1
|
Falso S, Gessi M, Marini S, Benvenuto R, Sabatelli E, D’Amati A, Marini M, Evoli A, Iorio R. Cancer Frequency in MuSK Myasthenia Gravis and Histological Evidence of Paraneoplastic Etiology. Ann Neurol 2024; 96:1020-1025. [PMID: 39007444 PMCID: PMC11496004 DOI: 10.1002/ana.27033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Cancer frequency in muscle-specific kinase myasthenia gravis (MuSK-MG) has not yet been explored and the mechanisms leading to the formation of MuSK IgG remain elusive. We aimed to explore cancer frequency in MuSK-MG patients and to assess MuSK expression in cancer cells from 2 tumors occurred in this cohort. Immunohistochemistry on tumor specimens revealed the expression of MuSK in the cancer cells from primary mediastinal B cell lymphoma and endometrial carcinoma. Twenty-one males and 73 females were enrolled. Fifteen cancers occurred in 13 of 94 patients (13.8%). Patients with cancer were significantly older at time of MuSK-MG onset. ANN NEUROL 2024;96:1020-1025.
Collapse
Affiliation(s)
- Silvia Falso
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Sofia Marini
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Roberta Benvenuto
- Neuropathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Eleonora Sabatelli
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio D’Amati
- Gynecopathology and Breast Pathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Martina Marini
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Amelia Evoli
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Raffaele Iorio
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Marchese AM, Fries L, Beyhaghi H, Vadivale M, Zhu M, Cloney-Clark S, Plested JS, Chung AW, Dunkle LM, Kalkeri R. Mechanisms and implications of IgG4 responses to SARS-CoV-2 and other repeatedly administered vaccines. J Infect 2024; 89:106317. [PMID: 39419185 DOI: 10.1016/j.jinf.2024.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Vaccine-induced immunoglobulin G (IgG) profiles can vary with respect to the predominant subclasses that characterize the response. Among IgG subclasses, IgG4 is reported to have anti-inflammatory properties, but can also exhibit reduced capacity for virus neutralization and activation of Fc-dependent effector functions. Here, we review evidence that IgG4 subclass responses can be disproportionately increased in response to some types of vaccines targeting an array of diseases, including pertussis, HIV, malaria, and COVID-19. The basis for enhanced IgG4 induction by vaccines is poorly understood but may be associated with platform- or dose regimen-specific differences in antigen exposure and/or cytokine stimulation. The clinical implications of vaccine-induced IgG4 responses remain uncertain, though collective evidence suggests that proportional increases in IgG4 might reduce vaccine antigen-specific immunity. Additional work is needed to determine underlying mechanisms and to elucidate what role IgG4 may play in modifications of vaccine-induced immunity to disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | | | | |
Collapse
|
3
|
Chen X, Habib S, Alexandru M, Chauhan J, Evan T, Troka JM, Rahimi A, Esapa B, Tull TJ, Ng WZ, Fitzpatrick A, Wu Y, Geh JLC, Lloyd-Hughes H, Palhares LCGF, Adams R, Bax HJ, Whittaker S, Jacków-Malinowska J, Karagiannis SN. Chondroitin Sulfate Proteoglycan 4 (CSPG4) as an Emerging Target for Immunotherapy to Treat Melanoma. Cancers (Basel) 2024; 16:3260. [PMID: 39409881 PMCID: PMC11476251 DOI: 10.3390/cancers16193260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Immunotherapies, including checkpoint inhibitor antibodies, have precipitated significant improvements in clinical outcomes for melanoma. However, approximately half of patients do not benefit from approved treatments. Additionally, apart from Tebentafusp, which is approved for the treatment of uveal melanoma, there is a lack of immunotherapies directly focused on melanoma cells. This is partly due to few available targets, especially those expressed on the cancer cell surface. Chondroitin sulfate proteoglycan 4 (CSPG4) is a cell surface molecule overexpressed in human melanoma, with restricted distribution and low expression in non-malignant tissues and involved in several cancer-promoting and dissemination pathways. Here, we summarize the current understanding of the expression and functional significance of CSPG4 in health and melanoma, and we outline immunotherapeutic strategies. These include monoclonal antibodies, antibody-drug conjugates (ADCs), chimeric-antigen receptor (CAR) T cells, and other strategies such as anti-idiotypic and mimotope vaccines to raise immune responses against CSPG4-expressing melanomas. Several showed promising functions in preclinical models of melanoma, yet few have reached clinical testing, and none are approved for therapeutic use. Obstacles preventing that progress include limited knowledge of CSPG4 function in human cancer and a lack of in vivo models that adequately represent patient immune responses and human melanoma biology. Despite several challenges, immunotherapy directed to CSPG4-expressing melanoma harbors significant potential to transform the treatment landscape.
Collapse
Affiliation(s)
- Xinyi Chen
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Shabana Habib
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Madalina Alexandru
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Jitesh Chauhan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Theodore Evan
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna M. Troka
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Avigail Rahimi
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Benjamina Esapa
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Thomas J. Tull
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Wen Zhe Ng
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Amanda Fitzpatrick
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Oncology Department, Guy’s and St Thomas’ Hospitals, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| | - Yin Wu
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
- Peter Gorer Department of Immunobiology, Centre for Inflammation Biology and Cancer Immunology, School of Immunology and Microbial Sciences, King’s College London, London SE1 9RT, UK
| | - Jenny L. C. Geh
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London SE1 9RT, UK
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London SE1 9RT, UK
| | - Lais C. G. F. Palhares
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sean Whittaker
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Joanna Jacków-Malinowska
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, King’s College London, London SE1 9RT, UK (J.M.T.); (A.R.); (H.J.B.)
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London SE1 9RT, UK
| |
Collapse
|
4
|
Chatterjee S, Bhattacharya M, Saxena S, Lee SS, Chakraborty C. Autoantibodies in COVID-19 and Other Viral Diseases: Molecular, Cellular, and Clinical Perspectives. Rev Med Virol 2024; 34:e2583. [PMID: 39289528 DOI: 10.1002/rmv.2583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Autoantibodies are immune system-produced antibodies that wrongly target the body's cells and tissues for attack. The COVID-19 pandemic has made it possible to link autoantibodies to both the severity of pathogenic infection and the emergence of several autoimmune diseases after recovery from the infection. An overview of autoimmune disorders and the function of autoantibodies in COVID-19 and other infectious diseases are discussed in this review article. We also investigated the different categories of autoantibodies found in COVID-19 and other infectious diseases including the potential pathways by which they contribute to the severity of the illness. Additionally, it also highlights the probable connection between vaccine-induced autoantibodies and their adverse outcomes. The review also discusses the therapeutic perspectives of autoantibodies. This paper advances our knowledge about the intricate interaction between autoantibodies and COVID-19 by thoroughly assessing the most recent findings.
Collapse
Affiliation(s)
- Srijan Chatterjee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | | | - Sanskriti Saxena
- Division of Biology, Indian Institute of Science Education and Research-Tirupati, Tirupati, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, South Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| |
Collapse
|
5
|
Akiyama M, Alshehri W, Ishigaki S, Saito K, Kaneko Y. Human T follicular helper cells and their impact on IgE and IgG4 production across allergy, malignancy, and IgG4-related disease. Allergol Int 2024:S1323-8930(24)00078-9. [PMID: 39164143 DOI: 10.1016/j.alit.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024] Open
Abstract
Human T follicular helper (Tfh) cells play a crucial role in orchestrating B cell differentiation, maturation, and immunoglobulin class switching. Recent studies have underscored the presence of Bcl-6 + Tfh cells not only in secondary lymphoid organs but also within tertiary lymphoid structures at inflammatory sites, emphasizing their pivotal role in disease pathogenesis. Furthermore, Tfh cells have been found to transit between lesion sites, lymph nodes, and peripheral blood, as revealed by T cell receptor repertoire analysis. Among Tfh subsets, Tfh2 cells have emerged as central orchestrators in driving the production of IgE and IgG4 from B cells. Their critical role in diseases such as allergy, malignancy, and IgG4-related disease highlights their profound impact on balancing inflammation and immune tolerance. Our current review provides the molecular characteristics of human Tfh cells, the differentiation pathways of Tfh subsets, mechanisms by which Tfh subsets induce IgE and IgG4 production, and their clinical implications in allergy, malignancy, and IgG4-related disease.
Collapse
Affiliation(s)
- Mitsuhiro Akiyama
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Waleed Alshehri
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sho Ishigaki
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Saito
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kaneko
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Habib S, Osborn G, Willsmore Z, Chew MW, Jakubow S, Fitzpatrick A, Wu Y, Sinha K, Lloyd-Hughes H, Geh JLC, MacKenzie-Ross AD, Whittaker S, Sanz-Moreno V, Lacy KE, Karagiannis SN, Adams R. Tumor associated macrophages as key contributors and targets in current and future therapies for melanoma. Expert Rev Clin Immunol 2024; 20:895-911. [PMID: 38533720 DOI: 10.1080/1744666x.2024.2326626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Despite the success of immunotherapies for melanoma in recent years, there remains a significant proportion of patients who do not yet derive benefit from available treatments. Immunotherapies currently licensed for clinical use target the adaptive immune system, focussing on Tcell interactions and functions. However, the most prevalent immune cells within the tumor microenvironment (TME) of melanoma are macrophages, a diverse immune cell subset displaying high plasticity, to which no current therapies are yet directly targeted. Macrophages have been shown not only to activate the adaptive immune response, and enhance cancer cell killing, but, when influenced by factors within the TME of melanoma, these cells also promote melanoma tumorigenesis and metastasis. AREAS COVERED We present a review of the most up-to-date literatureavailable on PubMed, focussing on studies from within the last 10 years. We also include data from ongoing and recent clinical trials targeting macrophages in melanoma listed on clinicaltrials.gov. EXPERT OPINION Understanding the multifaceted role of macrophages in melanoma, including their interactions with immune and cancer cells, the influence of current therapies on macrophage phenotype and functions and how macrophages could be targeted with novel treatment approaches, are all critical for improving outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Shabana Habib
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Gabriel Osborn
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Zena Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Min Waye Chew
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Sophie Jakubow
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Amanda Fitzpatrick
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
- Oncology Department, Guy's and St Thomas' Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Innovation Hub, Guy's Hospital, London, UK
| | - Yin Wu
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
- Oncology Department, Guy's and St Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Khushboo Sinha
- St John's Institute of Dermatology, Guy's, King's and St. Thomas' Hospitals NHS Foundation Trust, London, England
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy's, King's and St. Thomas' Hospitals, London, England
| | - Jenny L C Geh
- St John's Institute of Dermatology, Guy's, King's and St. Thomas' Hospitals NHS Foundation Trust, London, England
- Department of Plastic Surgery, Guy's, King's and St. Thomas' Hospitals, London, England
| | | | - Sean Whittaker
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Innovation Hub, Guy's Hospital, London, UK
| | - Rebecca Adams
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, UK
| |
Collapse
|
7
|
Valk AM, Keijser JBD, van Dam KPJ, Stalman EW, Wieske L, Steenhuis M, Kummer LYL, Spuls PI, Bekkenk MW, Musters AH, Post NF, Bosma AL, Horváth B, Hijnen DJ, Schreurs CRG, van Kempen ZLE, Killestein J, Volkers AG, Tas SW, Boekel L, Wolbink GJ, Keijzer S, Derksen NIL, van Deelen M, van Mierlo G, Kuijpers TW, Eftimov F, van Ham SM, Ten Brinke A, Rispens T. Suppressed IgG4 class switching in dupilumab- and TNF inhibitor-treated patients after mRNA vaccination. Allergy 2024; 79:1952-1961. [PMID: 38439527 DOI: 10.1111/all.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND The noninflammatory immunoglobulin G4 (IgG4) is linked to tolerance and is unique to humans. Although poorly understood, prolonged antigenic stimulation and IL-4-signaling along the T helper 2-axis may be instrumental in IgG4 class switching. Recently, repeated SARS-CoV-2 mRNA vaccination has been linked to IgG4 skewing. Although widely used immunosuppressive drugs have been shown to only moderately affect humoral responses to SARS-CoV-2 mRNA vaccination, the effect on IgG4 switching has not been investigated. METHODS Here we study the impact of such immunosuppressive drugs, including the IL-4 receptor-blocking antibody dupilumab, on IgG4 skewing upon repeated SARS-CoV-2 mRNA vaccination. Receptor-binding domain (RBD) specific antibody responses were longitudinally measured in 600 individuals, including patients with immune-mediated inflammatory diseases treated with a TNF inhibitor (TNFi) and/or methotrexate (MTX), dupilumab, and healthy/untreated controls, after repeated mRNA vaccination. RESULTS We observed a substantial increase in the proportion of RBD-specific IgG4 antibodies (median 21%) in healthy/untreated controls after third vaccination. This IgG4 skewing was profoundly reduced in dupilumab-treated patients (<1%). Unexpectedly, an equally strong suppression of IgG4 skewing was observed in TNFi-treated patients (<1%), whereas MTX caused a modest reduction (7%). RBD-specific total IgG levels were hardly affected by these immunosuppressive drugs. Minimal skewing was observed, when primary vaccination was adenoviral vector-based. CONCLUSIONS Our results imply a critical role for IL-4/IL-13 as well as TNF in vivo IgG4 class switching. These novel findings advance our understanding of IgG4 class switch dynamics, and may benefit humoral tolerance induction strategies, treatment of IgG4 pathologies and mRNA vaccine optimization.
