1
|
Peraldi R, Kmita M. 40 years of the homeobox: mechanisms of Hox spatial-temporal collinearity in vertebrates. Development 2024; 151:dev202508. [PMID: 39167089 DOI: 10.1242/dev.202508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Animal body plans are established during embryonic development by the Hox genes. This patterning process relies on the differential expression of Hox genes along the head-to-tail axis. Hox spatial collinearity refers to the relationship between the organization of Hox genes in clusters and the differential Hox expression, whereby the relative order of the Hox genes within a cluster mirrors the spatial sequence of expression in the developing embryo. In vertebrates, the cluster organization is also associated with the timing of Hox activation, which harmonizes Hox expression with the progressive emergence of axial tissues. Thereby, in vertebrates, Hox temporal collinearity is intimately linked to Hox spatial collinearity. Understanding the mechanisms contributing to Hox temporal and spatial collinearity is thus key to the comprehension of vertebrate patterning. Here, we provide an overview of the main discoveries pertaining to the mechanisms of Hox spatial-temporal collinearity.
Collapse
Affiliation(s)
- Rodrigue Peraldi
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
- Programme de Biologie Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
2
|
Wang H, Chen X, Meng X, Cao Y, Han S, Liu K, Zhao X, Zhao X, Zhang X. The pathogenic mechanism of syndactyly type V identified in a Hoxd13Q50R knock-in mice. Bone Res 2024; 12:21. [PMID: 38561387 PMCID: PMC10984994 DOI: 10.1038/s41413-024-00322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Syndactyly type V (SDTY5) is an autosomal dominant extremity malformation characterized by fusion of the fourth and fifth metacarpals. In the previous publication, we first identified a heterozygous missense mutation Q50R in homeobox domain (HD) of HOXD13 in a large Chinese family with SDTY5. In order to substantiate the pathogenicity of the variant and elucidate the underlying pathogenic mechanism causing limb malformation, transcription-activator-like effector nucleases (TALEN) was employed to generate a Hoxd13Q50R mutant mouse. The mutant mice exhibited obvious limb malformations including slight brachydactyly and partial syndactyly between digits 2-4 in the heterozygotes, and severe syndactyly, brachydactyly and polydactyly in homozygotes. Focusing on BMP2 and SHH/GREM1/AER-FGF epithelial mesenchymal (e-m) feedback, a crucial signal pathway for limb development, we found the ectopically expressed Shh, Grem1 and Fgf8 and down-regulated Bmp2 in the embryonic limb bud at E10.5 to E12.5. A transcriptome sequencing analysis was conducted on limb buds (LBs) at E11.5, revealing 31 genes that exhibited notable disparities in mRNA level between the Hoxd13Q50R homozygotes and the wild-type. These genes are known to be involved in various processes such as limb development, cell proliferation, migration, and apoptosis. Our findings indicate that the ectopic expression of Shh and Fgf8, in conjunction with the down-regulation of Bmp2, results in a failure of patterning along both the anterior-posterior and proximal-distal axes, as well as a decrease in interdigital programmed cell death (PCD). This cascade ultimately leads to the development of syndactyly and brachydactyly in heterozygous mice, and severe limb malformations in homozygous mice. These findings suggest that abnormal expression of SHH, FGF8, and BMP2 induced by HOXD13Q50R may be responsible for the manifestation of human SDTY5.
Collapse
Affiliation(s)
- Han Wang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Department of Orthopedics, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Xiumin Chen
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiaolu Meng
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Yixuan Cao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Shirui Han
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Keqiang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Ximeng Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
| | - Xiuli Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Department of Medical Genetics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
3
|
Fuiten AM, Yoshimoto Y, Shukunami C, Stadler HS. Digits in a dish: An in vitro system to assess the molecular genetics of hand/foot development at single-cell resolution. Front Cell Dev Biol 2023; 11:1135025. [PMID: 36994104 PMCID: PMC10040768 DOI: 10.3389/fcell.2023.1135025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
In vitro models allow for the study of developmental processes outside of the embryo. To gain access to the cells mediating digit and joint development, we identified a unique property of undifferentiated mesenchyme isolated from the distal early autopod to autonomously re-assemble forming multiple autopod structures including: digits, interdigital tissues, joints, muscles and tendons. Single-cell transcriptomic analysis of these developing structures revealed distinct cell clusters that express canonical markers of distal limb development including: Col2a1, Col10a1, and Sp7 (phalanx formation), Thbs2 and Col1a1 (perichondrium), Gdf5, Wnt5a, and Jun (joint interzone), Aldh1a2 and Msx1 (interdigital tissues), Myod1 (muscle progenitors), Prg4 (articular perichondrium/articular cartilage), and Scx and Tnmd (tenocytes/tendons). Analysis of the gene expression patterns for these signature genes indicates that developmental timing and tissue-specific localization were also recapitulated in a manner similar to the initiation and maturation of the developing murine autopod. Finally, the in vitro digit system also recapitulates congenital malformations associated with genetic mutations as in vitro cultures of Hoxa13 mutant mesenchyme produced defects present in Hoxa13 mutant autopods including digit fusions, reduced phalangeal segment numbers, and poor mesenchymal condensation. These findings demonstrate the robustness of the in vitro digit system to recapitulate digit and joint development. As an in vitro model of murine digit and joint development, this innovative system will provide access to the developing limb tissues facilitating studies to discern how digit and articular joint formation is initiated and how undifferentiated mesenchyme is patterned to establish individual digit morphologies. The in vitro digit system also provides a platform to rapidly evaluate treatments aimed at stimulating the repair or regeneration of mammalian digits impacted by congenital malformation, injury, or disease.
Collapse
Affiliation(s)
- Allison M. Fuiten
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H. Scott Stadler
- Research Center, Shriners Children’s, Portland, OR, United States
- Department of Orthopaedics and Rehabilitation, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: H. Scott Stadler,
| |
Collapse
|
4
|
Zhang CH, Gao Y, Hung HH, Zhuo Z, Grodzinsky AJ, Lassar AB. Creb5 coordinates synovial joint formation with the genesis of articular cartilage. Nat Commun 2022; 13:7295. [PMID: 36435829 PMCID: PMC9701237 DOI: 10.1038/s41467-022-35010-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
While prior work has established that articular cartilage arises from Prg4-expressing perichondrial cells, it is not clear how this process is specifically restricted to the perichondrium of synovial joints. We document that the transcription factor Creb5 is necessary to initiate the expression of signaling molecules that both direct the formation of synovial joints and guide perichondrial tissue to form articular cartilage instead of bone. Creb5 promotes the generation of articular chondrocytes from perichondrial precursors in part by inducing expression of signaling molecules that block a Wnt5a autoregulatory loop in the perichondrium. Postnatal deletion of Creb5 in the articular cartilage leads to loss of both flat superficial zone articular chondrocytes coupled with a loss of both Prg4 and Wif1 expression in the articular cartilage; and a non-cell autonomous up-regulation of Ctgf. Our findings indicate that Creb5 promotes joint formation and the subsequent development of articular chondrocytes by driving the expression of signaling molecules that both specify the joint interzone and simultaneously inhibit a Wnt5a positive-feedback loop in the perichondrium.
Collapse
Affiliation(s)
- Cheng-Hai Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA.
| | - Yao Gao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA
| | - Han-Hwa Hung
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhu Zhuo
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, 240 Longwood Ave., Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Gomathi K, Rohini M, Partridge NC, Selvamurugan N. Regulation of transforming growth factor-β1-stimulation of Runx2 acetylation for matrix metalloproteinase 13 expression in osteoblastic cells. Biol Chem 2022; 403:305-315. [PMID: 34643076 DOI: 10.1515/hsz-2021-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/30/2021] [Indexed: 01/12/2023]
Abstract
Transforming growth factor beta 1 (TGF-β1) functions as a coupling factor between bone development and resorption. Matrix metalloproteinase 13 (MMP13) is important in bone remodeling, and skeletal dysplasia is caused by a deficiency in MMP13 expre-ssion. Runx2, a transcription factor is essential for bone development, and MMP13 is one of its target genes. TGF-β1 promoted Runx2 phosphorylation, which was necessary for MMP13 production in osteoblastic cells, as we previously shown. Since the phosphorylation of some proteins causes them to be degraded by the ubiquitin/proteasome pathway, we hypothesized that TGF-β1 might stabilize the phosphorylated Runx2 protein for its activity by other post-translational modification (PTM). This study demonstrated that TGF-β1-stimulated Runx2 acetylation in rat osteoblastic cells. p300, a histone acetyltransferase interacted with Runx2, and it promoted Runx2 acetylation upon TGF-β1-treatment in these cells. Knockdown of p300 decreased the TGF-β1-stimulated Runx2 acetylation and MMP13 expression in rat osteoblastic cells. TGF-β1-treatment stimulated the acetylated Runx2 bound at the MMP13 promoter, and knockdown of p300 reduced this effect in these cells. Overall, our studies identified the transcriptional regulation of MMP13 by TGF-β1 via Runx2 acetylation in rat osteoblastic cells, and these findings contribute to the knowledge of events presiding bone metabolism.
Collapse
Affiliation(s)
- Kanagaraj Gomathi
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Muthukumar Rohini
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Nicola C Partridge
- Department of Molecular Pathobiology, New York University College Dentistry, New York, NY, USA
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| |
Collapse
|
6
|
Saxena A, Sharma V, Muthuirulan P, Neufeld SJ, Tran MP, Gutierrez HL, Chen KD, Erberich JM, Birmingham A, Capellini TD, Cobb J, Hiller M, Cooper KL. Interspecies transcriptomics identify genes that underlie disproportionate foot growth in jerboas. Curr Biol 2022; 32:289-303.e6. [PMID: 34793695 PMCID: PMC8792248 DOI: 10.1016/j.cub.2021.10.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/16/2021] [Accepted: 10/28/2021] [Indexed: 01/26/2023]
Abstract
Despite the great diversity of vertebrate limb proportion and our deep understanding of the genetic mechanisms that drive skeletal elongation, little is known about how individual bones reach different lengths in any species. Here, we directly compare the transcriptomes of homologous growth cartilages of the mouse (Mus musculus) and bipedal jerboa (Jaculus jaculus), the latter of which has "mouse-like" arms but extremely long metatarsals of the feet. Intersecting gene-expression differences in metatarsals and forearms of the two species revealed that about 10% of orthologous genes are associated with the disproportionately rapid elongation of neonatal jerboa feet. These include genes and enriched pathways not previously associated with endochondral elongation as well as those that might diversify skeletal proportion in addition to their known requirements for bone growth throughout the skeleton. We also identified transcription regulators that might act as "nodes" for sweeping differences in genome expression between species. Among these, Shox2, which is necessary for proximal limb elongation, has gained expression in jerboa metatarsals where it has not been detected in other vertebrates. We show that Shox2 is sufficient to increase mouse distal limb length, and a nearby putative cis-regulatory region is preferentially accessible in jerboa metatarsals. In addition to mechanisms that might directly promote growth, we found evidence that jerboa foot elongation may occur in part by de-repressing latent growth potential. The genes and pathways that we identified here provide a framework to understand the modular genetic control of skeletal growth and the remarkable malleability of vertebrate limb proportion.
