1
|
Ayasse N, Berg P, Sørensen MV, Svendsen SL, Weinstein AM, Leipziger J. Revisiting voltage-coupled H + secretion in the collecting duct. Am J Physiol Renal Physiol 2024; 327:F931-F945. [PMID: 39323388 DOI: 10.1152/ajprenal.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
Experimental studies have shown that V-type ATPase-driven H+ secretion is dependent on transepithelial voltage. On this basis, the "voltage hypothesis" of urinary acidification by the collecting duct was derived. Accordingly, it has been supposed that the lumen-negative potential created by the reabsorption of Na+ via the epithelial Na+ channel (ENaC) enhances electrogenic H+ secretion via V-type H+-ATPase. This concept continues to be widely used to explain acid/base disorders. Importantly, however, a solid proof of principle for the voltage hypothesis in physiologically relevant situations has not been reached. Rather, it has been challenged by recent in vivo functional studies. In this review, we outline the arguments and experimental observations explaining why voltage-coupled H+ secretion in the collecting duct often appears poorly applicable for rationalizing changes in H+ secretion as a function of more or less ENaC function in the collecting duct.
Collapse
Affiliation(s)
- Niklas Ayasse
- Vth Department of Medicine, University Hospital Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Peder Berg
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mads V Sørensen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Samuel L Svendsen
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Tabibzadeh N, Klein M, Try M, Poupon J, Houillier P, Klein C, Cheval L, Crambert G, Lasaad S, Chevillard L, Megarbane B. Low exposition to lithium prevents nephrogenic diabetes insipidus but not microcystic dilations of the collecting ducts in long-term rat model. Arch Pharm (Weinheim) 2024; 357:e2400063. [PMID: 38704748 DOI: 10.1002/ardp.202400063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024]
Abstract
Lithium induces nephrogenic diabetes insipidus (NDI) and microcystic chronic kidney disease (CKD). As previous clinical studies suggest that NDI is dose-dependent and CKD is time-dependent, we investigated the effect of low exposition to lithium in a long-term experimental rat model. Rats were fed with a normal diet (control group), with the addition of lithium (Li+ group), or with lithium and amiloride (Li+/Ami group) for 6 months, allowing obtaining low plasma lithium concentrations (0.25 ± 0.06 and 0.43 ± 0.16 mmol/L, respectively). Exposition to low concentrations of plasma lithium levels prevented NDI but not microcystic dilations of kidney tubules, which were identified as collecting ducts (CDs) on immunofluorescent staining. Both hypertrophy, characterized by an increase in the ratio of nuclei per tubular area, and microcystic dilations were observed. The ratio between principal cells and intercalated cells was higher in microcystic than in hypertrophied tubules. There was no correlation between AQP2 messenger RNA levels and cellular remodeling of the CD. Additional amiloride treatment in the Li+/Ami group did not allow consistent morphometric and cellular composition changes compared to the Li+ group. Low exposition to lithium prevented overt NDI but not microcystic dilations of the CD, with differential cellular composition in hypertrophied and microcystic CDs, suggesting different underlying cellular mechanisms.
Collapse
MESH Headings
- Animals
- Diabetes Insipidus, Nephrogenic/chemically induced
- Diabetes Insipidus, Nephrogenic/prevention & control
- Kidney Tubules, Collecting/drug effects
- Kidney Tubules, Collecting/pathology
- Kidney Tubules, Collecting/metabolism
- Male
- Rats
- Aquaporin 2/metabolism
- Amiloride/pharmacology
- Disease Models, Animal
- Rats, Wistar
- Time Factors
- Renal Insufficiency, Chronic/prevention & control
- Renal Insufficiency, Chronic/chemically induced
- Lithium/pharmacology
- Dose-Response Relationship, Drug
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Mathieu Klein
- Inserm UMRS-1144, Université Paris Cité, Paris, France
| | - Mélanie Try
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Joël Poupon
- Department of Biological Toxicology, AP-HP, Lariboisière Hospital, University Paris VII, Paris, France
| | - Pascal Houillier
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
| | - Christophe Klein
- Centre d'Histologie, d'Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France
| | - Lydie Cheval
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | - Samia Lasaad
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- EMR 8228 Unité Métabolisme et Physiologie Rénale, CNRS, Paris, France
| | | | - Bruno Megarbane
- Inserm UMRS-1144, Université Paris Cité, Paris, France
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, Federation of Toxicology, APHP, Paris, France
| |
Collapse
|
3
|
Wang N, Ren L, Danser AHJ. Vacuolar H +-ATPase in Diabetes, Hypertension, and Atherosclerosis. Microcirculation 2024; 31:e12855. [PMID: 38683673 DOI: 10.1111/micc.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a multisubunit protein complex which, along with its accessory proteins, resides in almost every eukaryotic cell. It acts as a proton pump and as such is responsible for regulating pH in lysosomes, endosomes, and the extracellular space. Moreover, V-ATPase has been implicated in receptor-mediated signaling. Although numerous studies have explored the role of V-ATPase in cancer, osteoporosis, and neurodegenerative diseases, research on its involvement in vascular disease remains limited. Vascular diseases pose significant challenges to human health. This review aimed to shed light on the role of V-ATPase in hypertension and atherosclerosis. Furthermore, given that vascular complications are major complications of diabetes, this review also discusses the pathways through which V-ATPase may contribute to such complications. Beginning with an overview of the structure and function of V-ATPase in hypertension, atherosclerosis, and diabetes, this review ends by exploring the pharmacological potential of targeting V-ATPase.
Collapse
Affiliation(s)
- Na Wang
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liwei Ren
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
4
|
Gantsova E, Serova O, Vishnyakova P, Deyev I, Elchaninov A, Fatkhudinov T. Mechanisms and physiological relevance of acid-base exchange in functional units of the kidney. PeerJ 2024; 12:e17316. [PMID: 38699185 PMCID: PMC11064853 DOI: 10.7717/peerj.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
This review discusses the importance of homeostasis with a particular emphasis on the acid-base (AB) balance, a crucial aspect of pH regulation in living systems. Two primary organ systems correct deviations from the standard pH balance: the respiratory system via gas exchange and the kidneys via proton/bicarbonate secretion and reabsorption. Focusing on kidney functions, we describe the complexity of renal architecture and its challenges for experimental research. We address specific roles of different nephron segments (the proximal convoluted tubule, the loop of Henle and the distal convoluted tubule) in pH homeostasis, while explaining the physiological significance of ion exchange processes maintained by the kidneys, particularly the role of bicarbonate ions (HCO3-) as an essential buffer system of the body. The review will be of interest to researchers in the fields of physiology, biochemistry and molecular biology, which builds a strong foundation and critically evaluates existing studies. Our review helps identify the gaps of knowledge by thoroughly understanding the existing literature related to kidney acid-base homeostasis.
Collapse
Affiliation(s)
- Elena Gantsova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Oxana Serova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Igor Deyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey Elchaninov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Timur Fatkhudinov
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
5
|
Brazier F, Cornière N, Picard N, Chambrey R, Eladari D. Pendrin: linking acid base to blood pressure. Pflugers Arch 2024; 476:533-543. [PMID: 38110744 DOI: 10.1007/s00424-023-02897-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Pendrin (SLC26A4) is an anion exchanger from the SLC26 transporter family which is mutated in human patients affected by Pendred syndrome, an autosomal recessive disease characterized by sensoneurinal deafness and hypothyroidism. Pendrin is also expressed in the kidney where it mediates the exchange of internal HCO3- for external Cl- at the apical surface of renal type B and non-A non-B-intercalated cells. Studies using pendrin knockout mice have first revealed that pendrin is essential for renal base excretion. However, subsequent studies have demonstrated that pendrin also controls chloride absorption by the distal nephron and that this mechanism is critical for renal NaCl balance. Furthermore, pendrin has been shown to control vascular volume and ultimately blood pressure. This review summarizes the current knowledge about how pendrin is linking renal acid-base regulation to blood pressure control.
Collapse
Affiliation(s)
- François Brazier
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Nicolas Cornière
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France
| | - Nicolas Picard
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, Lyon, France
| | - Régine Chambrey
- Paris Cardiovascular Research Center (PARCC), INSERM U970, F-75015, Paris, France
| | - Dominique Eladari
- Centre de dépistage et de Médecine de précision des Maladies Rénales, Service de Néphrologie, Centre Hospitalier Universitaire Amiens-Picardie, Université de Picardie Jules Verne, F-80000, Amiens, France.
- Laboratory of Tissue Biology and Therapeutic Engineering, UMR 5305 CNRS, University Lyon 1, Lyon, France.
- French Clinical Research Infrastructure Network (F-CRIN): INI-CRCT, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
6
|
Schwaderer AL, Rajadhyaksha E, Canas J, Saxena V, Hains DS. Intercalated cell function, kidney innate immunity, and urinary tract infections. Pflugers Arch 2024; 476:565-578. [PMID: 38227050 DOI: 10.1007/s00424-024-02905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Intercalated cells (ICs) in the kidney collecting duct have a versatile role in acid-base and electrolyte regulation along with the host immune defense. Located in the terminal kidney tubule segment, ICs are among the first kidney cells to encounter bacteria when bacteria ascend from the bladder into the kidney. ICs have developed several mechanisms to combat bacterial infections of the kidneys. For example, ICs produce antimicrobial peptides (AMPs), which have direct bactericidal activity, and in many cases are upregulated in response to infections. Some AMP genes with IC-specific kidney expression are multiallelic, and having more copies of the gene confers increased resistance to bacterial infections of the kidney and urinary tract. Similarly, studies in human children demonstrate that those with history of UTIs are more likely to have single-nucleotide polymorphisms in IC-expressed AMP genes that impair the AMP's bactericidal activity. In murine models, depleted or impaired ICs result in decreased clearance of bacterial load following transurethral challenge with uropathogenic E. coli. A 2021 study demonstrated that ICs even act as phagocytes and acidify bacteria within phagolysosomes. Several immune signaling pathways have been identified in ICs which may represent future therapeutic targets in managing kidney infections or inflammation. This review's objective is to highlight IC structure and function with an emphasis on current knowledge of IC's diverse innate immune capabilities.
Collapse
Affiliation(s)
- Andrew L Schwaderer
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA.
| | - Evan Rajadhyaksha
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Jorge Canas
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - Vijay Saxena
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| | - David S Hains
- Division of Nephrology, Department of Pediatrics, Indiana University, 699 Riley Hospital Drive, STE 230, Indianapolis, IN, 46202, USA
| |
Collapse
|
7
|
Milano S, Saponara I, Gerbino A, Lapi D, Lela L, Carmosino M, Dal Monte M, Bagnoli P, Svelto M, Procino G. β3-Adrenoceptor as a new player in the sympathetic regulation of the renal acid-base homeostasis. Front Physiol 2024; 15:1304375. [PMID: 38455846 PMCID: PMC10917900 DOI: 10.3389/fphys.2024.1304375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Efferent sympathetic nerve fibers regulate several renal functions activating norepinephrine receptors on tubular epithelial cells. Of the beta-adrenoceptors (β-ARs), we previously demonstrated the renal expression of β3-AR in the thick ascending limb (TAL), the distal convoluted tubule (DCT), and the collecting duct (CD), where it participates in salt and water reabsorption. Here, for the first time, we reported β3-AR expression in the CD intercalated cells (ICCs), where it regulates acid-base homeostasis. Co-localization of β3-AR with either proton pump H+-ATPase or Cl-/HCO3 - exchanger pendrin revealed β3-AR expression in type A, type B, non-A, and non-B ICCs in the mouse kidney. We aimed to unveil the possible regulatory role of β3-AR in renal acid-base homeostasis, in particular in modulating the expression, subcellular localization, and activity of the renal H+-ATPase, a key player in this process. The abundance of H+-ATPase was significantly decreased in the kidneys of β3-AR-/- compared with those of β3-AR+/+ mice. In particular, H+-ATPase reduction was observed not only in the CD but also in the TAL and DCT, which contribute to acid-base transport in the kidney. Interestingly, we found that in in vivo, the absence of β3-AR reduced the kidneys' ability to excrete excess proton in the urine during an acid challenge. Using ex vivo stimulation of mouse kidney slices, we proved that the β3-AR activation promoted H+-ATPase apical expression in the epithelial cells of β3-AR-expressing nephron segments, and this was prevented by β3-AR antagonism or PKA inhibition. Moreover, we assessed the effect of β3-AR stimulation on H+-ATPase activity by measuring the intracellular pH recovery after an acid load in β3-AR-expressing mouse renal cells. Importantly, β3-AR agonism induced a 2.5-fold increase in H+-ATPase activity, and this effect was effectively prevented by β3-AR antagonism or by inhibiting either H+-ATPase or PKA. Of note, in urine samples from patients treated with a β3-AR agonist, we found that β3-AR stimulation increased the urinary excretion of H+-ATPase, likely indicating its apical accumulation in tubular cells. These findings demonstrate that β3-AR activity positively regulates the expression, plasma membrane localization, and activity of H+-ATPase, elucidating a novel physiological role of β3-AR in the sympathetic control of renal acid-base homeostasis.
