient elevation of intracellular glutathione (GSH) in cells surviving acute stress, before occurrence of irreversible damage and death. Genetic inactivation of GSK3β or transfection with the non-phosphorylatable GSK3β-S9A mutant inhibited HO-1 induction under redox stress, while tumor cells resistant to 4HPR exhibited increased GSK3β phosphorylation, HO-1 expression, and GSH levels. The above-listed findings are consistent with a role for sustained GSK3β phosphorylation in a signaling network activating antioxidant effector mechanisms during oxidoreductive stress. These data underlie the importance of combination regimens of antitumor redox drugs with inhibitors of survival signaling to improve control of tumor development and progression and overcome chemoresistance.
Collapse
Affiliation(s)
- Roberta Venè
- IRCCS Azienda Ospedaliera Universitaria S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova 16132, Italy
| | - Barbara Cardinali
- IRCCS Azienda Ospedaliera Universitaria S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova 16132, Italy
| | - Giuseppe Arena
- IRCCS Azienda Ospedaliera Universitaria S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova 16132, Italy
| | - Nicoletta Ferrari
- IRCCS Azienda Ospedaliera Universitaria S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova 16132, Italy
| | - Roberto Benelli
- IRCCS Azienda Ospedaliera Universitaria S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova 16132, Italy
| | - Simona Minghelli
- IRCCS Azienda Ospedaliera Universitaria S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova 16132, Italy
| | - Alessandro Poggi
- IRCCS Azienda Ospedaliera Universitaria S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova 16132, Italy
| | - Douglas M Noonan
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese 21100, Italy; Science and Technology Pole, IRCCS MultiMedica, Milan 20138, Italy
| | - Adriana Albini
- Infrastruttura Ricerca-Statistica (I-RS), IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia, Arcispedale S. Maria Nuova, Reggio Emilia 42123, Italy.
| | - Francesca Tosetti
- IRCCS Azienda Ospedaliera Universitaria S. Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Genova 16132, Italy.
| |
Collapse
|
46
|
Lu W, Li Y. Salinomycin suppresses LRP6 expression and inhibits both Wnt/β-catenin and mTORC1 signaling in breast and prostate cancer cells. J Cell Biochem 2015; 115:1799-807. [PMID: 24905570 DOI: 10.1002/jcb.24850] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/22/2014] [Indexed: 02/06/2023]
Abstract
Emerging evidence indicates that activation of Wnt/β-catenin signaling at the cell surface results in inhibition of glycogen synthase kinase 3β (GSK3β), leading to activation of mTORC1 signaling in cancer cells. The low density lipoprotein receptor-related protein-6 (LRP6) is an essential Wnt co-receptor for Wnt/β-catenin signaling. Salinomycin is a novel small molecule inhibitor of LRP6. In the present study, we found that LRP6 overexpression induced mTORC1 signaling activation in cancer cells, and that salinomycin was not only a potent Wnt/β-catenin signaling inhibitor, but also a strong mTORC1 signaling antagonist in breast and prostate cancer cells. Mechanistically, salinomycin activated GSK3β in cancer cells. Moreover, salinomycin was able to suppress the expression of cyclin D1 and survivin, two targets of both Wnt/β-catenin and mTORC1 signaling, in prostate and breast cancer cells, and displayed remarkable anticancer activity. Our results present novel mechanisms underlying salinomycin-mediated cancer cell death.
Collapse
Affiliation(s)
- Wenyan Lu
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35255
| | | |
Collapse
|
47
|
Peng G, Liu Y. Hypoxia-inducible factors in cancer stem cells and inflammation. Trends Pharmacol Sci 2015; 36:374-83. [PMID: 25857287 DOI: 10.1016/j.tips.2015.03.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/05/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
Abstract
Hypoxia-inducible factors (HIF) mediate metabolic switches in cells in hypoxic environments, including those in both normal and malignant tissues with limited supplies of oxygen. Paradoxically, recent studies have shown that cancer stem cells (CSCs) and activated immune effector cells exhibit high HIF activity in normoxic environments and that HIF activity is critical in the maintenance of CSCs as well as the differentiation and function of inflammatory cells. Given that inflammation and CSCs are two major barriers to effective cancer therapy, targeting HIF may provide a new approach to developing such treatments.
Collapse
Affiliation(s)
- Gong Peng
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yang Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China; Center for Cancer and Immunology Research, Children's Research Institute, Children's National Medical Center, Washington, DC, USA.