Collapse
Affiliation(s)
- Aditya Saxena
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Pushpanathan Muthuirulan
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - Stanley J Neufeld
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Mai P Tran
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Haydee L Gutierrez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kevin D Chen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joel M Erberich
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA
| | - John Cobb
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden 01307, Germany; Max Planck Institute for the Physics of Complex Systems, Nothnitzerstraße 38, Dresden 01187, Germany
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Guo R, Fang X, Mao H, Sun B, Zhou J, An Y, Wang B. A Novel Missense Variant of HOXD13 Caused Atypical Synpolydactyly by Impairing the Downstream Gene Expression and Literature Review for Genotype-Phenotype Correlations. Front Genet 2021; 12:731278. [PMID: 34777468 PMCID: PMC8579070 DOI: 10.3389/fgene.2021.731278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Synpolydactyly (SPD) is a hereditary congenital limb malformation with distinct syndactyly designated as SPD1, SPD2, and SPD3. SPD1 is caused by mutations of HOXD13, which is a homeobox transcription factor crucial for limb development. More than 143 SPD patients have been reported to carry HOXD13 mutations, but there is a lack of genotype-phenotype correlation. We report a novel missense mutation of c. 925A > T (p.I309F) in an individual with atypical synpolydactyly inherited from her father with mild clinodactyly and three other different alanine insertion mutations in HOXD13 identified by whole exome sequencing (WES) in 12 Chinese SPD families. Unlike polyalanine extension, which tends to form α-helix and causes protein aggregation in the cytoplasm as shown by molecular simulation and immunofluorescence, the c. 925A > T mutation impairs downstream transcription of EPHA7. We compiled literature findings and analyzed genotype-phenotype features in 173 SPD individuals of 53 families, including 12 newly identified families. Among the HOXD13-related individuals, mutations were distributed in three regions: polyalanine, homeobox, and non-homeobox. Polyalanine extension was the most common variant (45%), followed by missense mutations (32%) mostly in the homeobox compared with the loss-of-function (LOF) variants more likely in non-homeobox. Furthermore, a more severe degree and classic SPD were associated with polyalanine mutations although missense variants were associated with brachydactyly and syndactyly in hands and feet and LOF variants with clinodactyly in hands. Our study broadens the HOXD13 mutation spectrum and reveals the profile of three different variants and their severity of SPD, the genotype-phenotype correlation related to the HOXD13 mutation site provides clinical insight, including for genetic counseling.
Collapse
Affiliation(s)
- Ruiji Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Fang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailei Mao
- Department of Anesthesiology and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiateng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu An
- Human Phenome Institute, MOE Key Laboratory of Contemporary Anthropology, and School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Rux D, Helbig K, Koyama E, Pacifici M. Hox11 expression characterizes developing zeugopod synovial joints and is coupled to postnatal articular cartilage morphogenesis into functional zones in mice. Dev Biol 2021; 477:49-63. [PMID: 34010606 DOI: 10.1016/j.ydbio.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/07/2021] [Accepted: 05/10/2021] [Indexed: 11/26/2022]
Abstract
Previous studies on mouse embryo limbs have established that interzone mesenchymal progenitor cells emerging at each prescribed joint site give rise to joint tissues over fetal time. These incipient tissues undergo structural maturation and morphogenesis postnatally, but underlying mechanisms of regulation remain unknown. Hox11 genes dictate overall zeugopod musculoskeletal patterning and skeletal element identities during development. Here we asked where these master regulators are expressed in developing limb joints and whether they are maintained during postnatal zeugopod joint morphogenesis. We found that Hoxa11 was predominantly expressed and restricted to incipient wrist and ankle joints in E13.5 mouse embryos, and became apparent in medial and central regions of knees by E14.5, though remaining continuously dormant in elbow joints. Closer examination revealed that Hoxa11 initially characterized interzone and neighboring cells and was then restricted to nascent articular cartilage, intra joint ligaments and structures such as meniscal horns over prenatal time. Postnatally, articular cartilage progresses from a nondescript cell-rich, matrix-poor tissue to a highly structured, thick, zonal and mechanically competent tissue with chondrocyte columns over time, most evident at sites such as the tibial plateau. Indeed, Hox11 expression (primarily Hoxa11) was intimately coupled to such morphogenetic processes and, in particular, to the topographical rearrangement of chondrocytes into columns within the intermediate and deep zones of tibial plateau that normally endures maximal mechanical loads. Revealingly, these expression patterns were maintained even at 6 months of age. In sum, our data indicate that Hox11 genes remain engaged well beyond embryonic synovial joint patterning and are specifically tied to postnatal articular cartilage morphogenesis into a zonal and resilient tissue. The data demonstrate that Hox11 genes characterize adult, terminally differentiated, articular chondrocytes and maintain region-specificity established in the embryo.
Collapse
Affiliation(s)
- Danielle Rux
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Kimberly Helbig
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eiki Koyama
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
9
|
Beccari L, Jaquier G, Lopez-Delisle L, Rodriguez-Carballo E, Mascrez B, Gitto S, Woltering J, Duboule D. Dbx2 regulation in limbs suggests interTAD sharing of enhancers. Dev Dyn 2021; 250:1280-1299. [PMID: 33497014 PMCID: PMC8451760 DOI: 10.1002/dvdy.303] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/17/2021] [Accepted: 01/17/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND During tetrapod limb development, the HOXA13 and HOXD13 transcription factors are critical for the emergence and organization of the autopod, the most distal aspect where digits will develop. Since previous work had suggested that the Dbx2 gene is a target of these factors, we set up to analyze in detail this potential regulatory interaction. RESULTS We show that HOX13 proteins bind to mammalian-specific sequences at the vicinity of the Dbx2 locus that have enhancer activity in developing digits. However, the functional inactivation of the DBX2 protein did not elicit any particular phenotype related to Hox genes inactivation in digits, suggesting either redundant or compensatory mechanisms. We report that the neighboring Nell2 and Ano6 genes are also expressed in distal limb buds and are in part controlled by the same Dbx2 enhancers despite being localized into two different topologically associating domains (TADs) flanking the Dbx2 locus. CONCLUSIONS We conclude that Hoxa13 and Hoxd genes cooperatively activate Dbx2 expression in developing digits through binding to mammalian specific regulatory sequences in the Dbx2 neighborhood. Furthermore, these enhancers can overcome TAD boundaries in either direction to co-regulate a set of genes located in distinct chromatin domains.
Collapse
Affiliation(s)
- Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, University Claude Bernard Lyon1, Lyon, France
| | - Gabriel Jaquier
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | | | - Eddie Rodriguez-Carballo
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Sandra Gitto
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Joost Woltering
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,School of Life Sciences, Federal School of Technology (EPFL), Lausanne, Switzerland.,Collège de France, Paris, France
| |
Collapse
|
10
|
Qu F, Palte IC, Gontarz PM, Zhang B, Guilak F. Transcriptomic analysis of bone and fibrous tissue morphogenesis during digit tip regeneration in the adult mouse. FASEB J 2020; 34:9740-9754. [PMID: 32506623 DOI: 10.1096/fj.202000330r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/29/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022]
Abstract
Humans have limited regenerative potential of musculoskeletal tissues following limb or digit loss. The murine digit has been used to study mammalian regeneration, where stem/progenitor cells (the "blastema") completely regenerate the digit tip after distal, but not proximal, amputation. However, the molecular mechanisms responsible for this response remain to be determined. Here, we evaluated the spatiotemporal formation of bone and fibrous tissues after level-dependent amputation of the murine terminal phalanx and quantified the transcriptome of the repair tissue. Distal (regenerative) and proximal (non-regenerative) amputations showed significant differences in temporal gene expression and tissue regrowth over time. Genes that direct skeletal system development and limb morphogenesis are transiently upregulated during blastema formation and differentiation, including distal Hox genes. Overall, our results suggest that digit tip regeneration is controlled by a gene regulatory network that recapitulates aspects of limb development, and that failure to activate this developmental program results in fibrotic wound healing.
Collapse
Affiliation(s)
- Feini Qu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Ilan C Palte
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Paul M Gontarz
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| |
Collapse
|
11
|
Basu S, Mackowiak SD, Niskanen H, Knezevic D, Asimi V, Grosswendt S, Geertsema H, Ali S, Jerković I, Ewers H, Mundlos S, Meissner A, Ibrahim DM, Hnisz D. Unblending of Transcriptional Condensates in Human Repeat Expansion Disease. Cell 2020; 181:1062-1079.e30. [PMID: 32386547 PMCID: PMC7261253 DOI: 10.1016/j.cell.2020.04.018] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/16/2020] [Accepted: 04/13/2020] [Indexed: 11/27/2022]
Abstract
Expansions of amino acid repeats occur in >20 inherited human disorders, and many occur in intrinsically disordered regions (IDRs) of transcription factors (TFs). Such diseases are associated with protein aggregation, but the contribution of aggregates to pathology has been controversial. Here, we report that alanine repeat expansions in the HOXD13 TF, which cause hereditary synpolydactyly in humans, alter its phase separation capacity and its capacity to co-condense with transcriptional co-activators. HOXD13 repeat expansions perturb the composition of HOXD13-containing condensates in vitro and in vivo and alter the transcriptional program in a cell-specific manner in a mouse model of synpolydactyly. Disease-associated repeat expansions in other TFs (HOXA13, RUNX2, and TBP) were similarly found to alter their phase separation. These results suggest that unblending of transcriptional condensates may underlie human pathologies. We present a molecular classification of TF IDRs, which provides a framework to dissect TF function in diseases associated with transcriptional dysregulation.
Collapse
Affiliation(s)
- Shaon Basu
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sebastian D Mackowiak
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Henri Niskanen
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Dora Knezevic
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Vahid Asimi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefanie Grosswendt
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Hylkje Geertsema
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Salaheddine Ali
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| | - Ivana Jerković
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Free University Berlin, 14195 Berlin, Germany
| | - Stefan Mundlos
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Daniel M Ibrahim
- RG Development and Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, 10178 Berlin, Germany
| | - Denes Hnisz
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany.
| |
Collapse
|
12
|
Amândio AR, Lopez-Delisle L, Bolt CC, Mascrez B, Duboule D. A complex regulatory landscape involved in the development of mammalian external genitals. eLife 2020; 9:e52962. [PMID: 32301703 PMCID: PMC7185996 DOI: 10.7554/elife.52962] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/17/2020] [Indexed: 02/04/2023] Open
Abstract
Developmental genes are often controlled by large regulatory landscapes matching topologically associating domains (TADs). In various contexts, the associated chromatin backbone is modified by specific enhancer-enhancer and enhancer-promoter interactions. We used a TAD flanking the mouse HoxD cluster to study how these regulatory architectures are formed and deconstructed once their function achieved. We describe this TAD as a functional unit, with several regulatory sequences acting together to elicit a transcriptional response. With one exception, deletion of these sequences didn't modify the transcriptional outcome, a result at odds with a conventional view of enhancer function. The deletion and inversion of a CTCF site located near these regulatory sequences did not affect transcription of the target gene. Slight modifications were nevertheless observed, in agreement with the loop extrusion model. We discuss these unexpected results considering both conventional and alternative explanations relying on the accumulation of poorly specific factors within the TAD backbone.