Collapse
Affiliation(s)
- Anika M Valk
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Jim B D Keijser
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Koos P J van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Laura Y L Kummer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phyllis I Spuls
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel W Bekkenk
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Annelie H Musters
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicoline F Post
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Angela L Bosma
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Horváth
- Department of Dermatology, UMCG Expertise Center for Blistering Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Hijnen
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Corine R G Schreurs
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Zoé L E van Kempen
- Department of Neurology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan G Volkers
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands
| | - Gerrit J Wolbink
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands
| | - Sofie Keijzer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Melanie van Deelen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Zhang W, Chen X, Chen X, Li J, Wang H, Yan X, Zha H, Ma X, Zhao C, Su M, Hong L, Li P, Ling Y, Zhao W, Xia Y, Li B, Zheng T, Gu J. Fc-Fc interactions and immune inhibitory effects of IgG4: implications for anti-PD-1 immunotherapies. J Immunother Cancer 2024; 12:e009034. [PMID: 38925680 PMCID: PMC11203076 DOI: 10.1136/jitc-2024-009034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The majority of anti-programmed cell-death 1 (PD-1) monoclonal antibodies (mAbs) use S228P mutation IgG4 as the structural basis to avoid the activation of immune cells or complement. However, little attention has been paid to the Fc-Fc interactions between IgG4 and other IgG Fc fragments that could result in adverse effects. Fc-null IgG1 framework is a potential safer alternative to avoid the undesirable Fc-Fc interactions and Fc receptor binding derived effects observed with IgG4. This study provides a comprehensive evaluation of anti-PD-1 mAbs of these two frameworks. METHODS Trastuzumab and rituximab (both IgG1), wildtype IgG1 and IgG4 were immobilized on nitrocellulose membranes, coated to microplates and biosensor chips, and bound to tumor cells as targets for Fc-Fc interactions. Wildtype IgG1 and IgG4, anti-PD-1 mAb nivolumab (IgG4 S228P), penpulimab (Fc-null IgG1), and tislelizumab (Fc-null IgG4 S228P-R409K) were assessed for their binding reactions to the immobilized IgG proteins and quantitative kinetic data were obtained. To evaluate the effects of the two anti-PD-1 mAbs on immune responses mediated by trastuzumab and rituximab in the context of combination therapy, we employed classic immune models for antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and complement dependent cytotoxicity. Tumor-bearing mouse models, both wildtype and humanized, were used for in vivo investigation. Furthermore, we also examined the effects of IgG1 and IgG4 on diverse immune cell populations RESULTS: Experiments demonstrated that wildtype IgG4 and nivolumab bound to immobilized IgG through Fc-Fc interactions, diminishing antibody-dependent cell-mediated cytotoxicity and phagocytosis reactions. Quantitative analysis of kinetic parameters suggests that nivolumab and wildtype IgG4 exhibit comparable binding affinities to immobilized IgG1 in both non-denatured and denatured states. IgG4 exerted inhibitory effects on various immune cell types. Wildtype IgG4 and nivolumab both promoted tumor growth in wildtype mouse models. Conversely, wildtype IgG1, penpulimab, and tislelizumab did not show similar adverse effects. CONCLUSIONS Fc-null IgG1 represents a safer choice for anti-PD-1 immunotherapies by avoiding both the adverse Fc-Fc interactions and Fc-related immune inhibitory effects of IgG4. Fc-null IgG4 S228P-R409K and Fc-null IgG1 displayed similar structural properties and benefits. This study contributes to the understanding of immunotherapy resistance and the advancement of safer immune therapies for cancer.
Collapse
Affiliation(s)
- Weifeng Zhang
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xueling Chen
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xingxing Chen
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Jirui Li
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Hui Wang
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Xiaomiao Yan
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| | - Han Zha
- The People's Hospital of Qijiang District Chongqing, Chongqing, China
| | - Xiaonan Ma
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Chanyuan Zhao
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Meng Su
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Liangli Hong
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Penghao Li
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| | - Yanyu Ling
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Wenhui Zhao
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
| | - Yu Xia
- Akeso Biopharma Inc, Zhongshan, China
| | | | - Tianjing Zheng
- Chia Tai Tianqing Pharmaceutical Group Co., LTD, Nanjing, China
| | - Jiang Gu
- Guangdong Provincial International Collaborative Center of Molecular Medicine, Center of Collaboration and Creative, Molecular Diagnosis and Personalized Medical, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, China
- Jinxin Research Institute for Reproductive Medicine and Genetics, Xinan Hospital for Maternal and Child Health Care, Chengdu, China
| |
Collapse
|
9
|
Flippot R, Teixeira M, Rey-Cardenas M, Carril-Ajuria L, Rainho L, Naoun N, Jouniaux JM, Boselli L, Naigeon M, Danlos FX, Escudier B, Scoazec JY, Cassard L, Albiges L, Chaput N. B cells and the coordination of immune checkpoint inhibitor response in patients with solid tumors. J Immunother Cancer 2024; 12:e008636. [PMID: 38631710 PMCID: PMC11029261 DOI: 10.1136/jitc-2023-008636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2024] [Indexed: 04/19/2024] Open
Abstract
Immunotherapy profoundly changed the landscape of cancer therapy by providing long-lasting responses in subsets of patients and is now the standard of care in several solid tumor types. However, immunotherapy activity beyond conventional immune checkpoint inhibition is plateauing, and biomarkers are overall lacking to guide treatment selection. Most studies have focused on T cell engagement and response, but there is a growing evidence that B cells may be key players in the establishment of an organized immune response, notably through tertiary lymphoid structures. Mechanisms of B cell response include antibody-dependent cellular cytotoxicity and phagocytosis, promotion of CD4+ and CD8+ T cell activation, maintenance of antitumor immune memory. In several solid tumor types, higher levels of B cells, specific B cell subpopulations, or the presence of tertiary lymphoid structures have been associated with improved outcomes on immune checkpoint inhibitors. The fate of B cell subpopulations may be widely influenced by the cytokine milieu, with versatile roles for B-specific cytokines B cell activating factor and B cell attracting chemokine-1/CXCL13, and a master regulatory role for IL-10. Roles of B cell-specific immune checkpoints such as TIM-1 are emerging and could represent potential therapeutic targets. Overall, the expanding field of B cells in solid tumors of holds promise for the improvement of current immunotherapy strategies and patient selection.
Collapse
Affiliation(s)
- Ronan Flippot
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marcus Teixeira
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Macarena Rey-Cardenas
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lucia Carril-Ajuria
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
- Medical Oncology, CHU Brugmann, Brussels, Belgium
| | - Larissa Rainho
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Natacha Naoun
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Jean-Mehdi Jouniaux
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Lisa Boselli
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Marie Naigeon
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Francois-Xavier Danlos
- LRTI, INSERM U1015, Gustave Roussy, Villejuif, France
- Drug Development Department, Gustave Roussy, Villejuif, France
| | - Bernard Escudier
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lydie Cassard
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Laurence Albiges
- Department of Medical Oncology, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| | - Nathalie Chaput
- Immunomonitoring Laboratory, CNRS3655 & INSERM US23, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
10
|
Bryushkova EA, Mushenkova NV, Turchaninova MA, Lukyanov DK, Chudakov DM, Serebrovskaya EO. B cell clonality in cancer. Semin Immunol 2024; 72:101874. [PMID: 38508089 DOI: 10.1016/j.smim.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/22/2024]
Abstract
Carcinogenesis in the process of long-term co-evolution of tumor cells and immune environment essentially becomes possible due to incorrect decisions made, remembered, and reproduced by the immune system at the level of clonal populations of antigen-specific T- and B-lymphocytes. Tumor-immunity interaction determines the nature of such errors and, consequently, delineates the possible ways of successful immunotherapeutic intervention. It is generally recognized that tumor-infiltrating B cells (TIL-B) can play both pro-tumor and anti-tumor roles. However, the exact mechanisms that determine the contribution of clonal B cell lineages with different specificities and functions remain largely unclear. This is due to the variability of cancer types, the molecular heterogeneity of tumor cells, and, to a large extent, the individual pattern of each immune response. Further progress requires detailed investigation of the functional properties and phenotypes of clonally heterogeneous B cells in relation to their antigenic specificities, which determine the functionality of both effector B lymphocytes and immunoglobulins produced in the tumor environment. Based on a real understanding of the role of clonal antigen-specific populations of B lymphocytes in the tumor microenvironment, we need to learn how to develop new methods of targeted immunotherapy, as well as adapt existing treatment options to the specific needs of different patients and patient subgroups. In this review, we will cover B cells functional diversity and their multifaceted roles in the tumor environment.
Collapse
Affiliation(s)
- E A Bryushkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N V Mushenkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Unicorn Capital Partners, Moscow, Russia
| | - M A Turchaninova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - D K Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - D M Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - E O Serebrovskaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Current position: Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
11
|
Motta RV, Culver EL. IgG4 autoantibodies and autoantigens in the context of IgG4-autoimmune disease and IgG4-related disease. Front Immunol 2024; 15:1272084. [PMID: 38433835 PMCID: PMC10904653 DOI: 10.3389/fimmu.2024.1272084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Immunoglobulins are an essential part of the humoral immune response. IgG4 antibodies are the least prevalent subclass and have unique structural and functional properties. In this review, we discuss IgG4 class switch and B cell production. We review the importance of IgG4 antibodies in the context of allergic responses, helminth infections and malignancy. We discuss their anti-inflammatory and tolerogenic effects in allergen-specific immunotherapy, and ability to evade the immune system in parasitic infection and tumour cells. We then focus on the role of IgG4 autoantibodies and autoantigens in IgG4-autoimmune diseases and IgG4-related disease, highlighting important parallels and differences between them. In IgG4-autoimmune diseases, pathogenesis is based on a direct role of IgG4 antibodies binding to self-antigens and disturbing homeostasis. In IgG4-related disease, where affected organs are infiltrated with IgG4-expressing plasma cells, IgG4 antibodies may also directly target a number of self-antigens or be overexpressed as an epiphenomenon of the disease. These antigen-driven processes require critical T and B cell interaction. Lastly, we explore the current gaps in our knowledge and how these may be addressed.
Collapse
Affiliation(s)
- Rodrigo V. Motta
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emma L. Culver
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Gastroenterology and Hepatology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
12
|
Espino AM, Armina-Rodriguez A, Alvarez L, Ocasio-Malavé C, Ramos-Nieves R, Rodriguez Martinó EI, López-Marte P, Torres EA, Sariol CA. The Anti-SARS-CoV-2 IgG1 and IgG3 Antibody Isotypes with Limited Neutralizing Capacity against Omicron Elicited in a Latin Population a Switch toward IgG4 after Multiple Doses with the mRNA Pfizer-BioNTech Vaccine. Viruses 2024; 16:187. [PMID: 38399963 PMCID: PMC10893502 DOI: 10.3390/v16020187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to analyze the profiles of IgG subclasses in COVID-19 convalescent Puerto Rican subjects and compare these profiles with those of non-infected immunocompetent or immunocompromised subjects that received two or more doses of an mRNA vaccine. The most notable findings from this study are as follows: (1) Convalescent subjects that were not hospitalized developed high and long-lasting antibody responses. (2) Both IgG1 and IgG3 subclasses were more prevalent in the SARS-CoV-2-infected population, whereas IgG1 was more prevalent after vaccination. (3) Individuals that were infected and then later received two doses of an mRNA vaccine exhibited a more robust neutralizing capacity against Omicron than those that were never infected and received two doses of an mRNA vaccine. (4) A class switch toward the "anti-inflammatory" antibody isotype IgG4 was induced a few weeks after the third dose, which peaked abruptly and remained at high levels for a long period. Moreover, the high levels of IgG4 were concurrent with high neutralizing percentages against various VOCs including Omicron. (5) Subjects with IBD also produced IgG4 antibodies after the third dose, although these antibody levels had a limited effect on the neutralizing capacity. Knowing that the mRNA vaccines do not prevent infections, the Omicron subvariants have been shown to be less pathogenic, and IgG4 levels have been associated with immunotolerance and numerous negative effects, the recommendations for the successive administration of booster vaccinations to people should be revised.
