1
|
Davies K, McLaren J. Destabilisation of T cell-dependent humoral immunity in sepsis. Clin Sci (Lond) 2024; 138:65-85. [PMID: 38197178 PMCID: PMC10781648 DOI: 10.1042/cs20230517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For some, sepsis presents as a predominantly suppressive disorder, whilst others experience a pro-inflammatory condition which can culminate in a 'cytokine storm'. Frequently, patients experience signs of concurrent hyper-inflammation and immunosuppression, underpinning the difficulty in directing effective treatment. Although intensive care unit mortality rates have improved in recent years, one-third of discharged patients die within the following year. Half of post-sepsis deaths are due to exacerbation of pre-existing conditions, whilst half are due to complications arising from a deteriorated immune system. It has been suggested that the intense and dysregulated response to infection may induce irreversible metabolic reprogramming in immune cells. As a critical arm of immune protection in vertebrates, alterations to the adaptive immune system can have devastating repercussions. Indeed, a marked depletion of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such sepsis-induced lymphopenia has profound consequences on how T cells respond to infection but equally on the humoral immune response that is both elicited by B cells and supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of cells expressing dysfunctional or exhausted phenotypes. This review will specifically focus on how sepsis destabilises the adaptive immune system, with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral immunity.
Collapse
Affiliation(s)
- Kate Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| |
Collapse
|
2
|
Yu Q, Liu M, Zhao T, Su M, Wang S, Xu W, He S, Li K, Mu X, Wu J, Sun P, Zheng F, Weng N. Mechanism of baixiangdan capsules on anti-neuroinflammation: combining dry and wet experiments. Aging (Albany NY) 2023; 15:7689-7708. [PMID: 37556347 PMCID: PMC10457058 DOI: 10.18632/aging.204934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Neuroinflammation plays an important role in the pathogenesis of neurological disorders, and despite intensive research, treatment of neuroinflammation remains limited. BaiXiangDan capsule (BXD) is widely used in clinical practice. However, systematic studies on the direct role and mechanisms of BXD in neuroinflammation are still lacking. We systematically evaluated the potential pharmacological mechanisms of BXD on neuroinflammation using network pharmacological analysis combined with experimental validation. Multiple databases are used to mine potential targets for bioactive ingredients, drug targets and neuroinflammation. GO and KEGG pathway analysis was also performed. Interactions between active ingredients and pivotal targets were confirmed by molecular docking. An experimental model of neuroinflammation was used to evaluate possible therapeutic mechanisms for BXD. Network pharmacological analysis revealed that Chrysoeriol, Kaempferol and Luteolin in BXD exerted their anti-neuroinflammatory effects mainly by acting on targets such as NCOA2, PIK3CA and PTGS2. Molecular docking results showed that their average affinity was less than -5 kcal/mol, with an average affinity of -8.286 kcal/mol. Pathways in cancer was found to be a potentially important pathway, with involvement of PI3K/AKT signaling pathways. In addition, in vivo experiments showed that BXD treatment ameliorated neural damage and reduced neuronal cell death. Western blotting, RT-qPCR and ELISA analysis showed that BXD inhibited not only the expression of IL-1β, TNF-α and NO, but also NF-κB, MMP9 and PI3K/AKT signaling pathways. This study applied network pharmacology and in vivo experiments to explore the possible mechanisms of BXD against neuroinflammation, providing insight into the treatment of neuroinflammation.
Collapse
Affiliation(s)
- Qingying Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Molin Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Tingting Zhao
- College of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Mengyue Su
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Shukun Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Wenhua Xu
- Preventive Treatment Center, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen 518000, China
| | - Shuhua He
- Department of Psychiatry, Boai Hospitai of Zhongshan, Zhongshan 528400, China
| | - Kejie Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Xiangyu Mu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Jibiao Wu
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250000, China
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Ning Weng
- Department of Traditional Chinese Medicine, Shandong Mental Health Center, Shandong University, Jinan 250000, China
| |
Collapse
|
3
|
Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8 + T lymphocytes. Neuron 2023; 111:696-710.e9. [PMID: 36603584 DOI: 10.1016/j.neuron.2022.12.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 09/03/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023]
Abstract
The crosstalk between the nervous and immune systems has gained increasing attention for its emerging role in neurological diseases. Radiation-induced brain injury (RIBI) remains the most common medical complication of cranial radiotherapy, and its pathological mechanisms have yet to be elucidated. Here, using single-cell RNA and T cell receptor sequencing, we found infiltration and clonal expansion of CD8+ T lymphocytes in the lesioned brain tissues of RIBI patients. Furthermore, by strategies of genetic or pharmacologic interruption, we identified a chemotactic action of microglia-derived CCL2/CCL8 chemokines in mediating the infiltration of CCR2+/CCR5+ CD8+ T cells and tissue damage in RIBI mice. Such a chemotactic axis also participated in the progression of cerebral infarction in the mouse model of ischemic injury. Our findings therefore highlight the critical role of microglia in mediating the dysregulation of adaptive immune responses and reveal a potential therapeutic strategy for non-infectious brain diseases.
Collapse
|
4
|
Advances in Antibody-Based Therapeutics for Cerebral Ischemia. Pharmaceutics 2022; 15:pharmaceutics15010145. [PMID: 36678774 PMCID: PMC9866586 DOI: 10.3390/pharmaceutics15010145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/18/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Cerebral ischemia is an acute disorder characterized by an abrupt reduction in blood flow that results in immediate deprivation of both glucose and oxygen. The main types of cerebral ischemia are ischemic and hemorrhagic stroke. When a stroke occurs, several signaling pathways are activated, comprising necrosis, apoptosis, and autophagy as well as glial activation and white matter injury, which leads to neuronal cell death. Current treatments for strokes include challenging mechanical thrombectomy or tissue plasminogen activator, which increase the danger of cerebral bleeding, brain edema, and cerebral damage, limiting their usage in clinical settings. Monoclonal antibody therapy has proven to be effective and safe in the treatment of a variety of neurological disorders. In contrast, the evidence for stroke therapy is minimal. Recently, Clone MTS510 antibody targeting toll-like receptor-4 (TLR4) protein, ASC06-IgG1 antibody targeting acid sensing ion channel-1a (ASIC1a) protein, Anti-GluN1 antibodies targeting N-methyl-D-aspartate (NMDA) receptor associated calcium influx, GSK249320 antibody targeting myelin-associated glycoprotein (MAG), anti-High Mobility Group Box-1 antibody targeting high mobility group box-1 (HMGB1) are currently under clinical trials for cerebral ischemia treatment. In this article, we review the current antibody-based pharmaceuticals for neurological diseases, the use of antibody drugs in stroke, strategies to improve the efficacy of antibody therapeutics in cerebral ischemia, and the recent advancement of antibody drugs in clinical practice. Overall, we highlight the need of enhancing blood-brain barrier (BBB) penetration for the improvement of antibody-based therapeutics in the brain, which could greatly enhance the antibody medications for cerebral ischemia in clinical practice.
Collapse
|
5
|
Yang H, Li J, Li X, Ma L, Hou M, Zhou H, Zhou R. Based on molecular structures: Amyloid-β generation, clearance, toxicity and therapeutic strategies. Front Mol Neurosci 2022; 15:927530. [PMID: 36117918 PMCID: PMC9470852 DOI: 10.3389/fnmol.2022.927530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloid-β (Aβ) has long been considered as one of the most important pathogenic factors in Alzheimer’s disease (AD), but the specific pathogenic mechanism of Aβ is still not completely understood. In recent years, the development of structural biology technology has led to new understandings about Aβ molecular structures, Aβ generation and clearance from the brain and peripheral tissues, and its pathological toxicity. The purpose of the review is to discuss Aβ metabolism and toxicity, and the therapeutic strategy of AD based on the latest progress in molecular structures of Aβ. The Aβ structure at the atomic level has been analyzed, which provides a new and refined perspective to comprehend the role of Aβ in AD and to formulate therapeutic strategies of AD.
Collapse
Affiliation(s)
- Hai Yang
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Jinping Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoxiong Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Linqiu Ma
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingliang Hou
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huadong Zhou
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Rui Zhou
- Southwest Hospital, Army Medical University, Chongqing, China
- *Correspondence: Rui Zhou,
| |
Collapse
|
6
|
Shimojima Y, Kishida D, Ichikawa T, Kida T, Yajima N, Omura S, Nakagomi D, Abe Y, Kadoya M, Takizawa N, Nomura A, Kukida Y, Kondo N, Yamano Y, Yanagida T, Endo K, Hirata S, Matsui K, Takeuchi T, Ichinose K, Kato M, Yanai R, Matsuo Y, Nishioka R, Okazaki R, Takata T, Ito T, Moriyama M, Takatani A, Miyawaki Y, Ito-Ihara T, Kawaguchi T, Kawahito Y, Sekijima Y. Hypertrophic pachymeningitis in ANCA-associated vasculitis: a cross-sectional and multi-institutional study in Japan (J-CANVAS). Arthritis Res Ther 2022; 24:204. [PMID: 35999568 PMCID: PMC9396769 DOI: 10.1186/s13075-022-02898-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study investigated the characteristics of hypertrophic pachymeningitis (HP) in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV), using information from a multicenter study in Japan. METHODS We analyzed the clinical information of 663 Asian patients with AAV (total AAV), including 558 patients with newly diagnosed AAV and 105 with relapsed AAV. Clinical findings were compared between patients with and without HP. To elucidate the relevant manifestations for HP development, multivariable logistic regression analyses were additionally performed. RESULTS Of the patients with AAV (mean age, 70.2 ± 13.5 years), HP was noted in 30 (4.52%), including 20 (3.58%) with newly diagnosed AAV and 10 (9.52%) with relapsed AAV. Granulomatosis with polyangiitis (GPA) was classified in 50% of patients with HP. A higher prevalence of GPA was significantly observed in patients with HP than in those without HP in total AAV and newly diagnosed AAV (p < 0.001). In newly diagnosed AAV, serum proteinase 3 (PR3)-ANCA positivity was significantly higher in patients with HP than in those without HP (p = 0.030). Patients with HP significantly had ear, nose, and throat (ENT) (odds ratio [OR] 1.48, 95% confidence interval [CI] 1.03-2.14, p = 0.033) and mucous membrane/eye manifestations (OR 5.99, 95% CI 2.59-13.86, p < 0.0001) in total AAV. Moreover, they significantly had conductive hearing loss (OR 11.6, 95% CI 4.51-29.57, p < 0.0001) and sudden visual loss (OR 20.9, 95% CI 5.24-85.03, p < 0.0001). CONCLUSION GPA was predominantly observed in patients with HP. Furthermore, in newly diagnosed AAV, patients with HP showed significantly higher PR3-ANCA positivity than those without HP. The ear and eye manifestations may be implicated in HP development.