Collapse
Affiliation(s)
- Ana Rita Amândio
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of GenevaGenevaSwitzerland
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Department of Genetics and Evolution, University of GenevaGenevaSwitzerland
- Collège de FranceParisFrance
| |
Collapse
|
13
|
King A, Hoch NC, McGregor NE, Sims NA, Smyth IM, Heierhorst J. Dynll1 is essential for development and promotes endochondral bone formation by regulating intraflagellar dynein function in primary cilia. Hum Mol Genet 2019; 28:2573-2588. [DOI: 10.1093/hmg/ddz083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
AbstractMutations in subunits of the cilia-specific cytoplasmic dynein-2 (CD2) complex cause short-rib thoracic dystrophy syndromes (SRTDs), characterized by impaired bone growth and life-threatening perinatal respiratory complications. Different SRTD mutations result in varying disease severities. It remains unresolved whether this reflects the extent of retained hypomorphic protein functions or relative importance of the affected subunits for the activity of the CD2 holoenzyme. To define the contribution of the LC8-type dynein light chain subunit to the CD2 complex, we have generated Dynll1-deficient mouse strains, including the first-ever conditional knockout (KO) mutant for any CD2 subunit. Germline Dynll1 KO mice exhibit a severe ciliopathy-like phenotype similar to mice lacking another CD2 subunit, Dync2li1. Limb mesoderm-specific loss of Dynll1 results in severe bone shortening similar to human SRTD patients. Mechanistically, loss of Dynll1 leads to a partial depletion of other SRTD-related CD2 subunits, severely impaired retrograde intra-flagellar transport, significant thickening of primary cilia and cilia signaling defects. Interestingly, phenotypes of Dynll1-deficient mice are very similar to entirely cilia-deficient Kif3a/Ift88-null mice, except that they never present with polydactyly and retain relatively higher signaling outputs in parts of the hedgehog pathway. Compared to complete loss of Dynll1, maintaining very low DYNLL1 levels in mice lacking the Dynll1-transcription factor ASCIZ (ATMIN) results in significantly attenuated phenotypes and improved CD2 protein levels. The results suggest that primary cilia can maintain some functionality in the absence of intact CD2 complexes and provide a viable animal model for the analysis of the underlying bone development defects of SRTDs.
Collapse
Affiliation(s)
- Ashleigh King
- St. Vincent’s Institute of Medical Research
- Department of Medicine at St. Vincent’s Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| | | | | | - Natalie A Sims
- St. Vincent’s Institute of Medical Research
- Department of Medicine at St. Vincent’s Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jörg Heierhorst
- St. Vincent’s Institute of Medical Research
- Department of Medicine at St. Vincent’s Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
14
|
Long Z, Li Y, Gan Y, Zhao D, Wang G, Xie N, Lovnicki JM, Fazli L, Cao Q, Chen K, Dong X. Roles of the HOXA10 gene during castrate-resistant prostate cancer progression. Endocr Relat Cancer 2019; 26:279-292. [PMID: 30667363 DOI: 10.1530/erc-18-0465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Homeobox A10 (HOXA10) is an important transcription factor that regulates the development of the prostate gland. However, it remains unknown whether it modulates prostate cancer (PCa) progression into castrate-resistant stages. In this study, we have applied RNA in situ hybridization assays to demonstrate that downregulation of HOXA10 expression is associated with castrate-resistant PCa. These findings are supported by public RNA-seq data showing that reduced HOXA10 expression is correlated with poor patient survival. We show that HOXA10 suppresses PCa cell proliferation, anchorage colony formation and xenograft growth independent to androgens. Using AmpliSeq transcriptome sequencing, we have found that gene groups associated with lipid metabolism and androgen receptor (AR) signaling are enriched in the HOXA10 transcriptome. Furthermore, we demonstrate that HOXA10 suppresses the transcription of the fatty acid synthase (FASN) gene by forming a protein complex with AR and prevents AR recruitment to the FASN gene promoter. These results lead us to conclude that downregulation of HOXA10 gene expression may enhance lipogenesis to promote PCa cell growth and tumor progression to castrate-resistant stage.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation
- Disease Progression
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Gene Expression
- Gene Expression Regulation, Neoplastic
- Homeobox A10 Proteins/genetics
- Homeobox A10 Proteins/metabolism
- Humans
- Lipid Metabolism/genetics
- Male
- Mice
- Mice, Nude
- Promoter Regions, Genetic
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/mortality
- Prostatic Neoplasms, Castration-Resistant/physiopathology
- Protein Binding
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction/genetics
- Survival Analysis
Collapse
Affiliation(s)
- Zhi Long
- Department of Urology, Third Xiangya Hospital, Institute of Prostate Disease, Central South University, Changsha, China
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yinan Li
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yu Gan
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Urology Xiangya Hospital, Central South University, Changsha, China
| | - Dongyu Zhao
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Guangyu Wang
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Ning Xie
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica M Lovnicki
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ladan Fazli
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Urology and Robert H. Lurie Comprehensive Cancer Cancer, Northwestern University Reinberg School of Medicine, Chicago, Illinois, USA
| | - Kaifu Chen
- Center for Bioinformatics and Computational Biology, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Cardiothoracic Surgeries, Weill Cornell Medical College, Cornell University, New York, New York, USA
- Institute for Academic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Xuesen Dong
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Yakushiji-Kaminatsui N, Lopez-Delisle L, Bolt CC, Andrey G, Beccari L, Duboule D. Similarities and differences in the regulation of HoxD genes during chick and mouse limb development. PLoS Biol 2018; 16:e3000004. [PMID: 30475793 PMCID: PMC6283595 DOI: 10.1371/journal.pbio.3000004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/06/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
In all tetrapods examined thus far, the development and patterning of limbs require the activation of gene members of the HoxD cluster. In mammals, they are regulated by a complex bimodal process that controls first the proximal patterning and then the distal structure. During the shift from the former to the latter regulation, this bimodal regulatory mechanism allows the production of a domain with low Hoxd gene expression, at which both telomeric (T-DOM) and centromeric regulatory domains (C-DOM) are silent. These cells generate the future wrist and ankle articulations. We analyzed the implementation of this regulatory mechanism in chicken, i.e., in an animal for which large morphological differences exist between fore- and hindlimbs. We report that although this bimodal regulation is globally conserved between the mouse and the chick, some important modifications evolved at least between these two model systems, in particular regarding the activity of specific enhancers, the width of the TAD boundary separating the two regulations, and the comparison between the forelimb versus hindlimb regulatory controls. At least one aspect of these regulations seems to be more conserved between chick and bats than with mouse, which may relate to the extent to which forelimbs and hindlimbs of these various animals differ in their morphologies. A comparison of Hox gene regulation during the development of limbs in birds and mammals reveals that whereas the characteristic bimodal regulatory system, based on large chromatin domains, is largely conserved between these morphologically distinct structures, some differences are revealed in the way this is implemented in various vertebrates. The shapes of limbs vary greatly among tetrapod species, even between the forelimbs and hindlimbs of the same animal. Hox genes regulate the proper growth and patterning of tetrapod limbs. In order to evaluate whether variations in the complex regulation of a cluster of Hox genes—the Hoxd genes—during limb development contribute to the differences in limb shape, we compared their transcriptional control during limb bud development in the forelimbs and hindlimbs of mouse and chicken embryos. We found that the regulatory mechanism underlying Hoxd gene expression is highly conserved, but some clear differences exist. For instance, we observed a variation in the topologically associating domain (TAD; a self-interacting genomic region) boundary interval between the mouse and the chick, as well as differences in the activity of a conserved enhancer element situated within the telomeric regulatory domain. In contrast to the mouse, the chicken enhancer has a stronger activity in the forelimb buds than in the hindlimb buds, which is correlated with the striking differences in the mRNA levels of the genes. We conclude that differences in both the timing and duration of TAD activities and in the width of their boundary may parallel the important decrease in Hoxd gene transcription in chick hindlimb buds versus forelimb buds. These differences may also account for the slightly distinct regulatory strategies implemented by mammals and birds at this locus.
Collapse
Affiliation(s)
| | - Lucille Lopez-Delisle
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Guillaume Andrey
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
| | - Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland
| | - Denis Duboule
- School of Life Sciences, Federal Institute of Technology, Lausanne, Lausanne, Switzerland
- Department of Genetics and Evolution, University of Geneva, Geneva 4, Switzerland
- * E-mail:
| |
Collapse
|
16
|
Fabre PJ, Leleu M, Mascrez B, Lo Giudice Q, Cobb J, Duboule D. Heterogeneous combinatorial expression of Hoxd genes in single cells during limb development. BMC Biol 2018; 16:101. [PMID: 30223853 PMCID: PMC6142630 DOI: 10.1186/s12915-018-0570-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Global analyses of gene expression during development reveal specific transcription patterns associated with the emergence of various cell types, tissues, and organs. These heterogeneous patterns are instrumental to ensure the proper formation of the different parts of our body, as shown by the phenotypic effects generated by functional genetic approaches. However, variations at the cellular level can be observed within each structure or organ. In the developing mammalian limbs, expression of Hox genes from the HoxD cluster is differentially controlled in space and time, in cells that will pattern the digits and the forearms. While the Hoxd genes broadly share a common regulatory landscape and large-scale analyses have suggested a homogenous Hox gene transcriptional program, it has not previously been clear whether Hoxd genes are expressed together at the same levels in the same cells. RESULTS We report a high degree of heterogeneity in the expression of the Hoxd11 and Hoxd13 genes. We analyzed single-limb bud cell transcriptomes and show that Hox genes are expressed in specific combinations that appear to match particular cell types. In cells giving rise to digits, we find that the expression of the five relevant Hoxd genes (Hoxd9 to Hoxd13) is unbalanced, despite their control by known global enhancers. We also report that specific combinatorial expression follows a pseudo-time sequence, which is established based on the transcriptional diversity of limb progenitors. CONCLUSIONS Our observations reveal the existence of distinct combinations of Hoxd genes at the single-cell level during limb development. In addition, we document that the increasing combinatorial expression of Hoxd genes in this developing structure is associated with specific transcriptional signatures and that these signatures illustrate a temporal progression in the differentiation of these cells.