Collapse
Affiliation(s)
- Ana M. Espino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Albersy Armina-Rodriguez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Laura Alvarez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Carlimar Ocasio-Malavé
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Riseilly Ramos-Nieves
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
| | - Esteban I. Rodriguez Martinó
- Gastroenterology Research Unit, School of Medicine, University of Puerto Rico, San Juan, PR 00925, USA; (E.I.R.M.); (P.L.-M.); (E.A.T.)
- Department of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Paola López-Marte
- Gastroenterology Research Unit, School of Medicine, University of Puerto Rico, San Juan, PR 00925, USA; (E.I.R.M.); (P.L.-M.); (E.A.T.)
- Department of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Esther A. Torres
- Gastroenterology Research Unit, School of Medicine, University of Puerto Rico, San Juan, PR 00925, USA; (E.I.R.M.); (P.L.-M.); (E.A.T.)
- Department of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Carlos A. Sariol
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA; (A.A.-R.); (L.A.); (C.O.-M.); (R.R.-N.)
- Department of Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
- Unit of Comparative Medicine, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| |
Collapse
|
13
|
KUROKAWA T, IMAI K. Chondroitin sulfate proteoglycan 4: An attractive target for antibody-based immunotherapy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:293-308. [PMID: 38735753 PMCID: PMC11260911 DOI: 10.2183/pjab.100.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2024]
Abstract
Multifunctional molecules involved in tumor progression and metastasis have been identified as valuable targets for immunotherapy. Among these, chondroitin sulfate proteoglycan 4 (CSPG4), a significant tumor cell membrane-bound proteoglycan, has emerged as a promising target, especially in light of advances in chimeric antigen receptor (CAR) T-cell therapy. The profound bioactivity of CSPG4 and its role in pivotal processes such as tumor proliferation, migration, and neoangiogenesis underline its therapeutic potential. We reviewed the molecular intricacies of CSPG4, its functional attributes within tumor cells, and the latest clinical-translational advances targeting it. Strategies such as blocking monoclonal antibodies, conjugate therapies, bispecific antibodies, small-molecule inhibitors, CAR T-cell therapies, trispecific killer engagers, and ribonucleic acid vaccines against CSPG4 were assessed. CSPG4 overexpression in diverse tumors and its correlation with adverse prognostic outcomes emphasize its significance in cancer biology. These findings suggest that targeting CSPG4 offers a promising avenue for future cancer therapy, with potential synergistic effects when combined with existing treatments.
Collapse
Affiliation(s)
- Tomohiro KUROKAWA
- Department of Medical Epigenomics Research, Fukushima Medical University, Fukushima, Japan
- Department of Surgery, Jyoban Hospital of Tokiwa Foundation, Fukushima, Japan
| | - Kohzoh IMAI
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Guler B, Tekden BC, Cetin G, Yildiz P, Turna S, Uysal O, Sinal I. The role of IgG4-positive plasma cell population in classic Hodgkin lymphoma. J Hematop 2023; 16:191-197. [PMID: 38175429 DOI: 10.1007/s12308-023-00559-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/24/2023] [Indexed: 01/05/2024] Open
Abstract
The effect of IgG4, which constitutes the least of the IgG subclasses, on the pathogenesis and prognosis of lymphoma or solid tumors is one of the research topics of interest in recent years. The role of IgG4, which has been reported to suppress antitumor immunity, in classic Hodgkin's lymphoma (cHL), which is recognized by its pathognomonic microenvironment, is not yet clearly known. The aim of this study was to determine IgG4-positive plasma cell density in the cHL microenvironment and to compare it with histopathological and clinical parameters. In addition, the role of the increase in IgG4-positive cells in the development of relapse after treatment was also investigated. A retrospective cross-sectional study. Ninety-four patients with the initial diagnosis of cHL who had no comorbidity or no treatment history and forty-one reactive lymph nodes with follicular hyperplasia findings were included in the study. Three hot-spot areas were identified with reference to the IgG4 sections. Mean IgG4-positive plasmacyte counts and IgG4/IgG ratios were determined and compared with histopathological characteristics. The mean IgG4 + plasma cell count was 33.57 in cHL cases and 47.04 in the control group (p = 0.233). IgG4/IgG ratio was significantly higher in cHL compared with the control group (0.27 vs. 0.21, p = 0.021). The IgG4/IgG ratio was found to be higher in younger patients with classic Hodgkin lymphoma, with a low correlation (p = 0.028, r = - 0.226). There was no relationship with gender, lymph node location, histological subtype, EBV positivity and bone marrow infiltration. It was observed that IgG4/IgG ratio was higher in early-stage patients (p = 0.022). No significant IgG4 + cell increase was detected in the initial diagnosis and relapse slides of six patients who developed relapse after standard treatment, resulting in a cure. Novel therapeutic modalities targeting microenvironmental components have been reported to show dramatic effects, particularly in relapsed or refractory patients. Detailed characterization of the cHL inflammatory milieu will be useful for the identification of alternative targets. IgG4 subclass antibodies, which have been described to have anti-inflammatory effects, may have prognostic significance in a proportion of cHL patients.
Collapse
Affiliation(s)
- Beril Guler
- Department of Pathology, Bezmialem Vakif University, Istanbul, Turkey.
| | | | - Guven Cetin
- Department of Hematology, Bezmialem Vakif University, Istanbul, Turkey
| | - Pelin Yildiz
- Department of Pathology, Bezmialem Vakif University, Istanbul, Turkey
| | - Seval Turna
- Vocational School of Health Services, Pathology Laboratory Techniques Program, Bezmialem Vakif University, Istanbul, Turkey
| | - Omer Uysal
- Department of Biostatistics and Medical Informatics, Bezmialem Vakif University, Istanbul, Turkey
| | - Irmak Sinal
- Department of Pathology, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
15
|
Rispens T, Huijbers MG. The unique properties of IgG4 and its roles in health and disease. Nat Rev Immunol 2023; 23:763-778. [PMID: 37095254 PMCID: PMC10123589 DOI: 10.1038/s41577-023-00871-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
IgG4 is the least abundant subclass of IgG in human serum and has unique functional features. IgG4 is largely unable to activate antibody-dependent immune effector responses and, furthermore, undergoes Fab (fragment antigen binding)-arm exchange, rendering it bispecific for antigen binding and functionally monovalent. These properties of IgG4 have a blocking effect, either on the immune response or on the target protein of IgG4. In this Review, we discuss the unique structural characteristics of IgG4 and how these contribute to its roles in health and disease. We highlight how, depending on the setting, IgG4 responses can be beneficial (for example, in responses to allergens or parasites) or detrimental (for example, in autoimmune diseases, in antitumour responses and in anti-biologic responses). The development of novel models for studying IgG4 (patho)physiology and understanding how IgG4 responses are regulated could offer insights into novel treatment strategies for these IgG4-associated disease settings.
Collapse
Affiliation(s)
- Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
16
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
17
|
Walter J, Eludin Z, Drabovich AP. Redefining serological diagnostics with immunoaffinity proteomics. Clin Proteomics 2023; 20:42. [PMID: 37821808 PMCID: PMC10568870 DOI: 10.1186/s12014-023-09431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Serological diagnostics is generally defined as the detection of specific human immunoglobulins developed against viral, bacterial, or parasitic diseases. Serological tests facilitate the detection of past infections, evaluate immune status, and provide prognostic information. Serological assays were traditionally implemented as indirect immunoassays, and their design has not changed for decades. The advantages of straightforward setup and manufacturing, analytical sensitivity and specificity, affordability, and high-throughput measurements were accompanied by limitations such as semi-quantitative measurements, lack of universal reference standards, potential cross-reactivity, and challenges with multiplexing the complete panel of human immunoglobulin isotypes and subclasses. Redesign of conventional serological tests to include multiplex quantification of immunoglobulin isotypes and subclasses, utilize universal reference standards, and minimize cross-reactivity and non-specific binding will facilitate the development of assays with higher diagnostic specificity. Improved serological assays with higher diagnostic specificity will enable screenings of asymptomatic populations and may provide earlier detection of infectious diseases, autoimmune disorders, and cancer. In this review, we present the major clinical needs for serological diagnostics, overview conventional immunoassay detection techniques, present the emerging immunoassay detection technologies, and discuss in detail the advantages and limitations of mass spectrometry and immunoaffinity proteomics for serological diagnostics. Finally, we explore the design of novel immunoaffinity-proteomic assays to evaluate cell-mediated immunity and advance the sequencing of clinically relevant immunoglobulins.
Collapse
Affiliation(s)
- Jonathan Walter
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Zicki Eludin
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Andrei P Drabovich
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, 10-102 Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
18
|
Grasso C, Giacchero F, Crivellari S, Bertolotti M, Maconi A. A Review on The Role of Environmental Exposures in IgG4-Related Diseases. Curr Environ Health Rep 2023; 10:303-311. [PMID: 37314670 DOI: 10.1007/s40572-023-00401-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
PURPOSE OF REVIEW Immunoglobulin G4-related diseases (IgG4-RDs) are immune-mediated fibroinflammatory multisystemic conditions identified by the presence of tumefactive lesions with a rich infiltrate of IgG4-positive plasma cells, and often by a high IgG4 serum concentration. IgG-RDs have a prevalence of at least 1 case every 100,000 persons, and they are mostly diagnosed after age 50, with a male to female ratio of about 3:1. IgG4-RD pathophysiology is still uncertain: it has been proposed that both genetic predisposition and chronic environmental exposures may play a role by triggering abnormal immune activation that perpetuates the disease. The purpose of this review is to summarize the evidences supporting the hypothesis that certain environmental/occupational exposures can trigger IgG4-RDs, focusing on the possible role of asbestos in an emerging IgG4-RD called idiopathic retroperitoneal fibrosis (IRF). RECENT FINDINGS Although some studies suggested a relationship between tobacco smoking and IgG4-RD risk, occupational exposures seem to have the most interesting effects. Positive history of blue-collar work increases the risk of developing an IgG4-RD, and mineral dusts and asbestos were the most strongly associated industrial compounds. Asbestos has been found to be a risk factor for IRF years before its classification as IgG4-RD, and later in two large case-control studies. In the most recent one, conducted on 90 patients and 270 controls, asbestos exposure conferred an increased IRF risk, quantified by odds ratios from 2.46 to 7.07. Further structured studies including serum IgG4 evaluation should be conducted to clarify the effect of asbestos on patients with confirmed diagnosis of IgG4-related IRF. Environmental exposures, especially of occupational origin, appear to play a role in the development of different types of IgG-RDs. In particular, although first suggested very recently, the relationship between asbestos and IRF deserves to be explored in more structured studies, especially because of the biological plausibility of the role of asbestos in IRF pathogenesis.