Collapse
Affiliation(s)
- Yasuhiro Shimojima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Dai Kishida
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Takanori Ichikawa
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Takashi Kida
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Nobuyuki Yajima
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Satoshi Omura
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daiki Nakagomi
- Department of Rheumatology, University of Yamanashi Hospital, Yamanashi, Japan
| | - Yoshiyuki Abe
- Department of Internal Medicine and Rheumatology, Juntendo University, Tokyo, Japan
| | - Masatoshi Kadoya
- Center for Rheumatic Disease, Japanese Red Cross Society Kyoto Daiichi Hospital, Kyoto, Japan
| | - Naoho Takizawa
- Department of Rheumatology, Chubu Rosai Hospital, Nagoya, Japan
| | - Atsushi Nomura
- Immuno-Rheumatology Center, St. Luke's International Hospital, Tokyo, Japan
| | - Yuji Kukida
- Department of Rheumatology, Japanese Red Cross Society Kyoto Daini Hospital, Kyoto, Japan
| | - Naoya Kondo
- Department of Nephrology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Yasuhiko Yamano
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Takuya Yanagida
- Department of Hematology and Rheumatology, Kagoshima University Hospital, Kagoshima, Japan
| | - Koji Endo
- Department of Pharmacoepidemiology, Graduate School of Medicine and Public Health, Kyoto University, Kyoto, Japan.,Department of General Internal Medicine, Tottori Prefectural Central Hospital, Tottori, Japan
| | - Shintaro Hirata
- Department of Clinical Immunology and Rheumatology, Hiroshima University Hospital, Hiroshima, Japan
| | - Kiyoshi Matsui
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo Medical University School of Medicine, Nishinomiya, Hyogo, Japan
| | - Tohru Takeuchi
- Department of Internal Medicine (IV), Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Kunihiro Ichinose
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaru Kato
- Department of Rheumatology, Endocrinology and Nephrology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryo Yanai
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Yusuke Matsuo
- Department of Rheumatology, Tokyo Kyosai Hospital, Tokyo, Japan.,Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Nishioka
- Department of Rheumatology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Ryota Okazaki
- Division of Respiratory Medicine and Rheumatology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tomoaki Takata
- Division of Gastroenterology and Nephrology, Tottori University, Yonago, Japan
| | - Takafumi Ito
- Division of Nephrology, Shimane University Hospital, Izumo, Shimane, Japan
| | - Mayuko Moriyama
- Department of Rheumatology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | - Ayuko Takatani
- Rheumatic Disease Center, Sasebo Chuo Hospital, Nagasaki, Japan
| | - Yoshia Miyawaki
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiko Ito-Ihara
- The Clinical and Translational Research Center, University Hospital, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takashi Kawaguchi
- Department of Practical Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
7
|
Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, Chen S, Lin X, Zhang G, Xiao H, Dong B. Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol 2022; 13:796288. [PMID: 35464431 PMCID: PMC9021448 DOI: 10.3389/fimmu.2022.796288] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
It has been noticed in recent years that the unfavorable effects of the gut microbiota could exhaust host vigor and life, yet knowledge and theory are just beginning to be established. Increasing documentation suggests that the microbiota-gut-brain axis not only impacts brain cognition and psychiatric symptoms but also precipitates neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). How the blood-brain barrier (BBB), a machinery protecting the central nervous system (CNS) from the systemic circulation, allows the risky factors derived from the gut to be translocated into the brain seems paradoxical. For the unique anatomical, histological, and immunological properties underpinning its permeable dynamics, the BBB has been regarded as a biomarker associated with neural pathogenesis. The BBB permeability of mice and rats caused by GM dysbiosis raises the question of how the GM and its metabolites change BBB permeability and causes the brain pathophysiology of neuroinflammation and neurodegeneration (NF&ND) and brain aging, a pivotal multidisciplinary field tightly associated with immune and chronic systemic inflammation. If not all, gut microbiota-induced systemic chronic inflammation (GM-SCI) mainly refers to excessive gut inflammation caused by gut mucosal immunity dysregulation, which is often influenced by dietary components and age, is produced at the interface of the intestinal barrier (IB) or exacerbated after IB disruption, initiates various common chronic diseases along its dispersal routes, and eventually impairs BBB integrity to cause NF&ND and brain aging. To illustrate the immune roles of the BBB in pathophysiology affected by inflammatory or "leaky" IB resulting from GM and their metabolites, we reviewed the selected publications, including the role of the BBB as the immune barrier, systemic chronic inflammation and inflammation influences on BBB permeability, NF&ND, and brain aging. To add depth to the bridging role of systemic chronic inflammation, a plausible mechanism indispensable for BBB corruption was highlighted; namely, BBB maintenance cues are affected by inflammatory cytokines, which may help to understand how GM and its metabolites play a major role in NF&ND and aging.
Collapse
Affiliation(s)
- Yi Mou
- Geroscience and Chronic Disease Department, The Eighth Municipal Hospital for the People, Chengdu, China
| | - Yu Du
- Department of Emergency and Critical Care Medicine, The Fourth West China Hospital, Sichuan University, Chengdu, China
| | - Lixing Zhou
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jirong Yue
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xianliang Hu
- Geroscience and Chronic Disease Department, The Eighth Municipal Hospital for the People, Chengdu, China
| | - Yixin Liu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Sao Chen
- Geroscience and Chronic Disease Department, The Eighth Municipal Hospital for the People, Chengdu, China
| | - Xiufang Lin
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Gongchang Zhang
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Birong Dong
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Pavan M, Bassani D, Bolcato G, Bissaro M, Sturles M, Moro S. Computational strategies to identify new drug candidates against neuroinflammation. Curr Med Chem 2022; 29:4756-4775. [PMID: 35135446 DOI: 10.2174/0929867329666220208095122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
The even more increasing application of computational approaches in these last decades has deeply modified the process of discovery and commercialization of new therapeutic entities. This is especially true in the field of neuroinflammation, in which both the peculiar anatomical localization and the presence of the blood-brain barrier makeit mandatory to finely tune the candidates' physicochemical properties from the early stages of the discovery pipeline. The aim of this review is therefore to provide a general overview to the readers about the topic of neuroinflammation, together with the most common computational strategies that can be exploited to discover and design small molecules controlling neuroinflammation, especially those based on the knowledge of the three-dimensional structure of the biological targets of therapeutic interest. The techniques used to describe the molecular recognition mechanisms, such as molecular docking and molecular dynamics, will therefore be eviscerated, highlighting their advantages and their limitations. Finally, we report several case studies in which computational methods have been applied in drug discovery on neuroinflammation, focusing on the last decade's research.
Collapse
Affiliation(s)
- Matteo Pavan
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Davide Bassani
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Giovanni Bolcato
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Maicol Bissaro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Mattia Sturles
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences University of Padova, via Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
9
|
Borrajo A, Spuch C, Penedo MA, Olivares JM, Agís-Balboa RC. Important role of microglia in HIV-1 associated neurocognitive disorders and the molecular pathways implicated in its pathogenesis. Ann Med 2021; 53:43-69. [PMID: 32841065 PMCID: PMC7877929 DOI: 10.1080/07853890.2020.1814962] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The development of effective combined anti-retroviral therapy (cART) led to a significant reduction in the death rate associated with human immunodeficiency virus type 1 (HIV-1) infection. However, recent studies indicate that considerably more than 50% of all HIV-1 infected patients develop HIV-1-associated neurocognitive disorder (HAND). Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS), and so, are also likely to contribute to the neurotoxicity observed in HAND. The activation of microglia induces the release of pro-inflammatory markers and altered secretion of cytokines, chemokines, secondary messengers, and reactive oxygen species (ROS) which activate signalling pathways that initiate neuroinflammation. In turn, ROS and inflammation also play critical roles in HAND. However, more efforts are required to understand the physiology of microglia and the processes involved in their activation in order to better understand the how HIV-1-infected microglia are involved in the development of HAND. In this review, we summarize the current state of knowledge about the involvement of oxidative stress mechanisms and role of HIV-induced ROS in the development of HAND. We also examine the academic literature regarding crucial HIV-1 pathogenicity factors implicated in neurotoxicity and inflammation in order to identify molecular pathways that could serve as potential therapeutic targets for treatment of this disease. KEY MESSAGES Neuroinflammation and excitotoxicity mechanisms are crucial in the pathogenesis of HAND. CNS infiltration by HIV-1 and immune cells through the blood brain barrier is a key process involved in the pathogenicity of HAND. Factors including calcium dysregulation and autophagy are the main challenges involved in HAND.
Collapse
Affiliation(s)
- A. Borrajo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Roma, Italy
| | - C. Spuch
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - M. A. Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - J. M. Olivares
- Department of Psychiatry, Área Sanitaria de Vigo, Vigo, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| | - R. C. Agís-Balboa
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur)-Área Sanitaria de Vigo, SERGAS-UVigo, CIBERSAM, Vigo, Spain
| |
Collapse
|
10
|
Zhang SY, Harschnitz O, Studer L, Casanova JL. Neuron-intrinsic immunity to viruses in mice and humans. Curr Opin Immunol 2021; 72:309-317. [PMID: 34425410 PMCID: PMC8578315 DOI: 10.1016/j.coi.2021.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022]
Abstract
Viral encephalitis is a major neglected medical problem. Host defense mechanisms against viral infection of the central nervous system (CNS) have long remained unclear. The few previous studies of CNS-specific immunity to viruses in mice in vivo and humans in vitro have focused on the contributions of circulating leukocytes, resident microglial cells and astrocytes, with neurons long considered passive victims of viral infection requiring protection from extrinsic antiviral mechanisms. The last decade has witnessed the gradual emergence of the notion that neurons also combat viruses through cell-intrinsic mechanisms. Forward genetic approaches in humans have shown that monogenic inborn errors of TLR3, IFN-α/β, or snoRNA31 immunity confer susceptibility to herpes simplex virus 1 (HSV-1) infection of the forebrain, whereas inborn errors of DBR1 underlie brainstem infections due to various viruses, including HSV-1. The study of human pluripotent stem cell (hPSC)-derived CNS-resident cells has unraveled known (i.e. TLR3-dependent IFN-α/β immunity) and new (i.e. snoRNA31-dependent or DBR1-dependent immunity) cell-intrinsic antiviral mechanisms operating in neurons. Reverse genetic approaches in mice have confirmed that some known antiviral mechanisms also operate in mouse neurons (e.g. TLR3 and IFN-α/β immunity). The search for human inborn errors of immunity (IEIs) underlying various forms of viral encephalitis, coupled with mouse models in vivo, and hPSC-based culture models of CNS and peripheral nervous system cells and organoids in vitro, should shed further light on the cell-specific and tissue-specific mechanisms of host defense against viruses in the human brain.
