1
|
Franzese O. Tumor Microenvironment Drives the Cross-Talk Between Co-Stimulatory and Inhibitory Molecules in Tumor-Infiltrating Lymphocytes: Implications for Optimizing Immunotherapy Outcomes. Int J Mol Sci 2024; 25:12848. [PMID: 39684559 DOI: 10.3390/ijms252312848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
This review explores some of the complex mechanisms underlying antitumor T-cell response, with a specific focus on the balance and cross-talk between selected co-stimulatory and inhibitory pathways. The tumor microenvironment (TME) fosters both T-cell activation and exhaustion, a dual role influenced by the local presence of inhibitory immune checkpoints (ICs), which are exploited by cancer cells to evade immune surveillance. Recent advancements in IC blockade (ICB) therapies have transformed cancer treatment. However, only a fraction of patients respond favorably, highlighting the need for predictive biomarkers and combination therapies to overcome ICB resistance. A crucial aspect is represented by the complexity of the TME, which encompasses diverse cell types that either enhance or suppress immune responses. This review underscores the importance of identifying the most critical cross-talk between inhibitory and co-stimulatory molecules for developing approaches tailored to patient-specific molecular and immune profiles to maximize the therapeutic efficacy of IC inhibitors and enhance clinical outcomes.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
2
|
Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte infusions and cellular therapy. Front Immunol 2024; 15:1328858. [PMID: 38558819 PMCID: PMC10978651 DOI: 10.3389/fimmu.2024.1328858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many hematologic malignancies as well as non-malignant conditions. Part of the curative basis underlying HSCT for hematologic malignancies relies upon induction of the graft versus leukemia (GVL) effect in which donor immune cells recognize and eliminate residual malignant cells within the recipient, thereby maintaining remission. GVL is a clinically evident phenomenon; however, specific cell types responsible for inducing this effect and molecular mechanisms involved remain largely undefined. One of the best examples of GVL is observed after donor lymphocyte infusions (DLI), an established therapy for relapsed disease or incipient/anticipated relapse. DLI involves infusion of peripheral blood lymphocytes from the original HSCT donor into the recipient. Sustained remission can be observed in 20-80% of patients treated with DLI depending upon the underlying disease and the intrinsic burden of targeted cells. In this review, we will discuss current knowledge about mechanisms of GVL after DLI, experimental strategies for augmenting GVL by manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/depletion) and research outlook for improving DLI and cellular immunotherapies for hematologic malignancies through better molecular definition of the GVL effect.
Collapse
Affiliation(s)
| | - Joseph H. Antin
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Cieri N, Maurer K, Wu CJ. 60 Years Young: The Evolving Role of Allogeneic Hematopoietic Stem Cell Transplantation in Cancer Immunotherapy. Cancer Res 2021; 81:4373-4384. [PMID: 34108142 PMCID: PMC8416782 DOI: 10.1158/0008-5472.can-21-0301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/27/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
The year 2020 marked the 30th anniversary of the Nobel Prize in Medicine awarded to E. Donnall Thomas for the development of allogeneic hematopoietic stem cell transplantation (allo-HSCT) to treat hematologic malignancies and other blood disorders. Dr. Thomas, "father of bone marrow transplantation," first developed and reported this technique in 1957, and in the ensuing decades, this seminal study has impacted fundamental work in hematology and cancer research, including advances in hematopoiesis, stem cell biology, tumor immunology, and T-cell biology. As the first example of cancer immunotherapy, understanding the mechanisms of antitumor biology associated with allo-HSCT has given rise to many of the principles used today in the development and implementation of novel transformative immunotherapies. Here we review the historical basis underpinning the development of allo-HSCT as well as advances in knowledge obtained by defining mechanisms of allo-HSCT activity. We review how these principles have been translated to novel immunotherapies currently utilized in clinical practice and describe potential future applications for allo-HSCT in cancer research and development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicoletta Cieri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
4
|
The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Lett 2021; 510:67-78. [PMID: 33895262 DOI: 10.1016/j.canlet.2021.04.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/31/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
Immune checkpoint blockade has shown unprecedented and durable clinical response in a wide range of cancers. T cell immunoglobulin and mucin domain 3 (TIM3) is an inhibitory checkpoint protein that is highly expressed in tumor-infiltrating lymphocytes. In various cancers, the interaction of TIM3 and Galectin 9 (Gal9) suppresses anti-tumor immunity mediated by innate as well as adaptive immune cells. Thus, the blockade of the TIM3/Gal9 interaction is a promising therapeutic approach for cancer therapy. In addition, co-blockade of the TIM3/Gal9 pathway along with the PD-1/PD-L1 pathway increases the therapeutic efficacy by overcoming non-redundant immune resistance induced by each checkpoint. Here, we summarize the physiological roles of the TIM3/Gal9 pathway in adaptive and innate immune systems. We highlight the recent clinical and preclinical studies showing the involvement of the TIM3/Gal9 pathway in various solid and blood cancers. In addition, we discuss the potential of using TIM3 and Gal9 as prognostic and predictive biomarkers in different cancers. An in-depth mechanistic understanding of the blockade of the TIM3/Gal9 signaling pathway in cancer could help in identifying patients who respond to this therapy as well as designing combination therapies.