Collapse
Affiliation(s)
- P J Fabre
- School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015, Lausanne, Switzerland. .,Department of Basic Neurosciences, University of Geneva, 1211, Geneva, Switzerland.
| | - M Leleu
- School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015, Lausanne, Switzerland
| | - B Mascrez
- Department of Genetics and Evolution, University of Geneva, 1211, Geneva 4, Switzerland
| | - Q Lo Giudice
- Department of Basic Neurosciences, University of Geneva, 1211, Geneva, Switzerland
| | - J Cobb
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - D Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale, Lausanne, 1015, Lausanne, Switzerland. .,Department of Genetics and Evolution, University of Geneva, 1211, Geneva 4, Switzerland.
| |
Collapse
|
17
|
Böhmer C, Amson E, Arnold P, van Heteren AH, Nyakatura JA. Homeotic transformations reflect departure from the mammalian 'rule of seven' cervical vertebrae in sloths: inferences on the Hox code and morphological modularity of the mammalian neck. BMC Evol Biol 2018; 18:84. [PMID: 29879896 PMCID: PMC5992679 DOI: 10.1186/s12862-018-1202-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/23/2018] [Indexed: 11/10/2022] Open
Abstract
Background Sloths are one of only two exceptions to the mammalian ‘rule of seven’ vertebrae in the neck. As a striking case of breaking the evolutionary constraint, the explanation for the exceptional number of cervical vertebrae in sloths is still under debate. Two diverging hypotheses, both ultimately linked to the low metabolic rate of sloths, have been proposed: hypothesis 1 involves morphological transformation of vertebrae due to changes in the Hox gene expression pattern and hypothesis 2 assumes that the Hox gene expression pattern is not altered and the identity of the vertebrae is not changed. Direct evidence supporting either hypothesis would involve knowledge of the vertebral Hox code in sloths, but the realization of such studies is extremely limited. Here, on the basis of the previously established correlation between anterior Hox gene expression and the quantifiable vertebral shape, we present the morphological regionalization of the neck in three different species of sloths with aberrant cervical count providing indirect insight into the vertebral Hox code. Results Shape differences within the cervical vertebral column suggest a mouse-like Hox code in the neck of sloths. We infer an anterior shift of HoxC-6 expression in association with the first thoracic vertebra in short-necked sloths with decreased cervical count, and a posterior shift of HoxC-5 and HoxC-6 expression in long-necked sloths with increased cervical count. Conclusion Although only future developmental analyses in non-model organisms, such as sloths, will yield direct evidence for the evolutionary mechanism responsible for the aberrant number of cervical vertebrae, our observations lend support to hypothesis 1 indicating that the number of modules is retained but their boundaries are displaced. Our approach based on quantified morphological differences also provides a reliable basis for further research including fossil taxa such as extinct ‘ground sloths’ in order to trace the pattern and the underlying genetic mechanisms in the evolution of the vertebral column in mammals. Electronic supplementary material The online version of this article (10.1186/s12862-018-1202-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine Böhmer
- UMR 7179 CNRS/MNHN, Muséum National d'Histoire Naturelle, 57 rue Cuvier, CP-55, Paris, France.
| | - Eli Amson
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.,Image Knowledge Gestaltung: An Interdisciplinary Laboratory, Humboldt University, Philippstraße 13, 10115, Berlin, Germany.,Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115, Berlin, Germany
| | - Patrick Arnold
- Institut für Zoologie und Evolutionsforschung mit Phyletischem Museum, Ernst-Haeckel-Haus und Biologiedidaktik, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
| | - Anneke H van Heteren
- Sektion Mammalogie, SNSB - Zoologische Staatssammlung, Münchhausenstraße 21, 81247, München, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333, Munich, Germany.,Department Biologie II, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152, Planegg-Martinsried, Germany
| | - John A Nyakatura
- AG Morphologie und Formengeschichte, Institut für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, Germany.,Image Knowledge Gestaltung: An Interdisciplinary Laboratory, Humboldt University, Philippstraße 13, 10115, Berlin, Germany
| |
Collapse
|
18
|
von Heyking K, Roth L, Ertl M, Schmidt O, Calzada-Wack J, Neff F, Lawlor ER, Burdach S, Richter GH. The posterior HOXD locus: Its contribution to phenotype and malignancy of Ewing sarcoma. Oncotarget 2018; 7:41767-41780. [PMID: 27363011 PMCID: PMC5173095 DOI: 10.18632/oncotarget.9702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/13/2016] [Indexed: 01/01/2023] Open
Abstract
Microarray analysis revealed genes of the posterior HOXD locus normally involved in bone formation to be over-expressed in primary Ewing sarcoma (ES). The expression of posterior HOXD genes was not influenced via ES pathognomonic EWS/ETS translocations. However, knock down of the dickkopf WNT signaling pathway inhibitor 2 (DKK2) resulted in a significant suppression of HOXD10, HOXD11 and HOXD13 while over-expression of DKK2 and stimulation with factors of the WNT signaling pathway such as WNT3a, WNT5a or WNT11 increased their expression. RNA interference demonstrated that individual HOXD genes promoted chondrogenic differentiation potential, and enhanced expression of the bone-associated gene RUNX2. Furthermore, HOXD genes increased the level of the osteoblast- and osteoclast-specific genes, osteocalcin (BGLAP) and platelet-derived growth factor beta polypeptide (PDGFB), and may further regulate endochondral bone development via induction of parathyroid hormone-like hormone (PTHLH). Additionally, HOXD11 and HOXD13 promoted contact independent growth of ES, while in vitro invasiveness of ES lines was enhanced by all 3 HOXD genes investigated and seemed mediated via matrix metallopeptidase 1 (MMP1). Consequently, knock down of HOXD11 or HOXD13 significantly suppressed lung metastasis in a xeno-transplant model in immune deficient mice, providing overall evidence that posterior HOXD genes promote clonogenicity and metastatic potential of ES.
Collapse
Affiliation(s)
- Kristina von Heyking
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Laura Roth
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Miriam Ertl
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Oxana Schmidt
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Elizabeth R Lawlor
- Departments of Pediatrics and Pathology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stefan Burdach
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| | - Guenther Hs Richter
- Laboratory for Functional Genomics and Transplantation Biology, Children's Cancer Research Center and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich Comprehensive Cancer Center (CCCM), and German Translational Cancer Research Consortium (DKTK), Munich, Germany
| |
Collapse
|
19
|
Rodríguez-Carballo E, Lopez-Delisle L, Zhan Y, Fabre PJ, Beccari L, El-Idrissi I, Huynh THN, Ozadam H, Dekker J, Duboule D. The HoxD cluster is a dynamic and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev 2017; 31:2264-2281. [PMID: 29273679 PMCID: PMC5769770 DOI: 10.1101/gad.307769.117] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
The mammalian HoxD cluster lies between two topologically associating domains (TADs) matching distinct enhancer-rich regulatory landscapes. During limb development, the telomeric TAD controls the early transcription of Hoxd genes in forearm cells, whereas the centromeric TAD subsequently regulates more posterior Hoxd genes in digit cells. Therefore, the TAD boundary prevents the terminal Hoxd13 gene from responding to forearm enhancers, thereby allowing proper limb patterning. To assess the nature and function of this CTCF-rich DNA region in embryos, we compared chromatin interaction profiles between proximal and distal limb bud cells isolated from mutant stocks where various parts of this boundary region were removed. The resulting progressive release in boundary effect triggered inter-TAD contacts, favored by the activity of the newly accessed enhancers. However, the boundary was highly resilient, and only a 400-kb deletion, including the whole-gene cluster, was eventually able to merge the neighboring TADs into a single structure. In this unified TAD, both proximal and distal limb enhancers nevertheless continued to work independently over a targeted transgenic reporter construct. We propose that the whole HoxD cluster is a dynamic TAD border and that the exact boundary position varies depending on both the transcriptional status and the developmental context.
Collapse
Affiliation(s)
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Ye Zhan
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Pierre J Fabre
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland
| | - Imane El-Idrissi
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland
| | - Thi Hanh Nguyen Huynh
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland
| | - Hakan Ozadam
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Loro E, Ramaswamy G, Chandra A, Tseng WJ, Mishra MK, Shore EM, Khurana TS. IL15RA is required for osteoblast function and bone mineralization. Bone 2017; 103:20-30. [PMID: 28602725 PMCID: PMC5598756 DOI: 10.1016/j.bone.2017.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
Interleukin-15 receptor alpha (IL15RA) is an important component of interleukin-15 (IL15) pro-inflammatory signaling. In addition, IL15 and IL15RA are present in the circulation and are detected in a variety of tissues where they influence physiological functions such as muscle contractility and overall metabolism. In the skeletal system, IL15RA was previously shown to be important for osteoclastogenesis. Little is known, however, about its role in osteoblast function and bone mineralization. In this study, we evaluated bone structural and mechanical properties of an Il15ra whole-body knockout mouse (Il15ra-/-) and used in vitro and bioinformatic analyses to understand the role IL15/IL15RA signaling on osteoblast function. We show that lack of IL15RA decreased bone mineralization in vivo and in isolated primary osteogenic cultures, suggesting a cell-autonomous effect. Il15ra-/- osteogenic cultures also had reduced Rankl/Opg mRNA ratio, indicating defective osteoblast/osteoclast coupling. We analyzed the transcriptome of primary pre-osteoblasts from normal and Il15ra-/- mice and identified 1150 genes that were differentially expressed at a FDR of 5%. Of these, 844 transcripts were upregulated and 306 were downregulated in Il15ra-/- cells. The largest functional clusters, highlighted using DAVID analysis, were related to metabolism, immune response, bone mineralization and morphogenesis. The transcriptome analysis was validated by qPCR of some of the most significant hits. Using bioinformatic approaches, we identified candidate genes, including Cd200 and Enpp1, that could contribute to the reduced mineralization. Silencing Il15ra using shRNA in the calvarial osteoblast MC3T3-E1 cell line decreased ENPP1 activity. Taken together, these data support that IL15RA plays a cell-autonomous role in osteoblast function and bone mineralization.
Collapse
Affiliation(s)
- Emanuele Loro
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Girish Ramaswamy
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Abhishek Chandra
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN, USA
| | - Wei-Ju Tseng
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Manoj K Mishra
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tejvir S Khurana
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Capellini TD, Chen H, Cao J, Doxey AC, Kiapour AM, Schoor M, Kingsley DM. Ancient selection for derived alleles at a GDF5 enhancer influencing human growth and osteoarthritis risk. Nat Genet 2017; 49:1202-1210. [PMID: 28671685 PMCID: PMC6556117 DOI: 10.1038/ng.3911] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 06/12/2017] [Indexed: 12/19/2022]
Abstract
Variants in GDF5 are associated with human arthritis and decreased height, but the causal mutations are still unknown. We surveyed the Gdf5 locus for regulatory regions in transgenic mice and fine-mapped separate enhancers controlling expression in joints versus growing ends of long bones. A large downstream regulatory region contains a novel growth enhancer (GROW1), which is required for normal Gdf5 expression at ends of developing bones and for normal bone lengths in vivo. Human GROW1 contains a common base-pair change that decreases enhancer activity and colocalizes with peaks of positive selection in humans. The derived allele is rare in Africa but common in Eurasia and is found in Neandertals and Denisovans. Our results suggest that an ancient regulatory variant in GROW1 has been repeatedly selected in northern environments and that past selection on growth phenotypes explains the high frequency of a GDF5 haplotype that also increases arthritis susceptibility in many human populations.
Collapse
Affiliation(s)
- Terence D Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Developmental Biology, Stanford University, Stanford, California, USA
| | - Hao Chen
- Department of Developmental Biology, Stanford University, Stanford, California, USA
| | - Jiaxue Cao
- Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Andrew C Doxey
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Ata M Kiapour
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Schoor
- Department of Developmental Biology, Stanford University, Stanford, California, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University, Stanford, California, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
22
|
Abstract
Rheumatic diseases follow a characteristic anatomical pattern of joint and organ involvement. This Review explores three interconnected mechanisms that might be involved in the predilection of specific joints for developing specific forms of arthritis: site-specific local cell types that drive disease; systemic triggers that affect local cell types; and site-specific exogenous factors, such as focal mechanical stress, that activate cells locally. The embryonic development of limbs and joints is also relevant to the propensity of certain joints to develop arthritis. Additionally, location-specific homeostasis and disease occurs in skin and blood vessels, thereby extending the concept of site-specificity in human diseases beyond rheumatology. Acknowledging the importance of site-specific parameters increases the complexity of current disease paradigms and brings us closer to understanding why particular disease processes manifest at a particular location.