Collapse
Affiliation(s)
- Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University of Paris, Imagine Institute, Paris, France.
| | - Oliver Harschnitz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University of Paris, Imagine Institute, Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
11
|
Dapash M, Castro B, Hou D, Lee-Chang C. Current Immunotherapeutic Strategies for the Treatment of Glioblastoma. Cancers (Basel) 2021; 13:4548. [PMID: 34572775 PMCID: PMC8467991 DOI: 10.3390/cancers13184548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is a lethal primary brain tumor. Despite extensive effort in basic, translational, and clinical research, the treatment outcomes for patients with GBM are virtually unchanged over the past 15 years. GBM is one of the most immunologically "cold" tumors, in which cytotoxic T-cell infiltration is minimal, and myeloid infiltration predominates. This is due to the profound immunosuppressive nature of GBM, a tumor microenvironment that is metabolically challenging for immune cells, and the low mutational burden of GBMs. Together, these GBM characteristics contribute to the poor results obtained from immunotherapy. However, as indicated by an ongoing and expanding number of clinical trials, and despite the mostly disappointing results to date, immunotherapy remains a conceptually attractive approach for treating GBM. Checkpoint inhibitors, various vaccination strategies, and CAR T-cell therapy serve as some of the most investigated immunotherapeutic strategies. This review article aims to provide a general overview of the current state of glioblastoma immunotherapy. Information was compiled through a literature search conducted on PubMed and clinical trials between 1961 to 2021.
Collapse
Affiliation(s)
- Mark Dapash
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA;
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
| | - Brandyn Castro
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
- Department of Neurosurgery, University of Chicago, Chicago, IL 60637, USA
| | - David Hou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
| | - Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (B.C.); (D.H.)
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Borrajo López A, Penedo MA, Rivera-Baltanas T, Pérez-Rodríguez D, Alonso-Crespo D, Fernández-Pereira C, Olivares JM, Agís-Balboa RC. Microglia: The Real Foe in HIV-1-Associated Neurocognitive Disorders? Biomedicines 2021; 9:925. [PMID: 34440127 PMCID: PMC8389599 DOI: 10.3390/biomedicines9080925] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
The current use of combined antiretroviral therapy (cART) is leading to a significant decrease in deaths and comorbidities associated with human immunodeficiency virus type 1 (HIV-1) infection. Nonetheless, none of these therapies can extinguish the virus from the long-lived cellular reservoir, including microglia, thereby representing an important obstacle to curing HIV. Microglia are the foremost cells infected by HIV-1 in the central nervous system (CNS) and are believed to be involved in the development of HIV-1-associated neurocognitive disorder (HAND). At present, the pathological mechanisms contributing to HAND remain unclear, but evidence suggests that removing these infected cells from the brain, as well as obtaining a better understanding of the specific molecular mechanisms of HIV-1 latency in these cells, should help in the design of new strategies to prevent HAND and achieve a cure for these diseases. The goal of this review was to study the current state of knowledge of the neuropathology and research models of HAND containing virus susceptible target cells (microglial cells) and potential pharmacological treatment approaches under investigation.
Collapse
Affiliation(s)
- Ana Borrajo López
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - Tania Rivera-Baltanas
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
| | - Daniel Pérez-Rodríguez
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - David Alonso-Crespo
- Nursing Team-Intensive Care Unit, Área Sanitaria de Vigo, Estrada de Clara Campoamor 341, SERGAS-UVigo, 36312 Virgo, Spain;
| | - Carlos Fernández-Pereira
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Neuro Epigenetics Laboratory, University Hospital Complex of Vigo, SERGAS-UVIGO, 36213 Virgo, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
- Department of Psychiatry, Área Sanitaria de Vigo, Estrada de Clara Campoamor 341, SERGAS-UVigo, 36312 Vigo, Spain
| | - Roberto Carlos Agís-Balboa
- Translational Neuroscience Group-CIBERSAM, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, 36213 Vigo, Spain; (M.A.P.); (T.R.-B.); (D.P.-R.); (C.F.-P.); (J.M.O.)
| |
Collapse
|
13
|
Shah D, Comba A, Faisal SM, Kadiyala P, Baker GJ, Alghamri MS, Doherty R, Zamler D, Nuñez G, Castro MG, Lowenstein PR. A novel miR1983-TLR7-IFNβ circuit licenses NK cells to kill glioma cells, and is under the control of galectin-1. Oncoimmunology 2021; 10:1939601. [PMID: 34249474 PMCID: PMC8244780 DOI: 10.1080/2162402x.2021.1939601] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023] Open
Abstract
Although pharmacological stimulation of TLRs has anti-tumor effects, it has not been determined whether endogenous stimulation of TLRs can lead to tumor rejection. Herein, we demonstrate the existence of an innate anti-glioma NK-mediated circuit initiated by glioma-released miR-1983 within exosomes, and which is under the regulation of galectin-1 (Gal-1). We demonstrate that miR-1983 is an endogenous TLR7 ligand that activates TLR7 in pDCs and cDCs through a 5'-UGUUU-3' motif at its 3' end. TLR7 activation and downstream signaling through MyD88-IRF5/IRF7 stimulates secretion of IFN-β. IFN-β then stimulates NK cells resulting in the eradication of gliomas. We propose that successful immunotherapy for glioma could exploit this endogenous innate immune circuit to activate TLR7 signaling and stimulate powerful anti-glioma NK activity, at least 10-14 days before the activation of anti-tumor adaptive immunity.
Collapse
Affiliation(s)
- Diana Shah
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Syed M. Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gregory J. Baker
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert Doherty
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniel Zamler
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MIUSA
- Cancer Biology Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
14
|
Trombke J, Loyal L, Braun J, Pleyer U, Thiel A, Pohlmann D. Analysis of peripheral inflammatory T cell subsets and their effector function in patients with Birdshot Retinochoroiditis. Sci Rep 2021; 11:8604. [PMID: 33883633 PMCID: PMC8060342 DOI: 10.1038/s41598-021-88013-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/07/2021] [Indexed: 11/09/2022] Open
Abstract
Birdshot Retinochoroiditis (BSRC) is a progressive non-infectious intraocular inflammation that affects choroid and retina. Inflammatory processes have adverse effects on vision by affecting photoreceptor-bearing cells that do not regenerate. This study aimed at characterizing inflammatory CD4+ and CD8+ T cell subsets in the peripheral blood of active and inactive BSRCs. Furthermore, we correlated phenotypical and functional immunological analyses with clinical data. We observed a slight increase of terminally differentiated effector memory CD8+ T cells expressing CD45RA (TEMRA) in blood of inactive, compared to active BSRCs. Moreover, we identified a trend for a decreased population of TH2 cells and increased TH1 frequencies in active BSRCs, a typical sign of ongoing autoimmune processes. Functional assays demonstrated severe and overall impairment of effector function of both, CD4+ and CD8+ inflammatory T cells, which might reflect T cell exhaustion. Although the eye is the main site of inflammation in BSRC, we observed altered T cell subset compositions in the peripheral blood, dependent on the disease status. Our results indicate that T cells may play a major role in BSRC pathology, although our cohort size is too limited for definitve conclusions. Future studies with larger BSRCs have to be performed.
Collapse
Affiliation(s)
- Janine Trombke
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Lucie Loyal
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Si-M/"Der Simulierte Mensch" a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Julian Braun
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Uwe Pleyer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Andreas Thiel
- Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Si-M/"Der Simulierte Mensch" a Science Framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominika Pohlmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. .,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
15
|
Choi JK, Egwuagu CE. Analysis of Regulatory B Cells in Experimental Autoimmune Uveitis. Methods Mol Biol 2021; 2270:437-450. [PMID: 33479912 PMCID: PMC11307270 DOI: 10.1007/978-1-0716-1237-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Regulatory B cells (Bregs) that produce IL-35 and IL-10 (i35-Bregs) regulate central nervous system (CNS) autoimmune diseases including uveitis. In the mouse model of uveitis, i35-Breg cells suppress intraocular inflammation by inducing expansion of IL-10-producing B cells (B10), IL-10-producing T cells (Tregs), and IL-35-producing T cells (iTR35), suggesting that i35-Bregs orchestrate an immune-suppressive milieu that regulates immunity during autoimmune diseases. In this chapter, we discuss uveitis and therapeutic challenges that necessitate the development of cell-based therapies for the treatment of these potentially blinding diseases that cause 10% visual handicap. We then describe the methods we set up for ex vivo generation of i35-Breg cells employed in i35-Breg immunotherapy in uveitis and in other CNS autoimmune diseases.
Collapse
Affiliation(s)
- Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, USA
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
A system biological approach to investigate the genetic profiling and comorbidities of type 2 diabetes. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Kang M, Choi JK, Jittayasothorn Y, Egwuagu CE. Interleukin 35-Producing Exosomes Suppress Neuroinflammation and Autoimmune Uveitis. Front Immunol 2020; 11:1051. [PMID: 32547555 PMCID: PMC7272665 DOI: 10.3389/fimmu.2020.01051] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
Corticosteroids are effective therapy for autoimmune diseases but serious adverse effects preclude their prolonged use. However, immune-suppressive biologics that inhibit lymphoid proliferation are now in use as corticosteroid sparing-agents but with variable success; thus, the need to develop alternative immune-suppressive approaches including cell-based therapies. Efficacy of ex-vivo-generated IL-35-producing regulatory B-cells (i35-Bregs) in suppressing/ameliorating encephalomyelitis or uveitis in mouse models of multiple sclerosis or uveitis, respectively, is therefore a promising therapeutic approach for CNS autoimmune diseases. However, i35-Breg therapy in human uveitis would require producing autologous Bregs from each patient to avoid immune-rejection. Because exosomes exhibit minimal toxicity and immunogenicity, we investigated whether i35-Bregs release exosomes that can be exploited therapeutically. Here, we demonstrate that i35-Bregs release exosomes that contain IL-35 (i35-Exosomes). In this proof-of-concept study, we induced experimental autoimmune uveitis (EAU), monitored EAU progression by fundoscopy, histology, optical coherence tomography and electroretinography, and investigated whether i35-Exosomes treatment would suppress uveitis. Mice treated with i35-Exosomes developed mild EAU with low EAU scores and disease protection correlated with expansion of IL-10 and IL-35 secreting Treg cells with concomitant suppression of Th17 responses. In contrast, significant increase of Th17 cells in vitreous and retina of control mouse eyes was accompanied by severe choroiditis, massive retinal-folds, and photoreceptor cell damage. These hallmark features of severe uveitis were absent in exosome-treated mice and visual impairment detected by ERG was modest compared to control mice. Absence of toxicity or alloreactivity associated with exosomes thus makes i35-Exosomes attractive therapeutic option for delivering IL-35 into CNS tissues.