Collapse
|
5
|
Jiang C, Wang H, Xue M, Lin L, Wang J, Cai G, Shen Q. Reprograming of peripheral Foxp3+ regulatory T cell towards Th17-like cell in patients with active systemic lupus erythematosus. Clin Immunol 2019; 209:108267. [DOI: 10.1016/j.clim.2019.108267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/30/2019] [Accepted: 10/04/2019] [Indexed: 12/29/2022]
|
6
|
Li H, Liu L, Liu C, Zhuang J, Zhou C, Yang J, Gao C, Liu G, Lv Q, Sun C. Deciphering Key Pharmacological Pathways of Qingdai Acting on Chronic Myeloid Leukemia Using a Network Pharmacology-Based Strategy. Med Sci Monit 2018; 24:5668-5688. [PMID: 30108199 PMCID: PMC6106618 DOI: 10.12659/msm.908756] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Qingdai, a traditional Chinese medicine (TCM) used for the treatment of chronic myeloid leukemia (CML) with good efficacy, has been used in China for decades. However, due to the complexity of traditional Chinese medicinal compounds, the pharmacological mechanism of Qingdai needs further research. In this study, we investigated the pharmacological mechanisms of Qingdai in the treatment of CML using network pharmacology approaches. First, components in Qingdai that were selected by pharmacokinetic profiles and biological activity predicted putative targets based on a combination of 2D and 3D similarity measures with known ligands. Then, an interaction network of Qingdai putative targets and known therapeutic targets for the treatment of chronic myeloid leukemia was constructed. By calculating the 4 topological features (degree, betweenness, closeness, and coreness) of each node in the network, we identified the candidate Qingdai targets according to their network topological importance. The composite compounds of Qingdai and the corresponding candidate major targets were further validated by a molecular docking simulation. Seven components in Qingdai were selected and 32 candidate Qingdai targets were identified; these were more frequently involved in cytokine-cytokine receptor interaction, cell cycle, p53 signaling pathway, MAPK signaling pathway, and immune system-related pathways, which all play important roles in the progression of CML. Finally, the molecular docking simulation showed that 23 pairs of chemical components and candidate Qingdai targets had effective binding. This network-based pharmacology study suggests that Qingdai acts through the regulation of candidate targets to interfere with CML and thus regulates the occurrence and development of CML.