Collapse
Affiliation(s)
- Serena Milano
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Ilenia Saponara
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Dominga Lapi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Ludovica Lela
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| |
Collapse
|
8
|
Bourgeois S, Kovacikova J, Bugarski M, Bettoni C, Gehring N, Hall A, Wagner CA. The B1 H + -ATPase ( Atp6v1b1 ) Subunit in Non-Type A Intercalated Cells is Required for Driving Pendrin Activity and the Renal Defense Against Alkalosis. J Am Soc Nephrol 2024; 35:7-21. [PMID: 37990364 PMCID: PMC10786613 DOI: 10.1681/asn.0000000000000259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/07/2023] [Indexed: 11/23/2023] Open
Abstract
SIGNIFICANCE STATEMENT In the kidney, the B1 H + -ATPase subunit is mostly expressed in intercalated cells (IC). Its importance in acid-secreting type A ICs is evident in patients with inborn distal renal tubular acidosis and ATP6V1B1 mutations. However, the protein is also highly expressed in alkali-secreting non-type A ICs where its function is incompletely understood. We demonstrate in Atp6v1b1 knock out mice that the B1 subunit is critical for the renal response to defend against alkalosis during an alkali load or chronic furosemide treatment. These findings highlight the importance of non-type A ICs in maintaining acid-base balance in response to metabolic challenges or commonly used diuretics. BACKGROUND Non-type A ICs in the collecting duct system express the luminal Cl - /HCO 3- exchanger pendrin and apical and/or basolateral H + -ATPases containing the B1 subunit isoform. Non-type A ICs excrete bicarbonate during metabolic alkalosis. Mutations in the B1 subunit (ATP6V1B1) cause distal renal tubular acidosis due to its role in acid secretory type A ICs. The function of B1 in non-type A ICs has remained elusive. METHODS We examined the responses of Atp6v1b1-/- and Atp6v1b1+/+ mice to an alkali load and to chronic treatment with furosemide. RESULTS An alkali load or 1 week of furosemide resulted in a more pronounced hypokalemic alkalosis in male ATP6v1b1-/- versus Atp6v1b1+/+ mice that could not be compensated by respiration. Total pendrin expression and activity in non-type A ICs of ex vivo microperfused cortical collecting ducts were reduced, and β2 -adrenergic stimulation of pendrin activity was blunted in ATP6v1b1-/- mice. Basolateral H + -ATPase activity was strongly reduced, although the basolateral expression of the B2 isoform was increased. Ligation assays for H + -ATPase subunits indicated impaired assembly of V 0 and V 1 H + -ATPase domains. During chronic furosemide treatment, ATP6v1b1-/- mice also showed polyuria and hyperchloremia versus Atp6v1b1+/+ . The expression of pendrin, the water channel AQP2, and subunits of the epithelial sodium channel ENaC were reduced. CONCLUSIONS Our data demonstrate a critical role of H + -ATPases in non-type A ICs function protecting against alkalosis and reveal a hitherto unrecognized need of basolateral B1 isoform for a proper H + -ATPase complexes assembly and ability to be stimulated.
Collapse
Affiliation(s)
- Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jana Kovacikova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Nicole Gehring
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
9
|
Kang MJ, Ioannou S, Lougheide Q, Dittmar M, Hsu Y, Pastor-Soler NM. The study of intercalated cells using ex vivo techniques: primary cell culture, cell lines, kidney slices, and organoids. Am J Physiol Cell Physiol 2024; 326:C229-C251. [PMID: 37899748 DOI: 10.1152/ajpcell.00479.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 10/31/2023]
Abstract
This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.
Collapse
Affiliation(s)
- Min Ju Kang
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Silvia Ioannou
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Quinn Lougheide
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Michael Dittmar
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Young Hsu
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| | - Nuria M Pastor-Soler
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of USC, Los Angeles, California, United States
| |
Collapse
|
10
|
Zhong J, Dong J, Ruan W, Duan X. Potential Theranostic Roles of SLC4 Molecules in Human Diseases. Int J Mol Sci 2023; 24:15166. [PMID: 37894847 PMCID: PMC10606849 DOI: 10.3390/ijms242015166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The solute carrier family 4 (SLC4) is an important protein responsible for the transport of various ions across the cell membrane and mediating diverse physiological functions, such as the ion transporting function, protein-to-protein interactions, and molecular transduction. The deficiencies in SLC4 molecules may cause multisystem disease involving, particularly, the respiratory system, digestive, urinary, endocrine, hematopoietic, and central nervous systems. Currently, there are no effective strategies to treat these diseases. SLC4 proteins are also found to contribute to tumorigenesis and development, and some of them are regarded as therapeutic targets in quite a few clinical trials. This indicates that SLC4 proteins have potential clinical prospects. In view of their functional characteristics, there is a critical need to review the specific functions of bicarbonate transporters, their related diseases, and the involved pathological mechanisms. We summarize the diseases caused by the mutations in SLC4 family genes and briefly introduce the clinical manifestations of these diseases as well as the current treatment strategies. Additionally, we illustrate their roles in terms of the physiology and pathogenesis that has been currently researched, which might be the future therapeutic and diagnostic targets of diseases and a new direction for drug research and development.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Duan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Disease, Shaanxi Key Laboratory of Stomatology, Department of Oral Biology & Clinic of Oral Rare Diseases and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China; (J.Z.); (J.D.); (W.R.)
| |
Collapse
|
11
|
Barenco-Marins TS, Seara FAC, Ponte CG, Nascimento JHM. Pulmonary Circulation Under Pressure: Pathophysiological and Therapeutic Implications of BK Channel. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07503-7. [PMID: 37624526 DOI: 10.1007/s10557-023-07503-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
The large-conductance Ca2+-activated K+ (BK) channel is widely expressed in the pulmonary blood vessels and plays a significant role in regulating pulmonary vascular tonus. It opens under membrane depolarization, increased intracellular Ca+2 concentration, and chronic hypoxia, resulting in massive K+ efflux, membrane hyperpolarization, decreased L-type Ca+2 channel opening, and smooth muscle relaxation. Several reports have demonstrated an association between BK channel dysfunction and pulmonary hypertension (PH) development. Decreased BK channel subunit expression and impaired regulation by paracrine hormones result in decreased BK channel opening, increased pulmonary vascular resistance, and pulmonary arterial pressure being the cornerstone of PH. The resulting right ventricular pressure overload ultimately leads to ventricular remodeling and failure. Therefore, it is unsurprising that the BK channel has arisen as a potential target for treating PH. Recently, a series of selective, synthetic BK channel agonists have proven effective in attenuating the pathophysiological progression of PH without adverse effects in animal models.
Collapse
Affiliation(s)
- Thais S Barenco-Marins
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Fernando A C Seara
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
- Instituto de Ciências Biológicas E da Saúde, Universidade Federal Rural Do Rio de Janeiro, Seropédica, RJ, Brazil.
- Programa de Pós-Graduação Multicêntrico Em Ciências Fisiológicas, Sociedade Brasileira de Fisiologia, São Paulo, Brazil.
| | - Cristiano G Ponte
- Instituto Federal de Educação, Ciências e Tecnologia do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jose H M Nascimento
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação Em Cardiologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Wagner CA, Unwin R, Lopez-Garcia SC, Kleta R, Bockenhauer D, Walsh S. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol 2023; 19:384-400. [PMID: 37016093 DOI: 10.1038/s41581-023-00699-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK.
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Sergio C Lopez-Garcia
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Kleta
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Stephen Walsh
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
13
|
Tabibzadeh N, Crambert G. Mechanistic insights into the primary and secondary alterations of renal ion and water transport in the distal nephron. J Intern Med 2023; 293:4-22. [PMID: 35909256 PMCID: PMC10087581 DOI: 10.1111/joim.13552] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kidneys, by equilibrating the outputs to the inputs, are essential for maintaining the constant volume, pH, and electrolyte composition of the internal milieu. Inability to do so, either because of internal kidney dysfunction (primary alteration) or because of some external factors (secondary alteration), leads to pathologies of varying severity, leading to modification of these parameters and affecting the functions of other organs. Alterations of the functions of the collecting duct (CD), the most distal part of the nephron, have been extensively studied and have led to a better diagnosis, better management of the related diseases, and the development of therapeutic tools. Thus, dysfunctions of principal cell-specific transporters such as ENaC or AQP2 or its receptors (mineralocorticoid or vasopressin receptors) caused by mutations or by compounds present in the environment (lithium, antibiotics, etc.) have been demonstrated in a variety of syndromes (Liddle, pseudohypoaldosteronism type-1, diabetes insipidus, etc.) affecting salt, potassium, and water balance. In parallel, studies on specific transporters (H+ -ATPase, anion exchanger 1) in intercalated cells have revealed the mechanisms of related tubulopathies like distal renal distal tubular acidosis or Sjögren syndrome. In this review, we will recapitulate the mechanisms of most of the primary and secondary alteration of the ion transport system of the CD to provide a better understanding of these diseases and highlight how a targeted perturbation may affect many different pathways due to the strong crosstalk and entanglements between the different actors (transporters, cell types).
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
- Assistance Publique Hôpitaux de ParisHôpital BichâtParisFrance
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
| |
Collapse
|
14
|
Guo L, Fu B, Liu Y, Hao N, Ji Y, Yang H. Diuretic resistance in patients with kidney disease: Challenges and opportunities. Biomed Pharmacother 2023; 157:114058. [PMID: 36473405 DOI: 10.1016/j.biopha.2022.114058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/10/2022] Open
Abstract
Edema caused by kidney disease is called renal edema. Edema is a common symptom of many human kidney diseases. Patients with renal edema often need to take diuretics.However, After taking diuretics, patients with kidney diseases are prone to kidney congestion, decreased renal perfusion, decreased diuretics secreted by renal tubules, neuroendocrine system abnormalities, abnormal ion transporter transport, drug interaction, electrolyte disorder, and hypoproteinemia, which lead to ineffective or weakened diuretic use and increase readmission rate and mortality. The main causes and coping strategies of diuretic resistance in patients with kidney diseases were described in detail in this report. The common causes of DR included poor diet (electrolyte disturbance and hypoproteinemia due to patients' failure to limit diet according to correct sodium, chlorine, potassium, and protein level) and poor drug compliance (the patient did not take adequate doses of diuretics. true resistance occurs only if the patient takes adequate doses of diuretics, but they are not effective), changes in pharmacokinetics and pharmacodynamics, electrolyte disorders, changes in renal adaptation, functional nephron reduction, and decreased renal blood flow. Common treatment measures include increasing in the diuretic dose and/or frequency, sequential nephron blockade,using new diuretics, ultrafiltration treatment, etc. In clinical work, measures should be taken to prevent or delay the occurrence and development of DR in patients with kidney diseases according to the actual situation of patients and the mechanism of various causes. Currently, there are many studies on DR in patients with heart diseases. Although the phenomenon of DR in patients with kidney diseases is common, there is a relatively little overview of the mechanism and treatment strategy of DR in patients with kidney diseases. Therefore, this paper hopes to show the information on DR in patients with kidney diseases to clinicians and researchers and broaden the research direction and ideas to a certain extent.