Collapse
Affiliation(s)
- Minkyung Kang
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD, United States
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD, United States.,Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk, South Korea
| | - Yingyos Jittayasothorn
- Immunoregulation Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD, United States
| | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Sher AA, Gao A, Coombs KM. Autophagy Modulators Profoundly Alter the Astrocyte Cellular Proteome. Cells 2020; 9:cells9040805. [PMID: 32225060 PMCID: PMC7226796 DOI: 10.3390/cells9040805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a key cellular process that involves constituent degradation and recycling during cellular development and homeostasis. Autophagy also plays key roles in antimicrobial host defense and numerous pathogenic organisms have developed strategies to take advantage of and/or modulate cellular autophagy. Several pharmacologic compounds, such as BafilomycinA1, an autophagy inducer, and Rapamycin, an autophagy inhibitor, have been used to modulate autophagy, and their effects upon notable autophagy markers, such as LC3 protein lipidation and Sequestosome-1/p62 alterations are well defined. We sought to understand whether such autophagy modulators have a more global effect upon host cells and used a recently developed aptamer-based proteomic platform (SOMAscan®) to examine 1305 U-251 astrocytic cell proteins after the cells were treated with each compound. These analyses, and complementary cytokine array analyses of culture supernatants after drug treatment, revealed substantial perturbations in the U-251 astrocyte cellular proteome. Several proteins, including cathepsins, which have a role in autophagy, were differentially dysregulated by the two drugs as might be expected. Many proteins, not previously known to be involved in autophagy, were significantly dysregulated by the compounds, and several, including lactadherin and granulins, were up-regulated by both drugs. These data indicate that these two compounds, routinely used to help dissect cellular autophagy, have much more profound effects upon cellular proteins.
Collapse
Affiliation(s)
- Affan Ali Sher
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Ang Gao
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| | - Kevin M. Coombs
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics & Systems Biology, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3976
| |
Collapse
|
19
|
Cerebrospinal fluid biomarkers implicated in the pathogenesis of anti-neutrophil cytoplasmic antibody-related hypertrophic pachymeningitis. Clin Rheumatol 2020; 39:1803-1811. [PMID: 32036585 DOI: 10.1007/s10067-020-04971-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/25/2020] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Hypertrophic pachymeningitis (HP) related to anti-neutrophil cytoplasmic antibody (ANCA) is the most frequently seen immune-mediated HP. We investigated cerebrospinal fluid (CSF) biomarkers related to the pathogenesis of ANCA-related HP (ANCA-HP). METHODS The levels of B cell activation factor of the tumor necrosis factor family (BAFF), a proliferation-inducing ligand (APRIL), and transforming growth factor beta 1 (TGF-β1) in the CSF were compared between patients with ANCA-HP (n = 12), other types of immune-mediated HP (other HP; n = 12), multiple sclerosis (MS; n = 14), and non-inflammatory neurological disorders (NIND; n = 10). In addition, we evaluated whether ANCA would be detected in CSF. RESULTS CSF levels of BAFF, APRIL, and TGF-β1 were significantly increased in ANCA-HP and other HP. In particular, BAFF and APRIL levels were significantly correlated with the IgG index in ANCA-HP. In other HP, BAFF and APRIL levels were significantly correlated with cell counts and protein levels in CSF. Of 12 patients with ANCA-HP, the CSF of 7 patients (58%) tested positive for myeloperoxidase (MPO)- or proteinase 3 (PR3)-ANCA, while none of the CSF samples from other HP, MS, or NIND patients tested positive. CONCLUSION The levels of BAFF, APRIL, and TGF-β1 may serve as useful CSF biomarkers for assessing the disease activity of immune-mediated HP. Moreover, BAFF and APRIL in the CSF may be implicated in the pathogenesis of ANCA-HP via promoting autoreactive B cells, while detecting MPO- or PR3-ANCA in the CSF may be found in some patients with ANCA-HP.Key Points• CSF BAFF, APRIL, and TGF-β1 levels increase significantly in immune-mediated HP.• CSF BAFF and APRIL levels are significantly correlated with IgG index in ANCA-HP.• Detection of MPO- or PR3-ANCA in the CSF is found in some patients with ANCA-HP.• BAFF, APRIL, and ANCA in the CSF may be implicated in the pathogenesis of ANCA-HP.
Collapse
|
20
|
Xiao J, Katsumata N, Bernier F, Ohno K, Yamauchi Y, Odamaki T, Yoshikawa K, Ito K, Kaneko T. Probiotic Bifidobacterium breve in Improving Cognitive Functions of Older Adults with Suspected Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. J Alzheimers Dis 2020; 77:139-147. [PMID: 32623402 PMCID: PMC7592675 DOI: 10.3233/jad-200488] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2020] [Indexed: 01/28/2023]
Abstract
BACKGROUND Probiotics use has been associated with modulation of inflammation and considered as a possible intervention for CNS diseases such as mild cognitive impairment (MCI) and dementia. OBJECTIVE We aimed to test the effect of the probiotic strain, Bifidobacterium breve A1 (MCC1274), to restore cognition in a physically healthy, suspected MCI population. METHODS In this randomized, double-blind, placebo-controlled trial, 80 healthy older adults suffering from MCI were divided into two even groups to receive once daily either probiotic (B. breve A1, 2×1010 CFU) or placebo for 16 weeks using a computer-generated algorithm. Cognitive functions were assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and the Japanese version of the MCI Screen (JMCIS) tests before and after the study as primary and secondary endpoints, respectively. RESULTS 79 participants completed the study, and no adverse events were observed. RBANS total score was significantly improved in probiotic group compared with placebo (mean between-group difference 11.3 [95% CI 6.7 to 15.8]; p < 0.0001) after 16 weeks of consumption, in particular with significant improvement in domain scores of immediate memory, visuospatial/constructional, and delayed memory (p < 0.0001), in both intention-to-treat (ITT) analysis and per-protocol (PP) analysis. JMCIS score was also improved versus placebo in ITT analysis (p = 0.052) and PP analysis (p = 0.036). CONCLUSION Study results indicate B. breve A1 is a safe and effective approach for improving memory functions of suspected MCI subjects.
Collapse
Affiliation(s)
- Jinzhong Xiao
- Morinaga Milk Industry Co., Ltd., Next Generation Science Institute, Kanagawa, Japan
| | - Noriko Katsumata
- Morinaga Milk Industry Co., Ltd., Next Generation Science Institute, Kanagawa, Japan
| | - Francois Bernier
- Morinaga Milk Industry Co., Ltd., Next Generation Science Institute, Kanagawa, Japan
| | - Kazuya Ohno
- Morinaga Milk Industry Co., Ltd., Next Generation Science Institute, Kanagawa, Japan
| | - Yuki Yamauchi
- Morinaga Milk Industry Co., Ltd., Next Generation Science Institute, Kanagawa, Japan
| | - Toshitaka Odamaki
- Morinaga Milk Industry Co., Ltd., Next Generation Science Institute, Kanagawa, Japan
| | | | - Kumie Ito
- Nihonbashi Sakura Clinic, Tokyo, Japan
| | | |
Collapse
|
21
|
Liu Q, Li M, Whiteaker P, Shi FD, Morley BJ, Lukas RJ. Attenuation in Nicotinic Acetylcholine Receptor α9 and α10 Subunit Double Knock-Out Mice of Experimental Autoimmune Encephalomyelitis. Biomolecules 2019; 9:E827. [PMID: 31817275 PMCID: PMC6995583 DOI: 10.3390/biom9120827] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 12/30/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is attenuated in nicotinic acetylcholine receptor (nAChR) α9 subunit knock-out (α9 KO) mice. However, protection is incomplete, raising questions about roles for related, nAChR α10 subunits in ionotropic or recently-revealed metabotropic contributions to effects. Here, we demonstrate reduced EAE severity and delayed onset of disease signs in nAChR α9/α10 subunit double knock-out (DKO) animals relative to effects in wild-type (WT) control mice. These effects are indistinguishable from contemporaneously-observed effects in nicotine-treated WT or in α9 KO mice. Immune cell infiltration into the spinal cord and brain, reactive oxygen species levels in vivo, and demyelination, mostly in the spinal cord, are reduced in DKO mice. Disease severity is not altered relative to WT controls in mice harboring a gain-of-function mutation in α9 subunits. These findings minimize the likelihood that additional deletion of nAChR α10 subunits impacts disease differently than α9 KO alone, whether through ionotropic, metabotropic, or alternative mechanisms. Moreover, our results provide further evidence of disease-exacerbating roles for nAChR containing α9 subunits (α9*-nAChR) in EAE inflammatory and autoimmune responses. This supports our hypothesis that α9*-nAChR or their downstream mediators are attractive targets for attenuation of inflammation and autoimmunity.
Collapse
Affiliation(s)
- Qiang Liu
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| | - Minshu Li
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| | - Fu-Dong Shi
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| | | | - Ronald J. Lukas
- Division of Neurobiology, Barrow Neurological Institute, Phoenix, AZ 85013, USA; (Q.L.); (M.L.); (P.W.); (F.-D.S.)
| |
Collapse
|
22
|
Araman C, 't Hart BA. Neurodegeneration meets immunology - A chemical biology perspective. Bioorg Med Chem 2019; 27:1911-1924. [PMID: 30910473 DOI: 10.1016/j.bmc.2019.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/16/2022]
Affiliation(s)
- C Araman
- Leiden Institute of Chemistry and the Institute for Chemical Immunology, Leiden University, Leiden, The Netherlands.
| | - B A 't Hart
- University of Groningen, Department of Biomedical Sciences of Cells and Systems, University Medical Centre, Groningen, The Netherlands; Department Anatomy and Neuroscience, Free University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Pathological and Molecular Features of Glioblastoma and Its Peritumoral Tissue. Cancers (Basel) 2019; 11:cancers11040469. [PMID: 30987226 PMCID: PMC6521241 DOI: 10.3390/cancers11040469] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/19/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is one of the most aggressive and lethal human brain tumors. At present, GBMs are divided in primary and secondary on the basis of the mutational status of the isocitrate dehydrogenase (IDH) genes. In addition, IDH1 and IDH2 mutations are considered crucial to better define the prognosis. Although primary and secondary GBMs are histologically indistinguishable, they retain distinct genetic alterations that account for different evolution of the tumor. The high invasiveness, the propensity to disperse throughout the brain parenchyma, and the elevated vascularity make these tumors extremely recidivist, resulting in a short patient median survival even after surgical resection and chemoradiotherapy. Furthermore, GBM is considered an immunologically cold tumor. Several studies highlight a highly immunosuppressive tumor microenvironment that promotes recurrence and poor prognosis. Deeper insight into the tumor immune microenvironment, together with the recent discovery of a conventional lymphatic system in the central nervous system (CNS), led to new immunotherapeutic strategies. In the last two decades, experimental evidence from different groups proved the existence of cancer stem cells (CSCs), also known as tumor-initiating cells, that may play an active role in tumor development and progression. Recent findings also indicated the presence of highly infiltrative CSCs in the peritumoral region of GBM. This region appears to play a key role in tumor growing and recurrence. However, until recently, few studies investigated the biomolecular characteristics of the peritumoral tissue. The aim of this review is to recapitulate the pathological features of GBM and of the peritumoral region associated with progression and recurrence.