Collapse
Affiliation(s)
- Huayao Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Lijuan Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland).,Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| | - Cun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Jing Zhuang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Chao Zhou
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Jing Yang
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Chundi Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China (mainland)
| | - Gongxi Liu
- Departmen of Oncology, Weifang Traditional Chinese Hospital, Weifang, Shandong, China (mainland)
| | - Qingliang Lv
- Department of Interventional Radiology, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Changgang Sun
- Department of Oncology, Affilited Hospital of Weifang Medical University, Weifang, Shandong, China (mainland)
| |
Collapse
|
7
|
Sensing danger: toll-like receptors and outcome in allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2016; 52:499-505. [PMID: 27941769 DOI: 10.1038/bmt.2016.263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 12/18/2022]
Abstract
Pattern recognition receptors (PRRs) such as Toll-like receptors (TLRs) play key roles in initiating innate and adaptive immune responses. Based mainly on animal studies there is growing evidence to suggest that TLRs are involved in the development of chemotherapy-induced mucositis and in the propagation of graft versus host reactions as well as graft versus tumor effects in allogeneic hematopoietic stem cell transplantation (HSCT). In this review we discuss these findings along with the emerging, although still preliminary, clinical evidence, that points to a role of PRRs in determining the outcome of HSCT and new therapeutic perspectives that may be related to this development.
Collapse
|
8
|
|
9
|
Ma YU, Zhang LI, Li Q. Expression levels of cytokines and chemokines increase in human peripheral blood mononuclear cells stimulated by activation of the Toll-like receptor 5 pathway. Exp Ther Med 2015; 11:588-592. [PMID: 26893651 DOI: 10.3892/etm.2015.2914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 01/26/2015] [Indexed: 02/05/2023] Open
Abstract
Recognition of pathogen-associated molecular patterns by Toll-like receptors (TLRs) activates innate and adaptive immune responses. Among the 11 members of the human TLR family, TLR-5 is known to play an important role in the defense against bacterial invasion by binding to flagellin, a conserved component of bacteria. Previous studies have demonstrated that the activation of TLR-5 induces the expression of interleukin (IL)-10, IL-12 and interferon-β. However, the aim of the present study was to analyze the expression of a wider range of immune-related molecules upon stimulation with a TLR-5 agonist. Following isolation from healthy volunteers, peripheral blood mononuclear cells (PBMCs) were stimulated with flagellin, a TLR-5 agonist. At 4 h after stimulation, quantitative polymerase chain reaction (PCR) and an antibody chip array were conducted to determine the mRNA expression levels of immune molecules and the protein secretion of immune molecules in the supernatant, respectively. The PCR results revealed that activation of TLR-5 significantly influenced the expression of a number of important molecules. In addition, the antibody chip array demonstrated the induction (IL-8) and inhibition [monocyte chemoattractant protein (MCP)-1, MCP-3 and macrophage inflammatory protein-1α) of protein secretion following TLR-5 stimulation. Therefore, the present study demonstrated the importance of TLR-5 in regulating the biological function of PBMCs. In the future, research should focus on the roles of the candidate molecules in TLR-5-mediating functions.
Collapse
Affiliation(s)
- Y U Ma
- Department of Thyroid and Breast Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - L I Zhang
- Laboratory of Pathology, Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Quansheng Li
- Department of Biliary Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
10
|
Abstract
The therapeutic potential of the immune system in the context of hematologic malignancies has long been appreciated particularly due to the curative impact of allogeneic hematopoietic stem cell transplantation (SCT). The role of immune system in shaping the biology and evolution of these tumors is now well recognized. While the contribution of the immune system in anti-tumor effects of certain therapies such as immune-modulatory drugs and monoclonal antibodies active in hematologic malignancies is quite evident, the immune system has also been implicated in anti-tumor effects of other targeted therapies. The horizon of immune-based therapies in hematologic malignancies is rapidly expanding with promising results from immune-modulatory drugs, immune-checkpoint blockade, and adoptive cellular therapies, including genetically-modified T cells. Hematologic malignancies present distinct issues (relative to solid tumors) for the application of immune therapies due to differences in cell of origin/developmental niche of tumor cells, and patterns of involvement such as common systemic involvement of secondary lymphoid tissues. This article discusses the rapidly changing landscape of immune modulation in hematologic malignancies and emphasizes areas wherein hematologic malignancies present distinct opportunities for immunologic approaches to prevent or treat cancer.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Departments of Internal Medicine (Hematology); Immunobiology, Yale University, New Haven, CT; Yale Cancer Center, Yale University, New Haven, CT.