Collapse
Affiliation(s)
- Chiara Grasso
- SC Infrastruttura Ricerca Formazione Innovazione, Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliera "SS. Antonio E Biagio E Cesare Arrigo", Alessandria, Italy
| | - Fabio Giacchero
- SC Infrastruttura Ricerca Formazione Innovazione, Dipartimento Attività Integrate Ricerca Innovazione, Azienda Sanitaria Locale Alessandria, Alessandria, Italy
| | - Stefania Crivellari
- SC Infrastruttura Ricerca Formazione Innovazione, Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliera "SS. Antonio E Biagio E Cesare Arrigo", Alessandria, Italy
| | - Marinella Bertolotti
- SC Infrastruttura Ricerca Formazione Innovazione, Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliera "SS. Antonio E Biagio E Cesare Arrigo", Alessandria, Italy.
| | - Antonio Maconi
- SC Infrastruttura Ricerca Formazione Innovazione, Dipartimento Attività Integrate Ricerca Innovazione, Azienda Ospedaliera "SS. Antonio E Biagio E Cesare Arrigo", Alessandria, Italy
| |
Collapse
|
19
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
20
|
Rubio-Casillas A, Redwan EM, Uversky VN. Does SARS-CoV-2 Induce IgG4 Synthesis to Evade the Immune System? Biomolecules 2023; 13:1338. [PMID: 37759738 PMCID: PMC10526126 DOI: 10.3390/biom13091338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2, the virus that causes the COVID-19 disease, has been shown to cause immune suppression in certain individuals. This can manifest as a reduced ability of the host's immune system to effectively control the infection. Studies have reported that patients with COVID-19 can exhibit a decline in white blood cell counts, including natural killer cells and T cells, which are integral components of the immune system's response to viral pathogens. These cells play critical roles in the immune response to viral infections, and their depletion can make it harder for the body to mount an effective defense against the virus. Additionally, the virus can also directly infect immune cells, further compromising their ability to function. Some individuals with severe COVID-19 pneumonia may develop a "cytokine storm", an overactive immune response that may result in tissue damage and organ malfunction. The underlying mechanisms of immune suppression in SARS-CoV-2 are not entirely understood at this time, and research is being conducted to gain a more comprehensive understanding. Research has shown that severe SARS-CoV-2 infection promotes the synthesis of IgG4 antibodies. In this study, we propose the hypothesis that IgG4 antibodies produced by B cells in response to infection by SARS-CoV-2 generate immunological tolerance, which prevents its elimination and leads to persistent and chronic infection. In summary, we believe that this constitutes another immune evasion mechanism that bears striking similarities to that developed by cancer cells to evade immune surveillance.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
21
|
Esparcia-Pinedo L, Romero-Laorden N, Alfranca A. Tertiary lymphoid structures and B lymphocytes: a promising therapeutic strategy to fight cancer. Front Immunol 2023; 14:1231315. [PMID: 37622111 PMCID: PMC10445545 DOI: 10.3389/fimmu.2023.1231315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells with an organization that resembles that of secondary lymphoid organs. Both structures share common developmental characteristics, although TLSs usually appear in chronically inflamed non-lymphoid tissues, such as tumors. TLSs contain diverse types of immune cells, with varying degrees of spatial organization that represent different stages of maturation. These structures support both humoral and cellular immune responses, thus the correlation between the existence of TLS and clinical outcomes in cancer patients has been extensively studied. The finding that TLSs are associated with better prognosis in some types of cancer has led to the design of therapeutic strategies based on promoting the formation of these structures. Agents such as chemokines, cytokines, antibodies and cancer vaccines have been used in combination with traditional antitumor treatments to enhance TLS generation, with good results. The induction of TLS formation therefore represents a novel and promising avenue for the treatment of a number of tumor types.
Collapse
Affiliation(s)
- Laura Esparcia-Pinedo
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nuria Romero-Laorden
- Medical Oncology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Department, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
- Department of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Cátedra Universidad Autónoma de Madrid (UAM)-Fundación Instituto Roche de Medicina Personalizada de Precisión, Madrid, Spain
- Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, Madrid, Spain
| |
Collapse
|
22
|
Hu M, Kenific CM, Boudreau N, Lyden D. Tumor-derived nanoseeds condition the soil for metastatic organotropism. Semin Cancer Biol 2023; 93:70-82. [PMID: 37178822 PMCID: PMC10362948 DOI: 10.1016/j.semcancer.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Primary tumors secrete a variety of factors to turn distant microenvironments into favorable and fertile 'soil' for subsequent metastases. Among these 'seeding' factors that initiate pre-metastatic niche (PMN) formation, tumor-derived extracellular vesicles (EVs) are of particular interest as tumor EVs can direct organotropism depending on their surface integrin profiles. In addition, EVs also contain versatile, bioactive cargo, which include proteins, metabolites, lipids, RNA, and DNA fragments. The cargo incorporated into EVs is collectively shed from cancer cells and cancer-associated stromal cells. Increased understanding of how tumor EVs promote PMN establishment and detection of EVs in bodily fluids highlight how tumor EVs could serve as potential diagnostic and prognostic biomarkers, as well as provide a therapeutic target for metastasis prevention. This review focuses on tumor-derived EVs and how they direct organotropism and subsequently modulate stromal and immune microenvironments at distal sites to facilitate PMN formation. We also outline the progress made thus far towards clinical applications of tumor EVs.
Collapse
Affiliation(s)
- Mengying Hu
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Candia M Kenific
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Nancy Boudreau
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Crescioli S, Correa I, Ng J, Willsmore ZN, Laddach R, Chenoweth A, Chauhan J, Di Meo A, Stewart A, Kalliolia E, Alberts E, Adams R, Harris RJ, Mele S, Pellizzari G, Black ABM, Bax HJ, Cheung A, Nakamura M, Hoffmann RM, Terranova-Barberio M, Ali N, Batruch I, Soosaipillai A, Prassas I, Ulndreaj A, Chatanaka MK, Nuamah R, Kannambath S, Dhami P, Geh JLC, MacKenzie Ross AD, Healy C, Grigoriadis A, Kipling D, Karagiannis P, Dunn-Walters DK, Diamandis EP, Tsoka S, Spicer J, Lacy KE, Fraternali F, Karagiannis SN. B cell profiles, antibody repertoire and reactivity reveal dysregulated responses with autoimmune features in melanoma. Nat Commun 2023; 14:3378. [PMID: 37291228 PMCID: PMC10249578 DOI: 10.1038/s41467-023-39042-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma.
Collapse
Affiliation(s)
- Silvia Crescioli
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Isabel Correa
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Joseph Ng
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Zena N Willsmore
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Roman Laddach
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - Alicia Chenoweth
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Ashley Di Meo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Alexander Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Eleni Kalliolia
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Elena Alberts
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Rebecca Adams
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Robert J Harris
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Silvia Mele
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Giulia Pellizzari
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anna B M Black
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Heather J Bax
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anthony Cheung
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Mano Nakamura
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Ricarda M Hoffmann
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Manuela Terranova-Barberio
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Ioannis Prassas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Antigona Ulndreaj
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miyo K Chatanaka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rosamund Nuamah
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Shichina Kannambath
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Genomics Facility, Institute of Cancer Research, London, UK
| | - Pawan Dhami
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jenny L C Geh
- St John's Institute of Dermatology, Guy's, King's, and St. Thomas' Hospitals NHS Foundation Trust, London, UK
- Department of Plastic Surgery at Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - David Kipling
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Panagiotis Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Katie E Lacy
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
24
|
Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines (Basel) 2023; 11:vaccines11050991. [PMID: 37243095 DOI: 10.3390/vaccines11050991] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Less than a year after the global emergence of the coronavirus SARS-CoV-2, a novel vaccine platform based on mRNA technology was introduced to the market. Globally, around 13.38 billion COVID-19 vaccine doses of diverse platforms have been administered. To date, 72.3% of the total population has been injected at least once with a COVID-19 vaccine. As the immunity provided by these vaccines rapidly wanes, their ability to prevent hospitalization and severe disease in individuals with comorbidities has recently been questioned, and increasing evidence has shown that, as with many other vaccines, they do not produce sterilizing immunity, allowing people to suffer frequent re-infections. Additionally, recent investigations have found abnormally high levels of IgG4 in people who were administered two or more injections of the mRNA vaccines. HIV, Malaria, and Pertussis vaccines have also been reported to induce higher-than-normal IgG4 synthesis. Overall, there are three critical factors determining the class switch to IgG4 antibodies: excessive antigen concentration, repeated vaccination, and the type of vaccine used. It has been suggested that an increase in IgG4 levels could have a protecting role by preventing immune over-activation, similar to that occurring during successful allergen-specific immunotherapy by inhibiting IgE-induced effects. However, emerging evidence suggests that the reported increase in IgG4 levels detected after repeated vaccination with the mRNA vaccines may not be a protective mechanism; rather, it constitutes an immune tolerance mechanism to the spike protein that could promote unopposed SARS-CoV2 infection and replication by suppressing natural antiviral responses. Increased IgG4 synthesis due to repeated mRNA vaccination with high antigen concentrations may also cause autoimmune diseases, and promote cancer growth and autoimmune myocarditis in susceptible individuals.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - William Makis
- Cross Cancer Institute, Alberta Health Services, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico
| |
Collapse
|
25
|
Ford EE, Tieri D, Rodriguez OL, Francoeur NJ, Soto J, Kos JT, Peres A, Gibson WS, Silver CA, Deikus G, Hudson E, Woolley CR, Beckmann N, Charney A, Mitchell TC, Yaari G, Sebra RP, Watson CT, Smith ML. FLAIRR-Seq: A Method for Single-Molecule Resolution of Near Full-Length Antibody H Chain Repertoires. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1607-1619. [PMID: 37027017 PMCID: PMC10152037 DOI: 10.4049/jimmunol.2200825] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023]
Abstract
Current Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) using short-read sequencing strategies resolve expressed Ab transcripts with limited resolution of the C region. In this article, we present the near-full-length AIRR-seq (FLAIRR-seq) method that uses targeted amplification by 5' RACE, combined with single-molecule, real-time sequencing to generate highly accurate (99.99%) human Ab H chain transcripts. FLAIRR-seq was benchmarked by comparing H chain V (IGHV), D (IGHD), and J (IGHJ) gene usage, complementarity-determining region 3 length, and somatic hypermutation to matched datasets generated with standard 5' RACE AIRR-seq using short-read sequencing and full-length isoform sequencing. Together, these data demonstrate robust FLAIRR-seq performance using RNA samples derived from PBMCs, purified B cells, and whole blood, which recapitulated results generated by commonly used methods, while additionally resolving H chain gene features not documented in IMGT at the time of submission. FLAIRR-seq data provide, for the first time, to our knowledge, simultaneous single-molecule characterization of IGHV, IGHD, IGHJ, and IGHC region genes and alleles, allele-resolved subisotype definition, and high-resolution identification of class switch recombination within a clonal lineage. In conjunction with genomic sequencing and genotyping of IGHC genes, FLAIRR-seq of the IgM and IgG repertoires from 10 individuals resulted in the identification of 32 unique IGHC alleles, 28 (87%) of which were previously uncharacterized. Together, these data demonstrate the capabilities of FLAIRR-seq to characterize IGHV, IGHD, IGHJ, and IGHC gene diversity for the most comprehensive view of bulk-expressed Ab repertoires to date.
Collapse
Affiliation(s)
- Easton E. Ford
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - David Tieri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Oscar L. Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Nancy J. Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Justin T. Kos
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Ayelet Peres
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - William S. Gibson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Catherine A. Silver
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Elizabeth Hudson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Cassandra R. Woolley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Noam Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Thomas C. Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY
| | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
- Bar Ilan Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel
| | - Robert P. Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY
| | - Corey T. Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| | - Melissa L. Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY
| |
Collapse
|
26
|
Chauhan J, Grandits M, Palhares LCGF, Mele S, Nakamura M, López-Abente J, Crescioli S, Laddach R, Romero-Clavijo P, Cheung A, Stavraka C, Chenoweth AM, Sow HS, Chiaruttini G, Gilbert AE, Dodev T, Koers A, Pellizzari G, Ilieva KM, Man F, Ali N, Hobbs C, Lombardi S, Lionarons DA, Gould HJ, Beavil AJ, Geh JLC, MacKenzie Ross AD, Healy C, Calonje E, Downward J, Nestle FO, Tsoka S, Josephs DH, Blower PJ, Karagiannis P, Lacy KE, Spicer J, Karagiannis SN, Bax HJ. Anti-cancer pro-inflammatory effects of an IgE antibody targeting the melanoma-associated antigen chondroitin sulfate proteoglycan 4. Nat Commun 2023; 14:2192. [PMID: 37185332 PMCID: PMC10130092 DOI: 10.1038/s41467-023-37811-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Outcomes for half of patients with melanoma remain poor despite standard-of-care checkpoint inhibitor therapies. The prevalence of the melanoma-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4) expression is ~70%, therefore effective immunotherapies directed at CSPG4 could benefit many patients. Since IgE exerts potent immune-activating functions in tissues, we engineer a monoclonal IgE antibody with human constant domains recognizing CSPG4 to target melanoma. CSPG4 IgE binds to human melanomas including metastases, mediates tumoricidal antibody-dependent cellular cytotoxicity and stimulates human IgE Fc-receptor-expressing monocytes towards pro-inflammatory phenotypes. IgE demonstrates anti-tumor activity in human melanoma xenograft models engrafted with human effector cells and is associated with enhanced macrophage infiltration, enriched monocyte and macrophage gene signatures and pro-inflammatory signaling pathways in the tumor microenvironment. IgE prolongs the survival of patient-derived xenograft-bearing mice reconstituted with autologous immune cells. No ex vivo activation of basophils in patient blood is measured in the presence of CSPG4 IgE. Our findings support a promising IgE-based immunotherapy for melanoma.