Collapse
|
24
|
Kumar V. Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 2019; 332:16-30. [PMID: 30928868 DOI: 10.1016/j.jneuroim.2019.03.012] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Toll-like receptors (TLRs) are discovered as crucial pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs). Later studies showed their involvement in the recognition of various damage/danger-associated molecular patterns (DAMPs) generated by host itself. Thus, TLRs are capable of recognizing wide-array of patterns/molecules derived from pathogens and host as well and initiating a proinflammatory immune response through the activation of NF-κB and other transcription factors causing synthesis of proinflammatory molecules. The process of neuroinflammation is seen under both sterile and infectious inflammatory diseases of the central nervous system (CNS) and may lead to the development of neurodegeneration. The present article is designed to highlight the importance of TLRs in the pathogenesis of neuroinflammation under diverse conditions. TLRs are expressed by various immune cells present in CNS along with neurons. However out of thirteen TLRs described in mammals, some are present and active in these cells, while some are absent and are described in detail in main text. The role of various immune cells present in the brain and their role in the pathogenesis of neuroinflammation depending on the type of TLR expressed is described. Thereafter the role of TLRs in bacterial meningitis, viral encephalitis, stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and autoimmune disease including multiple sclerosis (MS) is described. The article is designed for both neuroscientists needing information regarding TLRs in neuroinflammation and TLR biologists or immunologists interested in neuroinflammation.
Collapse
Affiliation(s)
- V Kumar
- Children Health Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia; School of Biomedical Sciences, Faculty of Medicine, University of Queensland, ST Lucia, Brisbane, Queensland 4078, Australia.
| |
Collapse
|
25
|
Kano SI, Choi EY, Dohi E, Agarwal S, Chang DJ, Wilson AM, Lo BD, Rose IVL, Gonzalez S, Imai T, Sawa A. Glutathione S-transferases promote proinflammatory astrocyte-microglia communication during brain inflammation. Sci Signal 2019; 12:12/569/eaar2124. [PMID: 30783009 DOI: 10.1126/scisignal.aar2124] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Astrocytes and microglia play critical roles in brain inflammation. Here, we report that glutathione S-transferases (GSTs), particularly GSTM1, promote proinflammatory signaling in astrocytes and contribute to astrocyte-mediated microglia activation during brain inflammation. In vivo, astrocyte-specific knockdown of GSTM1 in the prefrontal cortex attenuated microglia activation in brain inflammation induced by systemic injection of lipopolysaccharides (LPS). Knocking down GSTM1 in astrocytes also attenuated LPS-induced production of the proinflammatory cytokine tumor necrosis factor-α (TNF-α) by microglia when the two cell types were cocultured. In astrocytes, GSTM1 was required for the activation of nuclear factor κB (NF-κB) and the production of proinflammatory mediators, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif chemokine ligand 2 (CCL2), both of which enhance microglia activation. Our study suggests that GSTs play a proinflammatory role in priming astrocytes and enhancing microglia activation in a microglia-astrocyte positive feedback loop during brain inflammation.
Collapse
Affiliation(s)
- Shin-Ichi Kano
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Eric Y Choi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eisuke Dohi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Swati Agarwal
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel J Chang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ashley M Wilson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Brian D Lo
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Indigo V L Rose
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Santiago Gonzalez
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Takashi Imai
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8510, Japan
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA. .,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
26
|
Astroglia in Sepsis Associated Encephalopathy. Neurochem Res 2019; 45:83-99. [PMID: 30778837 PMCID: PMC7089215 DOI: 10.1007/s11064-019-02743-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Cellular pathophysiology of sepsis associated encephalopathy (SAE) remains poorly characterised. Brain pathology in SAE, which is manifested by impaired perception, consciousness and cognition, results from multifactorial events, including high levels of systemic cytokines, microbial components and endotoxins, which all damage the brain barriers, instigate neuroinflammation and cause homeostatic failure. Astrocytes, being the principal homeostatic cells of the central nervous system contribute to the brain defence against infection. Forming multifunctional anatomical barriers, astroglial cells maintain brain-systemic interfaces and restrict the damage to the nervous tissue. Astrocytes detect, produce and integrate inflammatory signals between immune cells and cells of brain parenchyma, thus regulating brain immune response. In SAE astrocytes are present in both reactive and astrogliopathic states; balance between these states define evolution of pathology and neurological outcomes. In humans pathophysiology of SAE is complicated by frequent presence of comorbidities, as well as age-related remodelling of the brain tissue with senescence of astroglia; these confounding factors further impact upon SAE progression and neurological deficits.
Collapse
|
27
|
Özyurt G, Binici NC. The neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in adolescent obsessive-compulsive disorder: Does comorbid anxiety disorder affect inflammatory response? Psychiatry Res 2019; 272:311-315. [PMID: 30597382 DOI: 10.1016/j.psychres.2018.12.131] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
Abstract
Recent adult etiologic studies indicated evidence linking increased inflammatory parameters with psychiatric disorders. The neutrophil-lymphocyte ratio and platelet-lymphocyte ratio are easily obtainable clinical markers of inflammation and have been found to be increased in various medical and mental disorders. In this study, we aimed to investigate the neutrophil-lymphocyte ratio and platelet-lymphocyte ratio in adolescents with obsessive-compulsive disorder (OCD). Secondarily, the effect of comorbid anxiety disorder with OCD on the inflammatory response was investigated. Sixty drug-naïve adolescents with OCD aged 12 to 18 years were enrolled in the patient group. Twenty-three of the OCD group had comorbid anxiety disorder (AD) and 37 had no comorbidities. One hundred twenty-eight adolescents in the same age range with no psychiatric disorders were recruited as the healthy control group. The severity of OCD symptoms was evaluated using the Children's Yale-Brown Obsessive Compulsive Scale. There were statistically significant differences in the neutrophil-lymphocyte ratio, white blood cell, neutrophil, and platelet counts among the three groups, even after adjusting for age and sex. The adolescents with OCD and AD had the highest neutrophil-lymphocyte ratio and white blood cell counts. A comorbid anxiety disorder diagnosis in addition to obsessive-compulsive disorder may increase the inflammatory response.
Collapse
Affiliation(s)
- Gonca Özyurt
- Child and Adolescent Psychiatry Department, Medical School, İzmir Katip Çelebi University, İzmir, Turkey.
| | - Nagihan Cevher Binici
- Child and Adolescent Psychiatry Specialist, Child and Adolescent Psychiatry Unit, Behçet Uz Children's Hospital, İzmir, Turkey.
| |
Collapse
|
28
|
Yanuck SF. Microglial Phagocytosis of Neurons: Diminishing Neuronal Loss in Traumatic, Infectious, Inflammatory, and Autoimmune CNS Disorders. Front Psychiatry 2019; 10:712. [PMID: 31632307 PMCID: PMC6786049 DOI: 10.3389/fpsyt.2019.00712] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/05/2019] [Indexed: 01/08/2023] Open
Abstract
Errors in neuron-microglial interaction are known to lead to microglial phagocytosis of live neurons and excessive neuronal loss, potentially yielding poorer clinical outcomes. Factors that affect neuron-microglial interaction have the potential to influence the error rate. Clinical comorbidities that unfavorably impact neuron-microglial interaction may promote a higher rate of neuronal loss, to the detriment of patient outcome. This paper proposes that many common, clinically modifiable comorbidities have a common thread, in that they all influence neuron-microglial interactions. Comorbidities like traumatic brain injury, infection, stress, neuroinflammation, loss of neuronal metabolic integrity, poor growth factor status, and other factors, all have the potential to alter communication between neurons and microglia. When this occurs, microglial phagocytosis of live neurons can increase. In addition, microglia can shift into a morphological form in which they express major histocompatibility complex II (MHC-II), allowing them to function as antigen presenting cells that present neuronal debris as antigen to invading T cells. This can increase risk for the development of CNS autoimmunity, or can exacerbate existing CNS autoimmunity. The detrimental influence of these comorbidities has the potential to contribute to the mosaic of factors that determine patient outcome in some CNS pathologies that have neuropsychiatric involvement, including TBI and CNS disorders with autoimmune components, where excessive neuronal loss can yield poorer clinical outcomes. Recognition of the impact of these comorbidities may contribute to an understanding of the common clinical observation that many seemingly disparate factors contribute to the overall picture of case management and clinical outcome in these complex disorders. In a clinical setting, knowing how these comorbidities can influence neuron-microglial interaction can help focus surveillance and care on a broader group of potential therapeutic targets. Accordingly, an interest in the mechanisms underlying the influence of these factors on neuron-microglial interactions is appropriate. Neuron-microglial interaction is reviewed, and the various mechanisms by which these potential comorbidities influence neuro-microglial interaction are described.
Collapse
Affiliation(s)
- Samuel F Yanuck
- Program on Integrative Medicine, Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| |
Collapse
|
29
|
Aguilera G, Colín-González AL, Rangel-López E, Chavarría A, Santamaría A. Redox Signaling, Neuroinflammation, and Neurodegeneration. Antioxid Redox Signal 2018; 28:1626-1651. [PMID: 28467722 DOI: 10.1089/ars.2017.7099] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Production of pro-inflammatory and anti-inflammatory cytokines is part of the defense system that mostly microglia and macrophages display to induce normal signaling to counteract the deleterious actions of invading pathogens in the brain. Also, redox activity in the central nervous system (CNS) constitutes an integral part of the metabolic processes needed by cells to exert their normal molecular and biochemical functions. Under normal conditions, the formation of reactive oxygen and nitrogen species, and the following oxidative activity encounter a healthy balance with immunological responses to preserve cell functions in the brain. However, under different pathological conditions, inflammatory responses recruit pro-oxidant signals and vice versa. The aim of this article is to review the basic concepts about the triggering of inflammatory and oxidative responses in the CNS. Recent Advances: Diverse concurrent toxic pathways are described to provide a solid mechanistic scope for considering intervention at the experimental and clinical levels that are aimed at diminishing the harmful actions of these two contributing factors to nerve cell damage. Critical Issues and Future Directions: The main conclusion supports the existence of a narrow cross-talk between pro-inflammatory and oxidative signals that can lead to neuronal damage and subsequent neurodegeneration. Further investigation about critical pathways crosslinking oxidative stress and inflammation will strength our knowlegde on this topic. Antioxid. Redox Signal. 28, 1626-1651.