Collapse
Affiliation(s)
- Luxuan Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Baohui Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yang Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Na Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongtao Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
15
|
Yang T, Song C, Ralph DL, Andrews P, Sparks MA, Koller BH, McDonough AA, Coffman TM. Cell-Specific Actions of the Prostaglandin E-Prostanoid Receptor 4 Attenuating Hypertension: A Dominant Role for Kidney Epithelial Cells Compared With Macrophages. J Am Heart Assoc 2022; 11:e026581. [PMID: 36172956 PMCID: PMC9673718 DOI: 10.1161/jaha.122.026581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background A beneficial role for prostanoids in hypertension is suggested by clinical studies showing nonsteroidal anti-inflammatory drugs, which block the production of all prostanoids, cause sodium retention and exacerbate hypertension. Among prostanoids, prostaglandin E2 and its E-prostanoid receptor 4 receptor (EP4R) have been implicated in blood pressure control. Our previous study found that conditional deletion of EP4R from all tissues in adult mice exacerbates angiotensin II-dependent hypertension, suggesting a powerful effect of EP4R to resist blood pressure elevation. We also found that elimination of EP4R from vascular smooth muscle cells did not affect the severity of hypertension, suggesting nonvascular targets of prostaglandin E mediate this antihypertensive effect. Methods and Results Here we generated mice with cell-specific deletion of EP4R from macrophage-specific EP4 receptor knockouts or kidney epithelial cells (KEKO) to assess the contributions of EP4R in these cells to hypertension pathogenesis. Macrophage-specific EP4 receptor knockouts showed similar blood pressure responses to alterations in dietary sodium or chronic angiotensin II infusion as Controls. By contrast, angiotensin II-dependent hypertension was significantly augmented in KEKOs (mean arterial pressure: 146±3 mm Hg) compared with Controls (137±4 mm Hg; P=0.02), which was accompanied by impaired natriuresis in KEKOs. Because EP4R expression in the kidney is enriched in the collecting duct, we compared responses to amiloride in angiotensin II-infused KEKOs and Controls. Blockade of the epithelial sodium channel with amiloride caused exaggerated natriuresis in KEKOs compared with Controls (0.21±0.01 versus 0.15±0.02 mmol/24 hour per 20 g; P=0.015). Conclusions Our data suggest EP4R in kidney epithelia attenuates hypertension. This antihypertension effect of EP4R may be mediated by reducing the activity of the epithelial sodium channel, thereby promoting natriuresis.
Collapse
Affiliation(s)
- Ting Yang
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | - Chengcheng Song
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC,Department of AnesthesiologyTianjin Medical University General HospitalTianjinChina
| | - Donna L. Ralph
- Department of Physiology and NeuroscienceKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - Portia Andrews
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | - Matthew A. Sparks
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC
| | | | - Alicia A. McDonough
- Department of Physiology and NeuroscienceKeck School of Medicine of the University of Southern CaliforniaLos AngelesCA
| | - Thomas M. Coffman
- Division of Nephrology‐Department of MedicineDuke UniversityDurhamNC,Cardiovascular and Metabolic Disorders Research ProgramDuke‐National University of Singapore Graduate Medical SchoolSingapore
| |
Collapse
|
16
|
Santoso DN, Sinuraya FAG, Ambarsari CG. Distal renal tubular acidosis presenting with an acute hypokalemic paralysis in an older child with severe vesicoureteral reflux and syringomyelia: a case report. BMC Nephrol 2022; 23:248. [PMID: 35836135 PMCID: PMC9284770 DOI: 10.1186/s12882-022-02874-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 07/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Distal renal tubular acidosis (dRTA) is the most common type of renal tubular acidosis (RTA) in children. Pediatric dRTA is usually genetic and rarely occurs due to acquired issues such as obstructive uropathies, recurrent urinary tract infections (UTIs), and chronic kidney disease (CKD). Although persistent hypokalemia frequently occurs with dRTA, acute hypokalemic paralysis is not frequently reported, especially in older children. Case presentation An eight-year-old girl presented with an acute first episode of paralysis. A physical examination revealed normal vital signs, short stature consistent with her genetic potential, and decreased muscle strength of her upper and lower extremities. Preexisting conditions included stage 4 CKD due to recurrent UTIs, severe vesicoureteral reflux and bilateral hydronephrosis, neurogenic bladder, and multisegment thoracic syringomyelia. Her laboratory work-up revealed hypokalemic, hyperchloremic metabolic acidosis with a normal anion gap. She also had a urine osmolal gap of 1.9 mOsmol/kg with a high urine pH. Intravenous potassium replacement resulted in a complete resolution of her paralysis. She was diagnosed with dRTA and discharged with oral bicarbonate and slow-release potassium supplementation. Conclusions This case report highlights the importance of considering dRTA in the differential diagnosis of hypokalemic acute paralysis in children. Additionally, in children with neurogenic lower urinary tract dysfunction and recurrent UTIs, early diagnosis of spinal cord etiology is crucial to treat promptly, slow the progression of CKD, and prevent long-term complications such as RTA.
Collapse
Affiliation(s)
- Dara Ninggar Santoso
- Department of Child Health, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital Diponegoro, 71 Jakarta Pusat, 10430, Jakarta, Indonesia
| | - Fira Alyssa Gabriella Sinuraya
- Department of Child Health, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital Diponegoro, 71 Jakarta Pusat, 10430, Jakarta, Indonesia
| | - Cahyani Gita Ambarsari
- Department of Child Health, Faculty of Medicine Universitas Indonesia, Cipto Mangunkusumo Hospital Diponegoro, 71 Jakarta Pusat, 10430, Jakarta, Indonesia. .,School of Medicine, University of Nottingham, Nottingham, UK. .,Medical Technology Cluster, Indonesian Medical Education and Research Institute (IMERI), Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia.
| |
Collapse
|
17
|
Yang T. Revisiting the relationship between (Pro)Renin receptor and the intrarenal RAS: focus on the soluble receptor. Curr Opin Nephrol Hypertens 2022; 31:351-357. [PMID: 35703290 PMCID: PMC9286065 DOI: 10.1097/mnh.0000000000000806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The (pro)renin receptor (PRR), also termed as ATPase H+ transporting accessory protein 2 (ATP6AP2), was originally cloned as a specific receptor for prorenin and renin [together called (pro)renin]. Given the wide tissue distribution of PRR, PRR was further postulated to act as a regulator of tissue renin. However, assigning a physiological role of PRR within the renin-angiotensin system (RAS) has been challenging largely due to its pleotropic functions in regulation of embryogenesis, autophagy, and H+ transport. The current review will summarize recent advances in understanding the roles of sPPR within the intrarenal RAS as well as those outside this local system. RECENT FINDINGS Site-1 protease (S1P) is a predominant source of sPPR at least in the kidney. So far most of the known physiological functions of PRR including renal handling of electrolytes and fluid and blood pressure are mediated by sPRR. In particular, sPRR serves as a positive regulator of collecting duct renin to activate the intrarenal RAS during water deprivation or angiotensin-II (AngII) infusion. However, PRR/sPRR can act in renin-independent manner under other circumstances. SUMMARY S1P-derived sPRR has emerged as a key regulator of kidney function and blood pressure and its relationship with the intrarenal RAS depends on the physiological context.
Collapse
Affiliation(s)
- Tianxin Yang
- Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Pham TD, Elengickal AJ, Verlander JW, Al-Qusairi L, Chen C, Abood DC, King SA, Loffing J, Welling PA, Wall SM. Pendrin-null mice develop severe hypokalemia following dietary Na + and K + restriction: role of ENaC. Am J Physiol Renal Physiol 2022; 322:F486-F497. [PMID: 35224991 PMCID: PMC8977139 DOI: 10.1152/ajprenal.00378.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pendrin is an intercalated cell Cl-/[Formula: see text] exchanger thought to participate in K+-sparing NaCl absorption. However, its role in K+ homeostasis has not been clearly defined. We hypothesized that pendrin-null mice will develop hypokalemia with dietary K+ restriction. We further hypothesized that pendrin knockout (KO) mice mitigate urinary K+ loss by downregulating the epithelial Na+ channel (ENaC). Thus, we examined the role of ENaC in Na+ and K+ balance in pendrin KO and wild-type mice following dietary K+ restriction. To do so, we examined the relationship between Na+ and K+ balance and ENaC subunit abundance in K+-restricted pendrin-null and wild-type mice that were NaCl restricted or replete. Following a NaCl-replete, K+-restricted diet, K+ balance and serum K+ were similar in both groups. However, following a Na+, K+, and Cl--deficient diet, pendrin KO mice developed hypokalemia from increased K+ excretion. The fall in serum K+ observed in K+-restricted pendrin KO mice was enhanced with ENaC stimulation but eliminated with ENaC inhibition. The fall in serum K+ observed in K+-restricted pendrin KO mice was enhanced with ENaC stimulation but eliminated with ENaC inhibition. However, reducing ENaC activity also reduced blood pressure and increased apparent intravascular volume contraction, since KO mice had lower serum Na+, higher blood urea nitrogen and hemoglobin, greater weight loss, greater metabolic alkalosis, and greater NaCl excretion. We conclude that dietary Na+ and K+ restriction induces hypokalemia in pendrin KO mice. Pendrin-null mice limit renal K+ loss by downregulating ENaC. However, this ENaC downregulation occurs at the expense of intravascular volume.NEW & NOTEWORTHY Pendrin is an apical Cl-/[Formula: see text] exchanger that provides renal K+-sparing NaCl absorption. The pendrin-null kidney has an inability to fully conserve K+ and limits renal K+ loss by downregulating the epithelial Na+ channel (ENaC). However, with Na+ restriction, the need to reduce ENaC for K+ balance conflicts with the need to stimulate ENaC for intravascular volume. Therefore, NaCl restriction stimulates ENaC less in pendrin-null mice than in wild-type mice, which mitigates their kaliuresis and hypokalemia but exacerbates volume contraction.
Collapse
Affiliation(s)
- Truyen D Pham
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Anthony J Elengickal
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Lama Al-Qusairi
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Chao Chen
- Department of Medicine, University of Florida, Gainesville, Florida
| | - Delaney C Abood
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Spencer A King
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Johannes Loffing
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Paul A Welling
- Departments of Medicine, Nephrology and Physiology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Susan M Wall
- Department of Medicine, Division of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
19
|
Wall SM. Regulation of Blood Pressure and Salt Balance By Pendrin-Positive Intercalated Cells: Donald Seldin Lecture 2020. Hypertension 2022; 79:706-716. [PMID: 35109661 PMCID: PMC8918038 DOI: 10.1161/hypertensionaha.121.16492] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intercalated cells make up about a third of all cells within the connecting tubule and the collecting duct and are subclassified as type A, type B and non-A, non-B based on the subcellular distribution of the H+-ATPase, which dictates whether it secretes H+ or HCO3-. Type B intercalated cells mediate Cl- absorption and HCO3- secretion, which occurs largely through the anion exchanger pendrin. Pendrin is stimulated by angiotensin II via the angiotensin type 1a receptor and by aldosterone through MR (mineralocorticoid receptor). Aldosterone stimulates pendrin expression and function, in part, through the alkalosis it generates. Pendrin-mediated HCO3- secretion increases in models of metabolic alkalosis, which attenuates the alkalosis. However, pendrin-positive intercalated cells also regulate blood pressure, at least partly, through pendrin-mediated Cl- absorption and through their indirect effect on the epithelial Na+ channel, ENaC. This aldosterone-induced increase in pendrin secondarily stimulates ENaC, thereby contributing to the aldosterone pressor response. This review describes the contribution of pendrin-positive intercalated cells to Na+, K+, Cl- and acid-base balance.