Collapse
|
23
|
Saxena A, Towers M, Cooper KL. The origins, scaling and loss of tetrapod digits. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0482. [PMID: 27994123 PMCID: PMC5182414 DOI: 10.1098/rstb.2015.0482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2016] [Indexed: 12/19/2022] Open
Abstract
Many of the great morphologists of the nineteenth century marvelled at similarities between the limbs of diverse species, and Charles Darwin noted these homologies as significant supporting evidence for descent with modification from a common ancestor. Sir Richard Owen also took great care to highlight each of the elements of the forelimb and hindlimb in a multitude of species with focused attention on the homology between the hoof of the horse and the middle digit of man. The ensuing decades brought about a convergence of palaeontology, experimental embryology and molecular biology to lend further support to the homologies of tetrapod limbs and their developmental origins. However, for all that we now understand about the conserved mechanisms of limb development and the development of gross morphological disturbances, little of what is presented in the experimental or medical literature reflects the remarkable diversity resulting from the 450 million year experiment of natural selection. An understanding of conserved and divergent limb morphologies in this new age of genomics and genome engineering promises to reveal more of the developmental potential residing in all limbs and to unravel the mechanisms of evolutionary variation in limb size and shape. In this review, we present the current state of our rapidly advancing understanding of the evolutionary origin of hands and feet and highlight what is known about the mechanisms that shape diverse limbs.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Aditya Saxena
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew Towers
- Bateson Centre, Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Kimberly L. Cooper
- Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA,e-mail:
| |
Collapse
|
24
|
Bickelmann C, van der Vos W, de Bakker MAG, Jiménez R, Maas S, Sánchez-Villagra MR. Hoxgene expression in the specialized limbs of the Iberian mole (Talpa occidentalis). Evol Dev 2017; 19:3-8. [DOI: 10.1111/ede.12216] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Constanze Bickelmann
- Museum für Naturkunde; Leibniz-Institut für Evolutions- und Biodiversitätsforschung; Invalidenstrasse 43 10115 Berlin Germany
- Paläontologisches Institut und Museum; University of Zurich; Karl-Schmid-Strasse 4 8006 Zurich Switzerland
| | - Wessel van der Vos
- Museum für Naturkunde; Leibniz-Institut für Evolutions- und Biodiversitätsforschung; Invalidenstrasse 43 10115 Berlin Germany
- Institute of Biology Leiden; Leiden University; Sylviusweg 70 2333 BE Leiden The Netherlands
| | - Merijn A. G. de Bakker
- Institute of Biology Leiden; Leiden University; Sylviusweg 70 2333 BE Leiden The Netherlands
| | - Rafael Jiménez
- Departamento de Génetica; University of Granada; Avenida del Conocimiento Granada Armilla 18100 Spain
| | - Saskia Maas
- Central Animal Facility; Leiden University Medical Center Leiden; 2300 RC Leiden The Netherlands
| | | |
Collapse
|
25
|
Chen H, Capellini TD, Schoor M, Mortlock DP, Reddi AH, Kingsley DM. Heads, Shoulders, Elbows, Knees, and Toes: Modular Gdf5 Enhancers Control Different Joints in the Vertebrate Skeleton. PLoS Genet 2016; 12:e1006454. [PMID: 27902701 PMCID: PMC5130176 DOI: 10.1371/journal.pgen.1006454] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/02/2016] [Indexed: 11/18/2022] Open
Abstract
Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (Gdf5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse Gdf5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within Gdf5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control Gdf5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of Gdf5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for Gdf5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations. Joints, such as the hip and knee, are crucial for support and locomotion in animals, and are the frequent sites of serious human diseases such as arthritis. The Growth and differentiation factor 5 (Gdf5) gene is required for normal joint formation, and has been linked to risk of common arthritis in Eurasians. Here, we surveyed the mouse gene for the regulatory information that controls Gdf5's expression pattern in stripes at sites of joint formation. The gene does not have a single regulatory sequence that drives expression in all joints. Instead, Gdf5 has multiple different control sequences that show striking specificity for joints in the head, vertebral column, shoulder, elbow, wrist, hip, knee, and digits. Rescue experiments show that multiple control sequences are required to restore normal joint formation in Gdf5 mutants. The joint control sequences originally found in mice are also present in humans, where they are marked as active regions during fetal development and post-natal life, and map to a large region associated with arthritis risk in human populations. Regulatory variants in the human GDF5 control sequences can now be studied for their potential role in altering joint development or disease risk at particular locations in the skeleton.
Collapse
Affiliation(s)
- Hao Chen
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, California, United States of America
| | - Terence D. Capellini
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, California, United States of America
- Human Evolutionary Biology, Peabody Museum, Harvard University, Cambridge, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | | | - Doug P. Mortlock
- Molecular Physiology and Biophysics and Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee, United States of America
| | - A. Hari Reddi
- Center for Tissue Regeneration and Repair, University of California Davis Medical Center, Sacramento, California, United States of America
| | - David M. Kingsley
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Huang BL, Trofka A, Furusawa A, Norrie JL, Rabinowitz AH, Vokes SA, Mark Taketo M, Zakany J, Mackem S. An interdigit signalling centre instructs coordinate phalanx-joint formation governed by 5'Hoxd-Gli3 antagonism. Nat Commun 2016; 7:12903. [PMID: 27713395 PMCID: PMC5059757 DOI: 10.1038/ncomms12903] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
The number of phalanges and joints are key features of digit 'identity' and are central to limb functionality and evolutionary adaptation. Prior chick work indicated that digit phalanges and their associated joints arise in a different manner than the more sparsely jointed long bones, and their identity is regulated by differential signalling from adjacent interdigits. Currently, there is no genetic evidence for this model, and the molecular mechanisms governing digit joint specification remain poorly understood. Using genetic approaches in mouse, here we show that functional 5'Hoxd-Gli3 antagonism acts indirectly, through Bmp signalling from the interdigital mesenchyme, to regulate specification of joint progenitors, which arise in conjunction with phalangeal precursors at the digit tip. Phalanx number, although co-regulated, can be uncoupled from joint specification. We propose that 5'Hoxd genes and Gli3 are part of an interdigital signalling centre that sets net Bmp signalling levels from different interdigits to coordinately regulate phalanx and joint formation.
Collapse
Affiliation(s)
- Bau-Lin Huang
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Anna Trofka
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Aki Furusawa
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| | - Jacqueline L. Norrie
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Adam H. Rabinowitz
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Steven A. Vokes
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - M. Mark Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606–8501, Japan
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva 4 1211, Switzerland
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, CCR, NCI, Frederick, Maryland 21702, USA
| |
Collapse
|
27
|
Stradner MH, Dreu M, Angerer H, Gruber G, Wagner K, Peischler D, Krischan V, Leithner A, Anderhuber F, Graninger WB. Chondrocyte cultures from human proximal interphalangeal finger joints. J Orthop Res 2016; 34:1569-75. [PMID: 26773445 DOI: 10.1002/jor.23167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/08/2016] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) of the hand is a common disease resulting in pain and impaired function. The pathogenesis of hand OA (HOA) is elusive and models to study it have not been described. Chondrocyte culture has been essential to understand cartilage degeneration, which is a hallmark of OA. We investigated the feasibility of human chondrocyte culture derived from proximal interphalangeal (PIP) finger joints. Hyaline cartilage of the PIP and knee joints was obtained from human cadavers. Chondrocytes harvested up to 236 h after death of the donors were viable and expressed chondrocyte-specific genes. Gene expression comparing chondrocytes from PIP and knee joints using Affymetrix GeneChip arrays resulted in a unique PIP-specific gene expression pattern. Genes involved in developmental processes including the WNT pathway were differentially expressed between the joints. These findings suggest that our knowledge on chondrocyte biology derived mainly from knee and hip joints may not apply to chondrocytes of the PIP joints and some of the distinctive features of HOA may be caused by the specific properties of PIP chondrocytes. Chondrocyte culture of PIP cartilage is a novel tool to study cartilage degeneration in HOA. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1569-1575, 2016.
Collapse
Affiliation(s)
- Martin H Stradner
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | - Manuel Dreu
- Institute of Anatomy, Medical University of Graz, Austria
| | - Hannes Angerer
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | - Gerald Gruber
- Department of Orthopedics, Medical University of Graz, Austria
| | - Karin Wagner
- Center for Medical Research (ZMF), Medical University of Graz, Austria
| | - Daniela Peischler
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | - Verena Krischan
- Division of Rheumatology and Immunology, Medical University of Graz, Austria
| | | | | | | |
Collapse
|
28
|
Reno PL, Kjosness KM, Hines JE. The Role of Hox in Pisiform and Calcaneus Growth Plate Formation and the Nature of the Zeugopod/Autopod Boundary. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:303-21. [DOI: 10.1002/jez.b.22688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 06/13/2016] [Accepted: 06/28/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Philip L. Reno
- Department of Anthropology; The Pennsylvania State University; University Park Pennsylvania
| | - Kelsey M. Kjosness
- Department of Anthropology; The Pennsylvania State University; University Park Pennsylvania
| | - Jasmine E. Hines
- Department of Anthropology; The Pennsylvania State University; University Park Pennsylvania
| |
Collapse
|
29
|
Ye W, Song Y, Huang Z, Osterwalder M, Ljubojevic A, Xu J, Bobick B, Abassah-Oppong S, Ruan N, Shamby R, Yu D, Zhang L, Cai CL, Visel A, Zhang Y, Cobb J, Chen Y. A unique stylopod patterning mechanism by Shox2-controlled osteogenesis. Development 2016; 143:2548-60. [PMID: 27287812 PMCID: PMC4958343 DOI: 10.1242/dev.138750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023]
Abstract
Vertebrate appendage patterning is programmed by Hox-TALE factor-bound regulatory elements. However, it remains unclear which cell lineages are commissioned by Hox-TALE factors to generate regional specific patterns and whether other Hox-TALE co-factors exist. In this study, we investigated the transcriptional mechanisms controlled by the Shox2 transcriptional regulator in limb patterning. Harnessing an osteogenic lineage-specific Shox2 inactivation approach we show that despite widespread Shox2 expression in multiple cell lineages, lack of the stylopod observed upon Shox2 deficiency is a specific result of Shox2 loss of function in the osteogenic lineage. ChIP-Seq revealed robust interaction of Shox2 with cis-regulatory enhancers clustering around skeletogenic genes that are also bound by Hox-TALE factors, supporting a lineage autonomous function of Shox2 in osteogenic lineage fate determination and skeleton patterning. Pbx ChIP-Seq further allowed the genome-wide identification of cis-regulatory modules exhibiting co-occupancy of Pbx, Meis and Shox2 transcriptional regulators. Integrative analysis of ChIP-Seq and RNA-Seq data and transgenic enhancer assays indicate that Shox2 patterns the stylopod as a repressor via interaction with enhancers active in the proximal limb mesenchyme and antagonizes the repressive function of TALE factors in osteogenesis.