Collapse
Affiliation(s)
- Gabriela Aguilera
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Ana Laura Colín-González
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Edgar Rangel-López
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| | - Anahí Chavarría
- 2 Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México , Mexico City, Mexico
| | - Abel Santamaría
- 1 Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía , Mexico City, Mexico
| |
Collapse
|
30
|
Epps SJ, Boldison J, Stimpson ML, Khera TK, Lait PJP, Copland DA, Dick AD, Nicholson LB. Re-programming immunosurveillance in persistent non-infectious ocular inflammation. Prog Retin Eye Res 2018. [PMID: 29530739 PMCID: PMC6563519 DOI: 10.1016/j.preteyeres.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ocular function depends on a high level of anatomical integrity. This is threatened by inflammation, which alters the local tissue over short and long time-scales. Uveitis due to autoimmune disease, especially when it involves the retina, leads to persistent changes in how the eye interacts with the immune system. The normal pattern of immune surveillance, which for immune privileged tissues is limited, is re-programmed. Many cell types, that are not usually present in the eye, become detectable. There are changes in the tissue homeostasis and integrity. In both human disease and mouse models, in the most extreme cases, immunopathological findings consistent with development of ectopic lymphoid-like structures and disrupted angiogenesis accompany severely impaired eye function. Understanding how the ocular environment is shaped by persistent inflammation is crucial to developing novel approaches to treatment.
Collapse
Affiliation(s)
- Simon J Epps
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Joanne Boldison
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Madeleine L Stimpson
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Tarnjit K Khera
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK
| | - Philippa J P Lait
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK; UCL-Institute of Ophthalmology and National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, EC1V 2PD, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, Faculty of Health Sciences, University of Bristol, BS8 1TD, UK; School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, BS8 1TD, UK.
| |
Collapse
|
31
|
Klein P, Dingledine R, Aronica E, Bernard C, Blümcke I, Boison D, Brodie MJ, Brooks-Kayal AR, Engel J, Forcelli PA, Hirsch LJ, Kaminski RM, Klitgaard H, Kobow K, Lowenstein DH, Pearl PL, Pitkänen A, Puhakka N, Rogawski MA, Schmidt D, Sillanpää M, Sloviter RS, Steinhäuser C, Vezzani A, Walker MC, Löscher W. Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia 2018; 59:37-66. [PMID: 29247482 PMCID: PMC5993212 DOI: 10.1111/epi.13965] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | | | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center and Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Christophe Bernard
- Aix Marseille Univ, Inserm, INS, Instit Neurosci Syst, Marseille, 13005, France
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Martin J Brodie
- Epilepsy Unit, West Glasgow Ambulatory Care Hospital-Yorkhill, Glasgow, UK
| | - Amy R Brooks-Kayal
- Division of Neurology, Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- Children's Hospital Colorado, Aurora, CO, USA
- Neuroscience Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jerome Engel
- Departments of Neurology, Neurobiology, and Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Brain Research Institute, University of California, Los Angeles, CA, USA
| | | | | | | | | | - Katja Kobow
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | | | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Asla Pitkänen
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Noora Puhakka
- Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michael A Rogawski
- Department of Neurology, University of California, Davis, Sacramento, CA, USA
| | | | - Matti Sillanpää
- Departments of Child Neurology and General Practice, University of Turku and Turku University Hospital, Turku, Finland
| | - Robert S Sloviter
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Institute for Pharmacological Research, Milan,, Italy
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|
32
|
Zhang QL, Xu B, Wang XQ, Yuan ML, Chen JY. Genome-wide comparison of the protein-coding repertoire reveals fast evolution of immune-related genes in cephalochordates and Osteichthyes superclass. Oncotarget 2017; 9:83-95. [PMID: 29416598 PMCID: PMC5787515 DOI: 10.18632/oncotarget.22749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 11/25/2022] Open
Abstract
Amphioxus is used to investigate the origin and evolution of vertebrates. To better understand the characteristics of genome evolution from cephalochordates to Osteichthyes, we conducted a genome-wide pairwise comparison of protein-coding genes within amphioxus (a comparable group) and parallel analyses within Osteichthyes (two comparable groups). A batch of fast-evolving genes in each comparable group was identified. Of these genes, the most fast-evolving genes (top 20) were scrutinized, most of which were involved in immune system. An analysis of the fast-evolving genes showed that they were enriched into gene ontology (GO) terms and pathways primarily involved in immune-related functions. Similarly, this phenomenon was detected within Osteichthyes, and more well-known and abundant GO terms and pathways involving innate immunity were found in Osteichthyes than in cephalochordates. Next, we measured the expression responses of four genes belonging to metabolism or energy production-related pathways to lipopolysaccharide challenge in the muscle, intestine or skin of B. belcheri; three of these genes (HMGCL, CYBS and MDH2) showed innate immune responses. Additionally, some genes involved in adaptive immunity showed fast evolution in Osteichthyes, such as those involving "intestinal immune network for IgA production" or "T-cell receptor signaling pathway". In this study, the fast evolution of immune-related genes in amphioxus and Osteichthyes was determined, providing insights into the evolution of immune-related genes in chordates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Bin Xu
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Xiu-Qiang Wang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jun-Yuan Chen
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Nisticò R, Salter E, Nicolas C, Feligioni M, Mango D, Bortolotto ZA, Gressens P, Collingridge GL, Peineau S. Synaptoimmunology - roles in health and disease. Mol Brain 2017. [PMID: 28637489 PMCID: PMC5480158 DOI: 10.1186/s13041-017-0308-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence suggests that the nervous and immune systems are intricately linked. Many proteins first identified in the immune system have since been detected at synapses, playing different roles in normal and pathological situations. In addition, novel immunological functions are emerging for proteins typically expressed at synapses. Under normal conditions, release of inflammatory mediators generally represents an adaptive and regulated response of the brain to immune signals. On the other hand, when immune challenge becomes prolonged and/or uncontrolled, the consequent inflammatory response leads to maladaptive synaptic plasticity and brain disorders. In this review, we will first provide a summary of the cell signaling pathways in neurons and immune cells. We will then examine how immunological mechanisms might influence synaptic function, and in particular synaptic plasticity, in the healthy and pathological CNS. A better understanding of neuro-immune system interactions in brain circuitries relevant to neuropsychiatric and neurological disorders should provide specific biomarkers to measure the status of the neuroimmunological response and help design novel neuroimmune-targeted therapeutics.
Collapse
Affiliation(s)
- Robert Nisticò
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy. .,Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy.
| | - Eric Salter
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Celine Nicolas
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Marco Feligioni
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Dalila Mango
- Pharmacology of Synaptic Disease Lab, European Brain Research Institute, 00143, Rome, Italy
| | - Zuner A Bortolotto
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, King's College, St Thomas' Campus, London, UK
| | - Graham L Collingridge
- Department of Physiology, University of Toronto, and Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.,Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK
| | - Stephane Peineau
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, UK. .,PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France. .,INSERM-ERi 24 (GRAP), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.
| |
Collapse
|
34
|
Chen NC, Partridge AT, Sell C, Torres C, Martín-García J. Fate of microglia during HIV-1 infection: From activation to senescence? Glia 2016; 65:431-446. [PMID: 27888531 DOI: 10.1002/glia.23081] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Microglia support productive human immunodeficiency virus type 1 (HIV-1) infection and disturbed microglial function could contribute to the development of HIV-associated neurocognitive disorders (HAND). Better understanding of how HIV-1 infection and viral protein exposure modulate microglial function during the course of infection could lead to the identification of novel therapeutic targets for both the eradication of HIV-1 reservoir and treatment of neurocognitive deficits. This review first describes microglial origins and function in the normal central nervous system (CNS), and the changes that occur during aging. We then critically discuss how HIV-1 infection and exposure to viral proteins such as Tat and gp120 affect various aspects of microglial homeostasis including activation, cellular metabolism and cell cycle regulation, through pathways implicated in cellular stress responses including p38 mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB). We thus propose that the functions of human microglia evolve during both healthy and pathological aging. Aging-associated dysfunction of microglia comprises phenotypes resembling cellular senescence, which could contribute to cognitive impairments observed in various neurodegenerative diseases. In addition, microglia seems to develop characteristics that could be related to cellular senescence post-HIV-1 infection and after exposure to HIV-1 viral proteins. However, despite its potential role as a component of HAND and likely other neurocognitive disorders, microglia senescence has not been well characterized and should be the focus of future studies, which could have high translational relevance. GLIA 2017;65:431-446.
Collapse
Affiliation(s)
- Natalie C Chen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,MD/PhD Program, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Andrea T Partridge
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Christian Sell
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Sahraian MA, Owji M, Naser Moghadasi A. Concomitant multiple sclerosis and another autoimmune disease: Does the clinical course change? Clin Neurol Neurosurg 2016; 150:92-95. [DOI: 10.1016/j.clineuro.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 08/27/2016] [Accepted: 09/02/2016] [Indexed: 01/27/2023]
|
36
|
Cekanaviciute E, Buckwalter MS. Astrocytes: Integrative Regulators of Neuroinflammation in Stroke and Other Neurological Diseases. Neurotherapeutics 2016; 13:685-701. [PMID: 27677607 PMCID: PMC5081110 DOI: 10.1007/s13311-016-0477-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Astrocytes regulate neuroinflammatory responses after stroke and in other neurological diseases. Although not all astrocytic responses reduce inflammation, their predominant function is to protect the brain by driving the system back to homeostasis after injury. They receive multidimensional signals within the central nervous system and between the brain and the systemic circulation. Processing this information allows astrocytes to regulate synapse formation and maintenance, cerebral blood flow, and blood-brain barrier integrity. Similarly, in response to stroke and other central nervous system disorders, astrocytes detect and integrate signals of neuronal damage and inflammation to regulate the neuroinflammatory response. Two direct regulatory mechanisms in the astrocyte arsenal are the ability to form both physical and molecular barriers that seal the injury site and localize the neuroinflammatory response. Astrocytes also indirectly regulate the inflammatory response by affecting neuronal health during the acute injury and axonal regrowth. This ability to regulate the location and degree of neuroinflammation after injury, combined with the long time course of neuroinflammation, makes astrocytic signaling pathways promising targets for therapies.
Collapse
Affiliation(s)
- Egle Cekanaviciute
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, 94305, USA
| | - Marion S Buckwalter
- Department of Neurology and Neurological Sciences, Stanford Medical School, Stanford, CA, 94305, USA.
- Department of Neurosurgery, Stanford Medical School, Stanford, CA, 94305, USA.