| | - Kavita M Dhodapkar
- Pediatrics (Hematology-Oncology); Yale Cancer Center, Yale University, New Haven, CT
| |
Collapse
|
11
|
Bachireddy P, Wu CJ. Understanding anti-leukemia responses to donor lymphocyte infusion. Oncoimmunology 2014; 3:e28187. [PMID: 25340010 PMCID: PMC4203631 DOI: 10.4161/onci.28187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 11/24/2022] Open
Abstract
Donor lymphocyte infusion (DLI) is an established and potentially curative immune therapy for relapsed leukemia after hematopoietic stem cell transplant (HSCT). Herein, we describe the utility of DLI as a tractable model system to glean fresh insights into understanding and predicting effective anti-leukemia immunity.
Collapse
Affiliation(s)
- Pavan Bachireddy
- Department of Medical Oncology; Dana-Farber Cancer Institute; Boston, MA USA ; Cancer Vaccine Center; Dana-Farber Cancer Institute; Boston, MA USA ; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston, MA USA
| | - Catherine J Wu
- Department of Medical Oncology; Dana-Farber Cancer Institute; Boston, MA USA ; Cancer Vaccine Center; Dana-Farber Cancer Institute; Boston, MA USA ; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston, MA USA
| |
Collapse
|
12
|
Cruz LJ, Rueda F, Simón L, Cordobilla B, Albericio F, Domingo JC. Liposomes containing NY-ESO-1/tetanus toxoid and adjuvant peptides targeted to human dendritic cells via the Fc receptor for cancer vaccines. Nanomedicine (Lond) 2014; 9:435-49. [DOI: 10.2217/nnm.13.66] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aim: To improve the immunological response against tumors, a vaccine based on nanoliposomes targeted to the Fcγ-receptor was developed to enhance the immunogenicity of tumor-associated antigens (TAAs). Materials & methods: Using human dendritic cells in vitro, a fragment of the TAA NY-ESO-1 combined with a T-helper peptide from the tetanus toxoid encapsulated in nanoliposomes was evaluated. In addition, peptides Palm-IL-1 and MAP-IFN-γwere coadministered as adjuvants to enhance the immunological response. Results: Coadministration of Palm-IL-1 or MAP-IFN-γpeptide adjuvants and the hybrid NY-ESO-1-tetanus toxoid (soluble or encapsulated in nanoliposomes without targeting) increased immunogenicity. However, the most potent immunological response was obtained when the peptide adjuvants were encapsulated in liposomes targeted to human dendritic cells via the Fc receptor. Conclusion: This targeted vaccine strategy is a promising tool to activate and deliver antigens to dendritic cells, thus improving immunotherapeutic response in situations in which the immune system is frequently compromised, as in advanced cancers.
Collapse
Affiliation(s)
- Luis J Cruz
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials & Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Felix Rueda
- Department of Biochemistry & Molecular Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Lorena Simón
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials & Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Begoña Cordobilla
- Department of Biochemistry & Molecular Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials & Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, 08028 Barcelona, Spain
- Department of Organic Chemistry, University of Barcelona, Marti i Franques 1, 08028-Barcelona, Spain
- School of Chemistry, University of KwaZulu Natal, Durban, Kwa-Zulu Natal, 4000, South Africa
| | - Joan C Domingo
- Department of Biochemistry & Molecular Biology, University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Xu Z, Wu F, Wang C, Liu X, Kang B, Shan S, Gu X, Wang K, Ren T. The stimulatory activity of plasma in patients with advanced non-small cell lung cancer requires TLR-stimulating nucleic acid immunoglobulin complexes and discriminates responsiveness to chemotherapy. Cancer Cell Int 2014; 14:80. [PMID: 25788863 PMCID: PMC4364047 DOI: 10.1186/s12935-014-0080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 07/30/2014] [Indexed: 11/16/2022] Open
Abstract