Collapse
Affiliation(s)
- Wenduo Ye
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yingnan Song
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | - Zhen Huang
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | | | - Anja Ljubojevic
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Jue Xu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Brent Bobick
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Samuel Abassah-Oppong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Ningsheng Ruan
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | - Ross Shamby
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Diankun Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Lu Zhang
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chen-Leng Cai
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA School of Natural Sciences, University of California at Merced, Merced, CA 95343, USA
| | - Yanding Zhang
- Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| | - John Cobb
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Southern Center for Biomedical Research and Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
30
|
Beccari L, Yakushiji-Kaminatsui N, Woltering JM, Necsulea A, Lonfat N, Rodríguez-Carballo E, Mascrez B, Yamamoto S, Kuroiwa A, Duboule D. A role for HOX13 proteins in the regulatory switch between TADs at the HoxD locus. Genes Dev 2016; 30:1172-86. [PMID: 27198226 PMCID: PMC4888838 DOI: 10.1101/gad.281055.116] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/22/2016] [Indexed: 11/24/2022]
Abstract
During vertebrate limb development, Hoxd genes are regulated following a bimodal strategy involving two topologically associating domains (TADs) located on either side of the gene cluster. These regulatory landscapes alternatively control different subsets of Hoxd targets, first into the arm and subsequently into the digits. We studied the transition between these two global regulations, a switch that correlates with the positioning of the wrist, which articulates these two main limb segments. We show that the HOX13 proteins themselves help switch off the telomeric TAD, likely through a global repressive mechanism. At the same time, they directly interact with distal enhancers to sustain the activity of the centromeric TAD, thus explaining both the sequential and exclusive operating processes of these two regulatory domains. We propose a model in which the activation of Hox13 gene expression in distal limb cells both interrupts the proximal Hox gene regulation and re-enforces the distal regulation. In the absence of HOX13 proteins, a proximal limb structure grows without any sign of wrist articulation, likely related to an ancestral fish-like condition.
Collapse
Affiliation(s)
- Leonardo Beccari
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| | | | - Joost M Woltering
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| | - Anamaria Necsulea
- School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | - Nicolas Lonfat
- School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | | | - Benedicte Mascrez
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland
| | - Shiori Yamamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Atsushi Kuroiwa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva 4, Switzerland; School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Ibrahim DM, Tayebi N, Knaus A, Stiege AC, Sahebzamani A, Hecht J, Mundlos S, Spielmann M. A homozygous HOXD13 missense mutation causes a severe form of synpolydactyly with metacarpal to carpal transformation. Am J Med Genet A 2015; 170:615-21. [PMID: 26581570 DOI: 10.1002/ajmg.a.37464] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/22/2015] [Indexed: 11/06/2022]
Abstract
Synpolydactyly (SPD) is a rare congenital limb disorder characterized by syndactyly between the third and fourth fingers and an additional digit in the syndactylous web. In most cases SPD is caused by heterozygous mutations in HOXD13 resulting in the expansion of a N-terminal polyalanine tract. If homozygous, the mutation results in severe shortening of all metacarpals and phalanges with a morphological transformation of metacarpals to carpals. Here, we describe a novel homozygous missense mutation in a family with unaffected consanguineous parents and severe brachydactyly and metacarpal-to-carpal transformation in the affected child. We performed whole exome sequencing on the index patient, followed by Sanger sequencing of parents and patient to investigate cosegregation. The DNA-binding ability of the mutant protein was tested with electrophoretic mobility shift assays. We demonstrate that the c.938C>G (p.313T>R) mutation in the DNA-binding domain of HOXD13 prevents binding to DNA in vitro. Our results show to our knowledge for the first time that a missense mutation in HOXD13 underlies severe brachydactyly with metacarpal-to-carpal transformation. The mutation is non-penetrant in heterozygous carriers. In conjunction with the literature we propose the possibility that the metacarpal-to-carpal transformation results from a homozygous loss of functional HOXD13 protein in humans in combination with an accumulation of non-functional HOXD13 that might be able to interact with other transcription factors in the developing limb.
Collapse
Affiliation(s)
- Daniel M Ibrahim
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Naeimeh Tayebi
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexej Knaus
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Asita C Stiege
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Jochen Hecht
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Berlin Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Mundlos
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.,Berlin Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Malte Spielmann
- Institute for Medical Genetics and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| |
Collapse
|
32
|
Use of RUNX2 expression to identify osteogenic progenitor cells derived from human embryonic stem cells. Stem Cell Reports 2015; 4:190-8. [PMID: 25680477 PMCID: PMC4325195 DOI: 10.1016/j.stemcr.2015.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 12/22/2022] Open
Abstract
We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development. This reporter system represents RUNX2 expression in osteogenic differentiated hESCs This system can be used to identify stages of osteogenic development of hESCs BMP2 alone does not induce osteogenic differentiation of hESCs in vitro
Collapse
|
33
|
Shibata A, Machida J, Yamaguchi S, Kimura M, Tatematsu T, Miyachi H, Matsushita M, Kitoh H, Ishiguro N, Nakayama A, Higashi Y, Shimozato K, Tokita Y. Characterisation of novel RUNX2 mutation with alanine tract expansion from Japanese cleidocranial dysplasia patient. Mutagenesis 2015. [PMID: 26220009 DOI: 10.1093/mutage/gev057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cleidocranial dysplasia (CCD; MIM 119600) is an autosomal dominant skeletal dysplasia characterised by hypopalstic and/or aplastic clavicles, midface hypoplasia, absent or delayed closure of cranial sutures, moderately short stature, delayed eruption of permanent dentition and supernumerary teeth. The molecular pathogenesis can be explained in about two-thirds of CCD patients by haploinsufficiency of the RUNX2 gene. In our current study, we identified a novel and rare variant of the RUNX2 gene (c.181_189dupGCGGCGGCT) in a Japanese patient with phenotypic features of CCD. The insertion led an alanine tripeptide expansion (+3Ala) in the polyalanine tract. To date, a RUNX2 variant with alanine decapeptide expansion (+10Ala) is the only example of a causative variant of RUNX2 with polyalanine tract expansion to be reported, whilst RUNX2 (+1Ala) has been isolated from the healthy population. Thus, precise analyses of the RUNX2 (+3Ala) variant were needed to clarify whether the tripeptide expanded RUNX2 is a second disease-causing mutant with alanine tract expansion. We therefore investigated the biochemical properties of the mutant RUNX2 (+3Ala), which contains 20 alanine residues in the polyalanine tract. When transfected in COS7 cells, RUNX2 (+3Ala) formed intracellular ubiquitinated aggregates after 24h, and exerted a dominant negative effect in vitro. At 24h after gene transfection, whereas slight reduction was observed in RUNX2 (+10Ala), all of these mutants significantly activated osteoblast-specific element-2, a cis-acting sequence in the promoter of the RUNX2 target gene osteocalcin. The aggregation growth of RUNX2 (+3Ala) was clearly lower and slower than that of RUNX2 (+10Ala). Furthermore, we investigated several other RUNX2 variants with various alanine tract lengths, and found that the threshold for aggregation may be RUNX2 (+3Ala). We conclude that RUNX2 (+3Ala) is the cause of CCD in our current case, and that the accumulation of intracellular aggregates in vitro is related to the length of the alanine tract.
Collapse
Affiliation(s)
- Akio Shibata
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan, Department of Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki 503-0864, Japan
| | - Junichiro Machida
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Oral and Maxillofacial Surgery, Toyota Memorial Hospital, Toyota 471-0821, Japan
| | - Seishi Yamaguchi
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Dentistry and Oral Surgery, Aichi Children's Health and Medical Center, Obu 474-8710, Japan
| | - Masashi Kimura
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Oral and Maxillofacial Surgery, Ogaki Municipal Hospital, Ogaki 503-0864, Japan
| | - Tadashi Tatematsu
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan
| | - Hitoshi Miyachi
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan
| | - Masaki Matsushita
- Department of Orthopaedic Surgery, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Hiroshi Kitoh
- Department of Orthopaedic Surgery, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Naoki Ishiguro
- Department of Orthopaedic Surgery, Nagoya University, Graduate School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Atsuo Nakayama
- Department of Embryology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan
| | - Yujiro Higashi
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan
| | - Kazuo Shimozato
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan
| | - Yoshihito Tokita
- Department of Maxillofacial Surgery, Aichi-Gakuin University School of Dentistry, Nagoya 464-8651, Japan, Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-0392, Japan,
| |
Collapse
|
34
|
Raines AM, Magella B, Adam M, Potter SS. Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development. BMC DEVELOPMENTAL BIOLOGY 2015; 15:28. [PMID: 26186931 PMCID: PMC4506574 DOI: 10.1186/s12861-015-0078-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/07/2015] [Indexed: 11/17/2022]
Abstract
Background The 39 mammalian Hox genes show problematic patterns of functional overlap. In order to more fully define the developmental roles of Hox genes it is necessary to remove multiple combinations of paralogous and flanking genes. In addition, the downstream molecular pathways regulated by Hox genes during limb development remain incompletely delineated. Results In this report we examine limb development in mice with frameshift mutations in six Hox genes, Hoxa9,10,11 and Hoxd9,10,11. The mice were made with a novel recombineering method that allows the simultaneous targeting of frameshift mutations into multiple flanking genes. The Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant mice show a reduced ulna and radius that is more severe than seen in Hoxa11−/−/Hoxd11−/− mice, indicating a minor role for the flanking Hox9,10 genes in zeugopod development, as well as their primary function in stylopod development. The mutant mice also show severe reduction of Shh expression in the zone of polarizing activity, and decreased Fgf8 expression in the apical ectodermal ridge, thereby better defining the roles of these specific Hox genes in the regulation of critical signaling centers during limb development. Importantly, we also used laser capture microdissection coupled with RNA-Seq to characterize the gene expression programs in wild type and mutant limbs. Resting, proliferative and hypertrophic compartments of E15.5 forelimb zeugopods were examined. The results provide an RNA-Seq characterization of the progression of gene expression patterns during normal endochondral bone formation. In addition of the Hox mutants showed strongly altered expression of Pknox2, Zfp467, Gdf5, Bmpr1b, Dkk3, Igf1, Hand2, Shox2, Runx3, Bmp7 and Lef1, all of which have been previously shown to play important roles in bone formation. Conclusions The recombineering based frameshift mutation of the six flanking and paralogous Hoxa9,10,11 and Hoxd9,10,11 genes provides a resource for the analysis of their overlapping functions. Analysis of the Hoxa9,10,11−/−/Hoxd9,10,11−/− mutant limbs confirms and extends the results of previous studies using mice with Hox mutations in single paralogous groups or with entire Hox cluster deletions. The RNA-Seq analysis of specific compartments of the normal and mutant limbs defines the multiple key perturbed pathways downstream of these Hox genes. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0078-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna M Raines
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Bliss Magella
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229, USA.
| |
Collapse
|
35
|
Tsang KY, Tsang SW, Chan D, Cheah KSE. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. ACTA ACUST UNITED AC 2015; 102:52-73. [PMID: 24677723 DOI: 10.1002/bdrc.21060] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/23/2014] [Indexed: 12/29/2022]
Abstract
The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
36
|
Structure, function and evolution of topologically associating domains (TADs) at HOX loci. FEBS Lett 2015; 589:2869-76. [PMID: 25913784 DOI: 10.1016/j.febslet.2015.04.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 11/24/2022]
Abstract
Hox genes encode transcription factors necessary for patterning the major developing anterior to posterior embryonic axis. In addition, during vertebrate evolution, various subsets of this gene family were co-opted along with the emergence of novel body structures, such as the limbs or the external genitalia. The morphogenesis of these axial structures thus relies in part upon the precisely controlled transcription of specific Hox genes, a mechanism involving multiple long-range enhancers. Recently, it was reported that such regulatory mechanisms were largely shared between different developing tissues, though with some specificities, suggesting the recruitment of ancestral regulatory modalities from one tissue to another. The analysis of chromatin architectures at HoxD and HoxA loci revealed the existence of two flanking topologically associating domains (TADs), precisely encompassing the adjacent regulatory landscapes. Here, we discuss the function of these TADs in the control of Hox gene regulation and we speculate about their capacity to serve as structural frameworks for the emergence of novel enhancers. In this view, TADs may have been used as genomic niches to evolve pleiotropic regulations found at many developmental loci.