Collapse
Affiliation(s)
- Susan M. Wall
- Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
20
|
Beaume J, Figueres L, Bobot M, de Laforcade L, Ayari H, Dolley-Hitze T, Gueutin V, Braconnier A, Golbin L, Citarda S, Seret G, Belaïd L, Cohen R, Luque Y, Larceneux F, Seervai RNH, Overs C, Bertocchio JP. Sodium Bicarbonate Prescription and Extracellular Volume Increase: Real-world Data Results from the AlcalUN Study. Clin Pharmacol Ther 2021; 111:252-262. [PMID: 34564842 DOI: 10.1002/cpt.2427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022]
Abstract
Oral alkalization with sodium bicarbonate (NaHCO3 ) or citrate is prescribed for conditions ranging from metabolic acidosis to nephrolithiasis. Although most nephrologists/urologists use this method routinely, extracellular volume (ECV) increase is the main feared adverse event reported for NaHCO3 . Thus far, no trial has specifically studied this issue in a real-world setting. AlcalUN (NCT03035812) is a multicentric, prospective, open-label cohort study with nationwide (France) enrollment in 18 (public and private) nephrology/urology units. Participants were adult outpatients requiring chronic (>1 month) oral alkalization by either NaHCO3 -containing or no-NaHCO3 -containing agents. The ECV increase (primary outcome) was judged based on body weight increase (ΔBW), blood pressure increase (ΔBP), and/or new-onset edema at the first follow-up visit (V1). From February 2017 to February 2020, 156 patients were enrolled. After a median 106 days of treatment, 91 (72%) patients reached the primary outcome. They had lower systolic (135 (125, 141) vs. 141 (130, 150), P = 0.02) and diastolic (77 (67, 85) vs. 85 (73, 90), P = 0.03) BP values, a higher plasma chloride (106.0 (105.0, 109.0) vs. 105.0 (102.0, 107.0), P = 0.02) at baseline, and a less frequent history of nephrolithiasis (32 vs. 56%, P = 0.02). Patients experienced mainly slight ΔBP (< 10 mmHg). The primary outcome was not associated (P = 0.79) with the study treatment (129 received NaHCO3 and 27 received citrate). We subsequently developed three different models of propensity score matching; each confirmed our results. Chronic oral alkalization with NaHCO3 is no longer associated with an ECV increase compared to citrate in real-life settings.
Collapse
Affiliation(s)
- Julie Beaume
- AVODD, HIA Sainte-Anne, Toulon, France.,Club des Jeunes Néphrologues, Paris, France
| | - Lucile Figueres
- Club des Jeunes Néphrologues, Paris, France.,DIVAT Consortium, Nantes, France.,Service de Néphrologie et d'immunologie clinique, ITUN, CHU de Nantes, Université de Nantes, Nantes, France
| | - Mickaël Bobot
- Club des Jeunes Néphrologues, Paris, France.,Centre de Néphrologie et Transplantation Rénale, Assistance Publique Hôpitaux de Marseille, Hôpital de la Conception, Marseille, France.,C2VN, INSERM 1263, INRAE 1260, Aix-Marseille Université, Marseille, France
| | - Louis de Laforcade
- Club des Jeunes Néphrologues, Paris, France.,Service Endocrinologie-Néphrologie, Centre Hospitalier Pierre Oudot, Bourgoin-Jallieu, France
| | - Hamza Ayari
- Renal and Metabolic Diseases Unit, European Georges Pompidou Hospital, AP-HP, Paris, France
| | - Thibault Dolley-Hitze
- Club des Jeunes Néphrologues, Paris, France.,Unité de dialyse de Saint-Malo, Fondation AUB Santé, Saint-Malo, France
| | - Victor Gueutin
- Service de Néphrologie-Dialyse, AURA Paris Plaisance, Paris, France.,Service de Néphrologie, Hôpital de La Pitié-Salpêtrière, AP-HP, Paris, France
| | - Antoine Braconnier
- Club des Jeunes Néphrologues, Paris, France.,Service de Néphrologie, Dialyse et Transplantation Rénale, CHU Reims, Hôpital Maison Blanche, Reims, France
| | - Léonard Golbin
- Club des Jeunes Néphrologues, Paris, France.,Service de Néphrologie, Dialyse et Transplantation Rénale, CHU Rennes, Hôpital Pontchaillou, Rennes, France
| | - Salvatore Citarda
- Club des Jeunes Néphrologues, Paris, France.,Centre associatif lyonnais de dialyse (Calydial), Irigny, France
| | | | - Lisa Belaïd
- Unité de dialyse de Saint-Malo, Fondation AUB Santé, Saint-Malo, France
| | - Raphaël Cohen
- Renal and Metabolic Diseases Unit, European Georges Pompidou Hospital, AP-HP, Paris, France
| | - Yosu Luque
- Club des Jeunes Néphrologues, Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, AP-HP, UMR_S1155, Sorbonne Université, Paris, France
| | - Fabrice Larceneux
- CNRS, UMR (7088), DRM, (ERMES), Université Paris-Dauphine, PSL Research University, Paris, France
| | - Riyad N H Seervai
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA.,Molecular & Cellular Biology Graduate Program, Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Camille Overs
- Association Française des Urologues en Formation, Paris, France.,Service d'Urologie, Andrologie et transplantation Rénale, CHU de Grenoble, La Tronche, France
| | - Jean-Philippe Bertocchio
- Club des Jeunes Néphrologues, Paris, France.,Service de Néphrologie, Hôpital de La Pitié-Salpêtrière, AP-HP, Paris, France
| | -
- Club des Jeunes Néphrologues, Paris, France
| |
Collapse
|
21
|
Cheval L, Viollet B, Klein C, Rafael C, Figueres L, Devevre E, Zadigue G, Azroyan A, Crambert G, Vogt B, Doucet A. Acidosis-induced activation of distal nephron principal cells triggers Gdf15 secretion and adaptive proliferation of intercalated cells. Acta Physiol (Oxf) 2021; 232:e13661. [PMID: 33840159 DOI: 10.1111/apha.13661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
AIM Type A intercalated cells of the renal collecting duct participate in the maintenance of the acid/base balance through their capacity to adapt proton secretion to homeostatic requirements. We previously showed that increased proton secretion stems in part from the enlargement of the population of proton secreting cells in the outer medullary collecting duct through division of fully differentiated cells, and that this response is triggered by growth/differentiation factor 15. This study aimed at deciphering the mechanism of acid load-induced secretion of Gdf15 and its mechanism of action. METHODS We developed an original method to evaluate the proliferation of intercalated cells and applied it to genetically modified or pharmacologically treated mice under basal and acid-loaded conditions. RESULTS Gdf15 is secreted by principal cells of the collecting duct in response to the stimulation of vasopressin receptors. Vasopressin-induced production of cAMP triggers activation of AMP-stimulated kinases and of Na,K-ATPase, and induction of p53 and Gdf15. Gdf15 action on intercalated cells is mediated by ErbB2 receptors, the activation of which triggers the expression of cyclin d1, of p53 and anti-proliferative genes, and of Egr1. CONCLUSION Acidosis-induced proliferation of intercalated cells results from a cross talk with principal cells which secrete Gdf15 in response to their stimulation by vasopressin. Thus, vasopressin is a major determinant of the collecting duct cellular homeostasis as it promotes proliferation of intercalated cells under acidosis conditions and of principal cells under normal acid-base status.
Collapse
Affiliation(s)
- Lydie Cheval
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| | - Benoit Viollet
- Université de ParisInstitut CochinINSERMCNRS Paris France
| | - Christophe Klein
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
| | - Chloé Rafael
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| | - Lucile Figueres
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| | - Estelle Devevre
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
| | - Georges Zadigue
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
| | - Anie Azroyan
- Program in Membrane Biology Nephrology Division Center for Systems Biology Massachusetts General Hospital Harvard Medical School Boston MA USA
| | - Gilles Crambert
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital Bern University Hospital Bern Switzerland
| | - Alain Doucet
- Centre de Recherche des Cordeliers INSERMSorbonne UniversitéUniversité de Paris Paris France
- CNRS ERL 8228 ‐ Laboratoire de Physiologie Rénale et Tubulopathies Paris France
| |
Collapse
|
22
|
Petrillo F, Iervolino A, Angrisano T, Jelen S, Costanzo V, D’Acierno M, Cheng L, Wu Q, Guerriero I, Mazzarella MC, De Falco A, D’Angelo F, Ceccarelli M, Caraglia M, Capasso G, Fenton RA, Trepiccione F. Dysregulation of Principal Cell miRNAs Facilitates Epigenetic Regulation of AQP2 and Results in Nephrogenic Diabetes Insipidus. J Am Soc Nephrol 2021; 32:1339-1354. [PMID: 33727367 PMCID: PMC8259636 DOI: 10.1681/asn.2020010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/02/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), formed by cleavage of pre-microRNA by the endoribonuclease Dicer, are critical modulators of cell function by post-transcriptionally regulating gene expression. METHODS Selective ablation of Dicer in AQP2-expressing cells (DicerAQP2Cre+ mice) was used to investigate the role of miRNAs in the kidney collecting duct of mice. RESULTS The mice had severe polyuria and nephrogenic diabetes insipidus, potentially due to greatly reduced AQP2 and AQP4 levels. Although epithelial sodium channel levels were decreased in cortex and increased in inner medulla, amiloride-sensitive sodium reabsorption was equivalent in DicerAQP2Cre+ mice and controls. Small-RNA sequencing and proteomic analysis revealed 31 and 178 significantly regulated miRNAs and proteins, respectively. Integrated bioinformatic analysis of the miRNAome and proteome suggested alterations in the epigenetic machinery and various transcription factors regulating AQP2 expression in DicerAQP2Cre+ mice. The expression profile and function of three miRNAs (miR-7688-5p, miR-8114, and miR-409-3p) whose predicted targets were involved in epigenetic control (Phf2, Kdm5c, and Kdm4a) or transcriptional regulation (GATA3, GATA2, and ELF3) of AQP2 were validated. Luciferase assays could not demonstrate direct interaction of AQP2 or the three potential transcription factors with miR-7688-5p, miR-8114, and miR-409-3p. However, transfection of respective miRNA mimics reduced AQP2 expression. Chromatin immunoprecipitation assays demonstrated decreased Phf2 and significantly increased Kdm5c interactions at the Aqp2 gene promoter in DicerAQP2Cre+ mice, resulting in decreased RNA Pol II association. CONCLUSIONS Novel evidence indicates miRNA-mediated epigenetic regulation of AQP2 expression.
Collapse
Affiliation(s)
- Federica Petrillo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Anna Iervolino
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Tiziana Angrisano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Sabina Jelen
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Vincenzo Costanzo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | | | - Lei Cheng
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Qi Wu
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ilaria Guerriero
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | | | - Alfonso De Falco
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Fulvio D’Angelo
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy
| | - Michele Ceccarelli
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Electrical Engineering and Information Technology (DIETI) University of Naples “Federico II”, Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Giovambattista Capasso
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Francesco Trepiccione
- Biogem, Institute of Genetic Research “Gaetano Salvatore”, Ariano Irpino, Italy,Department of Translational Medical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
23
|
Palmer BF, Kelepouris E, Clegg DJ. Renal Tubular Acidosis and Management Strategies: A Narrative Review. Adv Ther 2021; 38:949-968. [PMID: 33367987 PMCID: PMC7889554 DOI: 10.1007/s12325-020-01587-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/29/2022]
Abstract
Renal tubular acidosis (RTA) occurs when the kidneys are unable to maintain normal acid−base homeostasis because of tubular defects in acid excretion or bicarbonate ion reabsorption. Using illustrative clinical cases, this review describes the main types of RTA observed in clinical practice and provides an overview of their diagnosis and treatment. The three major forms of RTA are distal RTA (type 1; characterized by impaired acid excretion), proximal RTA (type 2; caused by defects in reabsorption of filtered bicarbonate), and hyperkalemic RTA (type 4; caused by abnormal excretion of acid and potassium in the collecting duct). Type 3 RTA is a rare form of the disease with features of both distal and proximal RTA. Accurate diagnosis of RTA plays an important role in optimal patient management. The diagnosis of distal versus proximal RTA involves assessment of urinary acid and bicarbonate secretion, while in hyperkalemic RTA, selective aldosterone deficiency or resistance to its effects is confirmed after exclusion of other causes of hyperkalemia. Treatment options include alkali therapy in patients with distal or proximal RTA and lowering of serum potassium concentrations through dietary modification and potential new pharmacotherapies in patients with hyperkalemic RTA including newer potassium binders.