| |
Collapse
|
48
|
McCubrey JA, Steelman LS, Bertrand FE, Davis NM, Sokolosky M, Abrams SL, Montalto G, D'Assoro AB, Libra M, Nicoletti F, Maestro R, Basecke J, Rakus D, Gizak A, Demidenko ZN, Cocco L, Martelli AM, Cervello M. GSK-3 as potential target for therapeutic intervention in cancer. Oncotarget 2015; 5:2881-911. [PMID: 24931005 PMCID: PMC4102778 DOI: 10.18632/oncotarget.2037] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) was initially identified and studied in the regulation of glycogen synthesis. GSK-3 functions in a wide range of cellular processes. Aberrant activity of GSK-3 has been implicated in many human pathologies including: bipolar depression, Alzheimer's disease, Parkinson's disease, cancer, non-insulin-dependent diabetes mellitus (NIDDM) and others. In some cases, suppression of GSK-3 activity by phosphorylation by Akt and other kinases has been associated with cancer progression. In these cases, GSK-3 has tumor suppressor functions. In other cases, GSK-3 has been associated with tumor progression by stabilizing components of the beta-catenin complex. In these situations, GSK-3 has oncogenic properties. While many inhibitors to GSK-3 have been developed, their use remains controversial because of the ambiguous role of GSK-3 in cancer development. In this review, we will focus on the diverse roles that GSK-3 plays in various human cancers, in particular in solid tumors. Recently, GSK-3 has also been implicated in the generation of cancer stem cells in various cell types. We will also discuss how this pivotal kinase interacts with multiple signaling pathways such as: PI3K/PTEN/Akt/mTORC1, Ras/Raf/MEK/ERK, Wnt/beta-catenin, Hedgehog, Notch and others.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology,Brody School of Medicine at East Carolina University Greenville, NC 27858 USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tao S, Tang D, Morita Y, Sperka T, Omrani O, Lechel A, Sakk V, Kraus J, Kestler HA, Kühl M, Rudolph KL. Wnt activity and basal niche position sensitize intestinal stem and progenitor cells to DNA damage. EMBO J 2015; 34:624-40. [PMID: 25609789 PMCID: PMC4365032 DOI: 10.15252/embj.201490700] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aging and carcinogenesis coincide with the accumulation of DNA damage and mutations in stem and progenitor cells. Molecular mechanisms that influence responses of stem and progenitor cells to DNA damage remain to be delineated. Here, we show that niche positioning and Wnt signaling activity modulate the sensitivity of intestinal stem and progenitor cells (ISPCs) to DNA damage. ISPCs at the crypt bottom with high Wnt/β-catenin activity are more sensitive to DNA damage compared to ISPCs in position 4 with low Wnt activity. These differences are not induced by differences in cell cycle activity but relate to DNA damage-dependent activation of Wnt signaling, which in turn amplifies DNA damage checkpoint activation. The study shows that instructed enhancement of Wnt signaling increases radio-sensitivity of ISPCs, while inhibition of Wnt signaling decreases it. These results provide a proof of concept that cell intrinsic levels of Wnt signaling modulate the sensitivity of ISPCs to DNA damage and heterogeneity in Wnt activation in the stem cell niche contributes to the selection of ISPCs in the context of DNA damage.
Collapse
Affiliation(s)
- Si Tao
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Duozhuang Tang
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - Yohei Morita
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - Tobias Sperka
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - Omid Omrani
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany
| | - André Lechel
- Cooperation Group between the Leibniz Institute for Age Research, Ulm University, Ulm, Germany
| | - Vadim Sakk
- Cooperation Group between the Leibniz Institute for Age Research, Ulm University, Ulm, Germany
| | - Johann Kraus
- Medical Systems Biology Unit, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany Medical Systems Biology Unit, Ulm University, Ulm, Germany
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Karl Lenhard Rudolph
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V. (FLI), Jena, Germany Research Group on Stem Cell Aging, Jena University Hospital (UKJ), Jena, Germany
| |
Collapse
|
50
|
Combined regulation of mTORC1 and lysosomal acidification by GSK-3 suppresses autophagy and contributes to cancer cell growth. Oncogene 2014; 34:4613-23. [PMID: 25500539 DOI: 10.1038/onc.2014.390] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/10/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022]
Abstract
There is controversy over the role of glycogen synthase kinase-3 (GSK-3) in cancer progression. Recent work has implicated GSK-3 in the regulation of mammalian target of rapamycin (mTOR), a known player in malignant transformation. Autophagy, a self-degradation pathway, is inhibited by mTOR and is tightly associated with cell survival and tumor growth. Here we show that GSK-3 suppresses autophagy via mTOR complex-1 (mTORC1) and lysosomal regulation. We show that overexpression of GSK-3 isoforms (GSK-3α and GSK-3β) activated mTORC1 and suppressed autophagy in MCF-7 human breast cancer cells as indicated by reduced beclin-1 levels and upregulation of sequestosome 1 (p62/SQSTM1). Further, overexpression of GSK-3 increased the number of autophagosomes and inhibited autophagic flux. This activity was directly related to reduced lysosomal acidification triggered by GSK-3 (in which GSK-3β has a stronger impact). We found that lysosomal acidification is reduced in MCF-7 cells that also exhibit increased levels of autophagosomes and p62/SQSTM1 and increased activity of mTORC1. Subsequently, treating cells with GSK-3 inhibitors restored lysosomal acidification, enhanced autophagic flux and inhibited mTORC1. Furthermore, GSK-3 inhibitors inhibited cell proliferation. We provide evidence that GSK3-mediated mTORC1 activity and GSK-3-mediated lysosomal acidification occur via distinct pathways, yet both mTORC1 and lysosomes control cell growth. Finally, we show that GSK-3-reduced lysosomal acidification inhibits endocytic clearance as demonstrated by reduced endocytic degradation of the epidermal growth factor receptor. Taken together, our study places GSK-3 as a key regulator coordinating cellular homeostasis. GSK-3 inhibitors may be useful in targeting mTORC1 and lysosomal acidification for cancer therapy.
Collapse
|