Background Therapeutic options for patients with non-small cell lung cancer (NSCLC) are often restricted to systemic chemotherapy. However, the molecular and cellular processes during chemotherapy of advanced NSCLC patients still remain unclear. Here we investigated the stimulatory activity of plasma in advanced NSCLC patients and its correlation with chemotherapy. Methods Whole blood samples from advanced NSCLC patients were collected before the first, second, and third cycle of chemotherapy. Plasma was isolated following centrifugation of whole blood. PBMCs were isolated from whole-blood specimens by Ficoll-Hypaque density gradient centrifugation. Immune complexes (ICs) were isolated from NSCLC plasma using the IgG Purification Kit. qRT-PCR was used to detect a broad array of cytokines and chemokines. Results The plasma in advanced NSCLC patients was endowed with stimulatory activity and capable of inducing proinflammatory cytokines. Both nucleic acids and immunoglobulin components were required for the stimulatory activity of NSCLC plasma. In consistent, TLR8 and TLR9 conferred the stimulatory activity of plasma in NSCLC patients. Of note, we revealed the decreased stimulatory activity of plasma in patients who responded to chemotherapy. Conclusions Our findings demonstrated that the plasma of advanced NSCLC patients required TLR-stimulating nucleic acid immunoglobulin complexes and could discriminate the responsiveness to chemotherapy, which might provide a novel mechanism by which the proinflammatory immune response was induced and a potential new biomarker for evaluating responsiveness to chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Zengguang Xu
- Department of Scientific Research, East Hospital, Tongji University School of Medicine, Shanghai 200120, China ; Department of Preventive Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengying Wu
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunhong Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Xiyu Liu
- Department of Chest Surgery, The Bethune First Hospital of Jilin University, Changchun, China
| | - Baoli Kang
- Department of Preventive Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shan Shan
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Gu
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Kailing Wang
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| | - Tao Ren
- Department of Respiratory Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Pudong New Area, Shanghai 200120, China
| |
Collapse
|
14
|
Reversal of in situ T-cell exhaustion during effective human antileukemia responses to donor lymphocyte infusion. Blood 2013; 123:1412-21. [PMID: 24357730 DOI: 10.1182/blood-2013-08-523001] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increasing evidence across malignancies suggests that infiltrating T cells at the site of disease are crucial to tumor control. We hypothesized that marrow-infiltrating immune populations play a critical role in response to donor lymphocyte infusion (DLI), an established and potentially curative immune therapy whose precise mechanism remains unknown. We therefore analyzed marrow-infiltrating immune populations in 29 patients (22 responders, 7 nonresponders) with relapsed chronic myelogenous leukemia who received CD4(+) DLI in the pre-tyrosine kinase inhibitor era. Immunohistochemical analysis of pretreatment marrow revealed that the presence of >4% marrow-infiltrating CD8(+) (but not CD4(+)) T cells predicted DLI response, even in the setting of high leukemia burden. Furthermore, mRNA expression profiling of marrow-infiltrating T cells of a subset of responders compared with nonresponders revealed enrichment of T-cell exhaustion-specific genes in pretreatment T cells of DLI responders and significant downregulation of gene components in the same pathway in responders in conjunction with clinical response. Our data demonstrate that response to DLI is associated with quantity of preexisting marrow CD8(+) T cells and local reversal of T-cell exhaustion. Our studies implicate T-cell exhaustion as a therapeutic target of DLI and support the potential use of novel anti-PD1/PDL1 agents in lieu of DLI.