Collapse
Affiliation(s)
- Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Melanie Grandits
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Lais C G F Palhares
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Silvia Mele
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Mano Nakamura
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Jacobo López-Abente
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Pablo Romero-Clavijo
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Chara Stavraka
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
- Cancer Centre at Guy's, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Alicia M Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Heng Sheng Sow
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Giulia Chiaruttini
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Amy E Gilbert
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Tihomir Dodev
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
- Asthma UK Centre, Allergic Mechanisms in Asthma, King's College London, London, SE1 9RT, UK
| | - Alexander Koers
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - Kristina M Ilieva
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - Francis Man
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Sciences, King's College London, London, SE1 9NH, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, SE1 9RT, UK
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Sara Lombardi
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Guy's and St. Thomas' Oncology & Haematology Clinical Trials (OHCT), Cancer Centre at Guy's, London, SE1 9RT, UK
| | - Daniël A Lionarons
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Hannah J Gould
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
- Asthma UK Centre, Allergic Mechanisms in Asthma, King's College London, London, SE1 9RT, UK
| | - Andrew J Beavil
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, SE1 9RT, UK
- Asthma UK Centre, Allergic Mechanisms in Asthma, King's College London, London, SE1 9RT, UK
| | - Jenny L C Geh
- Department of Plastic Surgery, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
- Skin Tumour Unit, St. John's Institute of Dermatology, Guy's Hospital, London, SE1 9RT, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 7EH, UK
| | - Eduardo Calonje
- Dermatopathology Department, St. John's Institute of Dermatology, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Frank O Nestle
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Sanofi US, Cambridge, Massachusetts, USA
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
- Cancer Centre at Guy's, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, SE1 7EH, UK
| | - Panagiotis Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
- Department of Oncology, Haematology and Bone Marrow Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
- Cancer Centre at Guy's, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK.
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, London, SE1 9RT, UK.
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, SE1 9RT, UK.
| |
Collapse
|
27
|
Zhang W, Quan Y, Ma X, Zeng L, Li J, Chen S, Su M, Hong L, Li P, Wang H, Xu Q, Zhao C, Zhu X, Geng Y, Yan X, Fang Z, Chen M, Tian D, Su M, Chen X, Gu J. Synergistic effect of glutathione and IgG4 in immune evasion and the implication for cancer immunotherapy. Redox Biol 2023; 60:102608. [PMID: 36681047 PMCID: PMC9868885 DOI: 10.1016/j.redox.2023.102608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We recently reported a novel IgG4-centered immune evasion mechanism in cancer, and this was achieved mostly through the Fc-Fc reaction of increased IgG4 to cancer-bound IgG in cancer microenvironment. The mechanism was suggested to be related to cancer hyperprogressive disease (HPD) which is a side-effect often associated to IgG4 subtype PD-1 antibody immunotherapy. HPD was reported to occur in cancers with certain mutated genes including KRAS and such mutations are often associated to glutathione (GSH) synthesis. Therefore, we hypothesize that IgG4 and GSH may play a synergistic role in local immunosuppression of cancer. METHODS Quantitatively analyzed the distribution and abundance of GSH and IgG4 in human cancer samples with ELISA and immunohistochemistry. The interactions between GSH and IgG4 were examined with Electrophoresis and Western Blot. The synergistic effects of the two on classic immune responses were investigated in vitro. The combined effects were also tested in a lung cancer model and a skin graft model in mice. RESULTS We detected significant increases of both GSH and IgG4 in the microenvironment of lung cancer, esophageal cancer, and colon cancer tissues. GSH disrupted the disulfide bond of IgG4 heavy chain and enhanced IgG4's ability of Fc-Fc reaction to immobilized IgG subtypes. Combined administration of IgG4 and GSH augmented the inhibitory effect of IgG4 on the classic ADCC, ADCP, and CDC reactions. Local administration of IgG4/GSH achieved the most obvious effect of accelerating cancer growth in the mouse lung cancer model. The same combination prolonged the survival of skin grafts between two different strains of mouse. In both models, immune cells and several cytokines were found to shift to the state of immune tolerance. CONCLUSION Combined application of GSH and IgG4 can promote tumor growth and protect skin graft. The mechanism may be achieved through the effect of the Fc-Fc reaction between IgG4 and other tissue-bound IgG subtypes resulting in local immunosuppression. This reaction was facilitated by increased GSH to dissociate the two heavy chains of IgG4 Fc fragment at its disulfide bonds. Our findings unveiled the interaction between the redox system and the immune systems in cancer microenvironment. It offers a sensible explanation for HPD and provides new possibilities for manipulating this mechanism for cancer immunotherapy.
Collapse
Affiliation(s)
- Weifeng Zhang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yan Quan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaonan Ma
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liting Zeng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jirui Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Shuqi Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Meng Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Liangli Hong
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Penghao Li
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China
| | - Hui Wang
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Xu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Chanyuan Zhao
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoqing Zhu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Yiqun Geng
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaomiao Yan
- Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China
| | - Zheng Fang
- Motic China Group Co, Ltd, Xiamen, China
| | | | - Dongping Tian
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Min Su
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xueling Chen
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiang Gu
- Provincial Key Laboratory of Molecular Pathology and Personalized Medicine Center of Collaborative and Creative Center, Department of Pathology and Pathophysiology, Shantou University Medical College, Shantou, Guangdong, China; Jinxin Research Institute for Reproductive Medicine and Genetics, Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, China.
| |
Collapse
|
28
|
Liu RX, Wen C, Ye W, Li Y, Chen J, Zhang Q, Li W, Liang W, Wei L, Zhang J, Chan KW, Wang X, Yang X, Liu H. Altered B cell immunoglobulin signature exhibits potential diagnostic values in human colorectal cancer. iScience 2023; 26:106140. [PMID: 36879799 PMCID: PMC9984553 DOI: 10.1016/j.isci.2023.106140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/27/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Antibody-secreting B cells have long been considered the central element of gut homeostasis; however, tumor-associated B cells in human colorectal cancer (CRC) have not been well characterized. Here, we show that the clonotype, phenotype, and immunoglobulin subclasses of tumor-infiltrating B cells have changed compared to adjacent normal tissue B cells. Remarkably, the tumor-associated B cell immunoglobulin signature alteration can also be detected in the plasma of patients with CRC, suggesting that a distinct B cell response was also evoked in CRC. We compared the altered plasma immunoglobulin signature with the existing method of CRC diagnosis. Our diagnostic model exhibits improved sensitivity compared to the traditional biomarkers, CEA and CA19-9. These findings disclose the altered B cell immunoglobulin signature in human CRC and highlight the potential of using the plasma immunoglobulin signature as a non-invasive method for the assessment of CRC.
Collapse
Affiliation(s)
- Rui-Xian Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Chuangyu Wen
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Weibiao Ye
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan, Guangdong 523059, China
| | - Yewei Li
- Department of Statistical Science, School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Junxiong Chen
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Qian Zhang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Weiqian Li
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Wanfei Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lili Wei
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jingdan Zhang
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Ka-Wo Chan
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xueqin Wang
- International Institute of Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangling Yang
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Huanliang Liu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| |
Collapse
|
29
|
Gon Y, Kandou T, Tsuruyama T, Iwasaki T, Kitagori K, Murakami K, Nakashima R, Akizuki S, Morinobu A, Hikida M, Mimori T, Yoshifuji H. Increased number of T cells and exacerbated inflammatory pathophysiology in a human IgG4 knock-in MRL/lpr mouse model. PLoS One 2023; 18:e0279389. [PMID: 36763580 PMCID: PMC9916631 DOI: 10.1371/journal.pone.0279389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 12/06/2022] [Indexed: 02/11/2023] Open
Abstract
Immunoglobulin (Ig) G4 is an IgG subclass that can exhibit inhibitory functions under certain conditions because of its capacity to carry out Fab-arm exchange, inability to form immune complexes, and lack of antibody-dependent and complement-dependent cytotoxicity. Although several diseases have been associated with IgG4, its role in the disease pathogeneses remains unclear. Since mice do not express an IgG subclass that is identical to the human IgG4 (hIgG4), we generated hIGHG4 knock-in (KI) mice and analyzed their phenotypes. To preserve the rearrangement of the variable, diversity, and joining regions in the IGH gene, we transfected a constant region of the hIGHG4 gene into C57BL/6NCrSlc mice by using a gene targeting method. Although the mRNA expression of hIGHG4 was detected in the murine spleen, the serum level of the hIgG4 protein was low in C57BL/6-IgG4KI mice. To enhance the production of IgG4, we established an MRL/lpr-IgG4KI mice model by backcrossing. These mice showed a high IgG4 concentration in the sera and increased populations of IgG4-positive plasma cells and CD3+B220+CD138+ T cells in the spleen. Moreover, these mice showed aggravated inflammation in organs, such as the salivary glands and stomach. The MRL/lpr-IgG4KI mouse model established in the present study might be useful for studying IgG4-related disease, IgG4-type antibody-related diseases, and allergic diseases.
Collapse
Affiliation(s)
- Yoshie Gon
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Clinical Immunology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Tsugumitsu Kandou
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Drug Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Iwasaki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Kitagori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kosaku Murakami
- Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ran Nakashima
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuji Akizuki
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akio Morinobu
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaki Hikida
- Faculty of Engineering Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Ijinkai Takeda General Hospital, Kyoto, Japan
| | - Hajime Yoshifuji
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
30
|
Kendal JK, Shehata MS, Lofftus SY, Crompton JG. Cancer-Associated B Cells in Sarcoma. Cancers (Basel) 2023; 15:cancers15030622. [PMID: 36765578 PMCID: PMC9913500 DOI: 10.3390/cancers15030622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Despite being one of the first types of cancers studied that hinted at a major role of the immune system in pro- and anti-tumor biology, little is known about the immune microenvironment in sarcoma. Few types of sarcoma have shown major responses to immunotherapy, and its rarity and heterogeneity makes it challenging to study. With limited systemic treatment options, further understanding of the underlying mechanisms in sarcoma immunity may prove crucial in advancing sarcoma care. While great strides have been made in the field of immunotherapy over the last few decades, most of these efforts have focused on harnessing the T cell response, with little attention on the role B cells may play in the tumor microenvironment. A growing body of evidence suggests that B cells have both pro- and anti-tumoral effects in a large variety of cancers, and in the age of bioinformatics and multi-omic analysis, the complexity of the humoral response is just being appreciated. This review explores what is currently known about the role of B cells in sarcoma, including understanding the various B cell populations associated with sarcoma, the organization of intra-tumoral B cells in tertiary lymphoid structures, recent trials in immunotherapy in sarcoma, intra-tumoral immunoglobulin, the pro-tumor effects of B cells, and exciting future areas for research.
Collapse
Affiliation(s)
- Joseph K. Kendal
- Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90404, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Michael S. Shehata
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
| | - Serena Y. Lofftus
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA 90095, USA
| | - Joseph G. Crompton
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90024, USA
- Division of Surgical Oncology, Department of Surgery, University of California, Los Angeles, CA 90095, USA
- Correspondence: ; Tel.: +1-310-825-2644
| |
Collapse
|
31
|
Minott JA, van Vloten JP, Yates JGE, Chan L, Wood GA, Viloria-Petit AM, Karimi K, Petrik JJ, Wootton SK, Bridle BW. Multiplex flow cytometry-based assay for quantifying tumor- and virus-associated antibodies induced by immunotherapies. Front Immunol 2022; 13:1038340. [PMID: 36466867 PMCID: PMC9708883 DOI: 10.3389/fimmu.2022.1038340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/27/2022] [Indexed: 03/22/2024] Open
Abstract
Novel immunotherapies continue to be developed and tested for application against a plethora of diseases. The clinical translation of immunotherapies requires an understanding of their mechanisms. The contributions of antibodies in driving long-term responses following immunotherapies continue to be revealed given their diverse effector functions. Developing an in-depth understanding of the role of antibodies in treatment efficacy is required to optimize immunotherapies and improve the chance of successfully translating them into the clinic. However, analyses of antibody responses can be challenging in the context of antigen-agnostic immunotherapies, particularly in the context of cancers that lack pre-defined target antigens. As such, robust methods are needed to evaluate the capacity of a given immunotherapy to induce beneficial antibody responses, and to identify any therapy-limiting antibodies. We previously developed a comprehensive method for detecting antibody responses induced by antigen-agnostic immunotherapies for application in pre-clinical models of vaccinology and cancer therapy. Here, we extend this method to a high-throughput, flow cytometry-based assay able to identify and quantify isotype-specific virus- and tumor-associated antibody responses induced by immunotherapies using small sample volumes with rapid speed and high sensitivity. This method provides a valuable and flexible protocol for investigating antibody responses induced by immunotherapies, which researchers can use to expand their analyses and optimize their own treatment regimens.