- Stanford Stroke Center, Stanford Medical School, Stanford, CA, 94305, USA.
| |
Collapse
|
37
|
Nauen DW. Extra-central nervous system target for assessment and treatment in refractory anti-N-methyl-d-aspartate receptor encephalitis. J Crit Care 2016; 37:234-236. [PMID: 27720246 DOI: 10.1016/j.jcrc.2016.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 01/17/2023]
Abstract
Anti-N-methyl-d-aspartate-type glutamate receptor autoimmune encephalitis can arise in the setting of ovarian teratoma and often responds to resection. When it occurs in the absence of tumor, failure to respond to treatment may be more likely, and affected patients often require intensive care. To further understand the mechanisms and potential management, we present findings from an autopsy conducted on a young woman who died of refractory autoimmune encephalitis of this type. Rituximab was administered 70 days before death, and both 37 and 14 days before death, CD19+ lymphocytes were only 0.1% of blood cells. Ten sessions of plasmapheresis were performed after rituximab treatment. Nonetheless, the autoantibodies were present in serum 4 days before death, demonstrating ongoing antibody production. The hippocampus and medial temporal lobe demonstrated inflammation with T cell and prominent microglial involvement, but no plasma cells or plasmablasts were found there, or anywhere in the brain, despite an extensive search. Examination of lymph node tissue identified many plasma cells along sinusoids. These findings demonstrate that the antibody-producing cells are long-lived and can reside in lymphoid tissue. Awareness of continuing antibody production, the extra-central nervous system site, the indication for cytotoxic therapy, and the potential for biopsy assessment may lead to more effective treatment.
Collapse
Affiliation(s)
- David W Nauen
- Department of Pathology, Johns Hopkins Hospital, Ross 512, 720 Rutland Ave, Baltimore, MD 21205.
| |
Collapse
|
38
|
Chen PY, Wei KC, Liu HL. Neural immune modulation and immunotherapy assisted by focused ultrasound induced blood-brain barrier opening. Hum Vaccin Immunother 2015; 11:2682-7. [PMID: 26378609 DOI: 10.1080/21645515.2015.1071749] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The central nervous system (CNS) has long been regarded as an immune-privileged site, with the blood-brain barrier (BBB) limiting the entering of systemic immune cells and components. Exposure of low-energy focused ultrasound (FUS) with the presence of microbubbles has been found to provide a temporary and targeted opening of the BBB without inflicting brain damage or inflammation, and is thus an attractive means of delivering CNS therapeutic agents and raising the potential for targeted CNS immunotherapy. Based on our recent studies on enhancing brain-tumor immune-related therapy via this mechanism, (1) we summarize current approaches using FUS-induced BBB opening to promote immune regulation and project potential directions for FUS-induced CNS immunotherapy.
Collapse
Affiliation(s)
- Pin-Yuan Chen
- a Department of Neurosurgery ; Chang Gung Memorial Hospital; Linkou Medical Center and College of Medicine; Chang Gung University ; Taoyuan , Taiwan
| | - Kuo-Chen Wei
- a Department of Neurosurgery ; Chang Gung Memorial Hospital; Linkou Medical Center and College of Medicine; Chang Gung University ; Taoyuan , Taiwan
| | - Hao-Li Liu
- b Department of Electrical Engineering ; Chang Gung University ; Taoyuan , Taiwan.,c Medical Imaging Research Center; Institute for Radiological Research; Chang Gung University; Chang Gung Memorial Hospital ; Taoyuan , Taiwan
| |
Collapse
|
39
|
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, Axel L, Rusinek H, Nicholson C, Zlokovic BV, Frangione B, Blennow K, Ménard J, Zetterberg H, Wisniewski T, de Leon MJ. Clearance systems in the brain-implications for Alzheimer disease. Nat Rev Neurol 2015; 11:457-70. [PMID: 26195256 PMCID: PMC4694579 DOI: 10.1038/nrneurol.2015.119] [Citation(s) in RCA: 1079] [Impact Index Per Article: 107.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Accumulation of toxic protein aggregates-amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles-is the pathological hallmark of Alzheimer disease (AD). Aβ accumulation has been hypothesized to result from an imbalance between Aβ production and clearance; indeed, Aβ clearance seems to be impaired in both early and late forms of AD. To develop efficient strategies to slow down or halt AD, it is critical to understand how Aβ is cleared from the brain. Extracellular Aβ deposits can be removed from the brain by various clearance systems, most importantly, transport across the blood-brain barrier. Findings from the past few years suggest that astroglial-mediated interstitial fluid (ISF) bulk flow, known as the glymphatic system, might contribute to a larger portion of extracellular Aβ (eAβ) clearance than previously thought. The meningeal lymphatic vessels, discovered in 2015, might provide another clearance route. Because these clearance systems act together to drive eAβ from the brain, any alteration to their function could contribute to AD. An understanding of Aβ clearance might provide strategies to reduce excess Aβ deposits and delay, or even prevent, disease onset. In this Review, we describe the clearance systems of the brain as they relate to proteins implicated in AD pathology, with the main focus on Aβ.
Collapse
Affiliation(s)
| | - Roxana O Carare
- University of Southampton, Faculty of Medicine, Institute for Life Sciences, Southampton General Hospital, Southampton Hampshire, SO16 6YD, UK
| | - Ricardo S Osorio
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Lidia Glodzik
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Tracy Butler
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Els Fieremans
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Leon Axel
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Henry Rusinek
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Charles Nicholson
- New York University School of Medicine, 660 First Avenue, New York, NY 10016, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute at Keck School of Medicine of University of Southern California, 1501 San Pablo Street Los Angeles, CA 90089, USA
| | - Blas Frangione
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Kaj Blennow
- The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Joël Ménard
- Université Paris-Descartes, 12 Rue de l'École de Médecine, 75006 Paris, France
| | - Henrik Zetterberg
- The Sahlgrenska Academy at the University of Gothenburg, S-431 80 Mölndal, Sweden
| | - Thomas Wisniewski
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| | - Mony J de Leon
- New York University School of Medicine, 145 East 32nd Street, New York, NY 10016, USA
| |
Collapse
|
40
|
Kober C, Rohn S, Weibel S, Geissinger U, Chen NG, Szalay AA. Microglia and astrocytes attenuate the replication of the oncolytic vaccinia virus LIVP 1.1.1 in murine GL261 gliomas by acting as vaccinia virus traps. J Transl Med 2015; 13:216. [PMID: 26149494 PMCID: PMC4492094 DOI: 10.1186/s12967-015-0586-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/25/2015] [Indexed: 01/21/2023] Open
Abstract
Background Oncolytic virotherapy is a novel approach for the treatment of glioblastoma multiforme (GBM) which is still a fatal disease. Pathologic features of GBM are characterized by the infiltration with microglia/macrophages and a strong interaction between immune- and glioma cells. The aim of this study was to determine the role of microglia and astrocytes for oncolytic vaccinia virus (VACV) therapy of GBM. Methods VACV LIVP 1.1.1 replication in C57BL/6 and Foxn1nu/nu mice with and without GL261 gliomas was analyzed. Furthermore, immunohistochemical analysis of microglia and astrocytes was investigated in non-, mock-, and LIVP 1.1.1-infected orthotopic GL261 gliomas in C57BL/6 mice. In cell culture studies virus replication and virus-mediated cell death of GL261 glioma cells was examined, as well as in BV-2 microglia and IMA2.1 astrocytes with M1 or M2 phenotypes. Co-culture experiments between BV-2 and GL261 cells and apoptosis/necrosis studies were performed. Organotypic slice cultures with implanted GL261 tumor spheres were used as additional cell culture system. Results We discovered that orthotopic GL261 gliomas upon intracranial virus delivery did not support replication of LIVP 1.1.1, similar to VACV-infected brains without gliomas. In addition, recruitment of Iba1+ microglia and GFAP+ astrocytes to orthotopically implanted GL261 glioma sites occurred already without virus injection. GL261 cells in culture showed high virus replication, while replication in BV-2 and IMA2.1 cells was barely detectable. The reduced viral replication in BV-2 cells might be due to rapid VACV-induced apoptotic cell death. In BV-2 and IMA 2.1 cells with M1 phenotype a further reduction of virus progeny and virus-mediated cell death was detected. Application of BV-2 microglial cells with M1 phenotype onto organotypic slice cultures with implanted GL261 gliomas resulted in reduced infection of BV-2 cells, whereas GL261 cells were well infected. Conclusion Our results indicate that microglia and astrocytes, dependent on their activation state, may preferentially clear viral particles by immediate uptake after delivery. By acting as VACV traps they further reduce efficient virus infection of the tumor cells. These findings demonstrate that glia cells need to be taken into account for successful GBM therapy development.
Collapse
Affiliation(s)
- Christina Kober
- Department of Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Susanne Rohn
- Department of Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Stephanie Weibel
- Department of Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Würzburg, Germany. .,Department of Anesthesia and Critical Care, University Hospital of Wuerzburg, Oberduerrbacher Str. 6, 97080, Würzburg, Germany.
| | - Ulrike Geissinger
- Genelux Corporation, San Diego Science Center, 3030 Bunker Hill Street, San Diego, CA, 92109, USA.
| | - Nanhai G Chen
- Department of Radiation Medicine and Applied Sciences, Rebecca and John Moores Comprehensive Cancer Center, University of California, San Diego, CA, 92093, USA. .,Genelux Corporation, San Diego Science Center, 3030 Bunker Hill Street, San Diego, CA, 92109, USA.
| | - Aladar A Szalay
- Department of Biochemistry, Biocenter, University of Wuerzburg, Am Hubland, 97074, Würzburg, Germany. .,Rudolf Virchow Center for Experimental Biomedicine and Institute for Molecular Infection Biology, University of Wuerzburg, 97080, Würzburg, Germany. .,Department of Radiation Medicine and Applied Sciences, Rebecca and John Moores Comprehensive Cancer Center, University of California, San Diego, CA, 92093, USA. .,Genelux Corporation, San Diego Science Center, 3030 Bunker Hill Street, San Diego, CA, 92109, USA.
| |
Collapse
|
41
|
T Cells-Protective or Pathogenic in Alzheimer's Disease? J Neuroimmune Pharmacol 2015; 10:547-60. [PMID: 25957956 DOI: 10.1007/s11481-015-9612-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/29/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, and is characterised by deposits of amyloid β (Aβ), neurofibrillary tangles and neuronal loss. Neuroinflammatory changes have been identified as a feature of the disease, and recent studies have suggested a potential role for the peripheral immune system in driving these changes and, ultimately, the associated neuronal degeneration. A number of reports have detailed changes in the activation state and subtype of T cells in the circulation and CSF of AD patients and there is evidence of T cell infiltration into the brain. In this review, we examine the possible impact of T cell infiltration in the progression of pathology in AD and consider the data obtained from animal models of the disease. We consider how these cells infiltrate the brain, particularly in AD, and discuss whether the presence of T cells in the AD brain is protective or pathogenic. Finally we evaluate the current therapies, particularly those that involve immunization.