Collapse
|
37
|
Kjosness KM, Hines JE, Lovejoy CO, Reno PL. The pisiform growth plate is lost in humans and supports a role for Hox in growth plate formation. J Anat 2014; 225:527-38. [PMID: 25279687 PMCID: PMC4292754 DOI: 10.1111/joa.12235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2014] [Indexed: 12/29/2022] Open
Abstract
The human pisiform is a small, nodular, although functionally significant, bone of the wrist. In most other mammals, including apes and Australopithecus afarensis, pisiforms are elongate. An underappreciated fact is that the typical mammalian pisiform forms from two ossification centers. We hypothesize that: (i) the presence of a secondary ossification center in mammalian pisiforms indicates the existence of a growth plate; and (ii) human pisiform reduction results from growth plate loss. To address these hypotheses, we surveyed African ape pisiform ossification and confirmed the presence of a late-forming secondary ossification center in chimpanzees and gorillas. Identification of the initial ossification center occurs substantially earlier in apes relative to humans, raising questions concerning the homology of the human pisiform and the two mammalian ossification centers. Second, we conducted histological and immunohistochemical analyses of pisiform ossification in mice. We confirm the presence of two ossification centers separated by organized columnar and hypertrophic chondrocyte zones. Flattened chondrocytes were highly mitotic, indicating the presence of a growth plate. Hox genes have been proposed to play a fundamental role in growth plate patterning. The existence of a pisiform growth plate presents an interesting test case for the association between Hox expression and growth plate formation, and could explain the severe effects on the pisiform observed in Hoxa11 and Hoxd11 knockout mice. Consistent with this hypothesis, we show that Hoxd11 is expressed adjacent to the pisiform in late-stage embryonic mouse limbs supporting a role for Hox genes in growth plate specification. This raises questions concerning the mechanisms regulating Hox expression in the developing carpus.
Collapse
Affiliation(s)
- Kelsey M Kjosness
- Department of Anthropology, The Pennsylvania State University, University Park, PA, USA
| | | | | | | |
Collapse
|
38
|
Tokita M. How the pterosaur got its wings. Biol Rev Camb Philos Soc 2014; 90:1163-78. [PMID: 25361444 DOI: 10.1111/brv.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body-plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, U.S.A
| |
Collapse
|
39
|
Genetic interactions between Shox2 and Hox genes during the regional growth and development of the mouse limb. Genetics 2014; 198:1117-26. [PMID: 25217052 DOI: 10.1534/genetics.114.167460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The growth and development of the vertebrate limb relies on homeobox genes of the Hox and Shox families, with their independent mutation often giving dose-dependent effects. Here we investigate whether Shox2 and Hox genes function together during mouse limb development by modulating their relative dosage and examining the limb for nonadditive effects on growth. Using double mRNA fluorescence in situ hybridization (FISH) in single embryos, we first show that Shox2 and Hox genes have associated spatial expression dynamics, with Shox2 expression restricted to the proximal limb along with Hoxd9 and Hoxa11 expression, juxtaposing the distal expression of Hoxa13 and Hoxd13. By generating mice with all possible dosage combinations of mutant Shox2 alleles and HoxA/D cluster deletions, we then show that their coordinated proximal limb expression is critical to generate normally proportioned limb segments. These epistatic interactions tune limb length, where Shox2 underexpression enhances, and Shox2 overexpression suppresses, Hox-mutant phenotypes. Disruption of either Shox2 or Hox genes leads to a similar reduction in Runx2 expression in the developing humerus, suggesting their concerted action drives cartilage maturation during normal development. While we furthermore provide evidence that Hox gene function influences Shox2 expression, this regulation is limited in extent and is unlikely on its own to be a major explanation for their genetic interaction. Given the similar effect of human SHOX mutations on regional limb growth, Shox and Hox genes may generally function as genetic interaction partners during the growth and development of the proximal vertebrate limb.
Collapse
|
40
|
González-Martín MC, Mallo M, Ros MA. Long bone development requires a threshold of Hox function. Dev Biol 2014; 392:454-65. [PMID: 24930703 DOI: 10.1016/j.ydbio.2014.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
The Hoxd(Del(11-13)) mutant is one of the animal models for human synpolydactyly, characterized by short and syndactylous digits. Here we have characterized in detail the cartilage and bone defects in these mutants. We report two distinct phenotypes: (i) a delay and change in pattern of chondrocyte maturation of metacarpals/metatarsals and (ii) formation of a poor and not centrally positioned primary ossification center in the proximal-intermediate phalanx. In the metacarpals of Hoxd(Del(11-13)) mutants, ossification occurs postnataly, in the absence of significant Ihh expression and without the establishment of growth plates, following patterns similar to those of short bones. The strong downregulation in Ihh expression is associated with a corresponding increase of the repressor form of Gli3. To evaluate the contribution of this alteration to the phenotype, we generated double Hoxd(Del(11-13));Gli3 homozygous mutants. Intriguingly, these double mutants showed a complete rescue of the phenotype in metatarsals but only partial phenotypic rescue in metacarpals. Our results support Hox genes being required in a dose-dependent manner for long bone cartilage maturation and suggest that and excess of Gli3R mediates a significant part of the Hoxd(Del(11-13)) chondrogenic phenotype.
Collapse
Affiliation(s)
- Ma Carmen González-Martín
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria-SODERCAN., 39011 Santander, Spain; Dpto. de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain.
| |
Collapse
|
41
|
Hao Z, Dai J, Shi D, Xu Z, Chen D, Zhao B, Teng H, Jiang Q. Association of a single nucleotide polymorphism in HOXB9 with developmental dysplasia of the hip: a case-control study. J Orthop Res 2014; 32:179-82. [PMID: 24600698 DOI: 10.1002/jor.22507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Developmental dysplasia of the hip (DDH) is one of the most common skeletal disorders. It comprises a spectrum of abnormalities, including shallow acetabulum and decreased coverage of the femoral head. Genetic component plays a considerable role in the aetiology of DDH. HOXB9 may be involved in the aetiology and pathogenesis of DDH, as it plays an important role in the development of the limbs. Our objective was to evaluate whether single nucleotide polymorphisms (SNPs) of HOXB9 (rs2303486 and rs8844) were associated with DDH in Chinese population. The HOXB9 tag SNPs were genotyped in 460 DDH cases and 562 control subjects by Taqman assay, and their association was examined. rs8844 was not associated with DDH. rs2303486 was associated with DDH in the dominant genetic model (p = 0.037; odds ratio (OR) = 1.32; 95% confidence interval (CI) = 1.02–1.71). After stratification by sex, significant association of the dominant genetic model still existed in the female subjects (p = 0.015; OR = 1.46; 95% CI = 1.08–1.98),but not in the male subjects. After stratification by severity, we discovered an association with hip dislocation in the dominant model(p=0.042; OR = 1.35; 95% CI = 1.01–1.80), but not with subluxation or instability. HOXB9 is associated with DDH in Chinese.
Collapse
Affiliation(s)
- Zheng Hao
- The Center of Diagnosis and Treatment for Joint Disease; Drum Tower Hospital Affiliated to Medical School of Nanjing University; Zhongshan Road 321 Nanjing 210008 Jiangsu, PR China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center; Nanjing University; Nanjing 210061 Jiangsu, PR China
| | - Jin Dai
- The Center of Diagnosis and Treatment for Joint Disease; Drum Tower Hospital Affiliated to Medical School of Nanjing University; Zhongshan Road 321 Nanjing 210008 Jiangsu, PR China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center; Nanjing University; Nanjing 210061 Jiangsu, PR China
| | - Dongquan Shi
- The Center of Diagnosis and Treatment for Joint Disease; Drum Tower Hospital Affiliated to Medical School of Nanjing University; Zhongshan Road 321 Nanjing 210008 Jiangsu, PR China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center; Nanjing University; Nanjing 210061 Jiangsu, PR China
| | - Zhihong Xu
- The Center of Diagnosis and Treatment for Joint Disease; Drum Tower Hospital Affiliated to Medical School of Nanjing University; Zhongshan Road 321 Nanjing 210008 Jiangsu, PR China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center; Nanjing University; Nanjing 210061 Jiangsu, PR China
| | - Dongyang Chen
- The Center of Diagnosis and Treatment for Joint Disease; Drum Tower Hospital Affiliated to Medical School of Nanjing University; Zhongshan Road 321 Nanjing 210008 Jiangsu, PR China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center; Nanjing University; Nanjing 210061 Jiangsu, PR China
| | - Baocheng Zhao
- Center of Diagnosis and Treatment for Developmental Dysplasia of Hip; Kang'ai Hospital; Nanjing 210008 Jiangsu, PR China
| | - Huajian Teng
- Laboratory for Bone and Joint Diseases, Model Animal Research Center; Nanjing University; Nanjing 210061 Jiangsu, PR China
| | - Qing Jiang
- The Center of Diagnosis and Treatment for Joint Disease; Drum Tower Hospital Affiliated to Medical School of Nanjing University; Zhongshan Road 321 Nanjing 210008 Jiangsu, PR China
- Laboratory for Bone and Joint Diseases, Model Animal Research Center; Nanjing University; Nanjing 210061 Jiangsu, PR China
| |
Collapse
|
42
|
Conservation and divergence of regulatory strategies at Hox Loci and the origin of tetrapod digits. PLoS Biol 2014; 12:e1001773. [PMID: 24465181 PMCID: PMC3897358 DOI: 10.1371/journal.pbio.1001773] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 12/09/2013] [Indexed: 11/19/2022] Open
Abstract
During development, expression of the Hoxa and Hoxd genes in zebrafish fins and mouse limbs are regulated via a conserved chromatin structure. However, zebrafish lack certain regulatory elements required to produce digits, revealing that radials—the fin's bony elements—are likely not homologous to tetrapod digits. The evolution of tetrapod limbs from fish fins enabled the conquest of land by vertebrates and thus represents a key step in evolution. Despite the use of comparative gene expression analyses, critical aspects of this transformation remain controversial, in particular the origin of digits. Hoxa and Hoxd genes are essential for the specification of the different limb segments and their functional abrogation leads to large truncations of the appendages. Here we show that the selective transcription of mouse Hoxa genes in proximal and distal limbs is related to a bimodal higher order chromatin structure, similar to that reported for Hoxd genes, thus revealing a generic regulatory strategy implemented by both gene clusters during limb development. We found the same bimodal chromatin architecture in fish embryos, indicating that the regulatory mechanism used to pattern tetrapod limbs may predate the divergence between fish and tetrapods. However, when assessed in mice, both fish regulatory landscapes triggered transcription in proximal rather than distal limb territories, supporting an evolutionary scenario whereby digits arose as tetrapod novelties through genetic retrofitting of preexisting regulatory landscapes. We discuss the possibility to consider regulatory circuitries, rather than expression patterns, as essential parameters to define evolutionary synapomorphies. Our upper limbs differ from fish fins, notably by their subdivision into arm and hand regions, which are separated by a complex articulation, the wrist. The development of this anatomy is associated with two distinct waves of expression of the Hoxa and Hoxd genes during development. Would such a shared expression pattern be sufficient to infer homology between fish fins and mouse limbs? We investigated this question here, looking at whether the two phases of Hox gene transcription that are observed during tetrapod limb development also occur during zebrafish fin development. We find the answer is “not quite.” For although the mechanisms that regulate the expression of Hoxa and Hoxd are comparable between zebrafish fins and mouse limbs, when the genomic regions that regulate Hox gene expression in fish fins are introduced into transgenic mice, they trigger Hox gene expression in only the proximal limb segment (the segment nearest the body) and not in the presumptive digits. We conclude that although fish have the Hox regulatory toolkit to produce digits, this potential is not utilized as it is in tetrapods, and as a result we propose that fin radials—the bony elements of fins—are not homologous to tetrapod digits.