Collapse
Affiliation(s)
- Jessica A. Minott
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Jacob G. E. Yates
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Lily Chan
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Geoffrey A. Wood
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | | - Khalil Karimi
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - James J. Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Sarah K. Wootton
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Byram W. Bridle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- ImmunoCeutica Inc., Cambridge, ON, Canada
| |
Collapse
|
32
|
Ma H, Murphy C, Loscher CE, O’Kennedy R. Autoantibodies - enemies, and/or potential allies? Front Immunol 2022; 13:953726. [PMID: 36341384 PMCID: PMC9627499 DOI: 10.3389/fimmu.2022.953726] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/24/2022] [Indexed: 08/13/2023] Open
Abstract
Autoantibodies are well known as potentially highly harmful antibodies which attack the host via binding to self-antigens, thus causing severe associated diseases and symptoms (e.g. autoimmune diseases). However, detection of autoantibodies to a range of disease-associated antigens has enabled their successful usage as important tools in disease diagnosis, prognosis and treatment. There are several advantages of using such autoantibodies. These include the capacity to measure their presence very early in disease development, their stability, which is often much better than their related antigen, and the capacity to use an array of such autoantibodies for enhanced diagnostics and to better predict prognosis. They may also possess capacity for utilization in therapy, in vivo. In this review both the positive and negative aspects of autoantibodies are critically assessed, including their role in autoimmune diseases, cancers and the global pandemic caused by COVID-19. Important issues related to their detection are also highlighted.
Collapse
Affiliation(s)
- Hui Ma
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Caroline Murphy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Richard O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Research, Development and Innovation, Qatar Foundation, Doha, Qatar
- Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
33
|
Adams R, Osborn G, Mukhia B, Laddach R, Willsmore Z, Chenoweth A, Geh JLC, MacKenzie Ross AD, Healy C, Barber L, Tsoka S, Sanz-Moreno V, Lacy KE, Karagiannis SN. Influencing tumor-associated macrophages in malignant melanoma with monoclonal antibodies. Oncoimmunology 2022; 11:2127284. [PMID: 36211808 PMCID: PMC9543025 DOI: 10.1080/2162402x.2022.2127284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The application of monoclonal antibodies (mAbs) for the treatment of melanoma has significantly improved the clinical management of this malignancy over the last decade. Currently approved mAbs for melanoma enhance T cell effector immune responses by blocking immune checkpoint molecules PD-L1/PD-1 and CTLA-4. However, more than half of patients do not benefit from treatment. Targeting the prominent myeloid compartment within the tumor microenvironment, and in particular the ever-abundant tumor-associated macrophages (TAMs), may be a promising strategy to complement existing therapies and enhance treatment success. TAMs are a highly diverse and plastic subset of cells whose pro-tumor properties can support melanoma growth, angiogenesis and invasion. Understanding of their diversity, plasticity and multifaceted roles in cancer forms the basis for new promising TAM-centered treatment strategies. There are multiple mechanisms by which macrophages can be targeted with antibodies in a therapeutic setting, including by depletion, inhibition of specific pro-tumor properties, differential polarization to pro-inflammatory states and enhancement of antitumor immune functions. Here, we discuss TAMs in melanoma, their interactions with checkpoint inhibitor antibodies and emerging mAbs targeting different aspects of TAM biology and their potential to be translated to the clinic.
Collapse
Affiliation(s)
- Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Bipashna Mukhia
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Roman Laddach
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Jenny L C Geh
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy’s, King’s, and St. Thomas’ Hospitals, London, UK
| | - Linda Barber
- School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical & Engineering Sciences, King’s College London, Bush House, London, UK
| | | | - Katie E Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, London, UK,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK,CONTACT Sophia N Karagiannis St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, Guy’s Hospital, Tower Wing, 9th Floor, London, SE1 9RT, UK
| |
Collapse
|
34
|
Heterogeneity and Functions of Tumor-Infiltrating Antibody Secreting Cells: Lessons from Breast, Ovarian, and Other Solid Cancers. Cancers (Basel) 2022; 14:cancers14194800. [PMID: 36230721 PMCID: PMC9563085 DOI: 10.3390/cancers14194800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary B cells are gaining increasing recognition as important contributors to the tumor microenvironment, influencing, positively or negatively, tumor growth, patient survival, and response to therapies. Antibody secreting cells (ASCs) constitute a variable fraction of tumor-infiltrating B cells in most solid tumors, and they produce tumor-specific antibodies that can drive distinct immune responses depending on their isotypes and specificities. In this review, we discuss the current knowledge of the heterogeneity of ASCs infiltrating solid tumors and how both their canonical and noncanonical functions shape antitumor immunity, with a special emphasis on breast and ovarian cancers. Abstract Neglected for a long time in cancer, B cells and ASCs have recently emerged as critical actors in the tumor microenvironment, with important roles in shaping the antitumor immune response. ASCs indeed exert a major influence on tumor growth, patient survival, and response to therapies. The mechanisms underlying their pro- vs. anti-tumor roles are beginning to be elucidated, revealing the contributions of their secreted antibodies as well as of their emerging noncanonical functions. Here, concentrating mostly on ovarian and breast cancers, we summarize the current knowledge on the heterogeneity of tumor-infiltrating ASCs, we discuss their possible local or systemic origin in relation to their immunoglobulin repertoire, and we review the different mechanisms by which antibody (Ab) subclasses and isoforms differentially impact tumor cells and anti-tumor immunity. We also discuss the emerging roles of cytokines and other immune modulators produced by ASCs in cancer. Finally, we propose strategies to manipulate the tumor ASC compartment to improve cancer therapies.
Collapse
|
35
|
Lu Y, Liu J, Yan H, Feng W, Zhao L, Chen Y. Concurrence of IgG4-related disease and Kimura disease with pulmonary embolism and lung cancer: a case report. BMC Pulm Med 2022; 22:305. [PMID: 35945530 PMCID: PMC9361620 DOI: 10.1186/s12890-022-02094-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/29/2022] [Indexed: 08/30/2023] Open
Abstract
BACKGROUND Immunoglobulin G4 (IgG4)-related disease (IgG4-RD) is a systemic disease that involves the infiltration of IgG4-positive plasma cells in multiple organs. Kimura disease (KD) presents as subcutaneous masses on the head and neck, frequently accompanied by eosinophilia and high immunoglobulin E (IgE) levels. Here, we report a rare case of concurrence of IgG4-RD and KD with manifestations of asthma, pulmonary embolism, and central diabetes insipidus accompanied by lung carcinoma. CASE PRESENTATION A 65-year-old Chinese male with an eight-year history of KD was admitted to our hospital with complaints of dyspnea and expectoration for one month. Laboratory examination showed a considerable elevation in the serum eosinophil count and total IgE and IgG4 levels. Chest enhanced computed tomography showed filling defects in the right pulmonary artery and a nodule in the left inferior lobe. Pancreatic enhanced magnetic resonance imaging (MRI) and magnetic resonance cholangiopancreatography showed a swollen pancreatic tail and local stricture of the pancreatic duct section of the common bile duct. Enhanced MRI of the pituitary gland showed thickening of the pituitary stalk. Additionally, immunohistochemistry of the specimens collected eight years prior revealed IgG4-positive cells. Following the diagnosis of IgG4-RD with KD, glucocorticoids with immunosuppressants were initiated; there was a prompt improvement in the patient's condition. One-year post-discharge, the patient underwent wedge-shaped resection of the lung due to enlargement of the pulmonary nodule, and the pathology revealed lung squamous carcinoma. CONCLUSIONS This case presents a rare clinical condition in which the concurrence of IgG4-RD and KD causes various rare manifestations including asthma, pulmonary embolism, central diabetes insipidus, and complicated lung carcinoma. This highlights the importance of monitoring for malignancies in IgG4-RD patients during follow-up.
Collapse
Affiliation(s)
- Ye Lu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junxiu Liu
- Department of Intensive Care Unit, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Hengyi Yan
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Feng
- Department of Intensive Care Unit, The Fourth People's Hospital of Shenyang, Shenyang, China
| | - Li Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
36
|
Harris RJ, Willsmore Z, Laddach R, Crescioli S, Chauhan J, Cheung A, Black A, Geh JLC, MacKenzie Ross AD, Healy C, Tsoka S, Spicer J, Lacy KE, Karagiannis SN. Enriched circulating and tumor-resident TGF-β + regulatory B cells in patients with melanoma promote FOXP3 + Tregs. Oncoimmunology 2022; 11:2104426. [PMID: 35909944 PMCID: PMC9336482 DOI: 10.1080/2162402x.2022.2104426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
B cells are emerging as key players of anti-tumor adaptive immune responses. We investigated regulatory and pro-inflammatory cytokine-expressing B cells in patients with melanoma by flow cytometric intracellular cytokine, CyTOF, transcriptomic, immunofluorescence, single-cell RNA-seq, and B:T cell co-culture analyses. We found enhanced circulating regulatory (TGF-β+ and PD-L1+) and reduced pro-inflammatory TNF-α+ B cell populations in patients compared with healthy volunteers (HVs), including lower IFN-γ+:IL-4+ and higher TGF-β+:TNF-α+ B cell ratios in patients. TGF-β-expressing B cells in the melanoma tumor microenvironment assembled in clusters and interacted with T cells via lymphoid recruitment (SELL, CXCL13, CCL4, CD74) signals and with Tregs via CD47:SIRP-γ, and FOXP3-promoting Galectin-9:CD44. While reduced in tumors compared to blood, TNF-α-expressing B cells engaged in crosstalk with Tregs via TNF-α signaling and the ICOS/ICOSL axis. Patient-derived B cells promoted FOXP3+ Treg differentiation in a TGF-β-dependent manner, while sustaining expression of IFN-γ and TNF-α by autologous T-helper cells and promoting T-helper cell proliferation ex vivo, an effect further enhanced with anti-PD-1 checkpoint blockade. Our findings reveal cytokine-expressing B cell compartments skewed toward regulatory phenotypes in patient circulation and melanoma lesions, intratumor spatial localization, and bidirectional crosstalk between B and T cell subsets with immunosuppressive attributes.
Collapse
Affiliation(s)
- Robert J Harris
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.,King's Health Partners Cancer Research UK Cancer Centre, King's College London, London, UK
| | - Zena Willsmore
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.,King's Health Partners Cancer Research UK Cancer Centre, King's College London, London, UK
| | - Roman Laddach
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.,Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Anna Black
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Jenny L C Geh
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy's, King's, and St. Thomas' NHS Foundation Trust, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
37
|
Qin Y, Lu F, Lyu K, Chang AE, Li Q. Emerging concepts regarding pro- and anti tumor properties of B cells in tumor immunity. Front Immunol 2022; 13:881427. [PMID: 35967441 PMCID: PMC9366002 DOI: 10.3389/fimmu.2022.881427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/07/2022] [Indexed: 12/26/2022] Open
Abstract
Controversial views regarding the roles of B cells in tumor immunity have existed for several decades. However, more recent studies have focused on its positive properties in antitumor immunity. Many studies have demonstrated a close association of the higher density of intratumoral B cells with favorable outcomes in cancer patients. B cells can interact with T cells as well as follicular dendritic cells within tertiary lymphoid structures, where they undergo a series of biological events, including clonal expansion, somatic hypermutation, class switching, and tumor-specific antibody production, which may trigger antitumor humoral responses. After activation, B cells can function as effector cells via direct tumor-killing, antigen-presenting activity, and production of tumor-specific antibodies. At the other extreme, B cells can obtain inhibitory functions by relevant stimuli, converting to regulatory B cells, which serve as an immunosuppressive arm to tumor immunity. Here we summarize our current understanding of the bipolar properties of B cells within the tumor immune microenvironment and propose potential B cell-based immunotherapeutic strategies, which may help promote cancer immunotherapy.