Collapse
|
42
|
Abstract
In the normal brain, immune cell trafficking and immune responses are strictly controlled and limited. This unique homeostatic equilibrium, also called brain immune quiescence, is crucial to maintaining proper brain functions and is altered in various pathological processes, from chronic immunopathological disorders to cognitive and psychiatric impairments. To date, the precise nature of factors regulating the brain/immune system interrelationship is poorly understood. In the present study, we demonstrate that one of these regulating factors is Connexin 43 (Cx43), a gap junction protein highly expressed by astrocytes at the blood-brain barrier (BBB) interface. We show that, by setting the activated state of cerebral endothelium, astroglial Cx43 controls immune recruitment as well as antigen presentation mechanisms in the mouse brain. Consequently, in the absence of astroglial Cx43, recruited immune cells elaborate a specific humoral autoimmune response against the von Willebrand factor A domain-containing protein 5a, an extracellular matrix protein of the brain. Altogether, our results demonstrate that Cx43 is a new astroglial factor promoting the immune quiescence of the brain.
Collapse
|
43
|
Dieset I, Haukvik UK, Melle I, Røssberg JI, Ueland T, Hope S, Dale AM, Djurovic S, Aukrust P, Agartz I, Andreassen OA. Association between altered brain morphology and elevated peripheral endothelial markers--implications for psychotic disorders. Schizophr Res 2015; 161:222-8. [PMID: 25433965 DOI: 10.1016/j.schres.2014.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 07/02/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Increased inflammation, endothelial dysfunction, and structural brain abnormalities have been reported in both schizophrenia and bipolar disorder, but the relationships between these factors are unknown. We aimed to identify associations between markers of inflammatory and endothelial activation and structural brain variation in psychotic disorders. METHODS We measured von Willebrand factor (vWf) as a marker of endothelial cell activation and six inflammatory markers (tumor necrosis factor-receptor 1, osteoprotegerin, interleukin-1-receptor antagonist, interleukin-6, C-reactive protein, CD40 ligand) in plasma and 16 brain structures obtained from MRI scans of 356 individuals (schizophrenia spectrum; n=121, affective spectrum; n=95, healthy control subjects; n=140). The relationship between the inflammatory and endothelial markers and brain measurements were investigated across groups. RESULTS There was a positive association (p=2.5×10(-4)) between plasma levels of vWf and total volume of the basal ganglia which remained significant after correction for multiple testing. Treatment with first generation antipsychotics was associated with basal ganglia volume only (p=0.009). After adjusting for diagnosis and antipsychotic medication, vWf remained significantly associated with increased basal ganglia volume (p=0.008), in particular the right globus pallidus (p=3.7×10(-4)). The relationship between vWf and basal ganglia volume was linear in all groups, but the intercept was significantly higher in the schizophrenia group (df=2, F=8.2, p=3.4×10(-4)). CONCLUSION Our results show a strong positive correlation between vWf levels and basal ganglia volume, in particular globus pallidus, independent of diagnosis. vWf levels were significantly higher in schizophrenia, which could indicate a link between endothelial cell activation and basal ganglia morphology in schizophrenia patients.
Collapse
Affiliation(s)
- Ingrid Dieset
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Unn Kristin Haukvik
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jan Ivar Røssberg
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sigrun Hope
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California San Diego, La Jolla, CA, USA; Department of Neuroscience, University of California San Diego, La Jolla, CA, USA; Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital Ullevål, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Faculty of Medicine, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Norway
| | - Ingrid Agartz
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ole A Andreassen
- KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Ballerini C, Baldi G, Aldinucci A, Maggi P. Nanomaterial applications in multiple sclerosis inflamed brain. J Neuroimmune Pharmacol 2015; 10:1-13. [PMID: 25616566 DOI: 10.1007/s11481-015-9588-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
In the last years scientific progress in nanomaterials, where size and shape make the difference, has increased their utilization in medicine with the development of a promising new translational science: nanomedicine. Due to their surface and core biophysical properties, nanomaterials hold the promise for medical applications in central nervous system (CNS) diseases: inflammatory, degenerative and tumors. The present review is focused on nanomaterials at the neuro-immune interface, evaluating two aspects: the possible CNS inflammatory response induced by nanomaterials and the developments of nanomaterials to improve treatment and diagnosis of neuroinflammatory diseases, with a focus on multiple sclerosis (MS). Indeed, nanomedicine allows projecting new ways of drug delivery and novel techniques for CNS imaging. Despite the wide field of application in neurological diseases of nanomaterials, our topic here is to review the more recent development of nanomaterials that cross blood brain barrier (BBB) and reach specific target during CNS inflammatory diseases, a crucial strategy for CNS early diagnosis and drug delivery, indeed the main challenges of nanomedicine.
Collapse
Affiliation(s)
- Clara Ballerini
- Department of Neurofarba, University of Florence, Viale Pieraccini, 6, 50137, Florence, Italy,
| | | | | | | |
Collapse
|
45
|
Lee J, Jo DG, Park D, Chung HY, Mattson MP. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: focus on the nervous system. Pharmacol Rev 2015; 66:815-68. [PMID: 24958636 DOI: 10.1124/pr.113.007757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Dong-Gyu Jo
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Daeui Park
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| | - Mark P Mattson
- Department of Pharmacy, College of Pharmacy, and Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Geumjeong-gu, Busan, Republic of Korea (J.L., D.P., H.Y.C.); School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea (D.-G.J.); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland (M.P.M.); and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland (M.P.M.)
| |
Collapse
|
46
|
Denes A, Miyan JA. Brain-immune interactions in health and disease. Front Neurosci 2014; 8:382. [PMID: 25520609 PMCID: PMC4253740 DOI: 10.3389/fnins.2014.00382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/09/2014] [Indexed: 01/09/2023] Open
Affiliation(s)
- Adam Denes
- Faculty of Life Sciences, University of Manchester Manchester, UK ; Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine Budapest, Hungary
| | - Jaleel A Miyan
- Faculty of Life Sciences, University of Manchester Manchester, UK
| |
Collapse
|
47
|
Huber AK, Duncker PC, Irani DN. Immune responses to non-tumor antigens in the central nervous system. Front Oncol 2014; 4:328. [PMID: 25431758 PMCID: PMC4230036 DOI: 10.3389/fonc.2014.00328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/30/2014] [Indexed: 12/16/2022] Open
Abstract
The central nervous system (CNS), once viewed as an immune-privileged site protected by the blood-brain barrier (BBB), is now known to be a dynamic immunological environment through which immune cells migrate to prevent and respond to events such as localized infection. During these responses, endogenous glial cells, including astrocytes and microglia, become highly reactive and may secrete inflammatory mediators that regulate BBB permeability and recruit additional circulating immune cells. Here, we discuss the various roles played by astrocytes, microglia, and infiltrating immune cells during host immunity to non-tumor antigens in the CNS, focusing first on bacterial and viral infections, and then turning to responses directed against self-antigens in the setting of CNS autoimmunity.
Collapse
Affiliation(s)
- Amanda K Huber
- Department of Neurology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - Patrick C Duncker
- Department of Neurology, University of Michigan Medical School , Ann Arbor, MI , USA
| | - David N Irani
- Department of Neurology, University of Michigan Medical School , Ann Arbor, MI , USA
| |
Collapse
|
48
|
Abstract
Fibrotic disorders account for an increasing burden of disease-associated morbidity and mortality worldwide. Although numerous risk factors have been recognized, the etiologies of many of these clinical syndromes have not been identified, and they are often termed idiopathic or cryptogenic. Here, we provide an evolutionary perspective on fibrosis aimed at elucidating its etiopathogenesis. By asking the ultimate question of "why" this process evolved in multicellular organisms, we hope to uncover proximate explanations for "how" it causes disease in humans. We posit that physiological fibrosis-like reactions evolved as an essential process in host defense against pathogens and in normal wound healing. Based on this premise, we reason that pathological fibrosis is related to one or more of the following: unidentified infectious or noninfectious antigens, autoimmunity, impaired regenerative responses, and the antagonistically pleiotropic action of genes involved in wound healing or development. The importance of genetic susceptibility, epigenetics, aging, and the modern-day environment are highlighted. Consideration of both ultimate and proximate causation goes beyond philosophical cogitations, as it will better inform pathobiological mechanisms of disease and aid in the prevention and treatment of fibrotic diseases.
Collapse
|
49
|
Yue JX, Yu JK, Putnam NH, Holland LZ. The transcriptome of an amphioxus, Asymmetron lucayanum, from the Bahamas: a window into chordate evolution. Genome Biol Evol 2014; 6:2681-96. [PMID: 25240057 PMCID: PMC4224339 DOI: 10.1093/gbe/evu212] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cephalochordates, the sister group of tunicates plus vertebrates, have been called “living fossils” due to their resemblance to fossil chordates from Cambrian strata. The genome of the cephalochordate Branchiostoma floridae shares remarkable synteny with vertebrates and is free from whole-genome duplication. We performed RNA sequencing from larvae and adults of Asymmetron lucayanum, a cephalochordate distantly related to B. floridae. Comparisons of about 430 orthologous gene groups among both cephalochordates and 10 vertebrates using an echinoderm, a hemichordate, and a mollusk as outgroups showed that cephalochordates are evolving more slowly than the slowest evolving vertebrate known (the elephant shark), with A. lucayanum evolving even more slowly than B. floridae. Against this background of slow evolution, some genes, notably several involved in innate immunity, stand out as evolving relatively quickly. This may be due to the lack of an adaptive immune system and the relatively high levels of bacteria in the inshore waters cephalochordates inhabit. Molecular dating analysis including several time constraints revealed a divergence time of ∼120 Ma for A. lucayanum and B. floridae. The divisions between cephalochordates and vertebrates, and that between chordates and the hemichordate plus echinoderm clade likely occurred before the Cambrian.
Collapse
Affiliation(s)
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | | | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego
| |
Collapse
|
50
|
Immunological barriers to stem cell therapy in the central nervous system. Stem Cells Int 2014; 2014:507905. [PMID: 25165476 PMCID: PMC4138731 DOI: 10.1155/2014/507905] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/16/2014] [Indexed: 12/21/2022] Open
Abstract
The central nervous system is vulnerable to many neurodegenerative disorders such as Alzheimer's disease that result in the extensive loss of neuronal cells. Stem cells have the ability to differentiate into many types of cells, which make them ideal for treating such disorders. Although stem cell therapy has shown some promising results in animal models for many brain disorders it has yet to translate into the clinic. A major hurdle to the translation of stem cell therapy into the clinic is the immune response faced by stem cell transplants. Here, we focus on immunological and related hurdles to stem cell therapies for central nervous system disorders.
Collapse
|