Collapse
|
24
|
Wall SM, Verlander JW, Romero CA. The Renal Physiology of Pendrin-Positive Intercalated Cells. Physiol Rev 2020; 100:1119-1147. [PMID: 32347156 PMCID: PMC7474261 DOI: 10.1152/physrev.00011.2019] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/13/2022] Open
Abstract
Intercalated cells (ICs) are found in the connecting tubule and the collecting duct. Of the three IC subtypes identified, type B intercalated cells are one of the best characterized and known to mediate Cl- absorption and HCO3- secretion, largely through the anion exchanger pendrin. This exchanger is thought to act in tandem with the Na+-dependent Cl-/HCO3- exchanger, NDCBE, to mediate net NaCl absorption. Pendrin is stimulated by angiotensin II and aldosterone administration via the angiotensin type 1a and the mineralocorticoid receptors, respectively. It is also stimulated in models of metabolic alkalosis, such as with NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, of probably more physiological or clinical significance is the role of these pendrin-positive ICs in blood pressure regulation, which occurs, at least in part, through pendrin-mediated renal Cl- absorption, as well as their effect on the epithelial Na+ channel, ENaC. Aldosterone stimulates ENaC directly through principal cell mineralocorticoid hormone receptor (ligand) binding and also indirectly through its effect on pendrin expression and function. In so doing, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. In addition to its role in Na+ and Cl- balance, pendrin affects the balance of other ions, such as K+ and I-. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contribution of pendrin-positive ICs in the kidney to distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M Wall
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Jill W Verlander
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| | - Cesar A Romero
- Departments of Medicine and Physiology, Emory University School of Medicine, Atlanta, Georgia; and Department of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
25
|
Abstract
Metabolic alkalosis is a very commonly encountered acid-base disorder that may be generated by a variety of exogenous and/or endogenous, pathophysiologic mechanisms. Multiple mechanisms are also responsible for the persistence, or maintenance, of metabolic alkalosis. Understanding these generation and maintenance mechanisms helps direct appropriate intervention and correction of this disorder. The framework utilized in this review is based on the ECF volume-centered approach popularized by Donald Seldin and Floyd Rector in the 1970s. Although many subsequent scientific discoveries have advanced our understanding of the pathophysiology of metabolic alkalosis, that framework continues to be a valuable and relatively straightforward diagnostic and therapeutic model.
Collapse
Affiliation(s)
- Michael Emmett
- Divisions of Internal Medicine and Nephrology, Department of Medicine, Baylor University Medical Center at Dallas, Dallas, Texas
| |
Collapse
|
26
|
Genini A, Mohebbi N, Daryadel A, Bettoni C, Wagner CA. Adaptive response of the murine collecting duct to alkali loading. Pflugers Arch 2020; 472:1079-1092. [DOI: 10.1007/s00424-020-02423-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/31/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023]
|
27
|
Abstract
Acid-base balance is critical for normal life. Acute and chronic disturbances impact cellular energy metabolism, endocrine signaling, ion channel activity, neuronal activity, and cardiovascular functions such as cardiac contractility and vascular blood flow. Maintenance and adaptation of acid-base homeostasis are mostly controlled by respiration and kidney. The kidney contributes to acid-base balance by reabsorbing filtered bicarbonate, regenerating bicarbonate through ammoniagenesis and generation of protons, and by excreting acid. This review focuses on acid-base disorders caused by renal processes, both inherited and acquired. Distinct rare inherited monogenic diseases affecting acid-base handling in the proximal tubule and collecting duct have been identified. In the proximal tubule, mutations of solute carrier 4A4 (SLC4A4) (electrogenic Na+/HCO3--cotransporter Na+/bicarbonate cotransporter e1 [NBCe1]) and other genes such as CLCN5 (Cl-/H+-antiporter), SLC2A2 (GLUT2 glucose transporter), or EHHADH (enoyl-CoA, hydratase/3-hydroxyacyl CoA dehydrogenase) causing more generalized proximal tubule dysfunction can cause proximal renal tubular acidosis resulting from bicarbonate wasting and reduced ammoniagenesis. Mutations in adenosine triphosphate ATP6V1 (B1 H+-ATPase subunit), ATPV0A4 (a4 H+-ATPase subunit), SLC4A1 (anion exchanger 1), and FOXI1 (forkhead transcription factor) cause distal renal tubular acidosis type I. Carbonic anhydrase II mutations affect several nephron segments and give rise to a mixed proximal and distal phenotype. Finally, mutations in genes affecting aldosterone synthesis, signaling, or downstream targets can lead to hyperkalemic variants of renal tubular acidosis (type IV). More common forms of renal acidosis are found in patients with advanced stages of chronic kidney disease and are owing, at least in part, to a reduced capacity for ammoniagenesis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland.
| | - Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center for Competence in Research Kidney, Switzerland
| |
Collapse
|
28
|
Carrisoza-Gaytan R, Ray EC, Flores D, Marciszyn AL, Wu P, Liu L, Subramanya AR, Wang W, Sheng S, Nkashama LJ, Chen J, Jackson EK, Mutchler SM, Heja S, Kohan DE, Satlin LM, Kleyman TR. Intercalated cell BKα subunit is required for flow-induced K+ secretion. JCI Insight 2020; 5:130553. [PMID: 32255763 DOI: 10.1172/jci.insight.130553] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
BK channels are expressed in intercalated cells (ICs) and principal cells (PCs) in the cortical collecting duct (CCD) of the mammalian kidney and have been proposed to be responsible for flow-induced K+ secretion (FIKS) and K+ adaptation. To examine the IC-specific role of BK channels, we generated a mouse with targeted disruption of the pore-forming BK α subunit (BKα) in ICs (IC-BKα-KO). Whole cell charybdotoxin-sensitive (ChTX-sensitive) K+ currents were readily detected in control ICs but largely absent in ICs of IC-BKα-KO mice. When placed on a high K+ (HK) diet for 13 days, blood [K+] was significantly greater in IC-BKα-KO mice versus controls in males only, although urinary K+ excretion rates following isotonic volume expansion were similar in males and females. FIKS was present in microperfused CCDs isolated from controls but was absent in IC-BKα-KO CCDs of both sexes. Also, flow-stimulated epithelial Na+ channel-mediated (ENaC-mediated) Na+ absorption was greater in CCDs from female IC-BKα-KO mice than in CCDs from males. Our results confirm a critical role of IC BK channels in FIKS. Sex contributes to the capacity for adaptation to a HK diet in IC-BKα-KO mice.
Collapse
Affiliation(s)
| | - Evan C Ray
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison L Marciszyn
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peng Wu
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Leah Liu
- McGill University, Montreal, Quebec, Canada
| | - Arohan R Subramanya
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and
| | - WenHui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Shaohu Sheng
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lubika J Nkashama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jingxin Chen
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stephanie M Mutchler
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Szilvia Heja
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Donald E Kohan
- Department of Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Cell Biology and.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Pham TD, Verlander JW, Wang Y, Romero CA, Yue Q, Chen C, Thumova M, Eaton DC, Lazo-Fernandez Y, Wall SM. Aldosterone Regulates Pendrin and Epithelial Sodium Channel Activity through Intercalated Cell Mineralocorticoid Receptor-Dependent and -Independent Mechanisms over a Wide Range in Serum Potassium. J Am Soc Nephrol 2020. [PMID: 32054691 DOI: 10.1152/ajprenal.90637.2008.-ammonia] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Aldosterone activates the intercalated cell mineralocorticoid receptor, which is enhanced with hypokalemia. Whether this receptor directly regulates the intercalated cell chloride/bicarbonate exchanger pendrin is unclear, as are potassium's role in this response and the receptor's effect on intercalated and principal cell function in the cortical collecting duct (CCD). METHODS We measured CCD chloride absorption, transepithelial voltage, epithelial sodium channel activity, and pendrin abundance and subcellular distribution in wild-type and intercalated cell-specific mineralocorticoid receptor knockout mice. To determine if the receptor directly regulates pendrin, as well as the effect of serum aldosterone and potassium on this response, we measured pendrin label intensity and subcellular distribution in wild-type mice, knockout mice, and receptor-positive and receptor-negative intercalated cells from the same knockout mice. RESULTS Ablation of the intercalated cell mineralocorticoid receptor in CCDs from aldosterone-treated mice reduced chloride absorption and epithelial sodium channel activity, despite principal cell mineralocorticoid receptor expression in the knockout mice. With high circulating aldosterone, intercalated cell mineralocorticoid receptor gene ablation directly reduced pendrin's relative abundance in the apical membrane region and pendrin abundance per cell whether serum potassium was high or low. Intercalated cell mineralocorticoid receptor ablation blunted, but did not eliminate, aldosterone's effect on pendrin total and apical abundance and subcellular distribution. CONCLUSIONS With high circulating aldosterone, intercalated cell mineralocorticoid receptor ablation reduces chloride absorption in the CCD and indirectly reduces principal cell epithelial sodium channel abundance and function. This receptor directly regulates pendrin's total abundance and its relative abundance in the apical membrane region over a wide range in serum potassium concentration. Aldosterone regulates pendrin through mechanisms both dependent and independent of the IC MR receptor.
Collapse
Affiliation(s)
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | | | | | - Chao Chen
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Douglas C Eaton
- Departments of Medicine and
- Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| | | | - Susan M Wall
- Departments of Medicine and
- Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
30
|
Cornière N, Eladari D. Identification of ATP6V1C2 as a novel candidate gene for distal tubular acidosis. Kidney Int 2020; 97:452-455. [PMID: 32087886 DOI: 10.1016/j.kint.2019.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
Young onset distal tubular acidosis is a rare genetic disorder that can lead, if untreated, to many complications. Mutations in few genes account for almost half of the cases, whereas the molecular mechanisms accounting for the remaining cases are still unknown. The present study reports the use of whole-exome sequencing to identify new dRTA-causing genes and demonstrates that inactivating mutations in the ATP6V1C2 gene impair renal proton pump function.
Collapse
Affiliation(s)
- Nicolas Cornière
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, Centre Hospitalier Universitaire de la Réunion, Saint Denis, La Réunion, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche et de Services 1283-European Genomic Institute for Diabetes, Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche et de Services 8199-European Genomic Institute for Diabetes, Lille, France
| | - Dominique Eladari
- Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, Centre Hospitalier Universitaire de la Réunion, Saint Denis, La Réunion, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche et de Services 1283-European Genomic Institute for Diabetes, Lille, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche et de Services 8199-European Genomic Institute for Diabetes, Lille, France.
| |
Collapse
|
31
|
Pham TD, Verlander JW, Wang Y, Romero CA, Yue Q, Chen C, Thumova M, Eaton DC, Lazo-Fernandez Y, Wall SM. Aldosterone Regulates Pendrin and Epithelial Sodium Channel Activity through Intercalated Cell Mineralocorticoid Receptor-Dependent and -Independent Mechanisms over a Wide Range in Serum Potassium. J Am Soc Nephrol 2020; 31:483-499. [PMID: 32054691 DOI: 10.1681/asn.2019050551] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Aldosterone activates the intercalated cell mineralocorticoid receptor, which is enhanced with hypokalemia. Whether this receptor directly regulates the intercalated cell chloride/bicarbonate exchanger pendrin is unclear, as are potassium's role in this response and the receptor's effect on intercalated and principal cell function in the cortical collecting duct (CCD). METHODS We measured CCD chloride absorption, transepithelial voltage, epithelial sodium channel activity, and pendrin abundance and subcellular distribution in wild-type and intercalated cell-specific mineralocorticoid receptor knockout mice. To determine if the receptor directly regulates pendrin, as well as the effect of serum aldosterone and potassium on this response, we measured pendrin label intensity and subcellular distribution in wild-type mice, knockout mice, and receptor-positive and receptor-negative intercalated cells from the same knockout mice. RESULTS Ablation of the intercalated cell mineralocorticoid receptor in CCDs from aldosterone-treated mice reduced chloride absorption and epithelial sodium channel activity, despite principal cell mineralocorticoid receptor expression in the knockout mice. With high circulating aldosterone, intercalated cell mineralocorticoid receptor gene ablation directly reduced pendrin's relative abundance in the apical membrane region and pendrin abundance per cell whether serum potassium was high or low. Intercalated cell mineralocorticoid receptor ablation blunted, but did not eliminate, aldosterone's effect on pendrin total and apical abundance and subcellular distribution. CONCLUSIONS With high circulating aldosterone, intercalated cell mineralocorticoid receptor ablation reduces chloride absorption in the CCD and indirectly reduces principal cell epithelial sodium channel abundance and function. This receptor directly regulates pendrin's total abundance and its relative abundance in the apical membrane region over a wide range in serum potassium concentration. Aldosterone regulates pendrin through mechanisms both dependent and independent of the IC MR receptor.