Collapse
|
15
|
Wen Z, Xu L, Chen X, Xu W, Yin Z, Gao X, Xiong S. Autoantibody induction by DNA-containing immune complexes requires HMGB1 with the TLR2/microRNA-155 pathway. THE JOURNAL OF IMMUNOLOGY 2013; 190:5411-22. [PMID: 23616573 DOI: 10.4049/jimmunol.1203301] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Anti-dsDNA Ab is reported to be the central pathogenic autoantibody involved in systemic lupus erythematosus (SLE) pathogenesis. However, the mechanisms involved in anti-dsDNA Ab production remain unclear. Recent evidence indicated that DNA-containing immune complexes (ICs) in circulation (termed "circulating DNA-containing ICs"), which are one of the hallmarks of SLE, might be involved in autoantibody production. In this study, we explored their potential role in anti-dsDNA Ab production and the underlying mechanisms in patients with SLE. We demonstrated that circulating DNA-containing ICs were able to induce anti-dsDNA Ab. Of note, HMGB1 in circulating DNA-containing ICs was crucial for anti-dsDNA Ab induction. The HMGB1 content of circulating DNA-containing ICs also correlated positively with anti-dsDNA Ab production in patients with SLE. Further, we revealed that the TLR2/MyD88/microRNA-155 (miR-155) pathway was pivotal for HMGB1 to confer anti-dsDNA Ab induction, and Ets-1 was a functional target of miR-155 in the induction of anti-dsDNA Ab by circulating DNA-containing ICs. Finally, we validated the expression of miR-155 and Ets-1 and their correlation with anti-dsDNA Ab production in patients with SLE. To our knowledge, this is the first report of the crucial role of HMGB1 in autoantibody production mediated by the TLR2/MyD88/miR-155/Ets-1 pathway. These findings identify a novel mechanism to account for the persistent production of anti-dsDNA Ab in SLE and a clue for developing a novel therapeutic strategy against SLE.
Collapse
Affiliation(s)
- Zhenke Wen
- Institute for Immunobiology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, Hirashima M, Uede T, Takaoka A, Yagita H, Jinushi M. Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 2012; 13:832-42. [PMID: 22842346 DOI: 10.1038/ni.2376] [Citation(s) in RCA: 639] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/19/2012] [Indexed: 12/16/2022]
Abstract
The mechanisms by which tumor microenvironments modulate nucleic acid-mediated innate immunity remain unknown. Here we identify the receptor TIM-3 as key in circumventing the stimulatory effects of nucleic acids in tumor immunity. Tumor-associated dendritic cells (DCs) in mouse tumors and patients with cancer had high expression of TIM-3. DC-derived TIM-3 suppressed innate immune responses through the recognition of nucleic acids by Toll-like receptors and cytosolic sensors via a galectin-9-independent mechanism. In contrast, TIM-3 interacted with the alarmin HMGB1 to interfere with the recruitment of nucleic acids into DC endosomes and attenuated the therapeutic efficacy of DNA vaccination and chemotherapy by diminishing the immunogenicity of nucleic acids released from dying tumor cells. Our findings define a mechanism whereby tumor microenvironments suppress antitumor immunity mediated by nucleic acids.
Collapse
Affiliation(s)
- Shigeki Chiba
- Research Center for Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Novel myeloma-associated antigens revealed in the context of syngeneic hematopoietic stem cell transplantation. Blood 2012; 119:3142-50. [PMID: 22267603 DOI: 10.1182/blood-2011-11-388926] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Targets of curative donor-derived graft-versus-myeloma (GVM) responses after allogeneic hematopoietic stem cell transplantation (HSCT) remain poorly defined, partly because immunity against minor histocompatibility Ags (mHAgs) complicates the elucidation of multiple myeloma (MM)-specific targets. We hypothesized that syngeneic HSCT would facilitate the identification of GVM-associated Ags because donor immune responses in this setting should exclusively target unique tumor Ags in the absence of donor-host genetic disparities. Therefore, in the present study, we investigated the development of tumor immunity in an HLA-A0201(+) MM patient who achieved durable remission after myeloablative syngeneic HSCT. Using high-density protein microarrays to screen post-HSCT plasma, we identified 6 Ags that elicited high-titer (1:5000-1:10 000) Abs that correlated with clinical tumor regression. Two Ags (DAPK2 and PIM1) had enriched expression in primary MM tissues. Both elicited Ab responses in other MM patients after chemotherapy or HSCT (11 and 6 of 32 patients for DAPK2 and PIM1, respectively). The index patient also developed specific CD8(+) T-cell responses to HLA-A2-restricted peptides derived from DAPK2 and PIM1. Peptide-specific T cells recognized HLA-A2(+) MM-derived cell lines and primary MM tumor cells. Coordinated T- and B-cell immunity develops against MM-associated Ags after syngeneic HSCT. DAPK1 and PIM1 are promising target Ags for MM-directed immunotherapy.
Collapse
|