Collapse
Affiliation(s)
- You Qin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Furong Lu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kexing Lyu
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Alfred E. Chang
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Qiao Li, ; Alfred E. Chang,
| | - Qiao Li
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Qiao Li, ; Alfred E. Chang,
| |
Collapse
|
38
|
Karagiannis SN, Arnold JN. Immune cell-antibody interactions in health and disease. Clin Exp Immunol 2022; 209:1-3. [PMID: 35752999 PMCID: PMC9307226 DOI: 10.1093/cei/uxac065] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022] Open
Abstract
The human immune system safeguards against pathogens through a multitude of cellular and molecular signals, involving different components of the innate and adaptive response. Contrastingly, autoimmune diseases, allergic conditions, and cancer evoke different aspects of these otherwise protective processes. Understanding the immunological hallmarks for each pathological setting is essential for improving prevention, diagnosis, prognosis, and treatment. The activatory states of immune effector cells, especially in relation to their direct or indirect interactions with antibodies, are important determinants of an efficient, protective response that results in target clearance and improved clinical outcomes. Dysregulation of effector cells and their functions alongside alternatively activated humoral immune responses may contribute to several chronic diseases including allergic inflammation, autoimmune disorders and cancer. This Review Series brings to the forefront several key activation and regulatory features of immune effector cells in different diseases including cancer, infection allergy, and autoimmunity. Specific attention is drawn on how antibodies can impact effector cell states, and their pro-inflammatory and immune protective functions. Articles in this Series discuss different effector cells and antibody isotypes in infection, inflammation, tolerance and cancer immune surveillance, covering basic and translational mechanisms, clinical and epidemiological insights into these immune responses. Understanding the critical attributes of immune cells, especially those needed to effectively engage antibodies, will undoubtedly help better exploit their potential for disease management and therapy.
Collapse
Affiliation(s)
- Sophia N Karagiannis
- Correspondence: Sophia N. Karagiannis, St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Guy’s Tower Wing, Guy’s Hospital, London SE1 9RT, UK.
| | - James N Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, UK
| |
Collapse
|
39
|
Nishimura Y, Wien EA, Nishimura MF, Nishikori A, Sato Y, Otsuka F. Clinical characteristics and outcomes of IgG4-positive marginal zone lymphoma: Systematic scoping review. Pathol Int 2022; 72:361-370. [PMID: 35678201 DOI: 10.1111/pin.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Immunoglobulin G4 (IgG4)-positive marginal zone lymphoma (MZL) is rare and undefined. It is unclear whether IgG4-positive MZLs have as favorable an outcome as MZLs in general. Also, correlation with IgG4-related disease (IgG4-RD) and IgG4-positive MZLs is unknown. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for scoping reviews, we searched MEDLINE and EMBASE for all peer-reviewed articles using keywords including"IgG4" and "marginal zone lymphoma" from their inception to February 20, 2022. Twenty-two articles, including six observational studies and 24 cases from 16 case reports and case series, were included. Only one study had a comparative group, and the other five were exploratory observational studies. IgG4-positive MZLs commonly occurred in males (83.3%). It primarily involved ocular adnexa (41.7%) and skin (29.2%). Only 29.2% had concurrent IgG4-RD, and no expiration was noted. While most cases were treated with excision, resection, or clinical observation, 21.7% received rituximab-cyclophosphamide, doxorubicin, vincristine, and prednisone as a first-line treatment. This systematic review summarizes the current understanding of the characteristics of IgG4-positive MZLs. While there seems to be IgG4-RD-related and de novo IgG4-positive MZLs, future research needs to clearly define MZL with polyclonal IgG4-positive cells and IgG4-producing lymphoma. Further studies are critical to clarifying long-term prognosis and optimal surveillance planning.
Collapse
Affiliation(s)
- Yoshito Nishimura
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA.,Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eric Andrew Wien
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, Hawaii, USA
| | - Midori Filiz Nishimura
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Asami Nishikori
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Yasuharu Sato
- Division of Pathophysiology, Okayama University Graduate School of Health Sciences, Okayama, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
40
|
Huang Z, Pang X, Zhong T, Qu T, Chen N, Ma S, He X, Xia D, Wang M, Xia M, Li B. Penpulimab, an Fc-Engineered IgG1 Anti-PD-1 Antibody, With Improved Efficacy and Low Incidence of Immune-Related Adverse Events. Front Immunol 2022; 13:924542. [PMID: 35833116 PMCID: PMC9272907 DOI: 10.3389/fimmu.2022.924542] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Background IgG4 anbibodies are deficient in stability and may contribute to tumor-associated escape from immune surveillance. We developed an IgG1 backbone anti-programmed cell death protein-1 (PD-1) antibody, penpulimab, which is designed to remove crystallizable fragment (Fc) gamma receptor (FcγR) binding that mediates antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and proinflammatory cytokine release. Methods Aggregation of different anti-PD-1 antibodies was tested by size exclusion chromatography, and melting temperature midpoint (Tm) and aggregation temperature onset (Tagg) were also determined. The affinity constants of penpulimab for PD-1 and human FcγRs were measured by surface plasmon resonance and biolayer interferometry. ADCC and ADCP were determined in cellular assays and antibody-dependent cytokine release (ADCR) from human macrophages was detected by ELISA. Binding kinetics of penpulimab to human PD-1 was determined by Biacore, and epitope/paratope mapping of PD-1/penpulimab was investigated using x-ray crystallography. Additionally, patients from six ongoing trials were included for analysis of immune-related adverse events (irAEs). Results Penpulimab demonstrated better stability and a lower level of host-cell protein residue compared with IgG4 backbone anti-PD-1 antibodies. As expected, penpulimab exhibited no apparent binding to FcγRIa, FcγRIIa_H131, FcγRIIIa_V158 and FcγRIIIa_F158, elicited no apparent ADCC and ADCP activities, and induced no remarkable IL-6 and IL-8 release by activated macrophages in vitro. Penpulimab was shown in the co-crystal study to bind to human PD-1 N-glycosylation site at N58 and had a slower off-rate from PD-1 versus nivolumab or pembrolizumab. Four hundred sixty-five patients were analyzed for irAEs. Fifteen (3.2%) patients had grade 3 or above irAEs. No death from irAEs was reported. Conclusions IgG1 backbone anti-PD1 antibody penpulimab has a good stability and reduced host cell protein residue, as well as potent binding to the antigen. Fc engineering has eliminated Fc-mediated effector functions of penpulimab including ADCC, ADCP and reduced ADCR, which may contribute to its more favorable safety profile. Clinical Trial Registration www.ClinicalTrials.gov, identifier: AK105-101: NCT03352531, AK105-201: NCT03722147, AK105-301: NCT03866980, AK105-202:NCT03866967, AK105-203: NCT04172571, AK105-204: NCT04172506.
Collapse
Affiliation(s)
- Zhaoliang Huang
- Research and Development Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| | - Xinghua Pang
- Research and Development Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| | - Tingting Zhong
- Research and Development Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| | - Tailong Qu
- Research and Development Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| | - Na Chen
- Research and Development Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| | - Shun Ma
- Chemical Manufacturing and Control Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| | - Xinrong He
- Chemical Manufacturing and Control Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| | - Dennis Xia
- Manufacturing and Quality Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| | - Max Wang
- Procurement and Sourcing Department and Clinical Operation Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| | | | - Baiyong Li
- Research and Development Department, Akeso Biopharma Co., Ltd., Zhongshan, China
| |
Collapse
|
41
|
Rodgers CB, Mustard CJ, McLean RT, Hutchison S, Pritchard AL. A B-cell or a key player? The different roles of B-cells and antibodies in melanoma. Pigment Cell Melanoma Res 2022; 35:303-319. [PMID: 35218154 PMCID: PMC9314792 DOI: 10.1111/pcmr.13031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The B‐cell system plays an important role in the melanoma immune response; however, consensus has yet to be reached in many facets. Here, we comprehensively review human studies only, due to fundamental differences in the humoral response with animal models. Tumour‐infiltrating B‐cells are associated with contradictory prognostic values, reflecting a lack of agreement between studies on cell subset classification and differences in the markers used, particularly the common use of a single marker not differentiating multiple subsets. Tertiary lymphoid structures (TLS) organise T‐cells and B‐cells within tumours to generate a local anti‐tumour response and TLS presence associates with improved survival in response to immune checkpoint blockade, in late‐stage disease. Autoantibody production is increased in melanoma patients and has been proposed as biomarkers for diagnosis, prognosis and treatment/toxicity response; however, no consistent targets are yet identified. The function of antibodies in an anti‐tumour response is determined by its isotype and subclass; IgG4 is immune‐suppressive and robustly correlate with poor patient survival in melanoma. We conclude that the current B‐cell literature needs careful interpretation based on the methods used and that we need a consensus of markers to define B‐cells and associated lymphoid organs. Furthermore, future studies need to not only examine antibody targets, but also isotypes when considering functional roles.
Collapse
Affiliation(s)
- Chloe B Rodgers
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Colette J Mustard
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Ryan T McLean
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Sharon Hutchison
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| | - Antonia L Pritchard
- Genetics and Immunology Department, Division of Biomedical Research, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, UK
| |
Collapse
|
42
|
Fridman WH, Meylan M, Petitprez F, Sun CM, Italiano A, Sautès-Fridman C. B cells and tertiary lymphoid structures as determinants of tumour immune contexture and clinical outcome. Nat Rev Clin Oncol 2022; 19:441-457. [PMID: 35365796 DOI: 10.1038/s41571-022-00619-z] [Citation(s) in RCA: 246] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 02/08/2023]
Abstract
B cells are a major component of the tumour microenvironment, where they are predominantly associated with tertiary lymphoid structures (TLS). In germinal centres within mature TLS, B cell clones are selectively activated and amplified, and undergo antibody class switching and somatic hypermutation. Subsequently, these B cell clones differentiate into plasma cells that can produce IgG or IgA antibodies targeting tumour-associated antigens. In tumours without mature TLS, B cells are either scarce or differentiate into regulatory cells that produce immunosuppressive cytokines. Indeed, different tumours vary considerably in their TLS and B cell content. Notably, tumours with mature TLS, a high density of B cells and plasma cells, as well as the presence of antibodies to tumour-associated antigens are typically associated with favourable clinical outcomes and responses to immunotherapy compared with those lacking these characteristics. However, polyclonal B cell activation can also result in the formation of immune complexes that trigger the production of pro-inflammatory cytokines by macrophages and neutrophils. In complement-rich tumours, IgG antibodies can also activate the complement cascade, resulting in the production of anaphylatoxins that sustain tumour-promoting inflammation and angiogenesis. Herein, we review the phenotypic heterogeneity of intratumoural B cells and the importance of TLS in their generation as well as the potential of B cells and TLS as prognostic and predictive biomarkers. We also discuss novel therapeutic approaches that are being explored with the aim of increasing mature TLS formation, B cell differentiation and anti-tumour antibody production within tumours.
Collapse
Affiliation(s)
- Wolf H Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France. .,Equipe labellisée Ligue contre le Cancer, Paris, France.
| | - Maxime Meylan
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Florent Petitprez
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Cheng-Ming Sun
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| | - Antoine Italiano
- Faculty of Medicine, University of Bordeaux, Bordeaux, France.,Department of Medicine, Institute Bergonié, Bordeaux, France
| | - Catherine Sautès-Fridman
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Equipe inflammation, complément et cancer, Paris, France.,Equipe labellisée Ligue contre le Cancer, Paris, France
| |
Collapse
|
43
|
Flores-Borja F, Blair P. "Mechanisms of induction of regulatory B cells in the tumour microenvironment and their contribution to immunosuppression and pro-tumour responses". Clin Exp Immunol 2022; 209:33-45. [PMID: 35350071 PMCID: PMC9307227 DOI: 10.1093/cei/uxac029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 12/05/2022] Open
Abstract
The presence of tumour-infiltrating immune cells was originally associated with the induction of anti-tumour responses and good a prognosis. A more refined characterization of the tumour microenvironment has challenged this original idea and evidence now exists pointing to a critical role for immune cells in the modulation of anti-tumour responses and the induction of a tolerant pro-tumour environment. The coordinated action of diverse immunosuppressive populations, both innate and adaptive, shapes a variety of pro-tumour responses leading to tumour progression and metastasis. Regulatory B cells have emerged as critical modulators and suppressors of anti-tumour responses. As reported in autoimmunity and infection studies, Bregs are a heterogeneous population with diverse phenotypes and different mechanisms of action. Here we review recent studies on Bregs from animal models and patients, covering a variety of types of cancer. We describe the heterogeneity of Bregs, the cellular interactions they make with other immune cells and the tumour itself, and their mechanism of suppression that enables tumour escape. We also discuss the potential therapeutic tools that may inhibit Bregs function and promote anti-tumour responses.