Collapse
Affiliation(s)
| | - Jill W Verlander
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | | | | | - Chao Chen
- Department of Medicine, University of Florida, Gainesville, Florida
| | | | - Douglas C Eaton
- Departments of Medicine and.,Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| | | | - Susan M Wall
- Departments of Medicine and .,Physiology, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
32
|
Ayuzawa N, Nishimoto M, Ueda K, Hirohama D, Kawarazaki W, Shimosawa T, Marumo T, Fujita T. Two Mineralocorticoid Receptor-Mediated Mechanisms of Pendrin Activation in Distal Nephrons. J Am Soc Nephrol 2020; 31:748-764. [PMID: 32034107 DOI: 10.1681/asn.2019080804] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regulation of sodium chloride transport in the aldosterone-sensitive distal nephron is essential for fluid homeostasis and BP control. The chloride-bicarbonate exchanger pendrin in β-intercalated cells, along with sodium chloride cotransporter (NCC) in distal convoluted tubules, complementarily regulate sodium chloride handling, which is controlled by the renin-angiotensin-aldosterone system. METHODS Using mice with mineralocorticoid receptor deletion in intercalated cells, we examined the mechanism and roles of pendrin upregulation via mineralocorticoid receptor in two different models of renin-angiotensin-aldosterone system activation. We also used aldosterone-treated NCC knockout mice to examine the role of pendrin regulation in salt-sensitive hypertension. RESULTS Deletion of mineralocorticoid receptor in intercalated cells suppressed the increase in renal pendrin expression induced by either exogenous angiotensin II infusion or endogenous angiotensin II upregulation via salt restriction. When fed a low-salt diet, intercalated cell-specific mineralocorticoid receptor knockout mice with suppression of pendrin upregulation showed BP reduction that was attenuated by compensatory activation of NCC. In contrast, upregulation of pendrin induced by aldosterone excess combined with a high-salt diet was scarcely affected by deletion of mineralocorticoid receptor in intercalated cells, but depended instead on hypokalemic alkalosis through the activated mineralocorticoid receptor-epithelial sodium channel cascade in principal cells. In aldosterone-treated NCC knockout mice showing upregulation of pendrin, potassium supplementation corrected alkalosis and inhibited the pendrin upregulation, thereby lowering BP. CONCLUSIONS In conjunction with NCC, the two pathways of pendrin upregulation, induced by angiotensin II through mineralocorticoid receptor activation in intercalated cells and by alkalosis through mineralocorticoid receptor activation in principal cells, play important roles in fluid homeostasis during salt depletion and salt-sensitive hypertension mediated by aldosterone excess.
Collapse
Affiliation(s)
- Nobuhiro Ayuzawa
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan;
| | - Mitsuhiro Nishimoto
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kohei Ueda
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Daigoro Hirohama
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Wakako Kawarazaki
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tatsuo Shimosawa
- Department of Clinical Laboratory, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Takeshi Marumo
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Toshiro Fujita
- Division of Clinical Epigenetics, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan;
| |
Collapse
|
33
|
Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the Renal NaCl Cotransporter and Its Role in Potassium Homeostasis. Physiol Rev 2020; 100:321-356. [DOI: 10.1152/physrev.00044.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Daily dietary potassium (K+) intake may be as large as the extracellular K+ pool. To avoid acute hyperkalemia, rapid removal of K+ from the extracellular space is essential. This is achieved by translocating K+ into cells and increasing urinary K+ excretion. Emerging data now indicate that the renal thiazide-sensitive NaCl cotransporter (NCC) is critically involved in this homeostatic kaliuretic response. This suggests that the early distal convoluted tubule (DCT) is a K+ sensor that can modify sodium (Na+) delivery to downstream segments to promote or limit K+ secretion. K+ sensing is mediated by the basolateral K+ channels Kir4.1/5.1, a capacity that the DCT likely shares with other nephron segments. Thus, next to K+-induced aldosterone secretion, K+ sensing by renal epithelial cells represents a second feedback mechanism to control K+ balance. NCC’s role in K+ homeostasis has both physiological and pathophysiological implications. During hypovolemia, NCC activation by the renin-angiotensin system stimulates Na+ reabsorption while preventing K+ secretion. Conversely, NCC inactivation by high dietary K+ intake maximizes kaliuresis and limits Na+ retention, despite high aldosterone levels. NCC activation by a low-K+ diet contributes to salt-sensitive hypertension. K+-induced natriuresis through NCC offers a novel explanation for the antihypertensive effects of a high-K+ diet. A possible role for K+ in chronic kidney disease is also emerging, as epidemiological data reveal associations between higher urinary K+ excretion and improved renal outcomes. This comprehensive review will embed these novel insights on NCC regulation into existing concepts of K+ homeostasis in health and disease.
Collapse
Affiliation(s)
- Ewout J. Hoorn
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Martin Gritter
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Catherina A. Cuevas
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A. Fenton
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Kim DG, Choi JW, Jo IJ, Kim MJ, Lee HS, Hong SH, Song HJ, Bae GS, Park SJ. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep 2019; 21:258-266. [PMID: 31746359 PMCID: PMC6896374 DOI: 10.3892/mmr.2019.10823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The major role of inner medullary collecting duct (IMCD) cells is to maintain water and sodium homeostasis. In addition to the major role, it also participates in the protection of renal and systemic inflammation. Although IMCD cells could take part in renal and systemic inflammation, investigations on renal inflammation in IMCD cells have rarely been reported. Although berberine (BBR) has been reported to show diverse pharmacological effects, its anti-inflammatory and protective effects on IMCD cells have not been studied. Therefore, in the present study, we examined the anti-inflammatory and protective effects of BBR in mouse IMCD-3 (mIMCD-3) cells against lipopolysaccharide (LPS). An MTT assay was carried out to investigate the toxicity of BBR on mIMCD-3 cells. Reverse transcription quantitative-PCR and western blotting were performed to analysis pro-inflammatory molecules and cytokines. Mechanisms of BBR were examined by western blotting and immunocytochemistry. According to previous studies, pro-inflammatory molecules, such as inducible nitric oxide synthase and cyclooxygenase-2, and pro-inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α are increased in LPS-exposed mIMCD-3 cells. However, the production of these pro-inflammatory molecules is significantly inhibited by treatment with BBR. In addition, BBR inhibited translocation of nuclear factor (NF)-κB p65 from the cytosol to the nucleus, and degradation of inhibitory κ-Bα in LPS-exposed mIMCD-3 cells. In conclusion, BBR could inhibit renal inflammatory responses via inhibition of NF-κB signaling and ultimately contribute to amelioration of renal injury during systemic inflammation.
Collapse
Affiliation(s)
- Dong-Gu Kim
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ji-Won Choi
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Il-Joo Jo
- Division of Beauty Sciences, School of Natural Sciences, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Myoung-Jin Kim
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Sub Lee
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho-Joon Song
- Department of Herbology, School of Korean Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Gi-Sang Bae
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Sung-Joo Park
- Hanbang Cardio‑Renal Syndrome Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
35
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
36
|
Nair AV, Yanhong W, Paunescu TG, Bouley R, Brown D. Sex-dependent differences in water homeostasis in wild-type and V-ATPase B1-subunit deficient mice. PLoS One 2019; 14:e0219940. [PMID: 31386675 PMCID: PMC6684071 DOI: 10.1371/journal.pone.0219940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/03/2019] [Indexed: 12/19/2022] Open
Abstract
Men tend to dehydrate more than women after prolonged exercise, possibly due to lower water intake and higher perspiration rate. Women are prone to exercise-associated hyponatremia, primarily attributed to the higher water consumption causing hypervolemia. Since aquaporin-2 (AQP2) water channels in the kidney collecting duct (CD) principal cells (PCs) are involved in maintaining water balance, we investigated their role in sex-dependent water homeostasis in wild-type (WT) C57BL/6 mice. Because CD intercalated cells (ICs) may also be involved in water balance, we also assessed the urine concentrating ability of V-ATPase B1 subunit-deficient (Atp6v1b1-/-) mice. Upon 12-hour water deprivation, urine osmolality increased by 59% in WT female mice and by only 28% in males. This difference was abolished in Atp6v1b1-/- mice, in which dehydration induced a ~30% increase in urine osmolarity in both sexes. AQP2 levels were highest in WT females; female Atp6v1b1-/- mice had substantially lower AQP2 expression than WT females, comparable to the low AQP2 levels seen in both Atp6v1b1-/- and WT males. After dehydration, AQP2 relocates towards the PC apical pole, especially in the inner stripe and inner medulla, and to a greater extent in WT females than in WT males. This apparent sex-dependent concentrating advantage was absent in Atp6v1b1-/- females, whose reduced AQP2 apical relocation was similar to WT males. Accordingly, female mice concentrate urine better than males upon dehydration due to increased AQP2 expression and mobilization. Moreover, our data support the involvement of ICs in water homeostasis, at least partly mediated by V-ATPase, in a sex-dependent manner.
Collapse
Affiliation(s)
- Anil V. Nair
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Wei Yanhong
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Teodor G. Paunescu
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Richard Bouley
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
37
|
Repetti RL, Meth J, Sonubi O, Flores D, Satlin LM, Rohatgi R. Cellular cholesterol modifies flow-mediated gene expression. Am J Physiol Renal Physiol 2019; 317:F815-F824. [PMID: 31364378 DOI: 10.1152/ajprenal.00196.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Downregulation of heme oxygenase-1 (HO-1), cyclooxygenase-2 (COX2), and nitric oxide synthase-2 (NOS2) in the kidneys of Dahl rodents causes salt sensitivity, while restoring their expression aids in Na+ excretion and blood pressure reduction. Loading cholesterol into collecting duct (CD) cells represses fluid shear stress (FSS)-mediated COX2 activity. Thus, we hypothesized that cholesterol represses flow-responsive genes necessary to effectuate Na+ excretion. To this end, CD cells were used to test whether FSS induces these genes and if cholesterol loading represses them. Mice fed either 0% or 1% cholesterol diet were injected with saline, urine volume and electrolytes were measured, and renal gene expression determined. FSS-exposed CD cells demonstrated increases in HO-1 mRNA by 350-fold, COX2 by 25-fold, and NOS2 by 8-fold in sheared cells compared with static cells (P < 0.01). Immunoblot analysis of sheared cells showed increases in HO-1, COX2, and NOS2 protein, whereas conditioned media contained more HO-1 and PGE2 than static cells. Cholesterol loading repressed the sheared mediated protein abundance of HO-1 and NOS2 as well as HO-1 and PGE2 concentrations in media. In cholesterol-fed mice, urine volume was less at 6 h after injection of isotonic saline (P < 0.05). Urinary Na+ concentration, urinary K+ concentration, and osmolality were greater, whereas Na+ excretion was less, at the 6-h urine collection time point in cholesterol-fed versus control mice (P < 0.05). Renal cortical and medullary HO-1 (P < 0.05) and NOS2 (P < 0.05) mRNA were repressed in cholesterol-fed compared with control mice. Cholesterol acts to repress flow induced natriuretic gene expression, and this effect, in vivo, may contribute to renal Na+ avidity.