Collapse
|
43
|
Shi X, Ji C, Cao L, Wu Y, Shang Y, Wang W, Luo Y. A splice donor site mutation in HOXD13 underlies synpolydactyly with cortical bone thinning. Gene 2013; 532:297-301. [PMID: 24055421 DOI: 10.1016/j.gene.2013.09.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 08/08/2013] [Accepted: 09/09/2013] [Indexed: 11/30/2022]
Abstract
Synpolydactyly 1(SPD1) is a dominantly inherited distal limb anomaly that is characterized by incomplete digit separation and increased number of digits. SPD1 is most commonly caused by polyalanine repeat expansions and mutations in the homeodomain of the HOXD13. We report a splice donor site mutation in HOXD13 associated in most cases with cortical bone thinning. In vitro study of transcripts and truncated protein analysis indicated that c.781+1G>A mutation results in truncated HOXD13 protein p.G190fsX4. Luciferase assay indicated that the truncated HOXD13 protein failed to bind to DNA. The mechanism for this phenotype was truncated protein loss of function.
Collapse
Affiliation(s)
- Xiuyan Shi
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110001, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Brison N, Debeer P, Tylzanowski P. Joining the fingers: AHOXD13story. Dev Dyn 2013; 243:37-48. [DOI: 10.1002/dvdy.24037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022] Open
Affiliation(s)
- Nathalie Brison
- Center for Human Genetics; University Hospitals Leuven, University of Leuven; Belgium
| | - Philippe Debeer
- Department of Development and Regeneration; University of Leuven; Belgium
| | | |
Collapse
|
45
|
Kuss P, Kraft K, Stumm J, Ibrahim D, Vallecillo-Garcia P, Mundlos S, Stricker S. Regulation of cell polarity in the cartilage growth plate and perichondrium of metacarpal elements by HOXD13 and WNT5A. Dev Biol 2013; 385:83-93. [PMID: 24161848 DOI: 10.1016/j.ydbio.2013.10.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 01/07/2023]
Abstract
The morphology of bones is genetically determined, but the molecular mechanisms that control shape, size and the overall gestalt of bones remain unclear. We previously showed that metacarpals in the synpolydactyly homolog (spdh) mouse, which carries a mutation in Hoxd13 similar to the human condition synpolydactyly (SPD), were transformed to carpal-like bones with cuboid shape that lack cortical bone and a perichondrium and are surrounded by a joint surface. Here we provide evidence that spdh metacarpal growth plates have a defect in cell polarization with a random instead of linear orientation. In parallel prospective perichondral cells failed to adopt the characteristic flattened cell shape. We observed a similar cell polarity defect in metacarpals of Wnt5a(-/-) mice. Wnt5a and the closely related Wnt5b were downregulated in spdh handplates, and HOXD13 induced expression of both genes in vitro. Concomitant we observed mislocalization of core planar cell polarity (PCP) components DVL2 and PRICKLE1 in spdh metacarpals indicating a defect in the WNT/PCP pathway. Conversely the WNT/β-CATENIN pathway, a hallmark of joint cells lining carpal bones, was upregulated in the perichondral region. Finally, providing spdh limb explant cultures with cells expressing either HOXD13 or WNT5A led to a non-cell autonomous partial rescue of cell polarity the perichondral region and restored the expression of perichondral markers. This study provides a so far unrecognized link between HOX proteins and cell polarity in the perichondrium and the growth plate, a failure of which leads to transformation of metacarpals to carpal-like structures.
Collapse
Affiliation(s)
- Pia Kuss
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany; Institute for Medical and Human Genetics, Charité University Medicine, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
van der Kraan PM. Understanding developmental mechanisms in the context of osteoarthritis. Curr Rheumatol Rep 2013; 15:333. [PMID: 23591824 DOI: 10.1007/s11926-013-0333-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Osteoarthritis (OA) is a joint disease that is highly related to aging. However, as OA development is the consequence of interplay between external stimuli, such as mechanical loading and the structure and physiology of the joint, it can be anticipated that variation in developmental processes early in life will affect OA development later in life. Genes involved in patterning processes, such as the Hox genes, but also genes that encode transcription factors, growth factors and cytokines and their respective receptors and those that encode molecules involved in formation of the extracellular matrix, will influence embryonic skeletal development and OA incidence and severity in the adult. The function of genes involved in patterning processes can be partly be understood by close analysis of inborn diseases that result in musculoskeletal syndromes, but a deeper understanding will be the result of specific gene knockouts or overexpression in transgenic mouse models.
Collapse
Affiliation(s)
- Peter M van der Kraan
- Department of Rheumatology, Radboud University Medical Centre, Geert Grooteplein 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
47
|
Abstract
Aberrant redeployment of the 'transient' events responsible for bone development and postnatal longitudinal growth has been reported in some diseases in what is otherwise inherently 'stable' cartilage. Lessons may be learnt from the molecular mechanisms underpinning transient chondrocyte differentiation and function, and their application may better identify disease aetiology. Here, we review the current evidence supporting this possibility. We firstly outline endochondral ossification and the cellular and physiological mechanisms by which it is controlled in the postnatal growth plate. We then compare the biology of these transient cartilaginous structures to the inherently stable articular cartilage. Finally, we highlight specific scenarios in which the redeployment of these embryonic processes may contribute to disease development, with the foresight that deciphering those mechanisms regulating pathological changes and loss of cartilage stability will aid future research into effective disease-modifying therapies.
Collapse
Affiliation(s)
- K A Staines
- (Correspondence should be addressed to K A Staines; )
| | | | | | - C Farquharson
- Comparative Biomedical Sciences, The Royal Veterinary CollegeRoyal College Street, London, NW1 0TUUK
| | | |
Collapse
|
48
|
Ibrahim DM, Hansen P, Rödelsperger C, Stiege AC, Doelken SC, Horn D, Jäger M, Janetzki C, Krawitz P, Leschik G, Wagner F, Scheuer T, Schmidt-von Kegler M, Seemann P, Timmermann B, Robinson PN, Mundlos S, Hecht J. Distinct global shifts in genomic binding profiles of limb malformation-associated HOXD13 mutations. Genome Res 2013; 23:2091-102. [PMID: 23995701 PMCID: PMC3847778 DOI: 10.1101/gr.157610.113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gene regulation by transcription factors (TFs) determines developmental programs and cell identity. Consequently, mutations in TFs can lead to dramatic phenotypes in humans by disrupting gene regulation. To date, the molecular mechanisms that actually cause these phenotypes have been difficult to address experimentally. ChIP-seq, which couples chromatin immunoprecipitation with high-throughput sequencing, allows TF function to be investigated on a genome-wide scale, enabling new approaches for the investigation of gene regulation. Here, we present the application of ChIP-seq to explore the effect of missense mutations in TFs on their genome-wide binding profile. Using a retroviral expression system in chicken mesenchymal stem cells, we elucidated the mechanism underlying a novel missense mutation in HOXD13 (Q317K) associated with a complex hand and foot malformation phenotype. The mutated glutamine (Q) is conserved in most homeodomains, a notable exception being bicoid-type homeodomains that have lysine (K) at this position. Our results show that the mutation results in a shift in the binding profile of the mutant toward a bicoid/PITX1 motif. Gene expression analysis and functional assays using in vivo overexpression studies confirm that the mutation results in a partial conversion of HOXD13 into a TF with bicoid/PITX1 properties. A similar shift was not observed with another mutation, Q317R, which is associated with brachysyndactyly, suggesting that the bicoid/PITX1-shift observed for Q317K might be related to the severe clinical phenotype. The methodology described can be used to investigate a wide spectrum of TFs and mutations that have not previously been amenable to ChIP-seq experiments.
Collapse
Affiliation(s)
- Daniel M Ibrahim
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Andrey G, Montavon T, Mascrez B, Gonzalez F, Noordermeer D, Leleu M, Trono D, Spitz F, Duboule D. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 2013; 340:1234167. [PMID: 23744951 DOI: 10.1126/science.1234167] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hox genes are major determinants of the animal body plan, where they organize structures along both the trunk and appendicular axes. During mouse limb development, Hoxd genes are transcribed in two waves: early on, when the arm and forearm are specified, and later, when digits form. The transition between early and late regulations involves a functional switch between two opposite topological domains. This switch is reflected by a subset of Hoxd genes mapping centrally into the cluster, which initially interact with the telomeric domain and subsequently swing toward the centromeric domain, where they establish new contacts. This transition between independent regulatory landscapes illustrates both the modularity of the limbs and the distinct evolutionary histories of its various pieces. It also allows the formation of an intermediate area of low HOX proteins content, which develops into the wrist, the transition between our arms and our hands. This regulatory strategy accounts for collinear Hox gene regulation in land vertebrate appendages.
Collapse
Affiliation(s)
- Guillaume Andrey
- School of Life Sciences, Federal Institute of Technology, Lausanne, 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shou S, Carlson HL, Perez WD, Stadler HS. HOXA13 regulates Aldh1a2 expression in the autopod to facilitate interdigital programmed cell death. Dev Dyn 2013; 242:687-98. [PMID: 23553814 DOI: 10.1002/dvdy.23966] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/05/2013] [Accepted: 03/21/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Retinoic acid (RA), plays an essential role in the growth and patterning of vertebrate limb. While the developmental processes regulated by RA are well understood, little is known about the transcriptional mechanisms required to precisely control limb RA synthesis. Here, Aldh1a2 functions as the primary enzyme necessary for RA production which regulates forelimb outgrowth and hindlimb digit separation. Because mice lacking HOXA13 exhibit similar defects in digit separation as Aldh1a2 mutants, we hypothesized that HOXA13 regulates Aldh1a2 to facilitate RA-mediated interdigital programmed cell death (IPCD) and digit separation. RESULTS In this report, we identify Aldh1a2 as a direct target of HOXA13. In absence of HOXA13 function, Aldh1a2 expression, RA signaling, and IPCD are reduced. In the limb, HOXA13 binds a conserved cis-regulatory element in the Aldh1a2 locus that can be regulated by HOXA13 to promote gene expression. Finally, decreased RA signaling and IPCD can be partially rescued in the Hoxa13 mutant hindlimb by maternal RA supplementation. CONCLUSIONS Defects in IPCD and digit separation in Hoxa13 mutant mice may be caused in part by reduced levels of RA signaling stemming from a loss in the direct regulation of Aldh1a2. These findings provide new insights into the transcriptional regulation of RA signaling necessary for limb morphogenesis.
Collapse
Affiliation(s)
- Siming Shou
- University of Chicago Microarray Core, Room G405, Hospital Building MC5100, Chicago, Illinois, USA
| | | | | | | |
Collapse
|