Collapse
Affiliation(s)
- Fabian Flores-Borja
- Centre for Immunobiology and Regenerative Medicine, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Blizard Institute, London
| | - Paul Blair
- Division of Infection & Immunity, Faculty of Medical Sciences, Department of Infection, Immunity, and Transplantation, University College London, London
| |
Collapse
|
44
|
Delvecchio FR, Goulart MR, Fincham REA, Bombadieri M, Kocher HM. B cells in pancreatic cancer stroma. World J Gastroenterol 2022; 28:1088-1101. [PMID: 35431504 PMCID: PMC8985484 DOI: 10.3748/wjg.v28.i11.1088] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 02/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is a disease with high unmet clinical need. Pancreatic cancer is also characterised by an intense fibrotic stroma, which harbours many immune cells. Studies in both human and animal models have demonstrated that the immune system plays a crucial role in modulating tumour onset and progression. In human pancreatic ductal adenocarcinoma, high B-cell infiltration correlates with better patient survival. Hence, B cells have received recent interest in pancreatic cancer as potential therapeutic targets. However, the data on the role of B cells in murine models is unclear as it is dependent on the pancreatic cancer model used to study. Nevertheless, it appears that B cells do organise along with other immune cells such as a network of follicular dendritic cells (DCs), surrounded by T cells and DCs to form tertiary lymphoid structures (TLS). TLS are increasingly recognised as sites for antigen presentation, T-cell activation, B-cell maturation and differentiation in plasma cells. In this review we dissect the role of B cells and provide directions for future studies to harness the role of B cells in treatment of human pancreatic cancer.
Collapse
Affiliation(s)
- Francesca Romana Delvecchio
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Michelle R Goulart
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | | | - Michele Bombadieri
- William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
- Barts and the London HPB Centre, Barts Health NHS Trust, London E1 1BB, United Kingdom
| |
Collapse
|
45
|
Minici C, Testoni S, Della-Torre E. B-Lymphocytes in the Pathophysiology of Pancreatic Adenocarcinoma. Front Immunol 2022; 13:867902. [PMID: 35359944 PMCID: PMC8963963 DOI: 10.3389/fimmu.2022.867902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Pancreatic adenocarcinoma is highly infiltrated by B lymphocytes but the relevance of these immune cells in tumor development has been surprisingly overlooked until recently. Based on available evidence from other solid tumors, interaction between B lymphocytes and neoplastic cells is probably not uniformly stimulatory or inhibitory. Although presentation of tumor antigens to T cells and production of antitumor immunoglobulins might intuitively suggest a prominent tumor suppressive activity, specific subsets of B lymphocytes can secrete growth factors for neoplastic cells and immunosuppressive cytokines thus promoting escape from immunosurveillance and cancer progression. Because many of these mechanisms might also be implicated in the development of PDAC, and immune-modulation of B-cell activity is nowadays possible at different levels, determining the role of B-lymphocytes in this lethal cancer becomes of utmost importance to design novel therapeutic strategies. This review aims to discuss the emerging role of B cells in PDAC tumorigenesis, progression, and associated stromal reaction.
Collapse
Affiliation(s)
- Claudia Minici
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabrina Testoni
- Pancreato-Biliary Endoscopy and Endosonography Division, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Della-Torre
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Division of Pancreatic Surgery, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
46
|
Zhang X, Jin X, Guan L, Lin X, Li X, Li Y. IgG4-Related Disease With Gastrointestinal Involvement: Case Reports and Literature Review. Front Immunol 2022; 13:816830. [PMID: 35359937 PMCID: PMC8960130 DOI: 10.3389/fimmu.2022.816830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/18/2022] [Indexed: 12/02/2022] Open
Abstract
IgG4-related disease is an immune-mediated chronic, systemic, and autoinflammatory disease that can affect various organs throughout the body. The most commonly affected areas are the pancreas and biliary system. Due to the diverse clinical manifestations of the disease, it affects widely distributed organs. Thus, it is often easy to misdiagnose or miss. The digestive tract is a rarely affected system, and most IgG4-related gastric diseases manifest as tumors detected by endoscopy. This article reports two special cases with IgG4-related disease involving atrophic gastritis and intestinal polyps to provide a more empirical and theoretical basis for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xinhe Zhang
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Jin
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Guan
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuyong Lin
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuedan Li
- Radiology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiling Li
- Gastroenterology Department, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yiling Li,
| |
Collapse
|
47
|
Toney NJ, Opdenaker LM, Cicek K, Frerichs L, Kennington CR, Oberly S, Archinal H, Somasundaram R, Sims-Mourtada J. Tumor-B-cell interactions promote isotype switching to an immunosuppressive IgG4 antibody response through upregulation of IL-10 in triple negative breast cancers. J Transl Med 2022; 20:112. [PMID: 35255925 PMCID: PMC8900352 DOI: 10.1186/s12967-022-03319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive breast cancer for which there is currently no targeted therapy. Tumor-infiltrating B-cells (TIB) have been observed in tumor tissues of TNBC patients, but their functional role is unclear. IgG4 is one of four antibody subclasses of IgG expressed and secreted by B cells. Unlike other IgG isotypes, IgG4 has an immunosuppressive function and is induced by Th2-type cytokines. In cancers such as melanoma, IgG4 has been linked with advanced disease and poor patient survival. Therefore, we sought to determine if IgG4 + B cells are present and determine the mechanisms driving isotype switching in TNBC. METHODS We performed co-culture assays to examine expression of Th2 cytokines by TNBC cells with and without the presence of B cells. We also performed in vitro class switching experiments with peripheral B cells with and without co-culture with TNBC cells in the presence or absence of an IL-10 blocking antibody. We examined expression of CD20+ TIB, IgG4 and Th2 cytokines by immunohistochemistry in 152 TNBC samples. Statistical analysis was done using Log-Rank and Cox-proportional hazards tests. RESULTS Our findings indicate that B cells interact with TNBC to drive chronic inflammatory responses through increased expression of inflammatory cytokines including the TH2 cytokines IL-4 and IL-10. In vitro class switching studies show that interactions between TNBC cell lines and B cells drive isotype switching to the IgG4 isotype in an IL-10 dependent manner. In patient tissues, expression of IgG4 correlates with CD20 and tumor expression of IL-10. Both IgG4 and tumor IL-10 are associated to shorter recurrence free survival (RFS) and overall survival (OS) in TNBC. In a multi-variant analysis, IL-10 was associated with poor outcomes indicating that tumor IL-10 may drive immune escape. CONCLUSIONS These findings indicate that interactions between TIB and TNBC results in activation of chronic inflammatory signals such as IL-10 and IL-4 that drive class switching to an IgG4 + subtype which may suppress antibody driven immune responses. The presence of IgG4 + B cells may serve as a biomarker for poor prognosis.
Collapse
Affiliation(s)
- Nicole J Toney
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
- Department of Biological Sciences, The University of Delaware, Newark, DE, USA
| | - Lynn M Opdenaker
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
| | - Kader Cicek
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
- Department of Biological Sciences, The University of Delaware, Newark, DE, USA
| | - Lisa Frerichs
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
| | | | - Samuel Oberly
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
| | - Holly Archinal
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
| | | | - Jennifer Sims-Mourtada
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA.
- Department of Biological Sciences, The University of Delaware, Newark, DE, USA.
- The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Karagiannis P, Correa I, Chauhan J, Cheung A, Dominguez-Rodriguez D, Terranova-Barberio M, Harris RJ, Crescioli S, Spicer J, Bokemeyer C, Lacy KE, Karagiannis SN. Innate stimulation of B cells ex vivo enhances antibody secretion and identifies tumour-reactive antibodies from cancer patients. Clin Exp Immunol 2022; 207:84-94. [PMID: 35020866 PMCID: PMC8802180 DOI: 10.1093/cei/uxab005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Human B cells and their expressed antibodies are crucial in conferring immune protection. Identifying pathogen-specific antibodies following infection is possible due to enhanced humoral immunity against well-described molecules on the pathogen surface. However, screening for cancer-reactive antibodies remains challenging since target antigens are often not identified a priori and the frequency of circulating B cells recognizing cancer cells is likely very low. We investigated whether combined ex vivo culture of human B cells with three innate stimuli, interleukin-17 (IL-17), B-cell activation factor (BAFF), and the toll-like receptor 9 (TLR-9) agonist DNA motif CpG ODN 2006 (CpG), each known to activate B cells through different signalling pathways, promote cell activation, proliferation, and antibody production. Combined IL-17+BAFF+CpG prolonged B-cell survival and increased proliferation compared with single stimuli. IL-17+BAFF+CpG triggered higher IgG secretion, likely by activating differentiated, memory and class-switched CD19+CD20+CD27+IgD- B cells. Regardless of anti-FOLR antibody seropositive status, IL-17+BAFF+CpG combined with a monovalent tumour-associated antigen (folate receptor alpha [FOLR]) led to secreted antibodies recognizing the antigen and the antigen-expressing IGROV1 cancer cells. In a seropositive individual, FOLR stimulation favoured class-switched memory B-cell precursors (CD27-CD38-IgD-), class-switched memory B cells and anti-FOLR antibody production, while IL-17+BAFF+CpG combined with FOLR, promoted class-switched memory B-cell precursors and antibody-secreting (CD138+IgD-) plasma cells. Furthermore, IL-17+BAFF+CpG stimulation of peripheral blood B cells from patients with melanoma revealed tumour cell-reactive antibodies in culture supernatants. These findings suggest that innate signals stimulate B-cell survival and antibody production and may help identify low-frequency antigen-reactive humoral responses.
Collapse
Affiliation(s)
- Panagiotis Karagiannis
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Isabel Correa
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anthony Cheung
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - Diana Dominguez-Rodriguez
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Manuela Terranova-Barberio
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Robert J Harris
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - James Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Carsten Bokemeyer
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Katie E Lacy
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, UK.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|
49
|
Yu T, Wu Y, Liu J, Zhuang Y, Jin X, Wang L. The risk of malignancy in patients with IgG4-related disease: a systematic review and meta-analysis. Arthritis Res Ther 2022; 24:14. [PMID: 34986892 PMCID: PMC8728936 DOI: 10.1186/s13075-021-02652-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The relationship between IgG4-related disease (IgG4-RD) and the risk of malignancy is still controversial. This article focused on assessing the risk of cancer in patients with IgG4-RD by meta-analysis. METHODS We conducted a systematic review of the literature and meta-analysis characterizing the associated risk of overall malignancy and four site-specific malignancies (pancreas, lung, gastric and lymphoma) in patients with IgG4-RD. A search from 2003 to 2020 was performed using specified terms from PubMed, Embase, Web of Science and SinoMed. Random-effects model analysis was used to pool standardized incidence ratios (SIRs) and 95% confidence intervals (CIs). Subgroup and sensitivity analyses were conducted to clarify the heterogeneity of the included studies. Begg's funnel plot and Egger's linear regression test were used to evaluate the bias of the meta-analysis. A P value < 0.05 indicated the existence of publication bias. RESULTS A total of 10 studies were included in the article. The overall SIR estimates suggested an increased risk of overall cancer in IgG4-RD patients (SIR 2.57 95% CI 1.72-3.84) compared with the general population. The specific SIRs for pancreas and lymphoma were higher than those of the general population in IgG4-RD patients (SIR 4.07 95% CI 1.04-15.92, SIR 69.17 95% CI 3.91-1223.04, respectively). No significant associations were revealed in respiratory and gastric cancer (SIR 2.14 95% CI 0.97-4.75, SIR 0.95 95% CI 0.24-3.95, respectively). Four studies were found to be the major sources of heterogeneity by sensitivity analysis. There was no evidence of publication bias via Egger's test. CONCLUSION Compared with the general population, patients with IgG4-RD appear to have a higher risk of overall cancer, especially pancreatic and lymphoma. The risk of lung and gastric cancer was not different between IgG4-RD patients and the general population.
Collapse
Affiliation(s)
- Tingfeng Yu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yaxian Wu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Jia Liu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Yanyan Zhuang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Guangzhou, China
| | - Xiaoyan Jin
- Department of General Practice, Sun Yat-sen Memorial Hospital, Guangzhou, China.
| | - Lingyun Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Guangzhou, China.
| |
Collapse
|
50
|
Tumour- associated autoantibodies as prognostic cancer biomarkers- a review. Autoimmun Rev 2022; 21:103041. [DOI: 10.1016/j.autrev.2022.103041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/12/2022]
|