Collapse
Affiliation(s)
- Robert L Repetti
- Northport Veterans Affairs Medical Center, Northport, New York.,Stony Brook University School of Medicine, Stony Brook, New York
| | - Jennifer Meth
- Northport Veterans Affairs Medical Center, Northport, New York
| | - Oluwatoni Sonubi
- Northport Veterans Affairs Medical Center, Northport, New York.,Stony Brook University School of Medicine, Stony Brook, New York
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajeev Rohatgi
- Northport Veterans Affairs Medical Center, Northport, New York.,Stony Brook University School of Medicine, Stony Brook, New York
| |
Collapse
|
38
|
Abstract
The epithelium of the kidney collecting duct (CD) is composed mainly of two different types of cells with distinct and complementary functions. CD principal cells traditionally have been considered to have a major role in Na+ and water regulation, while intercalated cells (ICs) were thought to largely modulate acid-base homeostasis. In recent years, our understanding of IC function has improved significantly owing to new research findings. Thus, we now have a new model for CD transport that integrates mechanisms of salt and water reabsorption, K+ homeostasis, and acid-base status between principal cells and ICs. There are three main types of ICs (type A, type B, and non-A, non-B), which first appear in the late distal convoluted tubule or in the connecting segment in a species-dependent manner. ICs can be detected in CD from cortex to the initial part of the inner medulla, although some transport proteins that are key components of ICs also are present in medullary CD, cells considered inner medullary. Of the three types of ICs, each has a distinct morphology and expresses different complements of membrane transport proteins that translate into very different functions in homeostasis and contributions to CD luminal pro-urine composition. This review includes recent discoveries in IC intracellular and paracrine signaling that contributes to acid-base regulation as well as Na+, Cl-, K+, and Ca2+ homeostasis. Thus, these new findings highlight the potential role of ICs as targets for potential hypertension treatments.
Collapse
Affiliation(s)
- Renee Rao
- University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA
| | - Vivek Bhalla
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Núria M Pastor-Soler
- University of Southern California/University Kidney Research Organization, Kidney Research Center, Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA.
| |
Collapse
|
39
|
Shibata S. Role of Pendrin in the Pathophysiology of Aldosterone-Induced Hypertension. Am J Hypertens 2019; 32:607-613. [PMID: 30982848 DOI: 10.1093/ajh/hpz054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 11/14/2022] Open
Abstract
The recent advances in genetics and molecular biology have resulted in the characterization of key components that critically regulate renal NaCl transport and blood pressure. Pendrin is a Cl-/HCO3- exchanger that is highly expressed in thyroid, inner ear, and kidney. In the kidney, it is selectively present at the apical membrane in non-α intercalated cells of the connecting tubules and cortical collecting duct. Besides its role in acid/base homeostasis, accumulating studies using various genetically modified animals have provided compelling evidence that pendrin regulates extracellular fluid volume and electrolyte balance at the downstream of aldosterone signaling. We have shown that angiotensin II and aldosterone cooperatively control pendrin abundance partly through mammalian target of rapamycin signaling and mineralocorticoid receptor dephosphorylation, which is necessary for the kidney to prevent extracellular fluid loss and electrolyte disturbances under physiologic perturbations. In line with the experimental observations, several clinical data indicated that the impaired pendrin function can cause fluid and electrolyte abnormalities in humans. The purpose of this review is to provide an update on the recent progress regarding the role of pendrin in fluid and electrolyte homeostasis, as well as in the pathophysiology of hypertension associated with mineralocorticoid receptor signaling.
Collapse
Affiliation(s)
- Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
40
|
Lashhab R, Ullah AS, Cordat E. Renal collecting duct physiology and pathophysiology. Biochem Cell Biol 2019; 97:234-242. [DOI: 10.1139/bcb-2018-0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Rawad Lashhab
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - A.K.M. Shahid Ullah
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Emmanuelle Cordat
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Physiology and Membrane Protein and Disease Research Group, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
41
|
Giesecke T, Himmerkus N, Leipziger J, Bleich M, Koshimizu TA, Fähling M, Smorodchenko A, Shpak J, Knappe C, Isermann J, Ayasse N, Kawahara K, Schmoranzer J, Gimber N, Paliege A, Bachmann S, Mutig K. Vasopressin Increases Urinary Acidification via V1a Receptors in Collecting Duct Intercalated Cells. J Am Soc Nephrol 2019; 30:946-961. [PMID: 31097611 DOI: 10.1681/asn.2018080816] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Antagonists of the V1a vasopressin receptor (V1aR) are emerging as a strategy for slowing progression of CKD. Physiologically, V1aR signaling has been linked with acid-base homeostasis, but more detailed information is needed about renal V1aR distribution and function. METHODS We used a new anti-V1aR antibody and high-resolution microscopy to investigate Va1R distribution in rodent and human kidneys. To investigate whether V1aR activation promotes urinary H+ secretion, we used a V1aR agonist or antagonist to evaluate V1aR function in vasopressin-deficient Brattleboro rats, bladder-catheterized mice, isolated collecting ducts, and cultured inner medullary collecting duct (IMCD) cells. RESULTS Localization of V1aR in rodent and human kidneys produced a basolateral signal in type A intercalated cells (A-ICs) and a perinuclear to subapical signal in type B intercalated cells of connecting tubules and collecting ducts. Treating vasopressin-deficient Brattleboro rats with a V1aR agonist decreased urinary pH and tripled net acid excretion; we observed a similar response in C57BL/6J mice. In contrast, V1aR antagonist did not affect urinary pH in normal or acid-loaded mice. In ex vivo settings, basolateral treatment of isolated perfused medullary collecting ducts with the V1aR agonist or vasopressin increased intracellular calcium levels in ICs and decreased luminal pH, suggesting V1aR-dependent calcium release and stimulation of proton-secreting proteins. Basolateral treatment of IMCD cells with the V1aR agonist increased apical abundance of vacuolar H+-ATPase in A-ICs. CONCLUSIONS Our results show that activation of V1aR contributes to urinary acidification via H+ secretion by A-ICs, which may have clinical implications for pharmacologic targeting of V1aR.
Collapse
Affiliation(s)
- Torsten Giesecke
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; .,Berlin Institute of Health (BIH), Berlin, Germany
| | - Nina Himmerkus
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Markus Bleich
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Michael Fähling
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julia Shpak
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin Knappe
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Isermann
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Niklas Ayasse
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Jan Schmoranzer
- Advanced Medical BioImaging Core Facility, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Niclas Gimber
- Advanced Medical BioImaging Core Facility, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Paliege
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and
| | - Sebastian Bachmann
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kerim Mutig
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; .,Department of Pharmacology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), Moscow, Russian Federation
| |
Collapse
|
42
|
Swanson EA, Nelson JW, Jeng S, Erspamer KJ, Yang CL, McWeeney S, Ellison DH. Salt-sensitive transcriptome of isolated kidney distal tubule cells. Physiol Genomics 2019; 51:125-135. [PMID: 30875275 DOI: 10.1152/physiolgenomics.00119.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the distal kidney tubule, the steroid hormone aldosterone regulates sodium reabsorption via the epithelial sodium channel (ENaC). Most studies seeking to identify ENaC-regulating aldosterone-induced proteins have used transcriptional profiling of cultured cells. To identify salt-sensitive transcripts in an in vivo model, we used low-NaCl or high-NaCl diet to stimulate or suppress endogenous aldosterone, in combination with magnetic- and fluorescence-activated cell sorting to isolate distal tubule cells from mouse kidney for transcriptional profiling. Of the differentially expressed transcripts, 162 were more abundant in distal tubule cells isolated from mice fed low-NaCl diet, and 161 were more abundant in distal tubule cells isolated from mice fed high-NaCl diet. Enrichment analysis of Gene Ontology biological process terms identified multiple statistically overrepresented pathways among the differentially expressed transcripts that were more abundant in distal tubule cells isolated from mice fed low-NaCl diet, including ion transmembrane transport, regulation of growth, and negative regulation of apoptosis. Analysis of Gene Ontology molecular function terms identified differentially expressed transcription factors, transmembrane transporters, kinases, and G protein-coupled receptors. Finally, comparison with a recently published study of gene expression changes in distal tubule cells in response to administration of aldosterone identified 18 differentially expressed genes in common between the two experiments. When expression of these genes was measured in cortical collecting ducts microdissected from mice fed low-NaCl or high-NaCl diet, eight were differentially expressed. These genes are likely to be regulated directly by aldosterone and may provide insight into aldosterone signaling to ENaC in the distal tubule.
Collapse
Affiliation(s)
- Elizabeth A Swanson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Jonathan W Nelson
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Sophia Jeng
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University , Portland, Oregon
| | - Kayla J Erspamer
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Chao-Ling Yang
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon
| | - Shannon McWeeney
- Division of Bioinformatics & Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University , Portland, Oregon.,Oregon Clinical & Translational Research Institute, Oregon Health & Science University , Portland, Oregon
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University , Portland, Oregon.,Oregon Clinical & Translational Research Institute, Oregon Health & Science University , Portland, Oregon.,Renal Section, Portland VA Medical Center , Portland, Oregon
| |
Collapse
|
43
|
The kidney anion exchanger 1 affects tight junction properties via claudin-4. Sci Rep 2019; 9:3099. [PMID: 30816203 PMCID: PMC6395713 DOI: 10.1038/s41598-019-39430-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
In the renal collecting duct, intercalated cells regulate acid-base balance by effluxing protons through the v-H+-ATPase, and bicarbonate via apical pendrin or the basolateral kidney anion exchanger 1 (kAE1). Additionally, collecting duct cells play an essential role in transepithelial absorption of sodium and chloride. Expression of kAE1 in polarized MDCK I cells was previously shown to decrease trans-epithelial electrical resistance (TEER), suggesting a novel role for kAE1 in paracellular permeability. In our study, we not only confirmed that inducible expression of kAE1 in mIMCD3 cells decreased TEER but we also observed (i) increased epithelial absolute permeability to both sodium and chloride, and (ii) that this effect was dependent on kAE1 activity. Further, kAE1 regulated tight junction properties through the tight junction protein claudin-4, a protein with which it physically interacts and colocalizes. These findings unveil a novel interaction between the junctional protein claudin-4 and the kidney anion exchanger, which may be relevant to ion and/or pH homeostasis.
Collapse
|
44
|
Frische S, Chambrey R, Trepiccione F, Zamani R, Marcussen N, Alexander RT, Skjødt K, Svenningsen P, Dimke H. H +-ATPase B1 subunit localizes to thick ascending limb and distal convoluted tubule of rodent and human kidney. Am J Physiol Renal Physiol 2018; 315:F429-F444. [PMID: 29993276 DOI: 10.1152/ajprenal.00539.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The vacuolar-type H+-ATPase B1 subunit is heavily expressed in the intercalated cells of the collecting system, where it contributes to H+ transport, but has also been described in other segments of the renal tubule. This study aimed to determine the localization of the B1 subunit of the vacuolar-type H+-ATPase in the early distal nephron, encompassing thick ascending limbs (TAL) and distal convoluted tubules (DCT), in human kidney and determine whether the localization differs between rodents and humans. Antibodies directed against the H+-ATPase B1 subunit were used to determine its localization in paraffin-embedded formalin-fixed mouse, rat, and human kidneys by light microscopy and in sections of Lowicryl-embedded rat kidneys by electron microscopy. Abundant H+-ATPase B1 subunit immunoreactivity was observed in the human kidney. As expected, intercalated cells showed the strongest signal, but significant signal was also observed in apical membrane domains of the distal nephron, including TAL, macula densa, and DCT. In mouse and rat, H+-ATPase B1 subunit expression could also be detected in apical membrane domains of these segments. In rat, electron microscopy revealed that the H+-ATPase B1 subunit was located in the apical membrane. Furthermore, the H+-ATPase B1 subunit colocalized with other H+-ATPase subunits in the TAL and DCT. In conclusion, the B1 subunit is expressed in the early distal nephron. The physiological importance of H+-ATPase expression in these segments remains to be delineated in detail. The phenotype of disease-causing mutations in the B1 subunit may also relate to its presence in the TAL and DCT.
Collapse
Affiliation(s)
| | - Régine Chambrey
- INSERM 1188-Université de La Réunion, Sainte Clotilde, La Réunion, France
| | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Reza Zamani
- Department of Urology, Odense University Hospital , Odense , Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital , Odense , Denmark
| | - R Todd Alexander
- Department of Pediatrics, University of Alberta , Edmonton, Alberta , Canada.,Membrane Protein Disease Research Group, University of Alberta , Edmonton, Alberta , Canada
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Per Svenningsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark , Odense , Denmark
| |
Collapse
|
45
|
López-Cayuqueo KI, Chavez-Canales M, Pillot A, Houillier P, Jayat M, Baraka-Vidot J, Trepiccione F, Baudrie V, Büsst C, Soukaseum C, Kumai Y, Jeunemaître X, Hadchouel J, Eladari D, Chambrey R. A mouse model of pseudohypoaldosteronism type II reveals a novel mechanism of renal tubular acidosis. Kidney Int 2018; 94:514-523. [PMID: 30146013 DOI: 10.1016/j.kint.2018.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 02/04/2023]
Abstract
Pseudohypoaldosteronism type II (PHAII) is a genetic disease characterized by association of hyperkalemia, hyperchloremic metabolic acidosis, hypertension, low renin, and high sensitivity to thiazide diuretics. It is caused by mutations in the WNK1, WNK4, KLHL3 or CUL3 gene. There is strong evidence that excessive sodium chloride reabsorption by the sodium chloride cotransporter NCC in the distal convoluted tubule is involved. WNK4 is expressed not only in distal convoluted tubule cells but also in β-intercalated cells of the cortical collecting duct. These latter cells exchange intracellular bicarbonate for external chloride through pendrin, and therefore, account for renal base excretion. However, these cells can also mediate thiazide-sensitive sodium chloride absorption when the pendrin-dependent apical chloride influx is coupled to apical sodium influx by the sodium-driven chloride/bicarbonate exchanger. Here we determine whether this system is involved in the pathogenesis of PHAII. Renal pendrin activity was markedly increased in a mouse model carrying a WNK4 missense mutation (Q562E) previously identified in patients with PHAII. The upregulation of pendrin led to an increase in thiazide-sensitive sodium chloride absorption by the cortical collecting duct, and it caused metabolic acidosis. The function of apical potassium channels was altered in this model, and hyperkalemia was fully corrected by pendrin genetic ablation. Thus, we demonstrate an important contribution of pendrin in renal regulation of sodium chloride, potassium and acid-base homeostasis and in the pathophysiology of PHAII. Furthermore, we identify renal distal bicarbonate secretion as a novel mechanism of renal tubular acidosis.
Collapse
Affiliation(s)
- Karen I López-Cayuqueo
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Centro de Estudios Científicos, Valdivia, Chile
| | - Maria Chavez-Canales
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Alexia Pillot
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S1138, Centre de Recherche des Cordeliers, Paris, France
| | - Pascal Houillier
- Centre National de la Recherche Scientifique Equipe de Recherche Labelisée 8228, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche_S1138, Centre de Recherche des Cordeliers, Paris, France; Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Maximilien Jayat
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Jennifer Baraka-Vidot
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1188, CYROI, Sainte Clotilde, La Réunion, France
| | - Francesco Trepiccione
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Véronique Baudrie
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Cara Büsst
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Christelle Soukaseum
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Yusuke Kumai
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Xavier Jeunemaître
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Genetics, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France
| | - Dominique Eladari
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Service d'Explorations Fonctionnelles Rénales, Hôpital Felix Guyon, CHU de la Réunion, Saint Denis, La Réunion, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1188, CYROI, Sainte Clotilde, La Réunion, France.
| | - Régine Chambrey
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 970, Paris, France; Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche 1188, CYROI, Sainte Clotilde, La Réunion, France; Centre National de la Recherche Scientifique, Délégation Paris Michel-Ange, Paris, France.
| |
Collapse
|
46
|
Abstract
Distal renal tubular acidosis (DRTA) is defined as hyperchloremic, non-anion gap metabolic acidosis with impaired urinary acid excretion in the presence of a normal or moderately reduced glomerular filtration rate. Failure in urinary acid excretion results from reduced H+ secretion by intercalated cells in the distal nephron. This results in decreased excretion of NH4+ and other acids collectively referred as titratable acids while urine pH is typically above 5.5 in the face of systemic acidosis. The clinical phenotype in patients with DRTA is characterized by stunted growth with bone abnormalities in children as well as nephrocalcinosis and nephrolithiasis that develop as the consequence of hypercalciuria, hypocitraturia, and relatively alkaline urine. Hypokalemia is a striking finding that accounts for muscle weakness and requires continued treatment together with alkali-based therapies. This review will focus on the mechanisms responsible for impaired acid excretion and urinary potassium wastage, the clinical features, and diagnostic approaches of hypokalemic DRTA, both inherited and acquired.
Collapse
|
47
|
Kurtz I. Renal Tubular Acidosis: H +/Base and Ammonia Transport Abnormalities and Clinical Syndromes. Adv Chronic Kidney Dis 2018; 25:334-350. [PMID: 30139460 PMCID: PMC6128697 DOI: 10.1053/j.ackd.2018.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Renal tubular acidosis (RTA) represents a group of diseases characterized by (1) a normal anion gap metabolic acidosis; (2) abnormalities in renal HCO3- absorption or new renal HCO3- generation; (3) changes in renal NH4+, Ca2+, K+, and H2O homeostasis; and (4) extrarenal manifestations that provide etiologic diagnostic clues. The focus of this review is to give a general overview of the pathogenesis of the various clinical syndromes causing RTA with a particular emphasis on type I (hypokalemic distal RTA) and type II (proximal) RTA while reviewing their pathogenesis from a physiological "bottom-up" approach. In addition, the factors involved in the generation of metabolic acidosis in both type I and II RTA are reviewed highlighting the importance of altered renal ammonia production/partitioning and new HCO3- generation. Our understanding of the underlying tubular transport and extrarenal abnormalities has significantly improved since the first recognition of RTA as a clinical entity because of significant advances in clinical acid-base chemistry, whole tubule and single-cell H+/base transport, and the molecular characterization of the various transporters and channels that are functionally affected in patients with RTA. Despite these advances, additional studies are needed to address the underlying mechanisms involved in hypokalemia, altered ammonia production/partitioning, hypercalciuria, nephrocalcinosis, cystic abnormalities, and CKD progression in these patients.
Collapse
Affiliation(s)
- Ira Kurtz
- Division of Nephrology, David Geffen School of Medicine, and Brain Research Institute, UCLA, Los Angeles, CA.
| |
Collapse
|
48
|
α-Ketoglutarate drives electroneutral NaCl reabsorption in intercalated cells by activating a G-protein coupled receptor, Oxgr1. Curr Opin Nephrol Hypertens 2018; 26:426-433. [PMID: 28771454 DOI: 10.1097/mnh.0000000000000353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW This review describes the recent discoveries about a powerful electroneutral NaCl reabsorption mechanism in intercalated cells, and its regulation by an intrarenal metabolite paracrine, α-ketoglutartate, and the G-protein coupled receptor, Oxgr1. RECENT FINDINGS The distal nephron fine-tunes sodium, chloride, potassium, hydrogen, bicarbonate and water transport to maintain electrolyte homeostasis and blood pressure. Intercalated cells have been traditionally viewed as the professional regulators of acid-base balance, but recent studies reveal that a specific population of intercalated cells, identified by the pendrin-transporter, have a surprising role in the regulation of salt balance. The pendrin-positive intercalated cells (PP-ICs) facilitate electroneutral NaCl reabsorption through the cooperative activation of multitransport protein network. α-Ketoglutartate is synthesized and secreted into the proximal tubule lumen in the combined state of metabolic alkalosis and intravascular volume contraction to activate Oxgr1 in PP-IC, which in turn activates the multitransport protein network to drive salt reabsorption and bicarbonate secretion by these cells. SUMMARY Recent studies identify a novel salt transport pathway in intercalated cells that is activated by an intrarenal paracrine system, α-ketoglutartate/Oxgr1. Activation of the paracrine system and transport pathway, particularly during alkalosis and volume contraction, mitigates deleterious salt wasting while restoring acid-base balance.
Collapse
|
49
|
Assmus AM, Mansley MK, Mullins LJ, Peter A, Mullins JJ. mCCD cl1 cells show plasticity consistent with the ability to transition between principal and intercalated cells. Am J Physiol Renal Physiol 2017; 314:F820-F831. [PMID: 29357433 DOI: 10.1152/ajprenal.00354.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The cortical collecting duct of the mammalian kidney plays a critical role in the regulation of body volume, sodium pH, and osmolarity and is composed of two distinct cells types, principal cells and intercalated cells. Each cell type is detectable in the kidney by the localization of specific transport proteins such as aquaporin 2 (Aqp2) and epithelial sodium channel (ENaC) in principal cells and V-ATPase B1 and connexin 30 (Cx30) in intercalated cells. mCCDcl1 cells have been widely used as a mouse principal cell line on the basis of their physiological characteristics. In this study, the mCCDcl1 parental cell line and three sublines cloned from isolated single cells (Ed1, Ed2, and Ed3) were grown on filters to assess their transepithelial resistance, transepithelial voltage, equivalent short circuit current and expression of the cell-specific markers Aqp2, ENaC, V-ATPaseB1, and Cx30. The parental mCCDcl1 cell line presented amiloride-sensitive electrogenic sodium transport indicative of principal cell function; however, immunocytochemistry and RT-PCR showed that some cells expressed the intercalated cell-specific markers V-ATPase B1 and Cx30, including a subset of cells also positive for Aqp2 and ENaC. The three subclonal lines contained cells that were positive for both intercalated and principal cell-specific markers. The vertical transmission of both principal and intercalated cell characteristics via single cell cloning reveals the plasticity of mCCDcl1 cells and a direct lineage relationship between these two physiologically important cell types and is consistent with mCCDcl1 cells being precursor cells.
Collapse
Affiliation(s)
- A M Assmus
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| | - M K Mansley
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| | - L J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| | - A Peter
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| | - J J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
50
|
Wall SM. Renal intercalated cells and blood pressure regulation. Kidney Res Clin Pract 2017; 36:305-317. [PMID: 29285423 PMCID: PMC5743040 DOI: 10.23876/j.krcp.2017.36.4.305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022] Open
Abstract
Type B and non-A, non-B intercalated cells are found within the connecting tubule and the cortical collecting duct. Of these cell types, type B intercalated cells are known to mediate Cl- absorption and HCO3- secretion largely through pendrin-dependent Cl-/HCO3- exchange. This exchange is stimulated by angiotensin II administration and is also stimulated in models of metabolic alkalosis, for instance after aldosterone or NaHCO3 administration. In some rodent models, pendrin-mediated HCO3- secretion modulates acid-base balance. However, the role of pendrin in blood pressure regulation is likely of more physiological or clinical significance. Pendrin regulates blood pressure not only by mediating aldosterone-sensitive Cl- absorption, but also by modulating the aldosterone response for epithelial Na+ channel (ENaC)-mediated Na+ absorption. Pendrin regulates ENaC through changes in open channel of probability, channel surface density, and channels subunit total protein abundance. Thus, aldosterone stimulates ENaC activity through both direct and indirect effects, the latter occurring through its stimulation of pendrin expression and function. Therefore, pendrin contributes to the aldosterone pressor response. Pendrin may also modulate blood pressure in part through its action in the adrenal medulla, where it modulates the release of catecholamines, or through an indirect effect on vascular contractile force. This review describes how aldosterone and angiotensin II-induced signaling regulate pendrin and the contributory role of pendrin in distal nephron function and blood pressure.
Collapse
Affiliation(s)
- Susan M. Wall
- Departments of Medicine, Emory University School of Medicine, Atlanta, GA,
USA
- Physiology, Emory University School of Medicine, Atlanta, GA,
USA
| |
Collapse
|